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Preface 

This book provides an introductory treatment of the logical structure, 
electronic realization, and application of digital information processors. 
The extent of coverage of each major topic should also make the book 
useful as a review and reference text for persons experienced in the field. 
Each major chapter is a relatively self-contained unit in an important 
area: Boolean algebra for switching networks (Chapter 3) , electronic 
building blocks for switching circuits (Chapter 4 ) , memories for digital 
computers (Chapter 5) , arithmetic operations in digital computers 
(Chapter 6) , system design of GP (integral transfer) computers (Chapter 
7) , an extensive description of DDA (incremental transfer) computers 
(Chapter 8) , and detection and correction of errors (Chapter 9 ) , and 
input-output equipment (the Appendix). 

With the exception of Chapters 4 and 5, the presentation is on a 
functional level, i.e., in terms of how elements with defined input-output 
characteristics may be organized to synthesize subsystems or systems with 
specified functional capabilities. Although functional descriptions and 
circuit problems cannot be separated completely, the discussion of de­
tailed problems in the electronic realization of computers has been con­
fined mainly to these two chapters. This was done for a number of 
reasons—first of all, in order not to obscure (by the intricacies and 
details of practical means of mechanization) the conceptual simplicity of 
fundamental principles treated in other chapters. This separation and 
the way material is organized in each chapter also facilitates looking-up 
particular topics. Also, while the entire field is evolving rapidly, develop­
ments in circuit techniques have advanced more rapidly than in logical 
design. When the writing of this book was begun, the clock-repetition 
rate of most digital computers was about 100 kc. Currently (1962) 
computer circuits are under development for operation in the microwave 
region of several hundred megacycles. (Developments in microwave, 
tunnel diode, and superconductive circuits are described in Chapters 4 and 
5 and also referenced in the bibliographies of these chapters.) 

The importance of digital information processing technology in the 
betterment of human welfare, in government, commerce, industry, science, 
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Viii PREFACE 

engineering, and military systems (as well as dangers inherent in misuse) 
makes it desirable that certain principles and the breadth of applications 
be widely appreciated. The text's emphasis on the functional approach 
makes much of the subject accessible to those with limited technical 
backgrounds. The presentation of material is designed to supplement 
instruction in university level classes and also to facilitate independent 
study. Because problems associated with various types of electronic 
circuits are largely confined to two chapters, the intelligent reader with 
limited knowledge in electrical and electronic circuits can (in accordance 
with his capability and inclinations) skim these chapters and still under­
stand and benefit from the remainder of the text. (An additional reserva­
tion is that appreciation of all of Chapter 8 calls for a basic knowledge 
of ordinary differential equations.) The entire text can be understood by 
one having a background equivalent to a Bachelor's degree in electrical 
engineering with mathematics through differential equations. 

Even after thorough study of branches of a subject, one may still have 
doubts on how to apply this knowledge in the synthesis of a particular 
design. Often this situation can be alleviated by the study of examples 
that illustrate in detail the application of the basic material. In the present 
case an effort was made to integrate material presented in earlier chapters 
by presenting (in Chapter 7 ) a detailed explanation of two simple digital 
computer logical designs. 

The author is indebted to many organizations and individuals who have 
advanced the digital computer field and whose work forms the reservoir 
from which the material for this book was drawn. Many of these sources 
are listed in the bibliographies. Reports and publications of the Massa­
chusetts Institute of Technology, John von Neumann and his colleagues 
at the Princeton Institute for Advanced Study, the University of Illinois, 
and the University of Manchester deserve special mention. If the principal 
source of any important material has not been properly referenced, the 
author invites this being called to his attention. 

The author is grateful to the Northrop Corp. and Dr. Erik Ackeriind 
for the opportunity to enter the digital computer field. Thanks are due 
Lockheed Aircraft Corp., Hughes Aircraft Co., and Information Systems, 
Inc., for furnishing typing assistance, Mrs. Barbara Fine for typing the 
final manuscript, and the Aerospace Corp. for assistance on the subject 
index. Acknowledgment is due Mr. Geoffrey Post for his encouragement 
while the author was at Information Systems, Inc. 

It is a pleasure to acknowledge valuable aid from the following indi­
viduals, who read and constructively criticized final page proofs: Chapter 3, 
William Shooman, System Development Corp.] Chapter 4 (transistor 
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circuits) and Chapter 5 (magnetic surface recording techniques), Marvin G. 
Ettinghoff, Librascope, Inc.; Chapter 5 (magnetic core memories), Milton 
Rosenberg, Electronic Memories, Inc.; Chapter 6, Dr. John M. Salzer, 
Space Technology Laboratories. 

The list of acknowledgments would be incomplete without mention of 
my family's understanding and forbearance during the period of prepa­
ration of this book. 

EDWARD LOUIS BRAUN 
March 1963 



1. Introduction 

1.1. Uses of Number 

The subject matter of this book is the stored program digital computer. 
We will consider its fundamental nature, ways of describing its logical 
organization, various means of mechanization, and principles and tech­
niques useful in its synthesis and utilization. Since these machines ac­
complish their fimction by means of operations on numerically coded 
information, some preliminary discussion is in order on the subject of 
numbers. We will consider briefly the nature of numbers, certain symbols 
and notations used to represent them, and a description of mechanical 
and/or electronic means for representing numbers and operating on them. 

Numerical symbols may be used for various purposes. Sometimes they 
are used merely as labels to distinguish one of a set of objects from the 
others. In other words, they can be used as names or symbols for objects. 
They are convenient to use as names of persons or things because they 
provide an inexhaustible supply of such names. 

Ordinarily, one associates a deñnite order among numerals (or groups 
of numerals). Often, numerals are used for this characteristic alone, as 
in assigning them to houses on a street. The function of a street address is 
not to indicate how many houses there are on a street, but to indicate a 
particular house's position relative to other houses on the street, i.e., its 
order. The use of numerals to indicate the number of items in a set will 
be discussed in Section 1.2. 

1.2. Counting 

Before considering how numbers came to be associated with the process 
of counting, it is well to emphasize the distinction between ordinal and 
cardinal numbers since, in common usage, the word number alone may 
refer to either. When numbers are used solely for an order property that 
has been deñned previously for them, they are called ordinal numbers (or 
ordinals)—^for example, numbers indicating relative locations or points 
in time. Numbers used to designate the manyness of a set of things are 
called cardinal numbers (or cardinals). As mentioned in Section 1.1, 
numerals can be used merely as convenient tags or symbols to distinguish 
objects from one another. In this case, the numerals are used neither to 
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2 1. I N T R O D U C T I O N 

convey the property of ordinality nor cardinality. Within a computer, num­
bers may be used in any of these ways. An important property of all 
numerical symbols is that mathematical and logical operations can be 
performed on them to serve various useful purposes. 

A fundamental numerical operation is that of determining whether the 
number of elements in one set is equal to, greater than or less than the 
number of elements in another set. An obvious procedure is to pair off an 
element in one set with an element of the other set, at the same time re­
moving each element from its set, and to continue this process until one 
or the other set is depleted. For this process to be generally useful for 
enumerating elements in a set, it is necessary that one have available a 
standard set of sets. The smallest of these subsets will contain only one 
element, and the entire set of subsets may be built up from it simply by 
the addition of one element at a time. The idea of using a standard set of 
sets, formed from some easily transportable objects, resulted in a great 
convenience since it meant that one could determine the relative magnitude 
of two sets of objects and, also, the number of elements in each set 
without bringing the sets in proxiipity. Since each subset is included in tlie 
next larger subset of the set, the total number of elements to be provided 
did not have to exceed the largest set which might have to be enumerated. 
The most convenient set of elements at primitive man's disposal was the 
set comprised of his fingers (and toes), and it was only natural for him to 
use them (therein lies the origin of the quinary, bi-quinary and decimal 
number systems). As the need to enumerate larger sets developed, sets of 
small pebbles or beads (also easily transportable) came into use. At a later 
time, a symbol (or group of symbols) was assigned to each subset of the 
set. Then, the manyness of sets could be indicated conveniently in terms 
of these symbols. Finally, this led to the process of ordering the symbols in 
accordance with the manyness of the sets they represented, and to our 
present day convention in which we count by introducing the name of the 
symbol for the next larger set in a standard sequence each time the present 
set is augmented by " 1 . " This same type of procedure allows us to count 
from any initially specified location in a sequence, to count backwards as 
well as forwards and, also, to count by multiple as well as single increments. 

1.3. Numerical Symbols 

Early man represented a single element by a mark like I or —, both 
because of their similarity to an extended finger and because they were 
easy to inscribe with a stick or other pointed instrument. Two elements 
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4592 MMMMDLXXXXII 

To obtain the sum in Roman numerals, one need only know that the 
sum of any number (from one through four) of the Roman numerals I, 
X, C, M, etc. was represented simply by writing each symbol in the sum 
a number of times equal to the frequency with which it appeared in the 
addends. The only other rules, which achieve a more compact notation, 
are that IUI + I = V, V + V = X, XXXX + X = L, L + L = C, 
CCCC + C = D, etc. Contrast this simple process of accumulating like 
symbols with modem decimal addition which requires memorization of 
the decimal addition table as well as knowing when sums or borrows are 
generated and their disposition. 

1.4. Fundamentals of Computing Aids 

The first significant mechanical aid to computing, the abacus, was 
invented in ancient times and is widely used in many parts of the world 
even today. It consists of an array of similar physical elements, each of 
which represents a count whose magnitude is determined by the row and 
column coordinates of the element's position. These physical elements 
are in the shape of beads, referred to by the Romans as calculi (the 
origin of the terms calculus, calculate, etc.). Each column is divided in 

were represented by I I or Z I . From the former is seen the origin of the 
Roman numeral II. The latter when written quickly, without removing 
the instrument from the writing surface, would appear as Z, and is the 
origin of 2. Similarly Ξ becomes 3. The reasons for the choice of the 
other numerals are not so apparent, and need not be discussed here. 

A major step forward in the representation of a collection of elements 
came with the use of special symbols to represent large collections of 
elements. For example, the Romans used V for five, X for ten, L for 
fifty, C for one hundred, D for five hundred, Μ for one thousand, etc. 
Even so, the representation of large numbers was cumbersome compared 
to present day notation. For example 3738 would be expressed as 
MMMDCCXXXVIII. Nevertheless, Roman numerals were retained in 
commercial accounting imtil the eighteenth century. One reason for their 
continued use was that they made addition and subtraction easier for those 
with little or no mathematical training. This was because they allowed 
these operations to be performed by a process more akin, on the surface, 
to counting than is addition (or subtraction) of modem numerals. Con­
sider, for example, the addition of 854 to 3738 

3738 MMMDCCXXXVIII 
854 DCCCL IUI 
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two by a crosspiece. There may be one or two beads above the crosspiece, 
and four or five below i t Each upper bead defines a count equal to that 
of five beads below the crosspiece in the same column. Both upper and 
lower beads within a column are free to move along the column. In the 
column on the extreme right each lower bead represents one. In the next 
column each lower bead represents ten. As one proceeds to the left, the 
value assigned to the beads in any column is ten times that assigned 
to the beads in the adjacent column on the right. A number is set into the 
abacus by pushing beads up to the crosspiece. 

The abacus provided a speed advantage for addition or subtraction 
compared to the manipulation of written Roman numerals, due to the 
fact that beads could be moved about in less time than it took to write 
the operands and result in Roman numerals. Another reason for its use 
was that it provided a cheap means of temporary storage of information. 
Numbers could be readily inserted and erased simply by movement of the 
beads. Parchment and ink were not readily available, expensive, and 
therefore practical only for permanent records, documents, etc. Another 
cheap means of temporary storage that was used consisted of a board 
covered with a thin coat of wax. Marks could be scratched into the wax 
and erased by resmoothing the wax. However, this was a slow and tedious 
process. It was not until slates, blackboards, and paper came into common 
use just a few centuries ago that the abacus and similar devices known 
as counting boards were replaced in Europe. 

In the abacus, an important concept appears whose significance was 
not appreciated until many centuries later. We refer to the idea of a 
positional notation, i.e., one where the value represented by a particular 
symbol is a function of where the symbol appears in a group. In the 
abacus, there is only one symbol, namely a bead, and these beads repre­
sent different magnitudes in accordance with their positions. The inter­
pretation of a symbol according to its position is characteristic of modem 
numerical representation and one of its most important features. It makes 
it unnecessary to create new symbols for successively larger counts. With 
the positional notation, and its simple rule for going from one number to 
the next larger one, any new number, as large as we please, may be 
written from a basic small set of symbols. The number of symbols required 
to represent any magnitude depends on how many symbols are used in 
defining the basic set. In the decimal system, based on using the fingers for 
counting, ten symbols, the numerals 0, 1, 2, 3, . . . 9 comprise the basic 
set and the representation of a number such as 

di di-i di-2 . . . do d-i d-2 · . . d-f 

is really the shorthand notation for 
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Decimal Binary 

0 0 
1 1 
2 10 
3 11 
4 100 
5 101 
6 110 
7 111 
8 1000 
9 1001 

10 1010 

All mechanical, electromechanical, and electronic digital computing 
aids utilize the positional notation in the representation of numbers, for 
it allows a number of any magnitude to be formed from a defined, small 
set of symbols. This is of fundamental importance for the following 
reasons. First of all, it allows a digital unit to be fabricated from a 
relatively small number of standardized elements. Also, it is responsible 
for the high precision attainable, for the precision may be increased 
indefinitely simply by the use of more elements. For example, a common 

(di X 10*) + (d^^ X io*-i) + . . . + (d;, X 100) + (¿ ^ X 10-1) + . , . 

where each d may represent any of the ten symbols: 0, 1, 2, 3, . . . 9. 
For example, the representation 2943.0 implies: (2 X 1000) + (9 x 100) 
+ (4 X 10) + (3 X 1) + (0 X .1) = 2943.0. A system of numerical rep­
resentation in which only two symbols are used is referred to as the binary 
system. A representation of a number in the binary system, such as 

bm bm-l bm-2 · · . ¿ 0 6-1 6-2 · · · 6-n 

is the shorthand notation for 

(bn X 2-) + (6^1 X 2-1) + . . . + (6o X 2«) + (61 X 2-^) + . . . 

where each b may represent either of the two symbols in the binary system: 
0 or 1. Each of the symbols in a binary number is referred to as a bit 
(for binary digit). A comparison of the decimal and binary representations 
for numbers of magnitude from zero to ten is shown in Table 1.1. From 
it, a disadvantage of the binary system for written notation is apparent, 
namely the fact that the representation of a number requires, in general, 
more symbols than does the decimal system. 

TABLE 1.1. 
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mechanical method of representing a digit is by means of a notched 
wheel or disk which can be turned by a shaft through its center. At any 
time, the disk is defined to represent one of the symbols 0, 1, 2, . . . 9, 
depending on the disk's angular displacement from an arbitrary reference. 
To represent a number with, say, η digits, η similar disks are used. To 
perform an addition, it is necessary to displace each disk by an amount 
proportional to the value of the digit to be added to the order defined by 
each disk. It is also necessary to intercouple the disks in such a manner 
that when any disk passes from the 9 to the 0 state, a motion is imparted 
to the disk in the next more significant position such that it passes from 
state / to / 4- 1. 

As a rule, mechanical and electromechanical computing aids used for 
normal computational work employ the decimal system. This is because 
it is a relatively simple matter to define and maintain ten distinct positions 
of a rotary element. In electronic computing aids, where a number is 
represented by such things as the amount of charge on a dielectric 
material, the state of magnetization of a magnetic element, or the voltage 
at some point in an electronic circuit, the use of the decimal system pro­
duces difficulties. These can all be attributed to the fact that it is difficult 
to control the placement of an electrical element precisely into one of ten 
stable states, and equally difficult to read the states of circuits to such 
precision. Because of such practical difficulties, all electronic digital com­
puters are formed from binary elements, i.e., switching and storage 
devices which need assume only two distinguishable stable states. Hence, 
use of the binary rather than the decimal system is dictated. This is 
because two (or some power of two) is the most economical radix to 
use with binary elements simply because all possible configurations of a 
group of binary elements can then be utilized. The use of the binary 
system presents no great difficulty, and there is no intrinsic reason why 
one must use the decimal number system. One may choose any radix for 
the base of a number system. The Babylonians used the sexagesimal 
system (i.e., the base was 60, as opposed to 10 for the decimal), the 
Mayans used the duodecimal system. Outside of psychological reasons, 
stemming from its common use in all phases of human commerce, the 
decimal system is not the best to use for computing. 

Even though numbers are represented within a machine in the binary 
number system, conversion between the two types of number systems 
can take place at the inputs and outputs of a machine so that, as far as 
the user is concerned, the machine operates in the decimal system. To 
facilitate this conversion, the binary-coded decimal system (see Chapter 6) 
may be used in the internal storage elements of a computer as well as in 
its input and output equipment. 
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(Λ 

Quantized 
function 

-^T-h k \ H 

FiG. 1.1. Quantization of a function 

The nature of the quantizing process is shown in Fig. 1.1. Note, first 
of all, that the range of values of the fimction is divided, on some basis, 
into a number of smaller subranges. The values selected to define the 
subranges are called levels of quantization. Ctae way of quantizing a 
function is to replace its value by the value of the nearest level of 
quantization whenever it passes the halfway point between two levels, 
the value of the quantized function remaining constant between such occur­
rences. However, in practice, and as shown in Fig. 1.1, the quantization 
process is usually associated with a fixed period sampling process wherein 
the original function is inspected at times to, h, Í2 . . . and its value replaced 
by that of the closest level of quantization at these times. In a synchronous 
digital computer, the instants of time, would be specified by a timing 

1.5. Quantization 

Media used for the recording of information are usually capable of 
responding to a continuous range of input signal intensity, from the so-
called threshold level to the saturation level. For example, information 
can be represented on magnetic tape by the intensity of magnetization 
of specified areas on the tape, and this intensity is determined, over the 
threshold to saturation range, by the magnitude of current applied to a 
recording head. A measure of the amount of information stored in any 
one area is given by the total number of levels of magnetization that can 
be recorded and sensed. Ideally, it would be desirable to store a large 
amount of data with a minimum amount of storage media. However, in 
practice a compromise must be made in order to reduce the probable 
error in inteφreting the recorded information when sensed at some later 
time. Use of quantization in the recording and sensing processes allows 
one to trade efficiency of storage for a greater probability of correct 
interpretation of the data. 
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source referred to as a clock (see Chapter 3) . Often one uses a quantizing 
process without realizing it as, for example, when reading a dial, gauge, 
or scale to the nearest unit. 

The way in which quantization can be employed to reduce the prob­
ability of misinterpreting stored data will now be described. For the pur­
pose of illustration, consider again a magnetic storage medium. For each 
state of magnetization of the medium, there is a finite probability that an 
accidental event will cause a transition to some other state of magnetiza­
tion. Of course, the greater the separation between two states the less the 
probability that an accident will occur to cause the transition from one 
state to the other. Accordingly, the difference between levels of quantiza­
tion can be defined in such a way that the probability of a signal on one 
level being mistaken for that on an adjacent level is less than a specified 
amount. An ideal, absolutely stable state of a storage medium exists only 
if a perfect switching action is involved, i.e., if an impulse of energy is 
required for a transition between two states, and only in this case could 
the probability of misinterpreting stored data be reduced to an absolute 
minimum. In practice this situation is adequately approximated by choos­
ing levels sufficiently far apart that a large amplitude signal is required to 
switch the storage element from one level to the other. The passive storage 
elements used in all contemporary electronic digital computers are referred 
to as binary elements because of this type of arrangement. Bounds are 
specified about each level within which the sensing device reports the 
same value. This is done so that variations from the specified levels, due 
either to small irregularities in the medium or small transitions that may 
have occurred, are not sensed. Two advantages of the binary quantizing 
process are apparent. It allows for exactness and for reproducibility of 
results. Binary quantization reduces the problems associated with measur­
ing physical parameters to a simple determination of the presence of signals 
near the threshold and saturation levels. Thus, the uncertainties entering 
into measurement are replaced by the relative certainty of detection of a 
large amplitude signal. Binary quantized data can be processed with 
relative immunity to the compounding of small errors that occurs in a 
nonquantized data system. In a binary system the end result of a series 
of operations will always be the same no matter how many times it is 
repeated. This is an especially important factor in the processing of 
commercial data where money and other items must be accounted for, 
not to within some tolerance of error, but to a precise figure. 

Of course, for an increased efficiency of storage multilevel storage 
devices could be used if the additional levels could be recorded and 
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sensed without an objectionable increase in the probability of error of 
interpretation. 

1.6. The Evolution of Computing Aids 

It is only natural to expect that means for representing and processing 
information would be influenced by the technological level of each age. 
We have already observed that man first counted by means of his fingers, 
and later used line segments to represent elements in a collection. In early 
forms of the abacus, developed over 5000 years ago, a number was rep­
resented by the pattern in which a set of pebbles was arranged. Later the 
abacus evolved to its present form which differs principally in that beads 
are threaded on wires or thin rods that define the colmnns and the whole 
is enclosed in a frame. There were no significant new developments in 
computing aids until the seventeenth century. Then in 1642, the first 
desk calculator was invented by Blaise Pascal. It could perform addition 
and subtraction, and its operation was based on the use of toothed wheels. 
Leibnitz designed the so-called stepped wheel, and improved upon Pascal's 
machine by devising a means of multiplication by repeated addition. A 
machine with this feature was completed in 1694, but suffered from 
mechanical imperfections. Further improvement on Pascal's machine was 
made by Thomas de Colmar who, in 1820, produced the first successful 
machine for multiplication. In 1878, the Swedish engineer Odhner, invented 
the pin-wheel method of adding numbers from one to nine. His patents 
were subsequently incoφorated in the Brunswiga hand calculating ma­
chines. The first successful key driven adding machine, the Comptometer, 
was developed in 1887 by D. E. Felt. After this time, a number of signifi­
cant improvements were added by new designs as well as additions to old 
ones. Single operation multiplication was introduced by Leon Bollée in 
1888. In 1889, a printing feature was added to the Comptometer. After 
1910, electric drive motors were added to mechanical calculators. This 
allowed more complex circuits to be used, since keys or light parts of the 
machine's internal mechanism could be used to actuate control switches. 

In the era of the Industrial Revolution, the idea of mechanical auto­
mata achieved a marked popularity, and many ingenious mechanical 
devices were developed which, upon being actuated would foUow a 
prescribed set of motions. Two relatively important devices were developed 
at this time to control the motions of two quite different mechanisms. 
From them have evolved two input-output media widely used with present 
electronic digital computers, and which in their present form are basically 
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similar. One of these devices was a metallic disk or cylinder upon which 
bumps were placed at designated points to control the times at which 
different notes were struck in a music box. From it were developed player 
piano rolls and various types of punched paper tape, most notably those 
used to control teletype equipment. The other was the Jacquard card, 
used to control the weaving of patterns into cloth. It served as a model 
for the development of the Hollerith punched card. The holes in these 
cards are sensed by electric circuits connected to metal brushes that 
make contact through the holes. The punched card, on which a number 
is represented by a pattern of punched holes, was not conceptually an 
advance over the abacus. However, it afforded the ñrst signiñcant practical 
means of semiautomatic data processing. Its importance was derived 
from the many special types of electromechanical units that could be, 
and were devised for the rapid sorting, interpretation, and manipulation 
of data on cards. By 1945, punched card machines were in widespread 
use throughout the world for the tabulating, sorting, and analysis of data 
for accounting and statistical purposes. 

Another important contribution, current with the development of 
punched card machines, was the development of relays for controlling 
complex telephone switching networks. These switching systems showed 
that it was possible to perform complicated logical operations with relays, 
and to obtain reliable operation by self-checking techniques. In 1938, 
Stibitz developed, at the Bell Telephone Laboratories, a relay computer 
capable of addition, subtraction, multiplication, or division of complex 
numbers and which could be remotely controlled. In subsequent relay 
computers a self-checking code was introduced to detect a malfunction in 
the transmission of numbers. Subsequently, other relay computers were 
developed at the Bell Telephone Laboratories. These machines and the 
Harvard Mark I Calculator, developed jointly by IBM and Harvard 
University, were the pioneer efforts in relay computers. The latter machine 
was the ñrst large scale general purpose digital computer to be completed 
(1944). Punched cards were used as the input and main storage medium, 
and relays were used for the arithmetic unit. About the same time, the 
ñrst electronic digital computer was built. This machine, termed the 
ENIAC (Electronic Numerical Integrator And Calculator), was developed 
by the Moore School of Engineering at the University of Pennsylvania. It 
contained about 18,000 vacuum tubes. The last decade has seen the rapid 
development of the stored program electronic digital computer. This type 
of machine has wide application because it can perform many types of 
information processing operations at high speed and without human inter­
vention, once a suitable program of instructions has been entered into it. 
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1.7. The Representation of Numbers in an Electronic 
Digital Computer 

We have seen that in a mechanical digital computer, a number is 
represented by discrete positions of a shaft and numerical information is 
transmitted between these elements by the coupling of discrete rotary 
motion. In an electronic digital computer, a number is commonly repre­
sented in binary form by the current state of a set of storage elements 
each of which is capable of, and restricted to, assuming two stable output 
voltage levels. Information is transmitted between these elements either 
serially in the form of voltage pulse trains on a single information channel, 
or in parallel by the signals currently present on each of a set of informa­
tion channels. Each of the pulses in a train may represent a single incre­
ment (corresponding to counting), or a set of pulses beginning and ending 
at defined positions in time may represent a number in some binary coded 
form (corresponding to a positional notation). The former representation 
may be termed a unitary weighted pulse train, and the latter a binary 
coded pulse train. Both types of serial representation are shown in Fig. 1.2. 
In the binary coded pulse train, the first bit of the train to appear repre­
sents the least significant bit of the number. This is for reasons associated 
with the computation processes. Since the electrical waveform convention 
is that time flows from left to right, the order of digits in a number so 

Although the state of development of commercially available digital 
computers was quite limited up to the time of World War II, the concept 
of a stored program automatic digital computer had been worked out by 
Charles Babbagein about 1833 in his design for an "Analytical Engine." 
The plan of this machine called for 50 digit numbers and a storage 
capacity of 1000 numbers, and it was intended that Jacquard cards be 
used in two ways. So-called "operation cards" were to be used to convey 
instructions to the arithmetic unit, and "variable cards" to specify the 
locations in storage from which two operands were to be taken and the 
result of a computation stored. The plans called for punching the output 
data on cards, for the purpose of having them available for future com­
putation. Also, there was to be a device for printing results directly and a 
means for producing stereotype molds to be used for printing additional 
copies. Babbage's writings show that he was aware that the same language 
could be used for numbers and instructions, and that the machine could 
be made to modify its own program in accordance with the results of 
computations. 
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2U 

2^ HUL 
23 π 

4 ) ^ 2 

FIG. 1.3. Parallel representation of a number 
= ¿0 2^ + ^1 2^ + ^2 22 + ¿3 23 where 6̂  = 1 or 0 

At Ν = 13; / j , Ν = 6; t^. Ν = 5 

be a pulse on each of the lines. Each line has an assigned weight as 
shown, and the value of the number, appearing at any time is the 
weighted sum of the pulses on all the lines. An important distinction 
between serial and parallel weighted numerical representation is that in the 

•Our numerical symbols were introduced from India by the Arabs who read from 
right to left. When introduced into English, the matter of reversing the order of a 
group of numerals to conform to our reading convention was overlooked. However, 
in reading it is not inconvenient to read the higher orders of a number first, for 
it is the complete configuration that conveys the value. 

represented will be reversed from the order of digits in the conventional 
written notation.* 

( , ) Π Π Π Π Π Π Π Π Π Π 

(b) π π π π 

^Ohh 9̂ 

FIG. 1.2. Serial representation of a number by a pulse train 
(a) Unitary weighted pulse train: the ten pulses 

represent ten unit increments 
(b) Binary coded pulse train: The presence of a 

pulse at time represents an increment of 2*. 
The number shown is 2» + 2^ + 2'' -f 2» = 
424 

The parallel representation of a number within a computer is always 
in a binary coded form where different weights are assigned to the different 
channels in a group. Figure 1.3 illustrates how a four bit number would 
appear in a parallel representation. At each time, there may or may not 

?o [ L D 
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former case different weights are assigned to different time positions, i.e., 
the weight of a pulse is determined by the relative time of its appearance 
at a given point, while in the latter case different weights are assigned to 
different physical locations. 

Since there may be either positive or negative pulses on a line, a choice 
may be made as to how to represent O's and I's. For example, a positive 
pulse may be chosen to represent 1, and a negative pulse to represent 0, 
or vice versa. When it is desirable to use pulses of only one polarity, the 
presence of a pulse may be used to represent 1 and the absence of a pulse 
0, or vice versa. If a unitary weighted pulse train represents information 
that has been generated asynchronously, then a single line may be used 
for transmitting either positive or negative increments, but not both. To 
provide for both, two lines must be used, the presence of pulses on one 
line representing positive increments and the presence of pulses on the 
other representing negative increments. Either positive or negative pulses 
may be used to represent increments on either Une, as shown in Fig. 1.4. 
The choice will depend on the characteristics of circuit elements. Schemes 
(a) and (b) are most commonly used. 

Line I 

Line 2 

^ ΤΠΠΓ ^ jmr-

^ - Γ - σ π ^ 

( α ) ( b ) ( c ) ( d ) 

FIG. 1.4. Asynchronous unitary weighted pulse trains 

The use of a numerical biasing technique permits the use of a singje 
line to transmit unitary weighted information of both positive and nega­
tive sign if the information appears synchronously. Using this technique, 
the presence of a pulse on the line at any time defined by the timing 
source indicates a positive increment while the absence of a pulse indicates 
a negative increment. This technique depends on generating a train of 
alternate I's and O's in a system in the absence of positive or negative 
increments. This type of information transmission is sometimes referred 
to as binary information transfer, while the method described in the 
preceding paragraph is termed ternary transfer. 

In a binary coded pulse train, a single line is always suflBcient for the 
representation of positive or negative numbers. The sign of the number 
is indicated by the presence or absence of a pulse in a position reserved 
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for sign identification. The number may be represented either as an absolute 
value plus sign, or a complementary system may be used to represent 
negative numbers. (See Chapter 6.) 

1.8. Arithmetic Processes in Digital Computers 

A considerable amount of space in the text is devoted to a description 
of different ways of performing the commonly encountered operations of 
counting, addition, subtraction, multiplication, and division in a digital 
computer. Since these operations are apparently so simple when per­
formed in our heads or with pencil and paper, some words of explanation 
may be in order. First of all, the characteristics of different physical ele­
ments used to perform these operations must be considered. A procedure 
suitable when using one type of element may not be suitable when using 
another. Also, certain logical formulations of these processes may be more 
economical equipment-wise than others. Finally, a vast number of dif­
ferent types of serial, parallel, and serial-parallel, i.e., semiparallel, opera­
tion is possible, some more suitable with particular physical elements than 
others. The average person, in performing computations, functions in a 
serial manner, i.e., he performs one operation at a time as, for example, in 
adding where he adds one column and produces one digit of the sum at 
a time. Since he can only write one digit at a time his serial arithmetic 
operations are adequate. However, within a digital computer, it is possible 
to incorporate control circuits that cause all digits of the addend and 
augend to be sensed simultaneously. The sum can then be recorded in 
far less time than required by serial arithmetic operation. The purpose of 
all parallel arithmetic operation is to decrease the time required for 
computation. This is paid for by an increased amoimt and complexity 
of equipment. When serial operation is not fast enough, and parallel 
operation is too expensive, a compromise may be made with serial-parallel 
procedures. 

1.9. Redundancy 

Let us return again to the subject of numerical representation used by 
the Romans. Not only were different symbols used for different orders, 
e.g., X for 10, C for 100, etc., but these symbols were written by con­
vention in an ordered relation. For example, 2153 was written as 
MMCLIII, not as, say CLMMIII, LCIIIMM, etc. However, if one were 
to come upon one of the latter representations, he could still interpret 
it correctly. The Romans, though fond of order, did not appreciate the 
fact that placing symbols, by convention, in an ordered relation makes it 
unnecessary to have different symbols for different orders. Consequenüy, 
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the Roman notation had a redundancy which is not present in modem 
positional notation. As a rule, redundancy is a measure of how efficiently 
a particular set of symbols or type of notation conveys information. (In 
Chapter 9 the subject of redundancy is considered in relation to error 
detection and correction). The use of a positional notation allows a small 
set of symbols to be adequate for representing any magnitude, and a proper 
choice of radix (the number of different symbols) allows large magnitudes 
to be represented by a reasonable number of symbols. 

It is not unusual for primitive notations to exhibit redundancies. The 
same can be said for initial designs of new equipment. In an "idealized" 
type of world where no unintentional disturbances, i.e., accidents, were 
possible, and everything always functioned as designed, redundancy would 
serve no purpose. However, in reality it often proves useful as a means 
of reducing or eliminating the detrimental effect of an accident. How this 
can be done will be discussed, for certain types of failures, in Chapter 9. 
Here we only wish to point out that once the logical requirements of a 
piece of equipment such as a digital computer are better understood, 
redundancy may be minimized for the sake of economy. However, even 
then one may find it desirable to incorporate certain intentional redundan­
cies for the sake of improving the reliability of performance of a system 
composed of nonideal physical elements. 

1.10. Computer Applications 

Human progress is dependent on eflBcient means for the processing 
of information, as an aid to the creative processes of thought. Simply for 
the purpose of drawing an analogy, we will consider first certain functional 
similarities between information processing by humans and machines. 

When an individual is confronted with a problem, he may call upon 
intuition, learning, and experience to solve that problem. All of these 
terms refer to the fact that he has available inherited and acquired infor­
mation pertinent to the solution of specific problems. This information is 
stored (in ways as yet undetermined) in his memory. This memory is of 
sufiBcient capacity to store vast amounts of information pertinent to the 
solution of specific problems, and there are mechanisms for integrating 
various sections of this stored data in a manner appropriate to the 
solution of new and more complex problems. It will be shown in Chapter 2 
that before a digital computer can produce the solution to a specific 
problem, it, too, must be furnished with information—^in the form of a 
program which describes a specific sequence of operations to be per­
formed. If a computer is to be able to solve different problems, it must 
be furnished with appropriate programs. These are stored in its memory. 
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•For a lucid survey of this subject see M. Minsky [1961] Steps toward artificial intelli­
gence, Proc. IRE, 49, 8-30. 

referred to as the store, to which access may be gained by means of a 
control unit. 

Though a stored program digital computer is conceptually a simple 
device, its high rate of operation and facility for arithmetic and logical 
operations, coupled with the ingenuity of its users, make it of great utility. 
Outside of their importance to many specific areas (delineated below) such 
machines are contributing materially to the acquisition of knowledge by 
processing vast amounts of data and performing computations to check 
new theories. An important indirect benefit they provide is the introduction 
of improved procedures and terminology to areas previously limited in 
their use of systematic mathematical and logical formulations. 

Application of digital computer technology to more fields of human 
endeavor is increasing rapidly. In the business world, digital computers 
facilitate and accelerate the extensive routine data processing vital to daily 
commerce, e.g., processing of credit transaction data, customer bilUng, 
inventory control and various accounting operations. Information proc­
essors are essential to the military in many areas, e.g., in military intelU-
gence data processing, early warning systems, command and control 
systems; for automatic navigation of ships, aircraft and space vehicles, 
automatic control of weapons systems, automatic checkout of complex 
electronic systems prior to use. Computers can be used in industrial auto­
mation for data refinement and assimilation, scanning of instrumentation 
for detection of alarm conditions, automatic data logging, evaluation of 
plant performance and control of machines, plants and processes. Com­
puters can be used in factories to improve record keeping and scheduling 
of production. They can be appUed to the regulation of traffic, e.g., 1) 
aircraft, train, steamship and freeway traffic, 2) messages to be routed 
through complex communications networks (such as satellite relay sys­
tems), 3) commodities like natural gas and oil, whose flow through 
hundreds of miles of pipeUne distribution systems must be economically 
controlled. Application to management problems, whether in industrial, 
governmental or military areas, will be extensive because the amount of 
data upon which decisions must be based is increasing while the time 
available for decision making is decreasing. Some interesting applications 
on the horizon are: 1) teaching machines for efficient, automatic factual 
instruction, 2) machines to aid medical diagnosis, 3) large scale informa­
tion storage and retrieval systems. 

One of the most intriguing areas of investigation is the application of 
artificial intelligence systems* to problems which, though well defined, are 
too difficult for complete analysis. Obtaining a solution to some of these 
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problems by an exhaustive search and test of all possibilities would require 
an unattainable amount of time even with the fastest machines. Therefore, 
various techniques are being investigated to produce computer programs 
that limit the search to manageable proportions. For example, there are: 
1) pattern recognition programs which, by extracting significant features 
from a totality containing much that is irrelevant, classify problems into 
categories for which specific problem solving procedures may be prescribed, 
2) learning programs which generalize on accumulated experience, 3) 
planning and administrative procedures for attacking the over-all problem 
and its interrelated parts, 4) inductive methods which, given a model of a 
universe, can generate useful predictions for it. All of these higher level 
information processors are based on externally observable features of 
schemes by which men attack new problems. 

A mental process important to creativity is that by which relations 
between events are recognized, stored and new information being associated 
and integrated to form new ideas. This is usually on a gross level at first, 
but with continued refinement can lead to a useful model or set of laws 
which state these relationships in a quantitative manner. No one has yet 
brought forth a means by which a computer could create a useful new con­
cept. Even if a machine could generate new theories, say by some statistical 
process of connecting various facts and testing them for consistency, it 
would still lack criteria for selecting meaningful ones unless well defined 
abstract and/or physical goals were implanted by a program (realization of 
a physical goal requiring interconnection between the computer and ap­
propriate actuators). 

Application of digital computers to higher level types of information 
processing has brought renewed speculation on whether machines can 
be made to think (reminiscent of earlier descriptions of digital computers 
as electronic brains). This speculation is meaningless since "thought" has 
never been adequately defined and serves merely as a label for a complex 
of mental processes whose mechanisms are not understood. The term 
"artificial intelligence" simply refers to higher level information processing 
performed by machines which have been furnished with heuristic and/or 
algorithmic devices for solving problems. This extension of man's intellect 
does not degrade his dignity, as some suggest, but is a further expression of 
his mental powers. 

In case you are chagrined by the suggestion of being only an intelligent 
machine we submit an observation from Karl Jasper's The Future of Man­
kind (translated by E.B. Ashton, University of Chicago Press, 1961): 
"Intelligence alone loses sight of final ends, of life itself, of the totality of 
conditions of life in the pursuit of particular realizable goals. Something 
more must control as well as animate mere intelligence." 



2. The Nature of Automatic Computation 

2.1. Elements of Information Processing Systems and Types of 
Digital Computers 

Before discussing the structure and techniques for utilization of digital 
computers, a few words may be in order concerning information processing 
systems in general. The term, information processing system, is used here 
to include all systems containing the following elements. (1) Sources of 
information from which data is obtained. (2) Transmission links which 
convey the source data to a central processor and from there to locations 
of end use. (3) The central processor which appUes elementary and/or 
complex transformations to the original data to obtain a final set of data 
in a desired form. (4) Output terminals for the processed data, including 
cathode ray tubes or other visual displays, printers, recorders, and input 
signals to actuators in control systems. 

Information 
sources 

Central 
processor 

Displays 
Recorders 
Signals to actuators 

Information 
sources 

Central 
processor 

Displays 
Recorders 
Signals to actuators 

Information 
sources 

Central 
processor 

Displays 
Recorders 
Signals to actuators 

Transmission Transmission 
links links 

FIG. 2.1. Elements of an information processing system 

The elements of an information processing system are shown in Fig. 
2.1. Many devices and methods have been developed for the purpose of 
accomplishing each of the specialized functions: 

(1) Information collecting devices: instruments for sensing pressure, 
temperature, electromagnetic radiation, fluid flow; composition analyzers; 
radars; human beings; etc. 

(2) Transmission links: phone, teletype, coaxial Unes, radio, vehicular 
transportation, human beings, etc. 

(3) Central processors: desk calculators, sequencing devices (or pro­
grammers), coding devices, electronic digital computers, regulators, ana­
log computers, human beings, etc. A central processor may perform one 
or more of the following types of operations on input data: arithmetic, 

18 
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logical transforaiations, sorting and classification, conversion from one 
type of code or numerical representation to another, storing, sequencing. 

(4) Output terminals: For scientific, engineering, or business studies, 
the outputs of a digital computer are usually graphs or printed data. For 
commercial applications such as billing of notices to customers, or payroll 
computations, the output is in printed form. In control applications, e.g., 
in industrial process control systems, or airborne navigation, flight manage­
ment, and weapons control systems, a number of simple monitoring dis­
plays are provided in addition to the electrical signals generated for con­
trolling the operation of various actuators within a regulator or servo 
system. In other control applications, e.g., tactical data systems for proc­
essing radar, logistics, and intelligence information, or air traffic control 
systems, input signals to various actuators must also be provided, but 
the major emphasis is on a large number of displays, including cathode ray 
tubes, display counters, and yes-no indicators, to inform responsible per­
sonnel of the various aspects of a situation as it develops. 

When a "general purpose" digital computer, or GP machine, is referred 
to, a central processor is implied that is capable of any of the operations 
listed under item (3) . A few words are in order concerning the term 
"general purpose" computer. Unfortunately, it often leads to confusion or 
awkward types of descriptions. This tag became affixed to the first large 
electronic digital computers. It arose because of the flexibility of these 
computers in solving many different types of problems. This flexibility 
derives from two principal sources. First, these machines are capable of 
executing a large number of different elementary operations, from which 
more complex operations can be obtained by combining the elementary 
ones. Second, the manner in which elementary operations are to be com­
bined for the solution of a specific problem is specified by a sequence of 
coded instructions, termed a program, which is inserted in the computer's 
central memory known, too, as the main or central store, and which con­
trols the execution of a problem. Different programs are inserted for the 
solution of different problems. 

At a later date, similar computers were designed for specific applica­
tions. This allowed simplifications to be made, since only a single fixed 
program had to be provided for. However, the tag "general purpose" had 
already been assigned to this class of equipment, and therefore machines 
designed for a special function were termed fixed program GP machines. 

Another class of machines was devised primarily for the purpose of 
solving differential equations. Its chief difference from the GP is that only 
single bits, i.e., increments of information rather than whole numbers, 
are transferred on its internal communication lines. This type of machine 
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•Since these processes were evolved to facilitate computation by human beings, they 
may not necessarily be the best methods for computers. It may develop that 
specialized methods of computation will evolve, and eventually change our present 
day techniques of mathematical education. 

is referred to as a digital differential analyzer, or DDA. It can be used 
to solve any of a number of different types of algebraic as well as dif­
ferential equations, and, in this sense, is a general purpose computer. 
Most DDA's in use are of the fixed program type, designed for incorpora­
tion, separately or in conjunction with a GP machine (the two usually 
sharing a large capacity memory), into a control system. In this case, only a 
particular set of equations has to be solved, subject to different initial 
conditions and forcing functions. 

To conclude, if a particular machine is designated as a special purpose 
or general purpose type, it is not always clear whether reference is being 
made to a GP machine or a DDA. One way out of this confusion is to 
refer to one type of machine as an absolute, arithmetic, or integral transfer 
computer and the other as an incremental or incremental analyzer, or 
incremental transfer type of computer. The additional classification of 
"general" or "special" purpose is made according to whether the machine 
has a variable or fixed program. 

2.2. The Nature of Automatic Computation 

Our purpose here is to demonstrate the simplicity of the concepts 
involved in the design of a general purpose arithmetic digital computer. 
First of all, it must be emphasized that a computer cannot perform any 
mathematical or logical operation beyond the capability of a suitably 
trained human being. Its great utility is derived from the high speed 
capabiUty of the electronic circuits used to perform arithmetic and logical 
operations and other functions. There are descriptions of such circuits in 
Chapters 4, and 5. At this point, we will consider the fundamental 
nature of computational processes* performed by human beings, and 
how these processes may be simulated by an automatic computer. 

Consider first how a human being with only pencil and paper performs 
a computation. Suppose, for example, that he wishes to determine how 
much money he has spent during the previous weeks. He has several bills, 
each of which has some amount of money specified on it. These bills can 
be considered as storage devices because they retain information, making 
it available when needed. To produce the sum total, he would most likely 
list the amounts of the individual bills on a piece of paper, and then pro­
ceed to find the sum. The following different types of elements entered 
into the operations described: 
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(1) An input element: The pencil, controlled by the human being, 
which effected the transfer of the individual pieces of information from 
several places (the individual bills) to a single place (the tally sheet) 
where the required summation could be performed. 

(2) Storage elements. Permanent: The bills which retain information 
and make it available when needed. Temporary: The tally sheet. After 
the sum is obtained the information on this sheet of paper may be erased, 
if required for no additional purpose. 

(3) Arithmetic element: Certain parts of the brain which are capable 
of performing the operation of addition. The inputs to the brain's arith­
metic section are derived via visual signals received from the pencil marks 
on the paper. 

(4) Output element: The pencil, by means of which the human being 
records the answer on the sheet of paper. 

(5) Control element: The control element controls the now of infor­
mation between the other elements. In this case it is the human being who 
determines from where information is to be accepted, what types of opera­
tion to perform, and where processed information (the answer) is to be 
stored. 

Input 

Arithnnetic 
Control Storage elenfient Control Storage 

1 1 j i \ 
1 1 • 

Output 

FIG. 2.2. Interrelation of elements in a digital computing system 

The interrelation of the various elements is shown in Fig. 2.2. In our 
example, the data transmission lines shown in Fig. 2.2 are of two types. 
Information is transmitted from the paper to the eye via light rays, and 
from the eye to the brain via electrical signals propagated along a nerve 
bimdle. It is transmitted from the brain to the paper via electrical signals 
which cause the fingers of the hand to move a writing instrument so that 
it forms the desired characters. 

Certain variants of the operations described are possible. For example, 
the use of pencil and paper as input-output and temporary storage ele­
ments may be eUminated. Information from the bills may be sent to 
temporary storage positions in the brain, the computation performed in 
the brain's arithmetic elements, and the final answer stored in other storage 
elements of the brain. However, not many people have developed the 
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facility of performing a long sequence of arithmetic operations "in their 
head" and therefore mechanical aids are utilized. An important aid is the 
electromechanical desk calculator which permits long sequences of arith­
metic operations to be carried out in less time and with less fatigue for the 
operator (consequently with less chance for error) than computation with 
only pencil and paper. 

The types of operational capabilities required of a general purpose 
electronic digital computer will now be considered. An important point 
to remember is that the function of performing arithmetic and logical 
operations comprises only part of a computing system. Another important 
function is the transfer of information from one locality to anoüier. In 
an average computation using a desk calculator an appreciable percentage 
of time is spent in information transfer operations, e.g., transferring 
information from original sources to data sheets, copying information 
from data sheets into the calculator, copying intermediate results from 
the calculator onto sheets of paper, preparing sheets of paper with the 
final tabulated answers. 

It becomes apparent that in order to increase the speed of a complete 
computational process, it is necessary to increase the speed of the transfer 
operations as well as that of the arithmetic operations. This implies the 
elimination of the human operator once the computation is begun, for 
he is the bottleneck. Clearly one gains very little by decreasing the time 
required to perform an arithmetic operation from say, 1 sec to 1/100 
sec, if at the end of each operation a human operator has to spend several 
seconds copying information out of and inserting new information into 
an arithmetic unit. 

The utility of present electronic digital computers results not only 
from their basic high speed of operation, but also from the fact that they 
can perform without human intervention all the steps required in a com­
putation involving thousands of operations. This is possible because of 
three distinct reasons. First of all, a method for solution of a given prob­
lem can be stated in terms of a relatively short program which lists all 
the elemental arithmetic, logical, and transfer operations that are to be 
performed in the course of solving a problem. This program is prevented 
from becoming too long by the use of iterative problem-solving techniques 
in which a sequence of operations is repeated until a desired result is 
obtained. This makes it unnecessary to write new steps for each repetition 
of the sequence. Instead, one merely writes the sequence and specifies 
that it be repeated, with new initial conditions each time, until a desired 
result is obtained, at which time an indication is provided by the machine. 
Second, the control unit of the computer causes the individual steps of a 
computation to be carried out as directed in the program. Third, the com-
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FIG. 2.3. Principal storage units in a digital computer 

puter can execute conditional transfer instructions. This permits the opera­
tions in a subsequent iterative section of a program to be initiated without 
human intervention upon the successful completion of a preceding iterative 
section of a program. 

The general types of instructions that a computer should be capable 
of executing are: 

(1) Combination transfer and arithmetic or logical instructions. These 
instructions cause information from specified memory locations to be 
brought to the arithmetic unit where operations such as the multiplication, 
division, addition, subtraction, and comparison of two numbers are per­
formed. The result is left in the arithmetic unit at the end of an operation. 

(2) Operations involving the arithmetic unit only with no reference 
to the memory; e.g., shift instructions. 

(3) Transfer instructions which cause a transfer of information from 
one part of the computer, e.g., the memory or arithmetic unit, to one or 
more other parts of tíie computer. 

(4) Control transfer instructions. There are two major types of con­
trol transfer instructions. The imconditional transfer instruction transfers 
control to an instruction out of sequence. The transfer may be to auxiliary 
programs outside the main program or may serve to skip mstructions in 
a given sequence. This type of transfer does not involve the use of any 
data not contained in the instruction itself. One conditional transfer or test 
instruction operates as follows: If the number in the arithmetic unit (the 
accumulator) is ^ 0, control will proceed to the next instruction in 
sequence, but if the number is < 0, control will be shifted to the instruc­
tion located in the memory position specified by the conditional transfer 
mstructions (for some variants see Section 7.2). 

(5) Instructions involving the transmission of information from the 
input units and to the output units. 

2.3. Computation by α Stored Program Digital Computer 

The following discussion will show how automatic computation can 
be achieved even by a computer capable of executing only a very few 
shnple instructions. Assume that the computer contains the following 
elements (shown schematically in Fig. 2.3): 
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The code used to represent an instruction consists basically of two 
parts: 1) an operation field in which is placed a code s)mbol for a speci­
fied operation, 2) an address field in which appears a number whose 
meaning depends on the operation. In the one-address type of machine 
described here (see Section 7.5.4 for a description of multi-address in­
structions) the number in the address field of certain instructions (for 
example, cAm, Am, Sm and C m ) indicates a storage location whose 
contents are to be transmitted elsewhere or altered; in transfer of control 
instructions (for example. Um, T m ) the number in the address field 
indicates an address to which control will or may be transferred; in a binary 

(1) A main storage unit which has adequate capacity to hold the 
coded representations of the instructions in a program, as well as numbers 
that must be stored, e.g., constants, initial values of problem parameters, 
and numbers generated during the computation which must be stored 
temporarily. 

(2) An accumulator, which is a special storage register associated 
with the arithmetic unit. It holds an operand in a form accessible to the 
arithmetic unit, allowing certain operations to be performed on it. In 
operations involving two operands, it holds one while the second is located 
in the store and transmitted to the arithmetic unit. Also, it serves to store 
a result until it can be transmitted elsewhere. 

(3) A register called the control register whose contents indicate 
from which location in the main storage to obtain the instruction to be 
executed next. 
Assume also that the computer can execute only seven different instruc­
tions. The nature of these instructions as well as mnemonic codes for them 
are shown in Table 2.1. 

TABLE 2.1. Instruction repertory of a simple, hypothetical computer 

Code Instruction 

c A m Add the contents of storage location m to the cleared accumulator. 
A m Add the contents of storage location m to the contents of the accumula­

tor, leaving the sum in the accumulator. 
S m Subtract the contents of storage location m from the contents of the 

accumulator, leaving the difference in the accumulator. 
C m Copy the contents of the accumulator into storage location m. 
U m Transfer the address m to the control register. 
Τ m Test (i.e., inspect) the sign of the number in the accumulator. If the 

number is negative transfer the address m to the control register. If the 
number is zero or positive do nothing. 

STOP Go into an idle state. 
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shift instruction it indicates the number of binary places to be shifted. 
The Ust of instructions in Section 7.2 indicates other uses to which the 
address field may be applied. Because failure to distinguish between an 
address and data stored at that address can be a major source of difficulty 
in writing and understanding programs, sometimes parentheses are placed 
about the number in the address field to emphasize that the contents of the 
designated location are being referred to. However, in this text paren­
theses will not be used in the instruction codes. 

The STOP instruction defined in Table 2.1 implies that the computer 
is capable of being in either an active or idle state, and that external means 
are provided for placing the computer in one or the other state. This is 
the case and the actions of the computer in these states is outlined below. 

State Operations Performed 

Idle: D o nothing 
Active: When not otherwise occupied: 

(1) Add 1 to the number in the control register, leaving the simi there. 
(2) Read and execute the instruction in the storage location designated 

by the new number in the control register. 

We will specify that when the computer is first set to an active state, 
the contents of the control register are set to zero. As a result of operation 
(1) in the active state, the number in the control register is changed to 1 
w d the instruction stored in the storage location designated by 1 is 
executed. After the execution of each instruction, the instruction in the 
next consecutively numbered storage location will be executed. Instruc­
tions U m and T m can cause an exception to this normal sequence 
of operations. If the instruction U m appears in storage location /, the 
next instruction executed after it will not be that in storage location / + 1, 
but rather that in storage location m. If the instruction Τ m appears in 
storage location /, the next instruction executed after it will be that in 
location / -f 1 if the number currently in the accumulator is positive or zero; 
otherwise, it will be the instruction in location m. U m and T m are 
referred to as unconditional transfer and conditional transfer (or test) 
instructions, respectively. 

The way has now been prepared to show how a large number of 
arithmetic and logical operations that may be required in the solution 
of a problem can be performed without the aid of outside intervention, 
provided the computer has certain elements and capabilities which have 
been described. As an example of automatic computation consider the 
program shown in Table 2.2. It is designed to find the highest factor of 
an integer, x. Each instruction is executed after its address, shown in 
column one, appears in the control register. The third column shows the 
contents of the accumulator after the execution of each instruction. 
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Address Instruction Contents of Accumulator 

001 cA 104 0 
002 S 101 — X 
003 A 102 -x + jyi 
004 Τ 003 -x + jyi 
005 C 103 
006 cA 104 0 
007 S 103 x-iyi 
008 Τ 010 x-jyi 
009 STOP 0 
010 cA 102 yi 
Oil S 105 
012 C 102 
013 U 001 

Numbers ^ 
101 

X 1 102 yi* \ Constants and intermediate 
103 results are stored here. 
104 . . . 000 \ 
105 . . . 001 / 

•The number stored here before th** 
y^ = x-\. 

nart of the program is the initial trial factor 

An explanation of the program itself follows: The instructions of the 
program are placed in correct sequence in locations 001 through 013; 
101 through 105 are reserved for storage of numbers. Location 101 holds 
the integer, x; 102 and 103 serve as temporary or working storage for 
numbers generated in the course of the program; 104 and 105 store the 
constants required by the program. 

The instructions in locations 001 and 002 clear the accumulator and 
enter — χ into it. The instruction in location 003 produces — χ + yi. Each 
time instruction Τ 003 is obeyed, control is returned to location 003 until, 
after / cycles, the sign digit of the accumulator indicates that - x + jyi is 
either a positive number or zero.t When this occurs, the instruction Τ 003 
advances control to location 005. 

t in a system of numerical representation (see Section 6.1.4) in which the sign digit 
of zero is the same as that of a positive number, testing of the sign digit (which 
is the operation performed in a U m or Τ m instruction) will not distinguish between 
•he two cases. 

TABLE 2.2. Program for determining the highest factor of an integer, x. 
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In order to detect whether - JC + ;>i is a positive number or zero, the 
quantity - x + jyt is converted by means of the instructions in locations 
005, 006 and 007 into the quantity χ - jyi (by storing - χ-\- jyi in loca­
tion 103 and then subtracting it from the cleared accumulator). If — χ + jyi 
is a positive number the conversion results in a negative number, if it is 
zero the conversion has no effect. If yi is a factor of x, χ - jyi is zero. In 
this case, the instruction Τ 010 advances control to location 009 and 
completion of the program. If yi is not a factor, the converted quantity 
X - jyi is not zero and Τ 010 advances control to location 010. The instruc­
tions in locations 010 through 012 produce a new trial factor yi - I and 
store it in location 102. Instruction U 001 permits the whole sequence of 
instructions to be reiterated with yt - 1 as the new trial factor. 

All the integers from yo downwards will be tested until finally one is 
found that is a factor. When this occurs, the number in the accumulator 
will be zero when the test instruction Τ 010 is executed, so control will 
be advanced to the instruction in location 009. The STOP instruction puts 
the machine into an idle state, and the highest factor of JC will be found in 
location 102. 

The preceding example has shown how a computational problem may 
be solved completely without human intervention, provided certain speci­
fied conditions are met. Consideration of the example reveals the following 
important characteristics of computation with a stored program computer: 

(1) The number of different types of instructions that the computer 
must be capable of executing need not be large. 

(2) The number of instructions in the stored program is extremely 
small compared to the total number of instructions executed in the running 
of the program. This is possible because of the unconditional transfer 
instruction which may be used to provide recycling of a set of instructions. 

(3) The conditional transfer, or test, instruction supplies the necessary 
means for breaking out of iterative loops at the correct point in the 
computation. 

(4) The repertory of instructions the computer is capable of executing 
and the nature of its control unit (i.e., its rules of operation) are dis­
tinguishing features of a particular computer. 

(5) The initial contents of the main storage unit, both instructions and 
numbers, are distinguishing features of a particular computation. 

In the preceding description illustrating the operation of a stored 
program computer, it was assumed that both instructions and numbers 
were stored in a common storage unit. The reader may ask, then, how the 
computer can distinguish whether the contents of a particular storage 
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location represent a number or an instruction, since instructions are 
represented by numerical codes. The answer is that it cannot. If the control 
unit is directed to a specified storage location for the next instruction, the 
contents of that location will be interpreted as an instruction (even though 
it represents a number). Also, if the control unit is directed to a specified 
storage location for an operand, the contents of that location will be inter­
preted as a number (even though it represents an instruction). Such a 
situation does not, however, imply unavoidable confusion. The treatment 
of a number as an instruction may be avoided if the control unit is never 
directed to seek an instruction in a storage location not containing an 
instruction. The treatment of an instruction as a number may be avoided 
if the control unit is never directed to transfer to the arithmetic unit the 
contents of a storage location holding an instruction. However, while at 
first glance it may seem undesirable, the capability of operating on an 
instruction as a conventional number is actually an asset and contributes 
greatly to the utility of a stored program digital computer. This is because 
as a result of such operations one instruction may be converted to another. 
By this process, a computer can modify its own program and substitute 
new sequences of instructions for old ones, when required, during the 
course of a computation. This feature is valuable as a means of conserving 
storage. 

If separate storage units were used for instructions and numbers, 
then the problem of possible misinterpretation of one as the other would 
not be present. Actually some of the earlier digital computers did have 
separate stores for instructions and numbers: for example, the Harvard 
Mark I computer. However, the advantages afforded by a common stor­
age unit are so significant that such an arrangement is now common prac­
tice in digital computers. These advantages are first that it allows the use 
of a smaller total storage capacity since large variations in the relative 
amount of storage space allotted to instructions and numbers in different 
problems can be accommodated, provided the total storage requirement 
does not exceed the capacity of the computer. Secondly, the flexibility and 
efficiency of use are increased. As already indicated, when the program of 
instructions is stored in the same storage unit as numbers, they also may 
be transferred to the arithmetic unit. There they may be modified, xmder 
the control of other instructions, and used subsequently as systematically 
different instructions. Either or both the order and address codes of an 
instruction may be modified. In Section 7.5.5, there is a description of 
special devices that may be incorporated into the control unit to facilitate 
address modification. The example following illustrates an application in 
which the storage space required for a series of operations may be reduced 
if an address modification procedure is utilized. 
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Address Instruction Result 

000 cA 401 Puts contents of 401 into accumulator 
001 C 451 Duplicates contents of 401 (now in accumulator) in 451 
002 cA 402 
003 C 452 
000 

048 cA 425 
049 C 475 

Inspection of this simple program shows that there are only two distinct 
instructions; namely cA(jCi) and C ( y i ) , and each is repeated 25 times, 
with each address X i = \ X i - u and each new address y i = 1 + y i _ i . 

An equivalent, but considerably shorter program can be obtained by 
storing only one pair of instructions, rather than 25, together with addi­
tional instructions that automatically change the addresses Xt, y», by 1 
after each pair of instructions is executed. A program utilizing this address 
modification procedure is shown in Table 2.4. 

Before continuing with an explanation of the program in Table 2.4, 
some prefatory remarks are in order. First of all, as a matter of con­
venience, different orders are designated by literal codes although within 
a machine they are represented by numerical codes. To understand the 
operation of this program, it is necessary to know that the order cA is, in 
this case, specified internally b y the code 01. Also, as a rule, specific 
sections of the main store are reserved for the storage of constants and 
problem parameters. In this example, the storage locations for the constants 
are designated by the literal symbols a, b, rather than by numerical 
addresses. An important reason for the separation of instructions and 
numbers is that it prevents the accidental interpretation of a number as an 
instruction. This is because after starting at a specified point, the control 

A technique by which the addresses of certain designated instructions 
are modified as needed will be described with reference to a pirogram for 
transferring the contents of one group of storage locations to another group. 
Assume that for some good reason it is desirable to transfer the contents 
of storage locations 401-425 to locations 451-475. This could be done 
without recourse to an address modification scheme by the program 
shown in Table 2.3. 

TABLE 2.3. A program for relocating data in storage 
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Address Instruction 

000 cA 401 
001 C451 
002 cA a 
003 SOOO 
004 Τ 012 (Exit to 012) 
005 cAOOO 
006 A b 
007 COOO 
008 cA 001 
009 A b 
010 COOl 
Oil UOOO 
012 Next instruction 

Constants 
a 01 424 
b 00 001 

unit obtains its instructions from consecutively numbered storage locations. 
If a constant were stored within the main body of the program, say at 
location 008, then after the instruction in location 007 had been executed, 
the control unit would take the number from location 008 and interpret 
it as an instruction. The reason for the use of the literal symbols a, b, 
rather than specific storage location numbers is simply to indicate that 
the constants may be placed anywhere, so long as they are kept out of 
the main body of the program. Actually, the use of literal symbols to 
indicate addresses of the main body of the program as well as of con­
stants and problem parameters is of considerable importance. First of 
all, it is useful to employ symbolic addresses in the initial preparation of 
relatively long programs because alterations may be made in one part of 
the program without the need for extensive changes of addresses through­
out. For example, if actual addresses were used and a required instruction 
inadvertently omitted, then all addresses beyond that point, as well as 
all references to such addresses, would have to be altered. Of course, 
after the program has been adequately checked, and is ready to be inserted 
into the computer, actual addresses would be substituted for the symbolic 
addresses. Symbolic addresses are also of importance in the automatic 

TABLE 2.4. A shorter program for relocating data in storage 
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assembly of subroutines (defined in the closing paragraphs of this section) 
into working programs. 

An explanation of the function of the different instructions in the 
program shown in Table 2.4 follows. 

Address of 
Instruction Effect of Instruction 

000, 001 This part of the program has the same effect as the corresponding 
instructions in Table 2.3. 

002,003 Causes the instruction in storage location 000, i.e., the number 
01 401 to be subtracted from the number 01 424 obtained from 
location a. (As a result a number ^ 0 will be in the accumulator 
at the time the instruction Τ 012 is executed, for the first 24 
cycles of the iteration loop. On the twenty-fifth cycle, after all the 
required transfers have been performed, the number in the 
accumulator will be < 0 at the time Τ 012 is executed. 

004 Causes control to be transferred to storage location 012 if the 
number in the accumulator is negative. This instruction provides 
the required exit from the program. 

005, 006, 007 Adds 1 to the address of the instruction in location 000. 

008,009,010 Adds 1 to the address of the instruction in location 001. 

Oil Returns control to the beginning of the program, enabling the 
sequence of operations to be repeated (with different addresses, 
in locations 000 and 001). After 25 such cycles the sequence will 
be automatically terminated by means of the instruction in 
location 004. 

The program of Table 2.4 accomplishes the transfer of the 25 numbers 
with the storage of only 12 instructions and two constants, whereas the 
first program requires 50 words of storage. However, as often occurs, a 
reduction in storage requirements results in an increase in computation 
time. The program in Table 2.3 requires only 50 operations whereas that 
in Table 2.4 requires 293. 

In practice, while frequently used operations such as addition and 
multiplication are built into a machine as instructions, more complex 
and less frequently used mathematical and logical functions are performed 
by means of special programs. (Each of these programs may be con­
sidered as a complex instruction.) When these functions are required 
in the course of solving a larger problem, they may be taken from a Hbrary 
of such programs and incoφorated into the larger program. Programs 
for specific functions, which have already been designed and are available 
for incoφoration into larger programs, are referred to as subprograms or 
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subroutines. The main program, the highest level of organization of a 
computer program, prescribes all operations not covered by a subroutine. 
Generally speaking, any sequence of instructions that a programmer finds 
convenient to treat as a sub-unit may be considered a subroutine. 

Each time a subroutine, carefully planned to minimize storage require­
ments and execution time, is written, checked out, and made available 
for incorporation into a main program, the list of instructions the com­
puter can execute is effectively augmented. The availability of a hbrary 
of subroutines allows a programmer to utilize data processing operations 
not built into a computer's instruction repertory without having to write 
corresponding programs each time they are required. This greatly reduces 
the drudgery of program preparation—lessening both the time spent in 
program preparation and the probability of introducing errors. Also, 
since the use of subroutines allows the over-all program to be constructed 
from fewer blocks, the program becomes easier to comprehend and future 
modifications of it are simplified. Because the capacity of the main or high 
speed store is limited by cost and other practical engineering considera­
tions, it is usually reserved for storage of the program to be executed 
while a complete library of subroutines is kept in an auxiliary store of 
lower speed and greater capacity. 

For scientific and engineering computation, the most commonly used 
computational subroutines include those for extraction of square, cube, 
and higher order roots, and the solution of nth degree algebraic equations; 
generation of elementary functions—trigonometric, inverse trigonometric, 
hyperbolic, exponential and logarithmetic; interpolation; functional summa­
tion; matrix manipulation; integration of ordinary differential equations. 

2.4. Program Preparation 
The solution of a problem by means of a digital computer calls for 

the preparation and execution of a detailed plan of attack on the part of 
the person or persons responsible. The important items entering into such 
a plan are described below. 

First of all, the problem must be analyzed and defined in detail. For 
scientific and engineering problems, this includes a statement of any sim­
plifying assumptions or idealizations and results in an appropriate mathe­
matical expression of the problem, usually in the form of one or more 
equations, together with any diagrams that may aid in clarifying the pro­
cedures to be used. Subsequently, the original mathematical expressions 
are replaced by appropriate explicit, finite, arithmetic and logical pro­
cedures adequate to provide the required degree of approximation to the 
exact solution. An important part of the analysis of the problem and its 
reduction to solution of numerical expressions, relates to the processes of 
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scaling and error analysis. The scaling of a problem depends on the 
range of magnitudes the problem variables can assume over the interval 
of interest. This range may either be estimated or, in some cases, com­
pensated for by the computer itself. (See the discussion on scaling and 
on fixed- and floating-point operation in Chapter 6.) An error analysis 
is made to determine the accuracy that may be expected of the com­
puter's answers. This accuracy will be influenced by two major sources of 
error, whose effect on the final answers must be estimated. They are 
truncation errors, which are introduced by the particular numerical ap­
proximation selected, and round-off errors introduced by the machine 
itself, as a result of the finite length of its registers. 

For commercial problems of a bookkeeping or record keeping nature, 
such as preparation of financial statements, employee payroll deduction 
computations, or insurance premium billing operations, only precise quan­
tities such as numbers and types of items, and dollars and cents are dealt 
with. As a resuh, the problems of error analysis associated with most 
scientific and engineering problems are not encountered. For these com­
mercial applications, a detailed statement of the problem is usually made 
in English words accompanied by information flow diagrams. This descrip­
tion covers all pertinent procedures in the system and every eventuality 
that may be encountered. 

After specific numerical procedures have been chosen, they must be 
translated into sequences of arithmetic and logical operations. This part of 
the process is referred to as programming. It consists of adapting the 
original problem definition to the capabilities of a computer. Preparation 
of the program calls for a thorough knowledge of the capabilities of the 
computer and its associated peripheral equipment. Since most problems 
to be solved by a digital computer require many sequences of arithmetic 
and logical operations, some type of mnemonic aid is called for. One that 
is commonly used is the so called problem flow diagram which as the 
name indicates shows the over-all flow of a problem. It provides organi­
zational clarity, and indicates the general structure of a sequence of 
operations. It shows the location from which given quantities are obtained, 
where and how quantities to be generated are produced, where inter­
mediate quantities are stored, and where output quantities are generated. 
It is useful, also, in showing how a complete program can be built up from 
simple processes for which programs have been worked out in the past 
and which are available from a subroutine library. The flow diagrams 
produced in the programming process differ from the diagrams used in 
the analysis in that they are intended for use with a particular computer 
and contain considerably more detail. 

After an adequate flow diagram has been produced, the arithmetic and 
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logical operations indicated by it must be translated into a sequence of 
instructions that a particular computer is capable of executing. This process 
is referred to as coding and is the first part of the plan of attack discussed 
thus far that requires an exact, comprehensive knowledge of the particular 
machine to be used. Coding also includes such details as the specification 
of an arrangement for the storage of input information and intermediate 
results, and for the presentation of output information. The routine of 
coding can be minimized by the use of subroutines and various automatic 
coding techniques. Whenever subroutines are to be used, the main program 
must be designed in such a way that it allows for the inclusion of sub­
routines. The effect of automatic coding is that it allows the problem 
analyst's work to be brought to the machine in more or less general state­
ments rather than in detailed step-by-step codes. 

After a detailed sequence of instructions for the solution of a problem 
has been prepared, it must be inspected for mistakes that may have been 
inadvertently introduced. To assist in this inspection, a number of special 
mistake-hunting routines, usually referred to as debugging routines, have 
been developed. 

After a program has been debugged, it is ready for running. In the 
event that the same program is run over and over, with variations in 
certain parameters, say, with different boundary conditions, the process 
is referred to as production running. After the program has been run, there 
remains the task of evaluating the results. This is an extensive subject in 
itself, and will not be treated here. 

2.5. Program Flow Diagrams 

It was stated in the preceding section that flow diagrams are useful in 
preparing a complete program for machine solution. For the sake of 
brevity, a flow diagram will be described for an operation that normally 
would be only a small part of an over-all program, namely a program for 
generating the square root of a given number N, where 0 < Ν < 1. 
Since there are a number of numerical procedures by means of which the 
square root may be obtained, the first decision to be made is in regard 
to the choice of a particular method. Let us assume that because of its 
relative simplicity and rapid convergence, the iterative expression shown 
below is chosen 

In this equation, Ν represents the number whose square root is to be 
obtained, and Xi+i the approximation to this root obtained after (/ + 1) 
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iterations. The initial approximation XQ may be obtained by providing a 
small table giving the value of the square root for a selected number of 
arguments. If such a table is not used, XQ is assumed to be approximately 
equal to 1.0. The iteration is repeated until the difference (Xi^i — Xi) 
becomes equal to or less than the precision required in the result. 

In its most elementary form, a flow diagram may be composed simply 
of a series of boxes interconnected by directed line segments. Each box 
contains either a word or symbolic statement of an operation that is to 
be performed. It may include such items as a statement of an equation 
to be solved, a condition to be met, a check to be performed to determine 
whether an operation is legitimate or numerically accurate, the source of 
input data, the disposition of output data, etc. A useful preliminary pro­
cedure, at least for purposes of explanation, is to describe verbaUy the 
major operations that have to be performed. Such a description is shown 
below. 

(1) Provide for the storage of problem parameters, constants, and 
intermediate quantities. For the square root program, these quantities 
include the constants N, 1, and V2, the intermediate quantities N/2, 
Xu NXi/2, andZi+i. 

(2) Provide for the execution of a sequence of arithmetic and logical 
operations adequate to obtain the desired result. For the square root pro­
gram one such sequence is: (a) form the product Vi · Ν and store 
the result; (b) divide N/2 by Xi and store the result; (c) form the 
product V2 ' Xi', (d) form Xi^i by combining the quantities generated in 
(b) and (c) , and store; (e) test for convergence by subtracting ΛΓ* 
from Xi^i. (In Fig. 2.4 the notation (/ -f 1) / means: use the value of 
Xi+i as the value of Xi in the next iteration). 

{ )^0 ( )=0 

Initial set-up Main iterative routine 

FIG. 2.4. Flow design for a square root program 
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Function box 

Choice box 

® 
0' @ 

Variable connector 

FIG. 2.5. A basic set of symbols for a flow diagram 

A flow diagram indicating a square root program is shown in Fig. 2.4. 
The simple form of this diagram is adequate for the relatively simple 
problem illustrated. However, for more lengthy and complex problems, 
a better view of the program may be obtained by using a specialized set 
of symbols and notations. Figure 2.5 illustrates a basic set of symbols, 
adequate to describe any program. The function box will contain a verbal 
or mathematical statement of a particular function to be performed. The 
operations so indicated may be few or many in number and may or may 
not contain conditional operations. Regardless, there is only a single entry 
point and a single exit from the box. The choice box contains a question. 
Which of the two or more possible exit paths will be followed depends on 
the current result of computations which immediately precede and control 
the branching operation (as illustrated in Table 2.2 and 2.4). The variable 
connector symbols indicate to which of several addresses control can ad­
vance, as designated by the current address in a transfer of control in­
struction—this address being subject to modification during the running 
of the program. 

In addition to the basic set of symbols described, a number of others 
may be provided to facilitate either the drawing or interpretation of a flow 
diagram. For example, remote points may be connected without lines by 
placing a circle containing the same symbol at the terminus of points to 
be connected. Special symbols may be used to indicate stopping points in 
the program, and the transfer of information into or out of the computer. 
Another highly useful device is a special form of box, termed an assertion 
box, in which annotations are placed explaining certain tricks or pro­
cedures used at various points in a program. 
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2.6. Automatic Sequencing Methods 

Three distinct types of practical automatically sequenced digital com­
puters have been developed, namely, machines in which the execution of 
instructions is controlled by I) external devices (such as punched cards 
or tapes), 2) a plugboard connected to the internal circuits of the machine, 
or 3) an internally stored program. Since the subject of this book is the 
stored program computer, the other types will be mentioned only briefly. 

In an externally programmed computer, instructions on punched cards 
or tapes, in a code meaningful to the computer and read under control 
of its internal circuits, direct the transfer of data into and out of sections 
of the arithmetic unit. The programming flexibility is poor compared to the 
stored program machine. Specifically, neither program iterations nor con­
ditional transfer operations can be handled efficiently. For example, while 
one can resort to the cumbersome process of duplicating a set of instructions 
many times when the number of iterations required is known in advance, 
when it is not some other device must be employed. The simplest practical 
device is to prepare an endless loop of tape and have it read over and 
over until a number produced by the program being repeated indicates the 
process has been completed. However, if there are many loops this pro­
cedure, too, is uneconomical because of the many tape readers and the 
complexity of control that would be required. Finally, this type of com­
puter lacks facihties for modification of instructions. 

In a plugboard controlled machine, the sequence of operations is 
determined by the pattern of interconnecting jumper wires plugged into 
the board. More time is normally required to prepare a plugboard than 
a deck of punched cards. However, because there are many standard types 
of problems, especially in commercial applications, a removeable plug­
board once wired for a particular program can be stored and available for 
future use. In practice, the plugboard wiring is manageable and the amount 
of equipment reasonable only when there are not more than a hundred or 
so steps in a given program sequence. A number of techniques for program 
iteration and conditional transfers of control are available in such machines. 



3. Boolean Algebra 

3.1. Introduction 

The subject of Boolean algebra has important application in the 
design of systems composed of storage elements capable of assuming a 
discrete number of stable states and switching devices that trigger these 
elements from one stable state to another. An electronic digital computer 
is such a system. The utility of Boolean algebra in the design of digital 
equipment will be better appreciated after the discussion in this chapter of 
certain fundamentals, including a comparison of ordinary algebra and 
Boolean algebra, procedures for simplifying Boolean algebraic equations, 
and the basis for representing switching functions in binary computers by 
Boolean algebraic equations. 

Algebra ordinarily refers to that branch of mathematics wherein 
quantitative relationships between entities are indicated by the use of 
numbers, letters (as symbols for the entities), and operational symbols 
(such as multiplication or addition signs). The rules of arithmetic are 
used in the solution of such algebraic equations. 

The ways in which Boolean algebra differs from ordinary algebra are 
summarized below: 

(1) There are no coefficients associated with the terms in a Boolean 
algebraic equation. 

(2) Each letter designates which of two distinguishable events exists. 
As a matter of convenience, the value assigned to the letter upon the 
occurrence of one event is 0, and for the other it is 1. 

(3) A Boolean algebraic function can only state whether one of two 
possible events exists, e.g., whether a circuit is open or closed, a signal 
present or not, a statement true or false, etc. The two possible values of 
the function are also usually designated by 0 and 1. 

(4) There are a number of logical operators for producing Boolean 
algebraic functions. However, in general, they are not all used in the 
logical description of a digital computer for any Boolean function can be 
generated by the use of a proper subset of these operators. To date, the 
subset most commonly used includes the primitive operators referred to 
by the designation OR, AND, and NOT. If the two assigned values of a 
Boolean algebraic variable are interpreted as representing the numerical 
values of the binary number system, namely 0 and 1, then the three opera-

38 
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Case A Β c 

1 0 0 0 
2 0 1 1 
3 1 0 1 
4 1 1 1 

*An algebra can be formed from an arbitrary set of rules provided they are used 
systematically and do not invalidate each other. 

tors are analogous to addition, multiplication, and complementation, re­
spectively, of binary elements. There is an exception* to the analogy in 
that the result of the OR (Boolean addition) operation on two or more I's 
produces 1 as a result. These, as well as other Boolean operators will be 
described in the sections following. 

(5) In Boolean algebra, there are no subtraction or division operators 
as in ordinary algebra, nor operators such as roots or transcendental 
operators. (Nevertheless, all the arithmetic operations of number algebra 
can be performed using only Boolean algebraic operators. Various means 
for accomplishing this are described in Chapter 6 ) . 

3.2. Logical Functions of Boolean Algebra 

In this section three of the most common operations of Boolean alge­
bra will be described. Later in the chapter other operations will be con­
sidered, also. 

The "inclusive or" operation of Boolean algebra will be designated 
literally by OR and in equations by the symbol +. The Boolean equation 
representing the OR function, C, of two variables A, Β is written as C = 
(A + J5). This expression means: C is true if 4̂ or Β or both are true. 
An equivalent interpretation is: the truth of A or Β or both impUes, and is 
implied by, the truth of C. This relationship is defined in Table 3.1, which 
shows all possible combinations of values of A, Β and defines the corres­
ponding values for C. In Table 3.1 truth is indicated by 1 and falsity by 0. 
Reading across the table for all four possible cases, it is seen that C is 
true if, and only if, either /I or Β or both are true. Except for case (4) , 
application of the OR operator produces the same result as the addition 
operator of ordinary algebra. This similarity accounts for the OR operator 
being sometimes referred to as the Boolean (or logical) addition operator, 
and also partly explains the choice of the symbol + . 

TABLE 3.1. Truth table for the OR function C, of two variables: A, B. 
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Case A Β c 

1 0 0 0 
2 0 1 0 
3 1 0 0 
4 1 1 1 

The complementation or negation operation of Boolean algebra will 
be designated literally by NOT and in equations by placing a bar over the 
variable or variables so to be operated upon. For example, the NOT 
function of a single variable. A, is written as A. The symbol. A, is read 
as "the complement of A'' or "not / Í . " Its meaning is defined by Table 3.3, 
which shows the relation between A and A. 

TABLE 3 . 3 . Truth table for the NOT function, A. 

A A 

0 1 
1 0 

3.3. Fundamentals of Boolean Algebra 

The reader may verify, either through induction or the construction 

The "and" operation of Boolean algebra will be designated literally by 
AND and in equations by placing the variables so to be operated upon 
adjacent to one another. For example, the AND function, C, of two vari­
ables A, Β is written 2LS C = AB. This expression means: C is true if, and 
only if, A and Β are both true. An equivalent interpretation is: the truth 
of both A and Β implies, and is implied by, the truth of C. This relationship 
is defined by Table 3.2. For all cases, application of the AND operator 
produces the same result as the multiplication operator of ordinary algebra. 
This similarity accounts for the AND operator being sometimes referred to 
as the Boolean (or logical) multiplication operator, and also partly ex­
plains the way chosen to represent it in equations. 

TABLE 3 . 2 . Truth table for the AND function, C, of two variables: A, B. 
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of truth tables, that the commutative, associative, and distributive laws
of number algebra apply to Boolean algebra.

For addition

A+B = B+A Commutative

A + (B + C) (A + B) + C Associative.

One can demonstrate by means of a truth table, a proof of the
associative law for three variables A, B, and C. The proof for other
numbers of variables can be obtained by induction.

TABLE 3.4

Column 1 2 3 4 5 6 7
A B C (B+C) A+(B+C) (A+B) (A+B)+C

Case
1 0 0 0 0 0 0 0
2 0 0 1 1 1 0 1
3 0 1 0 1 1 1 1
4 0 0 1 1 1 1 1
5 1 0 0 0 1 1 1
6 1 0 1 1 1 1 1
7 1 1 0 1 1 1 1
8 1 1 1 1 1 1 1

It is seen that column 5 is identical to column 7 for all possible com­
binations of values of A, B, and C.

For multiplication

AB

A(BC) =

A(B + C)

BA

(AB)C

AB+AC

Commutative

Associative

Distributive.

The reader may easily verify the above relations by means of a truth
table.

Relationships useful in the manipulation of Boolean algebraic equations
are listed in Eqs. (3-1) - (3-8). Some of these relationships will look
incorrect if interpreted as ordinary numerical algebraic equations. The
reader is warned, therefore, to be cognizant that these are Boolean algebraic
equations, and to interpret their meaning accordingly.
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and -I- 5 = (AB). (3-13) 
A proof of Eq. (3-13) can be provided by means of a truth table 

TABLE 3.5 

Column 1 2 3 4 5 6 7 

A Β A β AS (Aß) A+B 

Case 
1 0 0 1 1 1 0 0 
2 0 1 1 0 0 1 1 
3 1 0 0 1 0 1 1 
4 1 I 0 0 0 1 1 

Special cases of Boolean multiplication 

AA = A (3-1) 

0^ = 0 (3-2) 

IA = A (3-3) 

AÄ = 0. (3-4) 

Special cases of Boolean addition 

A+A = A (3-5) 

0 + A = A (3-6) 

1 + ^ = 1 (3-7) 

A+Ä= I. (3-8) 

An important theorem in Boolean algebra, referred to as the principle 
of dualization, states in eííect 

i f ^ + 5 = l (3-9) 

then AS = 0. (3-10) 

It should be noted that Eq. (3-10) may be obtained from Eq. (3-9) 
merely by replacing each letter and/or truth value by its complement, and 
each addition operator by a multiplication operator. 

In general 

ifA+B=C (3-11) 

then AS = C (3-12) 



3.3. F U N D A M E N T A L S O F B O O L E A N A L G E B R A 43 

{AB) = ΑΛ-Ε (3-16) 

{A+B)^ AB (3-17) 

(J) = A, (3-18) 

Some tautologiest useful for simplifying elemental forms are listed 
below: 

A+ A = \ (3-19) 

ÄA = Q (3-20) 

A= A+A= Α+Α-{Ά = . . . (3-21) 

A = AA = AAA = . . . (3-22) 

•Thus indicating that any Boolean equation can be written using the three operators, 
AND, OR, and NOT. 

t A tautology is an equation that is true whatever be the truth values of the elemen­
tary propositions of which it is composed. 

It is seen that column 6 is identical to column 7 for all possible com­
binations of values of A and B, 

A theorem due to De Morgan states that any Boolean function can be 
represented as a logical sum of logical products* (generally abbreviated, 
for convenience, to "a sum of products") each of which contains all input 
variables. A representation of this type is said to be in elemental form 
or disjunctive normal form. Equation (3-14) is an example. 

y = ABC + ABC + ABC + . . . (3-14) 

Such an expression may be obtained directly from a truth table by noting 
all combinations of input variables for which the output variable has a 
value of 1. 

Equation (3-15) is obtained from Eq. (3-14) by the principle of 
dualization. It states that any Boolean equation can be written as a 
logical product of logical sums* (generally abbreviated, for convenience, 
to "a product of sums") each of which contains all input variables. A 
representation of this type is said to be in conjunctive normal form. Equa­
tion (3-15) is an example 

y=^{Ä + B+C){A+B+C).., (3-15) 

Some simple identities that can be obtained by means of the duaUty 
theorem are 
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g(Ai) + [giAdMBj) = g(Ai)-hh(Bj) 

where Ai denotes a set of / variables and Bj a set of / variables. Any 
variable may appear in either set, and there is no Hmitation on the form of 
the functional relationships denoted by g and h. 

The validity of Eq. (3-25) may be demonstrated as follows. Con­
sidering the right side of Eq. (3-25) 

A(A + Β) = A + AB = A (3-23) 

A+ÄB = A+B (3-24) 

AB + ÄC + BC = AB + AC, (3-25) 

Equations (3-23), (3-24), and (3-25) merit special comment. Equa­
tion (3-23) may be factored as follows: 

A+ AB = Α(1 +B) = A, (3-26) 

The validity of this expression is obvious upon recalUng that (1 + B) = 1 
and lA = A. Equation (3-23) is a special case of the identity: 

A+f(A,B,C...) = A+MB,C,.,.) 

The vaUdity of Eq. (3-24) may be demonstrated as follows. Con­
sidering the left side of Eq. (3-24) 

A + ÄB = A(l + Ä + B) + AB (3-27) 

where the factor (I + A + B) = 1 (see Eq. (3-7)) is arbitrarily intro­
duced to facilitate manipulation of the equation. 

Expanding the expression on the right of Eq. (3-27) 

A + ÄB = A + AÄ + AB + ÄB. (3-28) 

Since A = AA, Eq. (3-28) may be written 

A + ÄB = AA + AÄ + AB + ÄB. (3-29) 

Factoring the right side of Eq. (3-29) 

A + ÄB = (A + Ä)(A + Β). (3-30) 

Since (A + A) = I 

A + ÄB = l(A + B) = A + B. (3-31) 

Equation (3-24) is a special case of the identity: A + f(A, B, C . . .) = 
A Λ- f(l, B, C ...), which can be generalized for functions involving three 
or more input variables to the form 
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AB + AC = (AB)l + AC, (3-32) 

Since (1 + C) = 1, Eq. (3-32) may be written 

AB + Ac = AB(l + C) + Ac, (3-33) 

Expanding the expression on the right side of (3-33) 

AB + Ac = AB + ABC + AC. (3-34) 

Factoring out C on the right side of Eq. (3-34) 

AB + AC = AB + C{AB + A), (3-35) 

From Eq. (3-24), {AB + A) = A -\- Β, so Eq. (3-35) may be written as 

AB + AC = AB+ C{A + B). (3-36) 

Finally, expanding the expression on the right side of Eq. (3-36) 

AB + AC = AB + CÄ + CB (3-37) 

3.4. The Representation of Switching Functions by 
Boolean Equations 

Now that certain fundamentals of Boolean algebra have been discussed, 
it is appropriate to state why this subject is of importance in the field of 
digital computer design. We recall from Chapter 1 that, because of prac­
tical difficulties in producing suitable multistable state electrical elements, 
all present electronic digital computers are composed principally of binary 
storage elements (with the exception of certain specialized components 
used to facilitate the data inputs to the computer and to display its out­
puts). A storage element must be capable of assuming different stable 
states, (e.g., voltage levels, states of magnetization, etc.) and of remaining 
for some specified time in the last state in which it was placed. ImpHcit 
in this statement is the assumption that each element is capable of being 
triggered or switched from one stable state to another. The signals used 
to trigger any particular circuit are determined according to certain cri­
teria. For example, when an addition is being performed in an electro­
mechanical computer, the condition that must be satisfied before a par­
ticular wheel is advanced by a notch, is that the less significant wheel 
(usually to its right) must pass from position 9 to position 0, i.e., produce 
a carry. As discussed in Chapter 1, the state of each element in an elec­
tronic digital computer is usually described by the voltage level at its 
output, and information is transmitted between elements by the routing 
of voltage signals. The output voltage states could be simply referred to as 
high or low, positive or negative, etc. However, for our purposes it is more 
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convenient and permissible to refer to a 1 state and a 0 state. Also, if 
some arbitrary symbol, say Ki, is assigned to the /th element, it is per­
missible to arbitrarily define one state of the element as the Ki state 
and the other as the R , state. This arrangement is of great utility. First 
of all, it enables each binary element to be uniquely defined. Second, the 
current state of the elements of a machine can be described in terms of 
symbols rather than voltage levels. As a result, the condition or conditions 
for switching the state of any particular element can be specified and 
expressed in terms of the requisite coincident states of other elements. For 
example, if we wish element Ki to be triggered to the state Ri if and only 
if elements Ka and K^ are in the states Ka and K^, respectively, then the 
required switching signal is Ka K^. Therefore, if the switching signal input 
to the element, Ki is defined to be Si, then Si = Ka K^. From this it becomes 
apparent that any switching signal requirement can be stated in terms 
of a Boolean algebraic function of the binary variables in the system. 
Such a Boolean algebraic expression will be referred to as a switching 
function. Since any function of binary variables has only two permissible 
values, it follows that any switching function has only two permissible 
values. 

As stated earlier, any Boolean function can be formed by the use of 
the three Boolean operators, AND, OR, and NOT. Similarly, any switching 
function can be written utilizing only these three operators, and each 
operator can be considered as an elemental switching function. However, 
as stated earlier there are other Boolean operators, and at this point we 
will consider all the Boolean operators and switching functions for one 
and two variables. 

The four possible switching functions of a single input variable. A , 
are described in Table 3.6. One may think of these switching functions as 
being represented physically by "black boxes," each having one input line 
to which either of two signals may be applied, and one output line on 
which either of two signals appear. The nature of the transformations 
produced by each box are shown in Table 3.6. 

TABLE 3.6. Switching Functions, E^, of a Single Input Variable, A. 

Input, A Output, Input, A Output, E^ 

0 0 0 0 

1 0 1 1 

Negation: E^ = 0 Identity: E2 = A 



3.4. T H E R E P R E S E N T A T I O N O F S W I T C H I N G F U N C T I O N S 47 

Input, A Output, 

0 1 

1 0 

Complement: E3 = A 

Input, A Output, 

0 1 

1 1 

Tautology: E^ = 1 

TABLE 3.7. Switching Functions, F^, of Two Input Variables, (A, B). 

A/B 0 1 

0 

1 

0 0 

0 0 

Negation = 0 

A/B 0 1 

0 0 

0 1 

A N D F 9 = AB 

A/B 0 1 

0 1 0 

1 0 0 

NOR F2 = AB 

A/B 0 1 

0 

1 

1 0 

0 1 

Comparison Fio = AB -\- AB 

A/B 0 1 

0 

1 

0 1 

0 0 

Inhibiting gate F3 = AB 

A/B 0 1 

0 1 

0 1 

Single identity Fn 

A/B 0 1 

1 1 

0 0 

A/B 0 1 

1 1 

0 1 

Single negation F4 = A Conditional generator Fn = (Aß) 
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A/B 0 1 

0 0 

1 0 

Inhibiting gate F5 = AB 

A/B 0 1 

0 

1 

1 0 

1 0 

Single negation Fe = Β 

A/B 0 1 

0 1 

1 0 

Exclusive or Fj = Aß -\- AB 

A/B 0 1 

0 

1 

1 1 

1 0 

Sheffer stroke Fg = AB 

A/B 0 1 

0 0 

1 1 

Single identity F^g = A 

A/B 0 1 

0 

1 

1 0 

1 1 

Conditional generator Fu = (AB) 

A/B 0 1 

0 1 

1 1 

orFis = A Β 

A/B 0 1 

0 

1 

1 1 

1 1 

Tautology Fie = 1 

Fi Fi Fi Fi 

Note that the functions £Ί and E4 produce outputs independent of the 
input, and may be thought of as a 0 generator and a 1 generator, respec­
tively. The function Eo produces an output equal to the input. The only 
significant switching function of a single variable is E3, which represents 
the complement operator. 

The 16 possible switching functions of two input variables (A, B), 
are described in Table 3.7. It has already been stated that any Boolean 
algebraic equation can be expressed by the use of the AND, OR, and NOT 



3.4. THE REPRESENTATION OF SWITCHING FUNCTIONS 49 

Operators only. An analogous statement is that any switching function 
can be constructed utilizing these three switching functions. The 
functions Fo and Fis, shown in Table 3.7, represent the AND and OR 
operators, while E3, shown in Table 3.6, represents the NOT operator. 
Actually, AND, OR, and NOT do not represent a minimal set of independent 
operators. This can be proved by showing that the OR function can be gen­
erated by means of AND and NOT functions, and also that the AND function 
can be generated by means of OR and NOT functions. The proof of the 
first case is simply that A + Β = (ÄB). The proof of the second is that 
AB = (Ä + Β). 

The functions F4 and Fe are independent of the values of Β and A , 
respectively. Therefore, the lines on which each appears can be considered 
to be removed, in which case both F4 and Fe degenerate to a switching 
function of one variable, namely the NOT operator, E3. Fi and F12 are 
analogous to the 0 and 1 generators, Εχ and E4, respectively; their out­
puts being completely independent of the inputs. F u and F13 are inde­
pendent of the values of A and B, respectively. Therefore, they are each 
equivalent to the single input switching function, £2. 

There are two functions that deserve special comment. They are the 
NOT-OR function, F2, known as the NOR function, and the NOT-AND 
function, Fg, known as the AND, NAND, or Sheffer stroke. The significant 
characteristic of each of these functions is that any Boolean equation or 
switching function can be constructed by the sole use of either of them. 
This places F2 and Fg in the category of universal switching functions. A 
simple proof of these statements is to show that all three primitive opera­
tions, namely AND, OR, and NOT can be obtained by the use of only the 
NOR or the AND. Derivation of the primitive operations from NOR operators 
only is shown in Fig. 3.1. If only one of the input lines, say that for A , 

NOR 

48 

Bo- NOR NOR 

FIG. 3.1. Derivation of primitive logical operations by NOR operators only 
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is used, then Fi = ÄB reduces to F2 = Ä, and is equivalent to the "com­
plement" operator. By If two single-input Fi operators are used to gen­
erate the complements of A and Β and if A and Β are each entered as 
inputs to a two-input F2 operator, then the output is F2 = (Ä) (B) = AB. 
If A and Β are entered as the inputs to an F2 operator, the output will be 
AB which, if entered as the input to a single-input F2 operator will yield 
(ÄB) = A + B. Derivation of the primitive operations from the use of 
only AND operators is shown in Fig. 3.2. Note that the arrangements for 

A N D A N D Ä 

A N D A N D 'Aß 

Ao—HAND 

Bor A N D 
A N D -A-^B 

FIG. 3.2. Derivation of primitive logical operations by AND operators only 

producing the AND and OR operations by means of AND functions is the 
same as that for producing tiie OR and AND operations, respectively, by 
means of NOR functions. 

Only the functions F 3 , ^7> FiQ^ Fi2i and F14 remain to be con­
sidered. The functions F 3 = ÄB and F5 = / i ß and thek complements F14 
and F12, respectively, are of relatively little interest and may, along with 
Fn and F 1 3 be considered relatively unimportant. The function F7 is of 
special interest in that if A and Β are binary variables, then F7 represents 
the "exclusive or" function of these variables; also, if A and Β represent the 
values of the individual bits of two numbers in binary form, F7 produces 
the arithmetic sum (modulo 2) . (For a description of binary addition by 
the use of logical operations, see Section 6.1.2.1.2). 

3.5. Combinational Switching Networks 

The term network is used to designate a group of switching functions 
integrated into a whole, and producing one or more required switching 
signals. Such networks are of fundamental importance in applications 
requiring the transmission of information signals. The most complex 
switching network in operation today is in the vast switching system used 
by the telephone companies to permit connection of any telephone to any 
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Other telephone. Switching networks are widely used in a multitude of 
communication and control systems. 

The importance of switching networks in digital computers derives 
from two reasons. First of all, a digital computer requires switching cir­
cuits to control the transfer of information from one section of the com­
puter to another. Secondly, switching circuits may be used as arithmetic 
or logical operators that transform operands according to prescribed rules. 
A major part of a digital computer system as well as the bulk of other 
specialized switching systems is composed of so-called combinational 
switching networks. The term combinational is used to indicate that these 
networks are formed by combining the outputs of elementary switches, 
such as the ones described, and also to distinguish them from so-called 
sequential networks which consist of combinational networks into which 
storage elements have been incoφorated. (Sequential networks are de­
scribed later in this chapter.) A model of a combinational network is 
shown in Fig. 3.3. Each box represents some Boolean function of the 

Input lines 

c^J Γ 7 3 ^ 2 / 

^ 3 / - m c . 

Output lines 

FIG. 3.3. Model of a combinational switching network 

input variables. Each external input may be sent to one or more of the 
boxes, and the output of each box may have one or more destinations. 
A combinational network may consist of only a simple Boolean operator 
like an AND or an OR switch, or it may contain a large number of inter­
related switches for generating several logical functions. A specific 
example of a simple combinational network is shown in Fig. 3.4. 

When only the logical functions of a combinational switching network 
are considered, it is implicitly assumed that there is no delay from the 
time when input signals appear to when output signals are produced. In 
physically realizable networks this is not the case, for each switch 
introduces a small delay. However, the spacing between successive input 
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Ζ, = AB 

Z^-(C-^D)(EF+G) 

•Z2 = £F+(7 

FIG. 3.4. A Combinational switching network 

signals is such that the combinational function of the preceding set of input 
signals has been generated by the time a new set of input signals appears. 

Even the most complicated switching networks may be formed in a 
straightforward manner. However, finding a network that must also meet 
other requirements, like minimizing the number of switching elements or 
maximizing the speed of operation, is another matter. Although a com­
puter can be designed without recourse to Boolean algebra, its use affords 
certain conveniences. One of the most important of these is that a Boolean 
algebraic equation can be manipulated to yield equivalent functional forms. 
Then one can choose to mechanize that particular form which best satisfies 
certain specified physical requirements. The discussion following is in­
tended to describe a number of techniques that are commonly used to sim­
plify a Boolean equation or convert it to an equivalent form more desirable 
in the light of certain physical requirements. 

3.5.1. REARRANGEMENT AND SIMPLIFICATION OF BOOLEAN EQUATIONS 

When a term appears in the expression for a switching function which 
is superfluous, i.e., its removal does not alter values of the expression, that 
term is said to be redundant. A redundancy is often unintentional, appear­
ing because its existence was not obvious in the original statement of the 
switching expression. One of the principal aims in rearranging Boolean 
expressions is to eliminate superfluous or redundant terms. However, they 
cannot always be removed by straightforward algebraic manipulation, e.g., 
see Eq. (3-25). Therefore, special devices must be employed for the 
detection and elimination of such terms. A number of methods useful 
for effecting rearrangement and simpUfication of Boolean equations will 
be described in this section. 
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•Since it is difficult to handle any of the methods for a large number of variables, 
it may prove useful to attempt a quick trial and error simplification, first of all, 
for the purpose of assembling terms into groups which may be treated separately 
by any method applicable. 

5.5.Í.7. Trial and Error* 

This method consists of finding simplifications by means of guesses 
based on experience and/or intuition, i.e., educated guesses, as to what 
device or procedure to employ. With experience, certain patterns will be 
recognized as containing superfluous terms, and therefore can be readily 
simplified. To aid this process, one may first try a number of regroupings 
of terms in the original expression so that simpUfications may be made 
(by means of known tautologies) that were not apparent previous to the 
regrouping. 

One of the devices that one can employ is to alter the form of an 
equation without altering its value by multiplying one or more terms by 
functions Hke ( Z + Jf) or (1 + X + 7 + . . .), or adding functions like 
Ä'J?. Then simpUfications may be produced by combining the extra terms 
generated with others in the original equation. Earlier in this chapter the 
right hand side of Eq. (3-25), AB + AC, was manipulated to show its equiv­
alence to AB + AC + BC, The manipulation was begun by multiplying 
the first term of AB + AC by 1 + C. Now we will start with the expression 
AB + Ac + BC and show how it may be simplified by multiplying one 
of its terms by ^ -h ^ 

f ^ AB + ÄC + BC 

= AB -h Ac + BC{A + A) 

= .45(1 + C) + ÄC{\ + Β) 

^ ΑΒΛ- Ac. 
The introduction of a dummy factor like .4 + ^ in the example above 
may be considered as a special case of the general process of expanding 
terms in an expression. An example will make the point clear. If / is a 
function of four variables. A , B, C, and D, then the appearance of a 
three variable term like AED, for example, implies that the value of the 
term is independent of the value of C and therefore ABD = ABCD + 
ABCD. Similarly, if a two variable term like AB appears, it may be re­
placed by AB {CD + CD + CD + CD), Note that if any term in the paren­
thesis is represented by X, the logical sum of the other three represents 
As an example of what effect may be produced by expansion of a func­
tion, consider the expression / = ABC + ABC ACD + ÄCD. If all 
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terms are expanded, one possible regrouping results in the expression 
/ = ABD + ÄBD + BCD + BCD, Note that, although logically equivalent, 
the two expressions have no common terms. 

A simple procedure for detecting superfluous terms is as follows. First 
observe the values of the input variables for which the value of the term 
being tested is 1. Then, inspect other terms in the expression to see 
whether for the same values of the input variables, one or more of the 
other terms in the expression has the value 1. If so, either one, but not 
both, of the two terms is superfluous. 

There are times when the form of an expression can be simplified by 
the deliberate introduction of redundant terms representing conditions 
which cannot exist physically or, if they could, would produce no detri­
mental effect on the function. As an example, consider the expression, 

/ = ABC + ABD + ACD ABD, If the signal AB cannot occur, which 
implies AB = 0, then any product containing AB can be added to the 
expression for / without altering its value for any allowable values of the 
input variables. If the terms ABC, ABD, and ABD are added, there results 

/ = {ABC + ABC) + {ABD + ABD) + ACD + {ÄBD + ABD) 
= AC + AD + BD, 

A shortcoming of the trial and error method is that, even though for 
an experienced person it may be the quickest, not all the simplest forms 
of an expression (when there are more than one) are likely to be obtained. 

3,5,1.2, Converting a Boolean Sum of Products to a Product of Sums, 
or vice-versa 

This technique leads to simplification if the equation as expressed con­
tains more than half the possible functions of a given number of variables. 
Also, its use is dictated when one type of representation is preferable to 
the other, circuitwise. 

A shorthand notation useful for converting a Boolean sum of products 
to a product of sums is as follows: Represent any product of η variables 
(where any variable may be either in its true or complemented form) 
by Pi, where / would be the binary number obtained by substituting a 1 
or 0 for each variable, according to whether it is in its true or com­
plemented state. For example, for a function of three variables. A, B, C 

ABC: i = 101, Λ = Λ = ABC 

ABC: i = 010, Pi = P2 = ABC, 
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1 Pi Si 
000 = 0 ABC = Po ^ -f 5 + C = 5o 
001 = 1 ABC = Pi A + B + C = Si 
010 = 2 ABC = P2 A^B-^-C = Sz 
Oil = 3 ABC = Pi /Í + Β -f C = 53 
100 = 4 ABC = Pa /4 + 5 + C = 54 
101 = 5 ABC = Ps A^B-\-C = Ss 
110 = 6 ABC = P6 A + B-^-C = Se 
111 = 7 ABC = Ρη A+B + C = Si 

Inspection of the table shows that in Pi, each variable has the complement 
of its value in Sj-i, i.e. 

PI = Sn^I. 

For η variables 

PI = Sis'*-!)-.. (3-38) 
There are 2*» products that can be formed from η binary variables. For 
each set of values the variables may assume, there is always one and only 
one product that has the value 1. Therefore 

(2**-!) 

^ Pi= I. (3-39) 
i = 0 

For η = 1 

For η = 2 

etc. 

^ + . Í = 1. 

{A^Ä){B + B)=\ 

ÄS + AB + AS + AB = 1 

A sum of variables is similariy represented by Si. For example 

(A+5+C) = S5 

(Ä + B + C) = 52. 

All the Pi and Si for three variables are shown in Table 3.8. 

TABLE 3.8. Logical sums and products of three variables 
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Π = 0. (3-40) 
i = 0 

The validity of this expression may be seen by taking the complement of 

i = 0 

For example, for η = 2 

f AB + ÄB + AB + AB = I 
f=^iA+B)(A+E){Ä + Β) (Ä + B) = 0. 

By the use of Eq. (3-39) and the fact t h a t / + / = 1, a complementary 
expression for a sum of products may be written as the sum of all products 
not appearing in the original expression, thus preserving the sum of 
products form. This latter expression can then be complemented using 
the relationship of Eq. (3-38) to yield a product of sums form of the 
original expression. This is illustrated in the following example 

f = ABC + ABC + ABC + ABC + ABC 

f=P0+P2+P6 

f = 575551 

= (A+B+C)iA+B+C){Ä + B+Q 
= (A + Β + C)(B + C) = Aß + Sc + AC + BC + C 

= AS + C. 

By the use of Eq. (3-40) and the fact that ff = 0, a complementary 
expression for a product of sums may be written as the product of all 
sums not appearing in the original expression. This latter expression can 
then be complemented using the relationship of Eq. (3-38) to yield a 
sum of products form of the original expression. This is illustrated in the 
following example 

It is also true that 

(2**-!) 
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f = (A + Β + C){A + Β + C)(A + β + C)(A + Β + C) 

(A + E + Q 

f = SqS^S^ 

f=P,+P, + P, 

= ABC + ABC + ABC, 

The conversion of a sum of products to a product of sums may also be 
facilitated by use of the identity: A -l· BC = (A + B)(A + C) . This 
relationship, sometimes referred to as the second distributive law of 
Boolean algebra, may be derived from the expression of the first distribu­
tive law stated on page 41 by application of the duality principle. Its 
general form is (X + ¥^¥2 . . . r « ) = + ¥i)(X + Ys) . . . ( Z + y « ) . 
(Note that the first distributive law of Boolean algebra applies to number 
algebra also, but the second does not). 

Theoretically there is a one-to-one correspondence between the set 
of all possible functions of each type, so there is an equal probability 
of obtaining a simpler or more complex function after transformation. In 
actual practice, it is doubtful whether all functions are equally probable 
(i.e., that there is a random distribution). An example of a sum of prod­
ucts which yields a more complex form after conversion is the expression 
on the left in Eq. (3-41), and one that yields a simpler form is the ex­
pression on the left in Eq. (3-42). 

AB + CD = (A-^ CD) (B + CD) 
= ( ^ + C ) ( / i + ß ) ( ß + C ) ( 5 + D)(3-41) 

AC + AD^BC + BD = A(C + D) + B ( C + D) 
= (A-l·B)(C-l·D). (3-42) 

If one performs a double conversion, i.e., first converts a sum of 
products to a product of sums and then reconverts to a sum of products, 
the final expression obtained may Save superfluous terms not removable 
by simple algebraic manipulation. As an example, consider the expression 

f=AB + BC + ABC, 

This expression can be converted to a product of sums by repeated appU-
cation of the identity (X + ¥i¥2 . . . ¥n = (X ¥i)(X + ¥2) . , , 
(X+¥n): 
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f=(ÄB + Β) (ÄB +C) + ABC 

= [A + (Ä + B) (ÄB + C)] [B + (Ä+ B) (ÄB + C)] 
[C + (Ä + B) (ÄB + C)] 

= μ + ( i + B)] [Ä + (ÄB + C)] 
[ 5 + α + Β)] [Β + + c)] 
[C + (Ä + Β)] [C + (ÄB + C)] 

= + (C + ^ ) + B)] [B + (C + Ä) (C + B)][C + Ä + B] 
[C + + Ä) (C + B)] 

= μ + (c + i ) ] μ + ((: + 5 ) ] [ 5 + (c + i ) ] [ 5 + + 5 ) ] 

[C + i + 5 ] [C + + i ) ] [C + C + B] 

= (B+C)(C + Ä+ B). 
The final expression may be converted to a sum of products by multiply­
ing the factors yielding 

f=BC + BC + BÄ + CA. 

Either the third or fourth term (but not both) of this expression is 
superfluous. The third term may be eliminated by expanding BÄ, i.e. 
replacing it by BÄ(C + C) and then factoring the resultant expression 

f=BC + BC + BCÄ + BCA + CÄ 

f=BC + BC+ CA, 

An identity that is sometimes useful for simplifying expressions ob­
tained at intermediate steps in a conversion process is 

F(Zi ,Z2, ...Xm) [F(XuX2, ...Xm) + G(XuX2, . . . XJ] 
— Ρ(Χΐ^Χ2, · . . Xm)' 

The validity of this expression becomes apparent if one multiplies the 
terms on the left and factors the result. 

For different reasons, e.g., either to maintain uniformity of sub­
assemblies, or because certain types of components function better in one 
type of circuit, it may be desirable to standardize, and use one type of 
network arrangement exclusively. If the type most suitable because of the 
characteristics of the components should require more components than 
the other type, this may be avoided, (according to the design of a par­
ticular machine) by redefining the presence and absence of a signal, and 
thereby interchanging the AND and OR functions. The majority of practical 
switching functions is less complex in the sum of products form, and 
visualization of the operations involved is usually easier in this form. 

If there is no rigid requirement for a circuit to be of the pure sum 
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ABC AB AC BC 

0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 1 
0 1 0 0 1 0 0 1 0 
o i l 0 1 0 1 1 1 
1 0 0 1 0 1 0 0 0 
1 0 1 1 0 1 1 0 1 
1 1 0 1 1 1 0 1 0 
1 1 1 1 1 11 1 1 

The form of the chart can be simplified by considering the functions 
as binary numbers and then replacing them with their decimal equivalents, 
as shown in Table 3.10. 

The procedure is as follows: 
(1) If the equation to be simplified is not in the form of a sum of 

products convert it to this form. Then, draw horizontal lines through those 
rows in which the products ABC , , , should be zero for this equation. 

(2) Cross out wherever else they occur in a given column those num­
bers that were crossed out by the horizontal lines in step 1. 

(3) In general, one may find that some row has only one combination 

of products or product of sums form, a miscellaneous form of network 
may offer the most desirable solution. A miscellaneous form implies a 
multiple level switching network (described in Chapter 4 ) . 

The derivation of a simpUfied equivalent expression of a switching 
function by trial and error and algebraic manipulation can be quite diflS-
cult, even though its equivalence to the original expression can be readily 
shown once it has been derived. A principal advantage of the chart 
method described in the next section is that even though it is quite 
tedious it enables all equivalent forms to be found by a routine process. 

i.5.7.5. Chart Methods 

(a) THE HARVARD METHOD (See Staff of the Computation Labora­
tory [1951]): 

The advantage of this method is that it gives all possible simplified 
expressions automatically. It consists of laying out a chart which contains 
for η variables, all products of length η or less (where a variable may or 
may not be complemented in each product). Table 3.9 is a chart for η = 3. 

TABLE 3.9 
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ABC AB B C 

0 0 0 0 

1 0 1 1 

2 1 0 2 

3 1 1 3 

4 2 2 0 

5 2 3 1 

6 3 2 2 

7 3 3 3 

of a minimum number of variables that has not been crossed out. Such 
a combination is called essential and is circled together with all its appear­
ances in a given column. 

(4) Rows may still remain with neither horizontal Unes drawn through 
them nor encircled elements. Each of these rows will contain two or more 
unmarked combinations of a minimum number of variables. Circle at 
least one arbitrary combination in each nondeleted row and encircle 
all occurrences per column of each arbitrary combination in a way that 
minimizes the number of combinations encircled. 

(5) A minimal expression of the original equation is given by the 
Boolean sum of all encircled combinations. As an example, consider the 
expression 

/ = ABC + AB + BC 
ABC AB AC BC 

0 0 0 0 

1 0 1 1 

2 1 0 2 

3 1 1 3 

4 2 2 0 

5 2 3 1 

6 3 2 2 

7 3 3 3 

Steps 1 and 2 need no comment. In step 3, one finds that there are only 

TABLE 3 . 1 0 

AC 
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two rows (row 5 and 8 ) containing essential elements; these are 0 and 3 
in column BC. In step 4 , one finds the only nondeleted row with a non-
encircled element to be row 3 . One then has a choice of encircling 
either element 1 in column AB, or element 0 in column AC. In step 5 , 
one of two minimal expressions is obtained for /, depending on the 
choice made in step 4 . If the element in column AB were chosen, one 
obtains 

fi = BC + AB + BC. 
The other solution is 

/ 2 = BC + AC + BC. 
The equivalence of fi and / 2 to / and, hence, to each other may be shown 
as follows 

/ = ABC + AB + BC 

= B(AC + Ä)+BC 

= BC + AB + BC 

f = ABC + AB + BC 

= ABC + ABC + ABC + BC 

= BC(A + Ä) + C{ÄB + Β) 

^ BC + AC + BC 

As the number of variables increases, simplification by algebraic manipu­
lation becomes more difficult. However, the chart methods can be utiHzed, 
and if the number of variables makes the process too cumbersome for 
manual execution, it can be programmed (within limits), for a digital 
computer. 

(b) THE QUINE SIMPLIFICATION [ 1 9 5 2 , 1 9 5 5 ] : 

This method is similar to the Harvard method. It differs in that the 
chart is constructed for a specific case, and contains only the pertinent 
terms. Most of the advantages and disadvantages of the Harvard method 
apply to this method also, except that for a large number of variables 
it is not as cumbersome. The procedure is as follows: 

( 1 ) Expand all terms to include all variables, e.g., if there are three 
input variables and the term AB appears, replace it with ABC, ABC. Elimi­
nate duplicates of terms that may appear. 

( 2 ) Starting with the Ust of terms formed in step ( 1 ) , add additional 
entries as follows. Whenever two entries in the original list differ by 
only one variable, e.g., ABC, ABC, enter the similar part of the terms 
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on the list (in this case ÄB), and enter checks opposite the two terms 
from which it was obtained. This process is continued until a group of 
unchecked terms remains which cannot be reduced by further combina­
tion. The unchecked terms, i.e., those never combined with any other 
terms, constitute a set of prime impHcants. (A prime impHcant is a logi­
cal product which is a term of every minimal form of a Boolean function). 

(3) List the expanded terms of step (1 ) , and the prime implicants 
of step (2) as column and row headings, respectively, of a table, and 
place marks in each row in those columns where the expanded term is 
implied by the prime implicant. 

(4) If any column has only one mark, the corresponding prime im­
plicant is essential and is to be included in the result. This column and 
all other columns included in the same prime implicants are eliminated. 

(5) Whenever in the remaining table there are two columns such 
that each has marks only in rows where the other has marks, one of 
these columns may be eliminated. 

(6) The remaining columns are examined to determine how they 
may be covered with the fewest prime implicants. 

As an example, consider the expression 
f = ABCD + ABC + BCD + ACD 

Step 1: Step 2: 
ABCD 

ÄBCD 

ÄBCD 

ABCD 

ABCD 

ABCD 

ABCD 

ABCDV 

ABCDV 

ABCDV 

ABCDV 

ABCDV 

ABCDV 

ABC 

BCD 

BCD 

ACD 

Steps 3, 4, 5: 

ABCD ÄBCD ÄBCD ABCD ÄSCD ABCD 

ABC 

BCD 

BCD 

ACD 

Θ 

Θ 
f = ABC + BCD + BCD + ACD 
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The result may be verified algebraically 

/ = ABCD + ABC + BCD + ACD 

= BC{AD + Ä)+ BCD + ACD 

= BCD + ABC + BCD + ACD. 

A systematic way of transforming a Boolean function to yield all mini­
mal forms which are sums of products allows one to be chosen to replace a 
given switching function. This may be an improvement over the original 
expression even though the latter contains no superfluous terms. The 
procedure will now be summarized. First, the function is expanded to its 
elemental form, and by apnlications of the identity, AB + AB = A , all 
basic terms (i.e., any correct term containing no superfluous variables) 
in the expression may be found. Then, a table is made indicating which 
of the basic terms are contained in each term in the elemental form. 
The terms that are basic are not known until each of them has been com­
pared with all others, and further reductions are not possible. The use of 
the table enables all possible combinations of basic terms equivalent to 
the original expression to be found. 

The simplest product of sums expression may also be obtained from 
this procedure. First, the original sum of products expression, /, is replaced 
by a complementary sum of products function, / , utilizing Eq. (3-39) and 
the identity f + f = I, Then the complementary function is reduced by 
the process described to yield the simplest sum of products expression 
for / . Complementing the expression for / yields the simplest product of 
sums expression of the original function, /. 

A systematic procedure for analyzing switching functions may be 
useful even in the event that an algebraic simplification cannot be achieved, 
for an alternate expression may be found that would have been difficult 
to find otherwise. This alternate expression may be more desirable circuit-
wise, e.g., it might not put as great a load on a circuit already loaded 
heavily. 

3.5.1.4. Map Methods 

The Harvard method, previously described, consists of generating a 
list of possible simplifications followed by a choice between these possi­
bilities. The method to be described here consists of presenting the func­
tion in a form in which possible simplifications are made more apparent, 
thereby reducing appreciably the routine work of the chart methods. An 
early form of the type of map to be considered here, proposed by Veitch, 
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Á 0 \ β 
O l 

/?=2 

0 0 1 1 ^ 
>ί 0 I QIC 

/7=3 

0 0 1 1 4 
CD 0 \ 0 \ θ 
0 0 
Ol 
10 
I I 

/7=4 

FIG. 3.5. Veitch maps 

one of the 2** logical products of η variables (which compares favorably 
with the 22̂ ^ entries used in the Harvard method). The product designated 
by a particular square is obtained by noting the values of the variables 
in the column and row that intersects the square. A reorganization of the 
Veitch maps, proposed by Karnaugh, [1953] is shown in Fig. 3.6. The 

A A 

Β 

/7 = 2 

Β 

C 

/7 = 3 
D 

/7=4 

Β 

77 = 5 
D D 

/7 = 6 

Β 

Β 

FIG. 3.6. Karnaugh maps 

[1952] is shown in Fig. 3.5. Each map provides a square for entry of any 
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rows or columns within a bracket are those m which the designated 
variable has the value 1, while it is 0 elsewhere. Adjacent squares are 
defined as those that differ in the value of only one variable, so that 
squares at the opposite ends of a row or column are considered adjacent. 
Because the Kamaugji map is generally more convenient, it will be used 
in the examples that follow. 

Use of the map method requires that the function to be simplified 
be represented first in its elemental form, i.e., as a logical sum of products. 
For each elemental term in the function, a mark such as a check or cross 
is placed in the square corresponding to that particular product of η 
variables. Then the map is inspected for the purpose of recognizing 
which of several possible groupings of terms represents the best factoring 
of terms in the function. It is desirable to choose these groups so that 
each encompasses as many positions as possible. Each checked square 
must be represented by at least one of the groups, though it may be 
included in two or more. The usefulness of the map derives from the 
fact that patterns of checks which will yield the simplest terms can, after 
sufficient practice, be easily and quickly determined by mspection. Some 
typical patterns that may be encountered in a four variable map are 
shown m Fig. 3.7. 

Β ^B 

D D 

FIG. 3.7. Typical patterns in a map 

f^ÄD f=BD f^CD 
As a matter of definition, a group is the map of a logical product 

formed according to the following rule: the factors of the product are 
those variables whose values are fixed within the group, whether in the 
uncomplemented or complemented condition. Larger groups correspond 
to products of fewer variables, since fewer variables are fixed in them. 
To obtain a minimal expression, one chooses a set of groups which in­
cludes every checked square at least once. In general, it is desirable to 
make the selected groups as large (for less terms per product) and as 
few (for less products) as possible. 

As a first e xample, consider the expression / = ABC + ABC + ABC 
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+ ABCD. Each of the first three terms in the expression requires the entry 
of two checks (one for D and one for D) while the last term requires only 
one. In Fig. 3.8, a particular grouping of these checks is shown which 
yields the simplified expression / = EC + ABC + BCD. 

Θ 

E E 

Β 

f=BC-{- ABC + BCD 

FIG. 3.8. Derivation of an expression from appropriate groupings of checked squares 

In Fig. 3.9 two alternate groupings of the terms in a given expression 

Β 

fi = AC + ACD + BCD 

= AC-\- CD(A -f B) 

f2 = AC+ ACD + ABD 

=^ AC-\- D(AC + AB) 

FIG. 3.9. Alternate expressions based on different groupings of a function 

are formed, resulting in different but equivalent expressions, / i and / 2 . 
This method is also useful in finding the simplest product of sums 

expression equivalent to a given sum of products. The map procedure 
is analogous to the procedure wherein one first replaces the original sum 
of products by the complementary sum of products, finds a simplest form 
of the latter, and complements it to yield a product of sums representation 
of the original function. As an example, consider the function / = ABC 
+ ABC + ABC. The complementary sum of products is: / = ABC + 
ABC + ABC + ABC + ABC. By factoring, the latter expression may be 
reduced to f = BC + AB + AC + ABC. Taking the complement of this 
expression yields: / = (B + C) (A + B) (A + C) (A + Β + C). When 
using the map method, (see Fig. 3.10), a simplified expression for the 
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ra 

/ = A C + / ÍA + / Í Í + ABC 

/^{ΒΛ' C){A -f B){A -h C ) (^ 

FIG. 3 . 1 0 . Obtaining a simplified product-of-sums expression 
by groupings of unchecked squares 

complementary function / is obtained by forming appropriate groupings 
of unchecked squares. Taking the complement of this expression then 
yields a simplified product of sums expression. 

In some cases it may be more convenient to derive the simplest sum 
of products expression by means of an intermediate product of sums 
expression. As an example consider the function / = AD + ACD + ABC 
+ ABCD. The map of this function is shown in Fig. 3.11. By forming 

o D Dil 
1 • •ill D α Dil 
D • DBJ 

8 

f= AB-{'CD 

f=(A-^BXC-{-D) 

= AD + AC-j-BC + ÉD 

FIG. 3.11. An expression based on the complement of groupings 
of unchecked squares 

a particular set of groupings of the checked squares, the expression / = 
AD + AC + BC + BD may be obtained. However, a simpler grouping 
may be formed by combining the unchecked squares into the two groups 
indicated in Fig. 3.11. This grouping yields f = AB + CD, If this expres­
sion is then complemented, there results f = (A + B)(C + D), which is 
a factored form of/ = AD + AC + BC + BD, 

Figure 3.12 illustrates a "combination" solution; i.e., one obtained 
by considering both checked and unchecked squares. In order to reduce 
the number of groups, the square corresponding to ABCD is first assumed 
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m π níi] 
• • • Í D I • • • D I • • mm 

f=(Äß + CD)(AÉCD) = (Aß + CD)(A -\-B + C D) 

f = Aß(C + D) + CD{A + B) 

FIG. 3.12. An expression based on groups containing checked and 
unchecked squares 

to be checked, and later this state is inhibited. After some practice, one 
can immediately, by inspection of the map, write a reduced expression 
such as the one shown in Fig. 3.13. Here the checked squares are con-

ini mm i j i • I I I 
ia j i •JDJ 
liij • l a 

β 

f=(Aß + AB)(CD + CD) 

FIG. 3,13. An expression based on the intersection of four groups 

sidered as a group defined by the intersection of four other groups, each 
containing both checked and unchecked squares. 

An important advantage of the map and the Harvard chart method 
is the convenience it provides for taking advantage of nonallowable or 
indifferent combinations of the input variables. These combinations, re­
ferred to as redundant, may occur because the particular combination 
never is realized in practice or because it has no undesirable effect on 
the output. In searching for the simplest expression, one may or may not 
include redundant combinations in a group. As a rule, those redundancies 
are included which enlarge and combine the necessary groups as much as 
possible, but do not necessitate the selection of additional groups. 

In conclusion it should be stated that often a solution as good or better 
than any map or chart solution may be obtained by other means. For 
example, the expression obtained from the map shown in Fig. 3.8 could 
have been obtained very easily by factoring 
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/ = ABC + ABC + ÄBCD + ABC 

= BC(A + A) + BC(ÄD + A) 

= BC + BC{D + A) 

There are times, however, when the use of a map facilitates derivation of 
a simplified form of a Boolean function. As with chart methods, the pro­
cess becomes more cumbersome as the number of variables increases. (For 
the special case of symmetric circuits the reader is referred to Cald­
well [1954], Lee [1954], Slepian [1953], and Washburn [1949]). 

In the preceding discussion of procedures for simplifying Boolean 
equations, two important items were neglected. First, there was no con­
sideration of the problem of deriving a form of an equation corresponding 
to the combinational circuit most desirable from a physical standpoint. 
There are effects peculiar to different types of components and circuits 
which do not show up in consideration of the equations alone, but which 
place restrictions on logical formulations. The nature of the restrictions 
placed on logical formulations by the available circuitry, as well as the 
circuit implications of different logical formulations, will be considered in 
Chapter 4. The second item neglected was the subject of how digital 
computers may be used to simpUfy Boolean descriptions of new machines. 
This will be discussed in Chapter 7. 

3.6. The Storage Function 

In Section 3.4 there was reference to the fact that input signals 
to a combinational switching network cause the network to generate ap­
propriate output signals after a short and unavoidable transit time. 
In other words, there is a free flow of signals between input and output 
without any significant delays or storage. Such networks operate on 
binary inputs but do not store either the inputs themselves or any trans­
formation of them. They can only represent on their output lines some 
function or functions of the variables currently present on their input 
lines. By the incorporation of storage elements, inputs received by a com­
binational network at one time can be stored for combination with inputs 
received at other specified times. 

In general, the concept of memory or storage implies the receipt of 
information at some time, i, and the retention of that information until 
some later time, t -f Af. There are basically two ways in which informa­
tion may be retained — referred to as static and dynamic storage. There 
are many possible physical realizations of both types of storage, and 
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descriptions of a number of them are provided in Chapters 4 and 5. 
Because of considerations of reUability, discussed in Chapter 1, the 
internal storage elements in a digital computer are used as binary elements, 
although many of them could also be operated in a multistable mode. 
Since the parameters of physical elements used to represent information 
are continuous in nature, use of these parameters for discrete data storage 
requires that certain constraints be imposed on the behavior of the 
elements. For example, the angular position of a rotatable disk is a con­
tinuous quantity, but can be used to represent discrete data if only 
certain positions are defined, as in a notched counter wheel. A vacuum 
tube amplifier is an analog device, as evidenced by its transconductance 
curves, but can be constrained to behave hke a discrete device by in-
coφorating it into a bistable circuit called a flip-flop. Data may be 
stored in a continuous manner on the magnetic surface of a drum, disk, 
or tape. However, by restricting the use of the magnetic medium to the 
point where only the presence or absence of magnetization, or its direc­
tion, is considered, bistable storage elements are obtained. 

The duration of a stable state varies with the particular element and 
the circuit in which it is used. For example, magnetic storage can be 
retained for an indefinitely long period. On the other hand, the electrical 
charge on a condenser will gradually leak off, and at first sight an elec­
trical condenser might not seem suitable as a storage element. However, 
if it is used in an appropriate circuit, and its charge sampled at time 
intervals small compared to the interval it takes to lose an appreciable 
part of its charge, and circuitry provided to periodically regenerate the 
charges which otherwise would leak off, it becomes useable as a digital 
storage device. Electrostatic and ferroelectric storage systems described 
in Chapter 5 employ condenser-like elements. 

An important differentiation that enters into the application of dif­
ferent storage devices is whether they are suited better for the storage 
of a single bit or small group of bits, a main storage unit with a capacity 
of anywhere from several hundred to tens of thousands of words, or for 
an auxiliary or file storage unit that may call for hundreds of thousands 
to millions of words. 

Single bit storage elements may be formed from either static or 
dynamic units, and may be interconnected to form registers and accumula­
tors. Immediate access to any of these elements is possible. The most 
commonly encountered type of single bit storage device is the flip-flop. 
Static nip-flops, whose logic and circuitry are described in Section 3.7 
and Chapter 4, respectively, can be triggered to either of two states of 
static equilibrium. They are commonly formed from a pair of regeneratively 
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coupled amplifiers in a circuit designed to have two stable operating 
points. By incorporating an electromagnetic delay element (of the type used 
in electronic circuits for synchronization purposes) into a suitable feed­
back loop, one can form dynamic types of flip-flops, whose operation does 
not depend on circuits with stable operating points. Once introduced, a pulse 
is continually recirculated until the loop is effectively opened momentarily 
by an externally applied signal (see Section 3.7.5). The presence or 
absence of the recirculating pulse at an output terminal is arbitrarily 
tagged to represent either a 1 or 0 state. Static flip-flops are used where 
the combinational circuits are designed to operate on dc inputs, where 0 
and 1 are represented by two voltage levels, and dynamic flip-flops are 
used in systems where 0 and 1 are represented by the absence or presence 
of voltage pulses at regularly spaced sampling times. 

In a digital computer, (see Chapter 2 ) , the totaUty of operations to 
be performed in the solution of a given problem is specified by data in 
the form of a program originally entered into the computer's main storage. 
Space in the main store is also used for the storage of initial conditions, 
and for intermediate and final results. In Chapter 5 there are descriptions 
of a number of types of main storage systems, including the two most 
widely used today; namely, magnetic drum and magnetic core storage 
systems. The control unit of the computer contains the circuits that per­
form the operations common to the execution of all instructions, namely 
selection of coded instructions and operands from the main store in some 
specified sequence, and the advancement of control to the next instruction 
in a sequence upon the execution of any given instruction. The control 
as well as the logical or arithmetic operations called for by a specific 
instruction must be derived from the data contained in a given instruc­
tion. Certain storage elements in the control and arithmetic units of a 
digital computer are reserved for the puφose of receiving this data from 
the main storage and holding it in a form suitable for input to the 
various control and arithmetic switching networks within the computer. 
The need for these storage elements in the control and arithmetic units 
arises because the data in the main store is usually in a form that cannot 
be used directly as an input to a voltage or current switching network. 
To elaborate, a 1 and 0 may be represented in the main store in any of 
the following ways: by the direction of magnetization of a cell on a 
magnetic surface, or of a magnetic core, the absence or presence of 
electric charge on the surface of a dielectric material, or the emergence 
from a delay line of a pulse train at some specified point during a specified 
time interval. Before data in any of these forms can be used to drive 
switching networks, certain preliminary operations are required. These 
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operations cause selection of a storage location and sensing of the infor­
mation stored there. In static stores all words are equally accessible and 
means are provided to sense all bits of a word in parallel. In dynamic 
stores the access time varies with the location of a word relative to a trans­
ducer at the time of selection (see Chapter 5) , and bits of a word are 
usually made available serially, thereby requiring a conversion of the data 
from serial to parallel form. In both cases means must be provided to 
transform the data from its form in the main store to representation in 
the form of the voltage or current states of a set of storage elements in 
the control and arithmetic units. The outputs of these storage elements 
can be used as inputs to the control and computation switching networks. 
Subsequently, the outputs of these networks may be used to alter the 
states of storage elements in the main store, the control unit or the 
arithmetic unit. In Section 3.8 there is a general description of how 
switching and storage elements are interconnected in a digital computer. 
Whenever it is desired that a network be sequence sensitive, i.e., its 
response be governed not only by the current input signals, but on pre­
ceding ones also, then such a network must contain storage elements. A 
system composed, not of switching circuits alone, but also containing 
storage elements, is usually referred to as a sequential switching network. 
A sequential switching network is, in general, reducible to a multioutput 
combinational network in many variables. The general characteristics of 
sequential switching networks will be described after the description in 
Section 3.7 of the functional characteristics of flip-flops. 

3.7. Flip-Flops 

The term flip-flop refers to a circuit having basically one, two, or 
three points, and one or two output points, which can be triggered to each 
of two stable states by appropriate signals at one or more input points. 
Once triggered to a particular state, a flip-flop will remain in that state 
until triggered by an appropriate new input signal. Flip-flops may be 
utilized for a number of purposes. These functions, described in succeed­
ing chapters, include the following: to receive and retain information for 
controlling arithmetic and logical operations, to provide time delays for 
carries in synchronous adders, and to generate timing signals. 

Besides differences in the number of input and output points, and 
the input-output logical relationships, designs will differ, also, in the 
uature of the points at which inputs are received, e.g., at the grid or 
cathode of a vacuum tube, and the characteristics of the waveform re­
quired to trigger the flip-flop from one stable state to the other, i.e., its 
amplitude, width, rise and fall times, and repetition rate. In practice, the 
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width of the input pulse must be only a small fraction of the period cor­
responding to the input pulse repetition frequency. The stability, reli­
ability, and range of operating frequencies of a flip-flop are determined by 
circuit parameters. Representative flip-flop circuits are described in 
Chapter 4 . 

Before the advent of transistors, flip-flops were usually formed from 
a pair of vacuum tubes, either triodes or pentodes, regeneratively coupled 
in a circuit having the characteristic that when one tube was conducting, 
the other tube was cut off, and vice versa, thus providing the circuit with 
two stable states. An indication of the state of the circuit was usually 
obtained by examining the plate voltages. Output signals could be taken 
from any of a number of points, depending on the polarity, amplitude, 
and dc level of signal desired. Very few of the digital computers now 
being built or contemplated utilize vacuum tubes for flip-flops. Instead, 
transistors are now largely used for this purpose. 

If the flip-flop action is obtained by the regenerative coupling of 
vacuum tube or transistor amplifiers, two output lines are available. After 
a switching action has occurred, i.e., in the steadystate, one of the lines 
will be at a relatively high voltage and the other at a relatively low 
voltage, depending on which tube or transistor is conducting current more 
heavily. The two output lines of a flip-flop. A, may be arbitrarily desig­
nated as A and A. The flip-flop is said to be in state A, or A, depending 
on the voltages of the output lines. Sometimes a flip-flop may have only 
one useable output line, as for example in the case where the flip-flop 
action is obtained by the negative resistance characteristic of a single 
transistor amplifier. In this case, the flip-flop is said to be in state A or A, 
depending on whether the voltage on the output line is relatively high 
or low. 

3 . 7 . 1 . STATIC FLIP-FLOPS 

Throughout the remainder of the text, the block diagrams shown in 
Fig. 3 . 1 4 will be used to represent the different types of static flip-flops. 
They vary principally in the number and placement of their input lines. 
Though the letter F is used in Fig. 3 . 1 4 , any capital letter may be used 
to designate a flip-flop (though the letter D is often reserved to indicate 
a delay element). Usually, the different flip-flops in an assemblage are 
designated by the same letter with a distinguishing numerical superscript 
or subscript attached to the letter. In some systems, different capital 
letters are used to designate different flip-flops or groups of flip-flops, 
and the particular letters used have some mnemonic significance. In a 



74 3. BOOLEAN ALGEBRA

TRUTH TABLE TRUTH TABLE

R S F t F t +1 F F T Ft Ft +1 F F

0 0 00 0 0 0
0 0 1 1 F 0 1 1 F
0 1 0 1 S R 1 0 1
0 1 1 1 1 1 0
1 0 0 0 T
1 0 1 0

(b \1 1 0 ( a)

1 1 1

(a) The R-S flip-flop (b) The T flip-flop

TRUTH TABLE TRUTH TABLE

R S T F t F t +1 F F R p Sp F t Ft +1 F F

0 0 0 0 0 0 0 0 0
0 0 0 1 1 F 0 0 1 1 F
0 0 1 0 1 S R 0 1 0 1 Sr Rr0 0 1 1 0 0 1 1 1
0 1 0 0 1 T 1 0 0 0
0 1 0 1 1 1 0 1 0

(d)1 0 0 0 0 (c ) 1 1 0 1
1 0 0 1 0 1 1 1 0

(c) The R-S-T flip-flop (d) The Rp-Sp flip-flop

FIG. 3.14.

block diagram, when there is no need to designate a specific flip-flop by
letter, the symbol FF (for flip-flop) may be used.

Truth tables are shown in Fig. 3.14 to aid in the description of the
input-output relationships of the types of flip-flops shown. In these tables,
1 indicates the presence and 0 the absence of signals at indicated points.
When output line F = 1, the flip-flop is said to be in the F state, and
when output line F = 1, it is said to be in the F state.

The type of flip-flop whose block diagram and input-output truth
table are shown in Fig. 3.14(a) is usually referred to as a set-reset type
of flip-flop, or simply as an R-S flip-flop, because a signal on the S line
sets the flip-flop to the F state and a signal on the R line resets it to the
F state. Rand S refer to the two input lines and their current states,
while F t and F t + 1 refer to the state of the flip-flop at times t and (t + 1),
respectively. Ft = 0 means the output line F has the value 1 at time t.
Ft = 1 implies the output line F has the value 1. The condition on the
output lines at time (t + 1) will depend on the signals received on the
input lines Sand R at time t, as well as the state of the flip-flop at time t.
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The logical nature of this type of flip-flop will be explained by considering 
the truth table which defines its operation. A signal on either input line, 
indicated by a 1 in the appropriate column, will cause the flip-flop to as­
sume a corresponding state, i.e., ii RS = 1 at time t, Ft+i = I; if RS = I 
at time r, Ft+\ = 1 (or Ft+i = 0). Note that once this type of flip-flop 
has been set to a particular state, additional signals on the corresponding 
input line produce no effect. The blanks in the last two rows of the table 
are used to indicate that the effect of simultaneous inputs is not considered 
in the design of this type of flip-flop. It is intended for use in systems 
where this event either cannot occur or is prevented by design from 
occurring during normal operation. 

The type of flip-flop indicated in Fig. 3.14(b) is usually referred to as 
a complementing or trigger flip-flop or simply as a Γ flip-flop. It has only 
a sin^e line for input signals, and successive signals on this line will 
cause it to trigger alternately from one state to another, which is evident 
from the truth table. Circuitwise, it is similar to the RS flip-flop. The 
most significant difference is that it is symmetrically coupled to a single 
source of triggermg. This makes the circuit especially useful as a counting 
element. 

The flip-flops shown in Figs. 3.14(c) and 3.14(d) effectively combine 
the functions of both the flip-flops of Fig. 3.14(a) and Fig. 3.14(b). All 
theoretically possible input signal configurations are not shown in the 
table of Fig. 3.14(c), since the flip-flop is restricted to operate 
under the condition that signals on more tíian one input Ime at a time 
are not allowed. 

The RT-ST flip-flop, whose operation is defined by the truth table in 
Fig. 3.14(d), is similar to the R-S-T flip-flop in that it can be activated 
in three distinct ways. Although it has only two input lines, it can be set, 
reset, or triggered. It can be set to either of two specified states by a 
signal on either the ST or RT line or caused to flip from one state to 
another by appUcation of a signal to both input lines. Inspection of the 
truth table shows that the logic of this flip-flop differs from that of the 
RS flip-flop only in that simultaneous inputs are allowed and cause 
the flip-flop to change state. 

3.7.2. THE CHARACTERISTIC EQUATION OF A FLIP-FLOP AND DERIVATION 
OF THE GENERAL FORM OF ITS INPUT EQUATIONS 

The information in the truth table defining the response of a given type 
of flip-flop to signals on its input lines can be put in the form of a 
Boolean expression, which indicates the state of the flip-flop at time t+ I 
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= [F3 (F2 Fl) + F 3 (F2 Fl)], 

Fh+i = ( F 3 f 2 Fl + F 3 F2 Fl + F 3 F 2 Fl + F 3 F2 Fl), (3-44) 

= ( F 2 Fl + F2 Fl), 

Fi,+i = ( F 3 F 2 Fl + F 3 F2 Fl + F 3 F 2 Fi + F 3 F2 Fl), 

= (F'h 
Each equation states that the presence of any of the stated conditions at 
time t is to cause the indicated flip-flop to assume the state 1 at time 
t + 1 and any other configuration of the input variables is to cause the 
flip-flop to assume the state 0 at time í -f 1. Note that the difference equa-

in terms of ine states of pertinent variables at time t. This expression is 
called a difference equation because of the time differential between 
receipt of an input signal and assumption of a new state. Since this expres­
sion also describes the logical nature of a particular type of flip-flop, it is 
referred to as the characteristic equation of the flip-flop. 

The principal logical design problem in the design of a sequential 
switching network is to determine what the signals on the input lines 
of a given flip-flop should be in order for the flip-flop to assume a sequence 
of states in accordance with a difference equation for a given application. 
This problem may be attacked by first equating the characteristic equation 
of the flip-flop to the difference equation of a specific application. The 
latter equation, sometimes referred to as an application equation, is 
readily obtained from a table showing the state each flip-flop is to assume 
at each instant of time for each possible configuration of states, at the 
preceding instant of time, of all elements which may influence it. The 
application equation can always be written in the following general form 

Ft^i = (xF + yF)t (3-43) 
where χ represents one function of the pertinent input variables and y 
another function of the same variables. 

To illustrate how a specific appUcation equation may be derived, let 
us consider three flip-flops, F^, F^, F \ which are to be used as a counter 
whose contents are to be augmented by a single binary increment at each 
succeeding instant of time, and which is to be reset to zero after reaching 
its maximum value. The contents of this counter at successive instants of 
time are shown in Table 3.11. For each flip-flop, a specific application 
equation may be written showing the state it is to assume at time í + 1 
in terms of the state at time t of itself and others in the group. 

F3 ,+i = ( f 3 F2 Fl + F 3 F2 / Ί + F 3 F2 Fl + F 3 F2 / i ) , 
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tions for the specific application neither state nor imply the logical 
properties of the flip-flops. It will be shown later that any of the types 
of flip-flops considered can satisfy such appUcation equations. 

TABLE 3.11 

T ime/ 
F3 F2 Fl 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Time / + 1 
F3 F2 Fl 

0 
0 
0 
1 
1 
1 
1 
0 

0 
1 
1 
0 
0 
1 
1 
0 

1 
0 
1 
0 
1 
0 
1 
0 

The input equations for each type of flip-flop (which specify the signals 
required on the input lines to satisfy the application equation) will be de­
rived now in terms of variables in the general form of the application 
equation. 

Let us consider first, the R-S flip-flop. From its truth table, its char­
acteristic equation is 

Ft+i = (RSF + RSF + RSF)t 

= (RSF + RS)t. (3-45) 
The restriction on the simultaneous occurrence of signals on both R 
and S is expressed algebraically by 

(RS)t = 0. (3-46) 
Since (RS)t = 0, it may be added to Eq. (3-45) without altering its 
value. This results in a simplification of Eq. (3-45). 

F,^i = {RSF +RS + RS)t 

= (RF + 5),. (3-47) 
Equating the characteristic equation of the R-S flip-flop to the general 
form of a specific difference equation yields 

Ft+i = (RF + S)t = (xF + yF),. (3-48) 
To obtain the input equations for the R-S flip-flop in terms of the input 
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Ft^i 
X y Ft ^(RF + S)t R S 

0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 1 0 1 

0 1 1 0 1 0 

1 0 0 0 ^4 0 
1 0 1 1 0 
1 1 0 1 0 1 

1 1 1 1 0 

TABLE 3 . 1 3 

Ft^i = ixF^yF)t 
X y Ft = {TF + TF)t τ 

0 0 0 0 0 
0 0 1 0 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 0 0 
1 0 1 1 0 
1 1 0 1 1 

1 1 1 1 0 

functions χ and y , one may proceed as follows. Construct a truth table 
showing the value of xF + yF for each possible configuration of states 
of x,y, and F. (See Table 3.12). From Eq. (3-48) it is clear that this also 
defines the value of RF + S for each configuration of x, y, F, and allows 
the values of R and S to be derived by logical inference. For example, 
consider row 2 or 4. Since RF + 5 = 0 in these cases, both RF and S 
must each be equal to 0. Since F = \, this imphes that i? = 0, or equiva-
lently that R = 1. In row 3 or 7, i?F + 5 = 1 while F = 0. This implies 
that 5 = 1 , and since RS is always equal to zero for this type of flip-flop, 
R = 0. In row 1 or 5, i?F + 5 = 0, so 5 = 0, and RF = 0. However, 
since F = 0, R may be either 0 or 1. Therefore, R is represented by the 
symbol k which may assume either value. In row 6 or 8, RF + 5 = 1 
while F = 1. This condition is satisfied if jR = 1, or equivalently if R = 0, 
When R = 0, S may be either 0 or 1 and is represented by k^ and Λ7, 
respectively. From columns 1, 2, 3, and 5, 6 of Table 3.12, the following 
equations for R and S, the so-called input equations may be obtained 

TABLE 3 . 1 2 
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R = (ko xyF + xyF + xyF + A:4 xyñ (3-49) 

5 = {xyF + Ars xyF + JC>;F + Ä:7 xyF), (3-50) 

That this represents a general solution independent of the value of 
any ki can be proved by substitution of the values of R and S given by 
Eqs. (3-49) and (3-50) into the term (/?F -f 5 ) , in Eq. (3-48). Therefore, 
to reduce Eqs. (3-49) and (3-50) to simple form, set = *4 = *δ = 
= 0 

R ^ xF (3-51) 

5 = yF, (3-52) 

The product RS will be zero independent of the values of χ and y. 
This is assured since FF = 0. However, in the special case where xy = 0, 
the inclusion of F and F in the expressions for R and S is not necessary. 
The simplified expressions for R and 5 may be obtained from Eqs. (3-49) 
and (3-50) as follows. First set /co = = 1, and k^ = k^ = 0. Then 

R = xyF^- xyF + xyF (3-53) 

S = xyF + xyF + xyF, (3-54) 

Since Xy = 0, it may be added to Eqs. (3-53) and (3-54) to yield 

Λ = Jcy + Jcy = Jc (3-55) 

S ^ xy + xy = y, (3-56) 

Often X and y are time functions in the form χ = uta and y = vt^. If ta 
and tb represent mutually exclusive instants of time or time intervals, the 
product Jcy will be zero. In general one may consider the product xy as 
a sum of products. For xy to be equal to zero, each term of the sum must 
be zero. There is assurance that RS = 0, if each term of R contains the 
variable F while each term of S contains the variable F , for then each 
term in the expression for RS will contain the factor F F = 0. However, 
if the product of any term in the expression for either Jc or with all the 
terms in the other is zero, then the F or F modifier (as the case may be) 
may be eliminated from that term. For example, assume 

X = k + I + m + , , , 

y =p + q^-r + , , , (3-57) 

where the letters on the right hand side of Eq. (3-57) represent functions 
of certain variables. If, say, ky - 0, then R - {k Λ- I Λ- m + , . .)F may 
be replaced b y Ä = A : + ( / - f m + . . ,)F, 

The characteristic equations of the Γ, the R-S-T, and the RT-ST 
flip-flops will be derived next. From the truth table of the Τ flip-flop, its 
characteristic equation is 
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X y Ft 
Ft+1 = {xF + yF)t 

= {RTF-{-TF + S)t R S Τ 

0 0 0 0 ko 0 0 

0 0 1 0 ki 0 kx* 
0 1 0 1 0 ki ki* 
0 1 1 0 ki 0 h* 

1 0 0 0 kA 0 0 

1 0 1 1 0 ks 0 

1 1 0 1 0 k6 
1 1 1 0 ki 0 

*ki is the complemsnt of k^. 

F,+i = {TF + TF),, (3-58) 

As in the case of the RS flip-flop, one first constructs a truth table 
showing the value of xF + yF for each possible configuration of x, y, F, 
This time xF + yF = TF -\- TF. By a process of logical inference the 
values of Τ may be obtained from the values of TF + TF. From columns 
1, 2, 3, and 5 of Table 3.13, the following equation for Τ may be obtained 

Τ = xyF + xyF + xyF + xyF 

= + yF. (3-59) 

If Jc = J, Eq. (3-59) may be simplified to 

Γ = Jc. (3-60) 

From the truth table of the RS-T flip-flop, its characteristic equation 
is 

Ft+i = {RSTF + RSTF + RSTF + RSTF)t 

= {RSTF + RSTF + RST)t, (3-61) 

Since, by definition, RS = ST = RT = 0, each may be added to Eq. 
(3-61). A simplified expression, readily obtainable from a Karnaugh map 
by selective inclusion of redundancies in a group (see Section 3.5.1.4), is 

F,+i = {RTF+TF+S),. (3-62) 

To obtain the input equations, one constructs a truth table, as before, 
showing the value of xF -f yF for each possible configuration of x, y, F. 
This time xF + yF = RTF + TF + S)t, The values of S and Γ in 

TABLE 3 . 1 4 



3.7. FLIP-FLOPS 81

TABLE 3.15

F,+l = (xF + yF),
x y F, = (RTF + STF), RT ST

0 0 0 0 ko 0
0 0 1 0 1 k1
0 1 0 1 k2 1
0 1 1 0 1 ka
1 0 0 0 k4 0
1 0 1 1 0 kG
1 1 0 1 ke 1
1 1 1 1 0 k'l

Table 3.14 may be obtained by inference from the values of RTF + TF +
s. The input equations are

R = koxyF + k1 xYF + k3 xyF + k4 xyF (3-63)

S = k2 iyF + k3 xYF + k6 xyF + k7 xyF (3-64)

T = " iyF + "2 xyF + "3 xyF + "6 xyF. (3-65)
If k 1 = k2 = kg = k 6 = 1, and ko = k4 = k 5 = k'l = 0

R = xF

If all k. = 0

S =yF

T = o.
Case (1)

R=O
S = 0 Case (2)

T = xF+yF.
If ko = k1 = ka = k7 = 1, and k2 = kg = k4 = kr, = 0

R = xy

S = xy Case (3)

T = xy.
If ko = k1 = k2 = ka = 1, and kg = k4 = k5 = k7 = 0

R = xy

S = yF Case (4)

T = xyF.
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It Λι = = = * 7 = 1, and ko = ki = = = 0 

R = xF 

S ^ xy Case (5) 

Τ = xyF. 

In cases (1) and (2) the R-S-T flip-flop becomes equivalent to the RS 
and Τ flip-flops, respectively. In some instances the solutions called for 
by (3) , (4) , or (5) may be simpler, i.e., require fewer combinational 
circuits and/or fewer inputs per combinational circuit than that called 
for by solutions (1) or (2) . This is equivalent to saying that sometimes 
the use of an R-S-T type of flip-flop is more economical in the amount of 
circuitry required to form its input signals than either the RS or Γ 
type of flip-flop. 

From the truth table of the RT-ST flip-flop, its characteristic equation 
is 

Ft-\.\ = {RTSTF + RTSTF -|- RTSTF -f- RTSTF)t 

= (RTF + STF)^, (3-66) 

By a process now famihar, the values of RT and ST shown in Table 3.15 
may be derived. The input equations are 

RT = koxyF + xyF + k2xyF + xyF 
+ k,xyF+kexyF (3-67) 

ST = kixyF + xyF -^ k^xyF + k^xyF 
+ xyF + knxyF. (3-68) 

If ko = k2 = kz = ki = 1, and = *e = Ατι = Λ5 = 0 

RT = X (3-69) 

ST = 7. (3-70) 

The general input equations (3-69) and (3-70) for the RT—ST flip-flop 
are equal to the input equations (3-55) and (3-56) of the R-S flip-flop 
when xy = 0. 

3.7.3. DERIVATION OF SPECIFIC INPUT EQUATIONS FROM A KARNAUGH 
MAP OF THE APPLICATION EQUATION 

The flip-flop input equations for a particular application can be 
obtained from a plot of the application equation (and any redundancies 
that may exist) on a Karnaugh map. For example, if the difference 
equation and redundancies are as follows 
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Ft+i = ABF + BCF + BCF + ÄBF (3-71) 

AECF = ABCF = 0 . . . (3-72) 

their plot on a Karnaugh map would be as shown in Fig. 3.15. 
{k marks a redundancy and may be assigned a checked or unchecked value). 

Í + 1 

FIG. 3 . 1 5 . Plot of the difference equation 
= ABF + BCF + BCF and the redundancies ABCF = ABCF = 0 

Only those terms for which F is true appear in the left half of the map 
while those for which F is true appear in the right. Therefore, the values 
of X and y in the general application equation (3-43), are equal to the logical, 
sum of the checked squares (and χ and y are equal to the logical sums 
of the unchecked squares) in the left and right half planes respectively. 
Substituting the values of χ and y obtained from inspection of the map 
into the general input equations (3-51) and (3-52) of the R-S flip-flop 
yields 

R = (B + ÄBC)F 

= ( 5 + ÄC)F 

S =^ BF 

(3-73) 

(3-74) 

3.7.4. DERIVATION OF SPECIFIC INPUT EQUATIONS FROM CONSIDERATION 
ONLY OF CONDITIONS PRECEDING A CHANGE 

The procedures described thus far for obtaining flip-flop input equa­
tions are inefficient because they consider all possible input signals to a 
flip-flop rather than only those which produce an effect. Since a condition 
which does not cause a flip-flop to change its state is irrelevant to its 
operation, there is no need to include it as a term in any input equation. 
Any such condition may be omitted by deriving the input equations in 
the following manner. Consider and include only those conditions whose 
existence at time t cause a change in the state of a flip-flop at time r + 1. 
In the case of an R-S flip-flop, it is only necessary to include in the S 
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and R equations those conditions which are to cause the flip-flop to 
change from state 0 to 1 and 1 to 0, respectively. For example, consider 
again the three stage counter comprised of flip-flops: F^, F^, F^. We see 
that flip-flop Fl changes state every time. Therefore, = Fi, 5i = Fi . 
Flip-flop F2 changes from 0 to 1 when either F^F^F^ or F^F^F^ is true. 
Therefore, = F^FK The change from 1 to 0 occurs when F3F2F1 or 
F3F2F1 is true. Therefore, ^2 = fifi^ f3 changes from 0 to 1 only when 
F3F2F1 is true, so 5^ = F^F^F^, and from 1 to 0 only when F3F2F1 is true, 
so R^ = F^F^F^, Actually, it is not even necessary to have two sets of 
columns, one for time t and one for time i + 1. The different rows can 
be written in a sequential order, i.e., if the contents of any given row are 
taken to represent the state of a group of elements at time t, that of the 
row above may be considered to represent the state at time t — 1 and that of 
the row below it the state at time ί + 1. In short, succeeding rows corres­
pond to succeeding instants of time. There is the additional convention 
that, when lower rows indicate later instants of time, one proceeds from 
the bottom row back to the top row. With this arrangement, the input 
equations for each flip-flop may be determined by scanning each column 
from top to bottom (in that order) and noting all the conditions of all the 
flip-flops just prior to a change of the flip-flop being considered. In the 
case of a trigger flip-flop, the logical sum of all these conditions represents 
the input equation. In the case of the R-S flip-flop the logical sum of all 
those conditions preceding a change from 0 to 1 represents 5 and the logical 
sum of those preceding a change from 1 to 0 represents R, 

There are times when a set of flip-flops may go from any given state 
to either of two other states depending on the presence of external control 
signals. For example, the value of a counter may be either increased or 
decreased by a single increment each time a count command is received 
in accordance with whether the command says count-up or count-down. 
The way to derive the conditions for the count-up logic has already been 
described. The count-down logic is obtained in a similar manner, the 
difference being that each column is scanned from the bottom row to the 
top and the bottom row follows the top row. The logical product of 
the count-up logic and the count-up command is formed, and so is the 
logical product of the count-down logic and the count-down command. 
The logical sum of these two products represents the inputs to the flip-
flops for the combined up-down counter action. 

Another example will be provided here of how the input equations 
for a flip-flop may be determined directly from consideration of its func-
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A* ^ 3 A" Al 

Ks K2 Κι 
Ί — Κ, Ks Κ2 

— — Κ* Ks 
h *—~ —— Κ, 

If the contents of A'^ are to be inspected only during the interval to 
through ts, it is irrelevant whether y4̂  is set to 1 or to 0 upon receipt of 
the first shift command. From consideration of Table 3.16, it is apparent 
that if an R-S type of flip-flop is used 

= . . . Si = A^C. 

= . . . Ri = Ä^C. 

5 2 = AiC. 5 1 = A^C, 

R2 = AiC. RÍ = Ä2C.. 

In this case, even the construction of the simple table is not necessary, 
for the verbal statement of the requirements clearly indicates the nature 
of the flip-flop input equations. 

3.7.5. DYNAMIC FLIP-FLOPS 

The basic bistable active storage device utilized in ac coupled systems 
of circuit logic (described in Chapter 4) is the so-called dynamic flip-
flop, sometimes referred to as the regenerative or ac flip-flop. Schematics 
of dynamic flip-flops are shown in Figs. 3.16(a),*(b), and (c) . 

tion. Assume that we have a set of flip-flops: A^, A^, A^, A'^ whose con­
tents at time ίο are given by K4, K3, K2, Ki where each Ki may be either 
0 or 1. It is required that the contents of this register be made available 
by examination of at four successive instants of time. This requirement 
can be met if the contents of each flip-flop are shifted one place to the 
right each time a shift command, C«, appears. The contents of the flip-
flops at four successive instants of time are shown in Table 3.16. 

TABLE 3 . 1 6 
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Unit 
delay 

Amp 

0 Input 

Unit 
delay 

Amp Inv Κ 
Γ — { A N D L r 

I Input 

OR 

Output / ? 

(a ) 

(b) 

Unit 
delay 

A m p M H Inv 

Id 
^iHÍANDUr 
Γ Η AND 

:f1 
OR 

(0 
FiG. 3.16. Dynamic flip-flops: (a) set-reset type, (b) trigger type, 

(c) set-reset-complement type. [Amp denotes an amplifier. Inv denotes an 
inverter which amplifies and complements a signal. The unit delay is 

provided by an electromagnetic delay line}. 

The set reset type of dynamic flip-flop shown in Fig. 3.16(a) is set 
to the 1 state by applying a set pulse, 5, to the 1 input line. As a result 
of the recirculation loop, a sequence of pulses (separated by a one pulse 
period delay) will be produced at the output. This condition of dynamic 
equilibrium may be used to represent a 1 state. The 0 state may be 
produced by closing the AND gate (see Section 4.2), thereby terminating 
the recirculation. This is done by making R false. In another scheme, the 
signal R is applied to an inhibitor used in place of the AND gate. A state­
ment of conditions necessary to produce and maintain the 1 state is 

Ai+i = 5 4- RAi 

where / + 1 and / are used to distinguish between the outputs of the 
amplifier at times / + 1 and /. Instead of using an ampUfier to maintain 
pulse shape and amplitude, an AND gate controlled by clock pulses could 
be inserted in the loop ahead of the OR gate. In this case, a pulse applied 
to the 1 input line must be at a time such that, after passing through 
the delay unit, it arrives at the clock gate in coincidence with the next 
clock pulse. 

The trigger type of dynamic flip-flop shown in Fig. 3.16(b) is designed 
to change state each time a trigger pulse Τ is applied. The input-output 
relation expressed in Boolean algebra is 
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which states that if the flip-flop is in the off or 0 condition designated by 
Ai, a trigger pulse Τ will turn it on. It will stay on as long as another Τ 
pulse is not applied, i.e., as long as the condition ^»T exists. 

The set-reset-complement type of dynamic flip-flop shown in Fig. 
3.16(c) combines features of the set-reset and the trigger types. The in­
put-output relationship is 

Ai^i =S + AiT + AiTR. 

This states that an 5 pulse will set the flip-flop to the on condition. If it 
is off, a trigger pulse Τ will set it to the "on" condition. Once on, it will 
remain in this condition until a trigger or reset pulse is applied. 

3.8. Sequential Switching Networks 

As stated earlier, a sequential switching network is formed from 
switching elements and storage elements. As a prelude to considering 
what is required to completely specify at any given time the condition 
or state of the network, certain assumptions will be stated. Since the 
constrained logical behavior rather than the complete circuital behavior 
of such networks is of interest here, it will be assumed that the condition 
of the network will be observed only at discrete times, when the network 
is in the steady state, and that input signals are applied and output signals 
produced only at these discrete times. Another assumption, implicit in the 
nature of digital elements, is that a given element always produces pre­
cisely the same response to a given stimulus. For example, if all inputs 
to an AND gate have the value 1, the output of the gate will be 1. The 
appearance of a proper signal at the input to a trigger flip-flop will cause 
the flip-flop to change to its complementary state. It is apparent that a 
sequential switching network, which is an integrated collection of discrete 
valued stimulus response devices, can be considered as a single large 
behaviorial device, i.e., as an organism. 

A complete behavioral description of the organism described is given 
by enumerating all the distinguishable states which it can assume, and 
the permissible transitions from any given state to other states. At any 
time of observation, the functional state of the organism is completely 
described by a statement of the current state of each storage element. If 
the organism has a total of m bistable storage elements, then it is capable, 
at most, of exhibiting 2*« distinguishable states. The state which the 
organism will assume after any given state, a, depends on its internal 
structure, i.e., the way in which its storage and switching elements are 
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interconnected, where Unes that will carry input signals from external 
sources are connected, and the signals present on the input lines at the 
time the organism is in state a. 

Of course, the function of an organism like a sequential switching net­
work is not merely to assume a number of distinguishable stable states. 
It is designed to produce certain useable output signals. These output 
signals usually take the form of the output of certain combinational cir­
cuits or the states of specified storage elements in the network. The 
preceding discussion may be clarified by reference to Fig. 3.17. It indi-

Output 
lines 

FIG. 3 . 1 7 . Model of a sequential switching network. ( F = storage element, 
C = combinational circuit) 

cates the internal structure of a sequential switching network, and also 
the lines that convey input signals from external sources as well as those 
on which specified output signals appear. The network consists of m 
bistable storage elements FS F^, . . . F"* and a number of combinational 
switching circuits O, C^, . . . Some of the input lines are used as 
inputs to the combinational circuits while others may be coupled directly 
to the input lines of the storage elements. However, there is no loss of 
generality if it is assumed that all the input lines are coupled only to 
combinational circuits. The other inputs to a combinational circuit come 
either from the outputs of specified storage elements or of combinational 
circuits. The inputs to the storage elements come either from the outputs 
of other storage elements or from the outputs of the combinational cir­
cuits. Again, there is no loss of generality if it is assumed inputs to the 
storage elements come only from the outputs of combinational circuits. 
The output lines may be coupled either to the outputs of specified com­
binational circuits or storage elements. 
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FIG. 3.18. Superstates and permissible superstate sequences of a 
sequential switching network 

Figure 3.18 illustrates how a sequential network advances from one 
superstate to another. Each encircled letter designates a particular super­
state which, we recall, refers to a particular state of all the storage ele­
ments F \ F 2 , . . . F"^. In this example, it is assumed that there are only two 
input lines, A and B, and that at any specified instant, any of the four 
possible input signal combinations: 00, 01, 10, or 11 may be present. 

The logical state of a sequential network in the steady state may be 
described in terms of the states of its storage elements. For convenience, 
we will sometimes use the term "superstate" to emphasize "logical state of 
all internal storage elements of the network." When the context permits, 
sometimes the term "state" will be used interchangeably. The superstate 
that exists at time / is a function of the following 

(1) The superstate at time / — 1 
(2) The external inputs received by the network at time / — 1 
(3) The structure of the network (which defines the sequence of 

permissible superstates). 
For a network of m storage elements in which all 2^ possible superstates 
are allowed, during a sequence of η transitions one of (2"*)** possible super­
state sequences will be generated. With like inputs, the superstate follow­
ing a particular superstate will always be the same. This quality of exact 
repeatability is an important characteristic of digital machines. It means 
that in the solution of a given problem, a digital computer should always 
pass through the same sequence of superstates, and produce the same 
solution. If it does not, one knows that something is amiss. This is a 
property that can be utilized in error detecting techniques (see Chapter 9 ) . 
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3.8.1. MINIMIZATION OF STORAGE ELEMENTS IN A SEQUENTIAL NETWORK 

Circuit analysis and synthesis procedures described by Huffman [1954] 
and Mealy [1955] allow one to minimize the number of storage elements 
required in a sequential switching network. However, they do so without 
concern for the number of switching elements required. 

The directed line segments and their associated numbers define the struc­
ture of the network, for they indicate to what superstate a particular 
superstate will advance when given input signals are received. In general, 
not all input signals will cause a change in a superstate. Only those input 
signals are shown which cause the network to advance from one super­
state to another. In the example, when the network is in superstate a, 
any of the four possible input signal combinations will cause it to advance 
to another superstate. However, when the network is in superstate e, it 
can advance to another superstate, namely /, only if A and Β have the 
values 1 and 0, respectively. 

Some comment is in order here on the subject of the two basic modes 
in which a sequential network may be made to operate. One is termed 
synchronous operation and the other asynchronous. In synchronous 
operation, switching action can occur only at distinct times. These times 
are specified by uniformly spaced pulses received from a generator re­
ferred to as a clock. By combining all switching signals in AND combina­
tions with clock signals, no switching action can occur except at times 
when clock signals are present. On the other hand, an asynchronous sys­
tem is free-running. An asynchronous network may advance from its 
present superstate to another when signals are generated indicating that 
the transition from the preceding to the present superstate has been com­
pleted. These signals are generated by the network itself. The topic of 
synchronous and asynchronous operation will be discussed in Chapters 4 
and 7. 

The preceding description of the mode of operation of a sequential 
network leads, at least in principle, to a procedure for synthesis. We begin 
by assuming an arbitrary initial superstate for the network. Then we must 
specify, for each possible combination of superstate and input configura­
tions, the output configuration to be produced and the succeeding super­
state. This process is repeated until all allowable superstates have been 
specified. In practice, the network will be closed in the sense that it 
should be possible to go through some path from any superstate to any 
other. The structure of the network shown in Fig. 3.18 is such that this 
will be so. 
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A little reflection indicates that the total number of storage elements 
required to perform some complex function or series of operations will 
depend on how many different storage configurations (superstates) are 
required during the course of these operations. In essence, the Huffman-
Mealy method provides a formalized method for reducing the number of 
these configurations to a minimum. The method consists essentially of 
a procedure for eliminating unnecessary states. This is possible when the 
function of the network is so stated initially that a direct translation 
to a truth table produces one or more equivalent states. 

One state is equivalent to another state if, for all possible configu­
rations of input signals that may be presented at a time, the same outputs 
are produced and the two states advance to the same state. A procedure 
for detecting and eliminating equivalent states is as follows: 1) Con­
struct a table in which all states are represented symbolically and which 
shows the state at time η 4- 1 and the outputs at time w as a function of 
the state at time η and the inputs at time n. 2) From this table of states 
form one or more sets of states in which all members of a set produce the 
same configuration of output signals in response to each of the possible 
input signal configurations, and assign a number to each set for identifi­
cation. 3) Determine and list the assigned number of the set to which each 
state advances for all possible input configurations. 4) From each set in 
which there are now states that do not produce the same set of output con­
figurations as other members of the set, form two or more new sets by 
grouping those states which do. 5) Repeat steps 2, 3 and 4 until no addi­
tional sets can be formed. At this point, all states in any one set are 
equivalent and may be replaced by a single state. The total number of 
states required is the number of sets formed. A simpUfied table of states 
can be produced now, and from it one can generate difference equations, 
flip-flop input equations and output equations. 

If for any state one or more output signals are undefined, or there 
are configurations of input signals for which the next state is undefined, 
these undefined items may be assigned any value necessary to establish an 
equivalence. 

Let us consider now the effect that the number of originaUy specified 
states has on the reduction process. For example, suppose there are 192 
states. In this case, a reduction of 65 states (to 128) is required to 
save one flip-flop. If 130 states were called for originally, a reduction 
of only two states is required to save one flip-flop. Since the number of 
states that can be represented by η flip-flops is 2̂ *, and since 2" - 2**-̂  
increases with n, the maximum number of states to be eliminated to save 
one flip-flop depends on the particular interval in which the originaUy 
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specified number of states falls. However, regardless of the magnitude of 
this number, an elimination of some states will generally reduce the amount 
of combinational circuitry. 

The Huffman-Mealy method does not guarantee an optimum network, 
since 

(1) The network with the fewest storage elements is not necessarily 
the most desirable, when other considerations, such as the number of 
switching elements, are taken into consideration. 

(2) It provides no indication of how the different states should be 
represented by the flip-flops for the switching network to be minimal. 
(In other words it is no substitute for ingenuity) 

(3) It cannot be guaranteed to give the smallest number of states 
unless there are no redundancies present in the network. 
In regard to item (1) , there are times when one may wish to use more 
than the minimum number of storage elements—for example, to realize 
savings in the number of switching elements, to simplify visualization of the 
function of the flip-flops (as an aid to maintenance), to faciUtate a future 
expansion. The trade-offs possible between storage and switching elements 
are referred to in subsequent chapters. For example, in Section 4.2.7 there 
is a description of how additional flip-flops can be brought in to reduce 
the number and/or complexity of the combinational circuits. As indi­
cated in Section 7.5, if 2** rather than η flip-flops are used to generate 2** 
distinct states (i.e. if a non-weighted code is used) so that particular 
flip-flops may be associated with particular classes of functions, the out­
puts of the flip-flops can be connected directly to gates without the use 
of intervening decoding and encoding switching networks (see Section 4.8). 

If the magnitude of the simplification process becomes excessive, one 
can construct a computer program, incorporating the Huffman-Mealy algor­
ithm or its equivalent, which can accept a functional description of a 
sequential network and from it proceed through the operations required to 
automatically produce tables of states, difference equations, flip-flop input 
equations and network output equations. 

3.9. The Advantages of α Boolean Algebraic Description 
of α Digital Computer 

At this point, let us review the nature of a digital computer for the 
purpose of showing why it may be described by Boolean algebraic equa­
tions, and the advantages that may be derived from such a description. 
We recall that a digital computer is composed principally of switching 
and storage elements. (Other physically essential elements of a nonlogical 
nature will be described in Chapter 4 ) . A statement of the permissible 
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superstate sequences a computer can assume, in terms of the requisite 
conditions for transitions of superstates, is readily made by a Boolean 
algebraic description. This description implies how the elements are inter­
connected. For a network whose storage elements are all of the active type, 
this description is provided by the flip-flop input equations. In a practi­
cal computer, with a large capacity main store comprised of passive storage 
elements and, perhaps, delay Hne registers, the description must also in­
clude input equations for the record stations. (See, for example, those 
in Section 7.6.3). In a transition between two superstates, only a small 
number of bits is recorded into or read from the main store, and by means 
of a small set of recording and reading stations. This greatly simplifies 
the logical description of a machine, for the input signals from the main 
store to the active storage elements contain only the small set of signals 
from the reading stations and the input signals to the main store consist 
of the input signals to the small set of record stations. 

The basic reasons why Boolean algebra is well suited for the descrip­
tion of a binary (or binary coded) digital computer are: It is easy to 
equate the two values of the binary number system to the two values of 
Boolean algebra. In a binary machine all signals whether representing 
arithmetic, logical, or control operations have to be specified only to the 
extent of existing or not. All the conditions to be met for signals to occur 
at prescribed times and places may be included in a Boolean expression 
and an equivalence established between the truth values of the expressions 
and the occurrence of the signals. 

Although the use of Boolean algebra has certain limitations in the 
design of digital computers, it is a tool of major importance offering many 
significant advantages. Its use in preliminary design (with or without 
auxiliary block diagrams) permits a general description of switching opera­
tions without the use of circuit schematic diagrams, thus enabling the 
designer to focus his attention on logical organization. At the same time 
it enables him to move freely from the level of logical organization to 
that of electronic embodiment. Another important group of advantages 
follows from the fact that it provides formalized methods which, from an 
initial formulation, can generate all equivalent forms and alternate mech­
anizations. One of these may then be chosen on the basis of such criteria 
as a minimal number of circuit components, a minimal loading of circuits, 
the use of terms already developed elsewhere in the machine, fewer con­
nections, etc. Often the economy is realized from the elimination of implicit 
redundancies in the original formulation of the switching function. At 
other times a simplification may result from the fact that a Boolean 
description facilitates the inclusion of certain nonallowable states as well 
as intentional redundancies for the purpose of improving reliabiUty. 
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In Section 7.7 there is a description of the use of Boolean algebra as 
an aid to 1) automating many tedious aspects of computer design—^for 
example, circuit loading computations and the generation of wiring tabu­
lations (used in place of wiring diagrams), 2) constructing simulation 
programs for testing a new design, 3) utilizing time-sharing techniques 
(which permit not only savings in components but can aid the equaUzation 
of circuit loading since various functional requirements can be distributed 
in a number of ways among time-shared flip-flops). 

A Boolean algebraic description of a preliminary design affords a 
convenient indication of where there are deficiencies in the design and 
how they may be corrected. Also, the fact that Boolean algebraic equa­
tions representing specific functions can be easily separated out and studied 
independently (except possibly in the case where there is considerable 
time-sharing) aids in the understanding of a machine's operation and 
simplifies maintenance. 

In the synthesis of a digital computer, there must be generated a 
description of the machine in terms of the types of elements and circuits 
to be used for the entry, storage, and processing of the data, and for the 
display of solutions, and the way in which all these elements are to be 
organized, i.e., interconnected, into an integrated system for accomplish­
ing certain objectives. This latter task is often referred to as logical design. 
The term, unfortunately, is sometimes interpreted to mean simply the 
writing of a description of a machine in terms of logical, i.e., Boolean 
algebraic, equations. However, this is only one phase of logical design. 
It begins with the conception of the general structure of a machine for 
satisfying specified requirements. This conception does not occur in the 
form of Boolean algebraic equations, but rather in terms of an arrange­
ment which by experience and native skill a designer senses to be optimmn 
for the purposes he has in mind. The derivation of this arrangement is 
based on the functional specifications, usually in terms of verbal state­
ments, and is aided by preliminary organizational descriptions in the form 
of information flow block diagrams. After the general organizational 
structure has been outlined, a description of the machine may be written 
in terms of Boolean algebraic equations. If the original conception is 
not well thought out, simpUfication of the Boolean description wiU not 
reUeve aU its iUs. ActuaUy, the use of Boolean algebra is not even neces­
sary to the design of a digital computer. Many of the early large digital 
computers were designed without its aid. However, Boolean algebra is an 
important tool which simpUfies the description of a digital computer and 
provides the other advantages which have been referred to earUer. In 
addition, its use, in general, stimulates and faciUtates the creation of 
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more sophisticated designs, i.e., those providing more efficient utilization 
of switching and storage elements. 

3.10, Clock Pulse Generators and Timing Circuits 

When establishing an equivalence between the two values of Boolean 
algebra and the physical states of various electrical or mechanical devices, 
a practical problem presents itself. Physical devices cannot instantaneously 
change their state because of mechanical inertia or electrical capacitance 
or inductance. For example, in passing between open and closed states, 
there is a time interval during which there is uncertainty as to which state 
a relay is in; elements like vacuum tubes, transistors, diodes, cannot be 
switched- between states of high or low conduction without passing 
through intermediate states whose duration is determined by the electrical 
capacitance and inductance of these elements and the circuits in which 
they are incorporated. One way to bypass this difficulty is to specify that 
the states of circuit elements will be inspected only at discrete times when 
the elements can be considered to have reached steady states. 

It is convenient, for purposes of synchronization and logical organi­
zation, as well as for the reason stated above, to provide a clock, con­
sisting of uniformly spaced electrical signals which are continually gen­
erated by some device within the system. The clock signals define discrete 
time intervals and the gates are so designed that there is ample time to 
complete a switching action during the clock interval. One way of using 
the clock to control all switching operations in a computer is to combine 
the outputs of all combinational circuits in an AND gate with the clock 
signal. Then, a clock signal must be present in order for any of these 
circuits to produce an output. 

Sometimes there is a requirement for a multiplicity of clock pulse 
trains, all of the same frequency, which are so phased that none of the 
pulses of one train are time coincident with those of another train. All 
of these pulse trains may be generated by a single source, referred to as 
a multiphase clock. A multiphase clock is used in a number of computers, 
e.g., the SEAC, and is also required for driving certain types of magnetic 
core logic circuits (see Chapter 4 ) . 

A number of distinct time signals can be generated by means of a 
binary counter (see Section 6.1.1) activated by signals from a clock gen­
erator. Signals from this clock pulse counter can be used to specify when 
prescribed switching operations are to occur. For example, if it is desir­
able that the output, K, of a combinational circuit be capable of influenc­
ing some other circuit only at time, Ts, then Κ is combined in an AND 
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gate with a signal that is true if, and only if the counter indicates time Ts, 
and the output of this gate is used as the input to the circuit in question. A 
clock pulse counter does not necessarily have to count in a conventional 
way (see Section 6.1.1.6). 

A device for converting an input pulse train whose pulses may occur 
at random times into an output pulse train of the same average pulse 
rate, and with a fixed interval between pulses, is termed a synchronizer. 
To operate correctly, it must have timing pulses whose separation is less 
than that of any two input pulses. This insures the occurrence of a timing 
pulse between any two data pulses. Considered functionally, a synchronizer 
is a memory device in which a data pulse is read in at an arbitrary time, 
and always read out at a specified time, namely, upon the occurrence of 
the next timing pulse. Once a pulse has been read out, subsequent timing 
pulses have no effect on the circuit until after a new data pulse has been 
read in. As the name implies, a synchronizer is utilized to synchronize 
external inputs with a system's internal signals. It is a specialized case of 
a buflier register (see Section 4.9). 

It has already been noted that in synchronous systems, information 
can be sensed only during the coincidence of a clock signal with informa­
tion signals. Also, there is a fixed phase relationship between the clock 
signals and the information signals. For example, when a magnetic disk or 
drum is used as a storage medium, the clock signal is usually generated 
from a track on which uniformly spaced signals have been recorded. 
Since the information bits are recorded on the same surface, the proper 
phase relationship is maintained between the information bits and the 
clock bits, even if the angular velocity of the surface varies. In other sys­
tems the phase and frequency of the information bits may be determined 
by an independently generated clock signal. In still other systems it may 
be inconvenient or impossible to use an independently generated clock 
signal. In these systems the clock signal may be derived from the infor­
mation bits themselves by means of a circuit referred to as a phased 
clock pulse generator. Such a circuit is described in the article by L. D. 
Seader [1957] listed in the bibliography of Chapter 5. 

3.11. Subdivision of the Computer Synthesis Problem 

The general method of sequential network synthesis referred to in 
Section 3.8 would, in practice, be unwieldy for machines requiring a great 
number of switching and storage elements. In the design of large, general 
puφose, stored program computers, it is convenient to subdivide the over­
all design problem into the problem of designing a number of smaller units 
which correspond to the major functional units of a general purpose com-
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puter which were described in Chapter 2, namely the main storage, the 
arithmetic unit, the input equipment, the output equipment, and the 
control unit. There are, of course, many forms which each of these units 
can assume, both as a result of the particular circuitry used, and the 
logical arrangement of this circuitry. Chapter 4 is devoted principally to 
a description of the different sets of circuits that have been used as the 
logical building blocks of present-day digital computers, and Chapter 5 
describes the major types of physical realization of large capacity storage 
units. Chapter 6 describes a large number of logical arrangements, and 
circuit mechanizations that could be employed to implement various arith­
metic and control processes, e.g., synchronization, counting, addition, sub­
traction, multiplication, division, comparison, etc. In Chapter 7, the 
pertinent characteristics of storage and arithmetic units are reviewed, and 
a description of the control unit design problem is provided to aid in an 
appreciation of the problems of computer synthesis. The important con­
cept of time-sharing is introduced to show how its use permits a reduction 
in the amount of equipment required for a computer (at the cost of a 
reduced speed of operation). Finally, the logical design of two computers, 
one employing a static and the other a dynamic type of main store is 
derived. These designs also illustrate that it is not always necessary to 
sharply subdivide a machine into separate compartments for the opera­
tions of storage, arithmetic, and control. 
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4. Circuit Descriptions of Switching and 

Storage Elements 

In Chapter 3, the concept of a switching function and switching net­
works was introduced, and it was shown how sequential networks could 
be formed by a combination of storage elements and combinational 
switching networks. There are many physical elements available for the 
realization of both of these functions. Often, the same physical element 
can be utilized for switching, storage, and auxiliary functions such as 
power amplification by incoφorating it into appropriate circuits. For 
example, vacuum tubes, transistors, and magnetic cores may all be used 
in both switching, storage, and amplification circuits. In this chapter 
descriptions will be provided of the most prominent of these circuits. 

The functioning of switching networks and of complete digital com­
puters can be appreciated even with a very limited knowledge of circuitry. 
However, a certain amount of circuit description will aid both in providing 
a better over-all orientation with respect to the subject and also a better 
appreciation of the problems associated with physical systems as con­
trasted to idealized systems of perfect elements. Whereas ideal elements 
can be interconnected without restriction, real elements cannot. Accord­
ingly, different types of physical elements impose different restrictions on 
the logical arrangement of switching networks. 

There is no attempt in this chapter to provide an exhaustive treat­
ment of either switching or storage circuitry. This not only would con­
sume an inordinate number of pages, but is imnecessary for the main 
purpose of this book, namely a presentation of the fundamentals essential 
to an understanding of the design and capabilities of digital computing 
machines. There is another cogent reason for limiting the discussion of 
computer circuitry. New components and techniques for their utilization 
are appearing on the scene at an amazing rate, and many, if not most, 
of the circuits common a few years ago have now been replaced. Most of 
the earlier machines used vacuum tubes, both as switching and storage 
elements. The first major change in a sequence of changes still continuing 
occurred when vacuum tube switching elements were replaced by semi­
conductor diodes. This was the situation when the writing of this book 

100 
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was undertaken. Now, vacuum tubes have been replaced almost com­
pletely. Present machines utilize semiconductor diodes, transistors, or 
magnetic cores as switching elements, and transistors and magnetic cores 
as storage elements for small quantities of data. High speed and medium 
speed large capacity storage systems, described in Chapter 5, now almost 
universally use arrays of magnetic cores, and the surface of a magnetic 
drum or disc, respectively. Among more recent elements to appear, and 
which hold promise for faster switching and storage, are those that operate 
by exploiting the switching action between superconductivity and normal 
conductivity obtainable with certain materials at temperatures near abso­
lute zero. Superconductive switching elements are described in Section 4.6 
while superconductive storage elements are described in Section 5.4. 
Some other elements that have been investigated for computers operating 
beyond 100-Mc are described briefly in Section 4.7. Emphasis is placed 
on semiconductors (diodes and transistors) and on magnetic core devices 
because of their dominant position at this time. However, the principles 
and techniques of utilizing switching and storage elements that are pre­
sented should be helpful m exploiting new devices that may appear. 

4.1 . Systems of Circuit Logic 

A compatible set of switching and storage circuits, adequate for the 
realization of any sequential switching network that may be called for 
in a digital computer is termed a system of circuit logic. In designing 
a digital computer, considerable effort is usually directed towards forming 
a system of circuit logic from a small set of standardized circuits. This 
yields a saving in engineering design effort and in the cost of manufacture, 
equipment maintenance and spare parts inventory. Several systems of cir­
cuit logic have been developed to date and some of the most outstanding 
ones will be discussed here. Among the items that must be considered 
when designing a set of circuits are: the selection of voltages or currents 
to represent the binary signals in various parts of the system, the design 
of circuits capable of a speciñed speed of response, the specification of 
permissible loading on the various circuits. In connection with the first 
item it should be remarked that whereas one set of voltages or currents 
may be used to represent the binary signals in one part of the system, 
others may be used in other parts of the system. The permissible loading 
on the various circuits is of considerable interest to the logical designer. 
Ideally, he would not like to have any restrictions placed on the inter­
connection of logical elements. When circuit considerations impose such 
restrictions he may have to reformulate his set of logical equations to a 
form realizable by the circuitry to be used. In general, for a given set of 
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building blocks, there is specified a set of restrictions on the permissible 
interconnections of the elements in the set. These restrictions are due 
principally to time delays introduced by various circuits, circuit inter­
actions, and waveform degradations caused by passing through certain 
chains of elements. 

The systems of circuit logic described in this chapter are classified 
under the headings of vacuum tube, transistor, and magnetic core sys­
tems. In each category, a number of different types of circuits and 
modes of operation are presented. However, certain arrangements can be 
used with more than one type of physical element. For example, the ac 
(dynamic pulse) system and the dc (asynchronous) system are described 
under vacuum tube systems because they were first developed using 
vacuum tube circuits and these vacuum tube versions are currently in 
operation. An ac system, originally based upon a combination of diode 
switching networks and a particular configuration of vacuum tube pulse 
amplification and regeneration circuits, can also be built with a similar 
set of transistor circuits. A dc system can also be constructed using transis­
tors. At the University of Illinois Computer Laboratory, work is in progress 
on an asynchronous dc computer system which will use transistor circuitry 
and be approximately 100 times faster than the earlier ILLIAC computer. 

There are a number of systems of circuit logic in which the combina­
tional switching circuits are comprised of AND and OR circuits formed 
from semiconductor diodes, in a type of circuit referred to as a gate. 
These gates are widely used not only in computers but also in many 
specialized data processing units such as analog-to-digital converters and 
other peripheral equipment. Because of their wide appUcation, diode 
gaiing circuits wiU be discussed separately in the sections foUowing. 

4.2. Gates 
The term "gate" is often used for any of the elemental switching circuits 

of which combinational switching networks are composed. The term 
originated in electrical circuit terminology. The signals produced on an 
output Une of a switching circuit were considered to be the signals on 
one of the input lines which had been permitted to pass through (i.e., 
gated) provided specified control signals were present on other input 
lines. 

In so-called dc systems, the signals consist of two specified voltage 
levels. In ac systems, the signals consist of the presence or absence of 
a voltage pulse (of either polarity). There are also "mixed" systems where 
some of the signals are represented by pulses and others by voltage levels. 
Gates can be formed of either active elements, e.g., vacuum tube diodes. 
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triodes, multigrid tubes, or transistors, (all capable of amplifying signals) 
or from passive elements such as the diodes described in Section 4.2.1. 

Among the most commonly encoxmtered gates in digital computers 
are those that correspond to the Boolean AND and OR operators. In elec­
trical circuit terminology the term "buffer" or "mixing circuit" is used 
for an OR circuit, and the term "coincidence gate" is used for an AND 
circuit. However, the term "gate" when used alone usually refers to a 
"coincidence gate". 

An AND gate will produce a signal on its output line, if, and only if, 
there is a signal present on all inputs, of which there may be two or more. 
Some of the most widely used representations of AND gates are shown in 
Fig. 4.1. The representation on the left will usually be used in this text. 

I I 
I 1 

.C A-
B-

AND gates 

A 
Β OR 

Τ 

A 
B-

.C A-
B-

OR gates 

Fio. 4 .1 . Functional representations of AND and OR gates 

The dashed lines indicate that there is no restriction relative to the sides 
to which input lines may be directed. There will also be no restriction 
relative to the side from which the output line may emanate. The 
equivalence of the electrical circuit viewpoint and the Boolean algebra 
viewpoint relative to a gate may be described with reference to this symbol. 
In electrical circuit terminology, it is said that a gate permits a train of 
pulses to pass from one of its inputs to its output provided specified sig­
nals (referred to as control signals) are present on the other input Unes. 
In Boolean descriptions, 1 can be assigned to the presence and 0 to the ab­
sence of a signal. In Fig. 4.1 if Β (assumed to be the control signal) 
has the value 1, the output C = ^45 is equivalent to C = ^ . Therefore, 
the control signal Β can be considered to let the input signal A pass 
through to the output. 
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An OR gate will produce a signal on its output line if there is a signal 
present at one or more of the inputs. Some of the most widely used 
representations of OR gates are shown in Fig. 4 . 1 . The representation on 
the left will be used in this text. In electrical circuit terminology, the 
term "mixer" or "mixing circuit" is used to indicate that this type of 
circuit can be used to convert noncoincident trains of pulses on two or 
more lines to a single train of pulses on another line. 

4 . 2 . 1 . DIODE GATING CIRCUITS 

Diodes are two-terminal devices exhibiting the property of rectification, 
i.e., the amount of current that passes between the two terminals depends 
not only on the amplitude of the voltage applied, but also on its polarity. 
The "ideal" diode represents an open or a short circuit depending on the 
polarity of the voltage applied. Among the more common diodes are 
vacuum tube diodes and those formed from semiconductors like selenium, 
germanium, and silicon. Because of their relatively large bulk, power 
consumption, and circuitry requirements, vacuum tube diodes have been 
completely replaced in digital computer circuits by semiconductor diodes. 
The latter are small, do not require the continuous dissipation of power 
as do the filaments of a vacuum tube, and have very simple circuit 
requirements. Selenium diodes are limited by their relatively slow switch­
ing action to frequencies less than 5 0 Kc. Germanium and sihcon diode 
gates are operable at frequencies in the megacycle range, the attainable 
frequency of operation being a function not only of the diode's characteris­
tics, but of the circuit in which it is incorporated. 

The equivalent circuits of all the diodes discussed may be represented 
as shown in Fig. 4 . 2 . In these schematics, (a) represents the equivalent 
circuit when a potential is applied in the forward direction, and (b) repre-

(b) 

Forward 
current / 

/ Forward 
Reverse voltage ^ voltage 

Reverse 
current 

FIG. 4.2. Equivalent circuits of a 
semiconductor diode 

FIG. 4.3. Typical voltage-current 
characteristic of a semiconductor diode 
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sents the equivalent circuit when a potential is appUed in the opposite 
direction. Figure 4.3 shows the flow of current in a semiconductor diode 
as a function of the magnitude and polarity of the applied voltage. 

Both AND and OR gates may be physically realized by means of simple 
circuits utilizing diodes and resistors. The operation of these circuits 
depends upon the fact that when a voltage of one polarity is impressed 
across the terminals of a diode, it exhibits a very high resistance, R i , , 
(the so-K:alled back resistance) and when a voltage of opposite polarity 
is applied, it exhibits a very low resistance, Rf (the so-called forward 
resistance). Figure 4.4 shows a schematic of semiconductor diode circuits 
that are used to realize AND or OR gates. Though only two inputs are 

Β­ ΟΗ 

[ a ) 

A Β 

.A^B 

> ΚΛ > F , > V-

¿ _ J A N D 
AB 
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Block diagram 

.AB 

A Β 

Diode circuit 

FIG. 4.4. Single level gates 

shown for each gate, additional inputs can be accommodated simply by 
adding diodes in parallel. The circuits shown are intended to work with 
binary signals represented by two positive voltage levels. These voltages 
may be termed Vn and Vu where the subscripts stand for high and low. 
In Fig. 4.4(a) if a voltage of magnitude Vi is applied to both inputs, each 
diode exhibits a high resistance which allows only a negligible current 
flow through the resistor. Therefore, the output voltage will be low. If Γ* 
is applied to one input and Vi to the other, the diode connected to the 
input carrying Vj, exhibits a low resistance while the other diode exhibits 
a high resistance. The net effect is that a substantial amount of current 



1 0 6 4 . SWITCHING AND STORAGE CIRCUITS 

can flow through the resistor to the terminal where is applied. Since 
a diode conducting in the forward direction has a very low resistance, the 
voltage drop across it is negligible compared to the drop across the resistor, 
and therefore the output voltage will be approximately equal to F^. If VH 
is applied to both inputs, the voltage drop across the two forward con­
ducting diodes in parallel is negUgible so that the output voltage will be 
approximately equal to F^. To summarize, the output voltage will be 
approximately equal to Vn whenever a voltage of magnitude Vn is appUed 
to one or both of the inputs. If it is specified that Vn represents 1 and Vi 
represents 0 , this circuit represents an OR gate. The operation of the AND 
circuit shown in Fig. 4 .4 (b ) may be explained in a similar manner. In 
both of these circuits, if two negative, instead of positive, voltage levels 
are used, the AND gate for positive signals becomes an OR gate for negative 
signals, and the OR gate for positive signals becomes an AND gate for 
negative signals. 

The problems of design in diode gating circuits are simple in prin­
ciple. However, in actual practice they can become rather involved, 
especially in multilevel networks (described in the section following). 
Essentially the problem consists of specifying the two voltage levels 
corresponding to the values of a binary variable, selecting the two supply 
voltages, F+ and V-, and then determining resistor values such that the 
correct output voltage is produced for all possible combinations of input 
voltages. Also, a particular type of diode must be selected from the large 
number of different types available. The selection of operating voltages 
and diode types are not independent. For example, the reverse voltage 
(i.e., an appHed voltage of polarity such that the diode exhibits a high 
impedance) that can be applied across a diode before it breaks down, the 
so-called breakdown voltage, varies with diode type. Also, although the 
characteristic curve shown in Fig. 4 . 3 is typical of many semiconductor 
diodes, there are some variations in the shape of the curvo as well as the 
scale of the coordinates for different diode types. Another important fac­
tor in the design of high-speed circuits relates to the maximum rate at 
which a particular type of diode can be switched between states of high 
and low current conduction. 

The preceding description of a diode gate circuit assumed not only 
the use of ideal diodes, but also the use of dc voltages for input signals 
and a no-load condition at the output of the circuit. The effect of nonideal 
diodes and loading will be considered in the description of multilevel 
gating circuits which follows. 

4 . 2 . 2 . MULTILEVEL GATING QRCUITS 

As described in Chapter 3 , in the synthesis of a switching network. 
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* This operational notation for a function of other functions is sometimes referred 
to as the Polish notation because of its use in classic works by Polish logicians. 

it is a common occurrence for the output of a switching element to be 
used as the input to one or more others. When this occurs, the network 
is said to have more than one level. This discussion of multilevel gating 
circuits assumes that all networks are formed by interconnectmg AND and 
OR gates. The level of a particular network is given by the total of the 
AND and OR gates in an AND-OR-AND- . . . or an OR-AND-OR- . . . chain. 
It may be determined either from the block diagram or circuit schematic 
by noting the largest number of AND and OR gates through which any 
input passes before reaching the output line. The number of levels may 
be determined, too, from the equation as follows. Represent an AND 
function by the notation α(/, / , . . . ) and an OR function by o{U, V, . , 
If a Boolean equation is rewritten in this form, the number of levels is 
equal to the total number of parenthetical enclosures. For example 

A(B + CD) = a{A,o[B,a(C,D)]}* 

indicating a three level gate. 
In Fig. 4.5 are shown two examples of two-level diode gates. Only the 

AND-OR arrangement in Fig. 4.5(b) will be considered in detail, but 
similar remarks apply to the OR-AND arrangement. Assume that the supply 
voltages, signal voltage levels, and diode type have already been specified. 
Then, the only design problem remaining is that of determining resistor 
values. To minimize current requirements, they should be as large as 
practical. Also, they must allow the gating circuit to produce an output 
voltage of either VH or Vi in accordance with the values of the signal 
voltages present at the input terminals. 

For reasons which will become apparent, the resistor values in gating 
chains are determined starting at the load end. In Fig. 4.5(b), the 
value of Ri may be determined by noting that, if all the inputs are at the 
level Vu the current through Ri must be suflScient to produce an output 
voltage, Vout ^ Vi. If there were no load, Ri could have any value. When 
a load is present, it is in parallel with Α χ . The resulting division of current 
flow limits the maximum allowable value of Ri, The value of R2 may be 
determined as follows. Consider the point ρ in the circuit. The voltage at ρ 
must rise to Vn whenever A and Β are both equal to V^, If points A and Β 
are left floating and if C and D are both equal to Vu the voltage at ρ 
must be greater than or equal to K .̂ If it were not, diodes Z>6 and De 
would be in the reverse direction when A and Β were reconnected to 
V^, and Vout would fail to rise to K .̂ To assure that Kout can be pulled 



108 

Β-
C-

4. SWITCHING AND STORAGE CIRCUITS 

OR A N D OR A N D 

Β C % 

( a ) 

> A (B^C) 

A . 
B-

C 
D 

A N D 

A N D 

AB^CD 

o AB^CD 

(b) 

Block diagram Diode circuit 

FIG. 4.5. Two-level gates 

up to FA, the following relationship must exist 

Ä 2 < 

The same relationship holds between Ri and each R2 in the event that 
there are more than two inputs to either the OR circuit or to any or all of 
the AND circuits. 

The values of the resistors in higher level gates may be determined 
by following the type of analysis used for the two-level gate. The analysis 
proceeds by starting at the load end of the gate and determining the 
resistor values for higher levels in sequence. For a three-level OR-AND-OR 
network, the maximum value of the third level resistor(s) is given by 

nR^R2{Vi-V-) 
'^^ ^ nR^{V+ - Vi) - R2(Vi - V') 

where η is equal to the number of inputs to the first level OR circuit. 
Since the resistors in any given level draw current in a direction oppo­

site to that in the next lower level, enough current must be drawn to 
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overcome the effects of the next lower level. The maximmn permissible 
values of the resistors decrease rapidly as the level increases, requiring 
that larger currents be supplied by the input signals. 

In the preceding discussion, it was tacitly assumed that the diodes 
had a zero forward resistance. However, as the curve in Fig. 4.3 indicates, 
this is not the case. As a result, an attenuation in voltage swing will 
occur between the input and output of a gate, and spurious signals may 
be introduced. Both of these effects occur because the current distribution 
through the diodes will not be the same for the conditions that are to 
produce a high and low output voltage, respectively, nor even for all the 
input configurations that should produce the same output voltage. As an 
example, consider first a multi-input OR gate. If all the inputs are at a 
high voltage, the current passing through the gating resistor will be 
equally distributed through all the diode paths (neglecting small variations 
in the diode forward resistances). The output voltage will be determined 
by the voltage division between the parallel diode forward resistances on 
the one hand and the gating resistor on the other. If some of the inputs 
are at a low voltage, the current from the gating resistor will only pass 
through those diodes whose inputs are high. In addition, there will be a 
reverse current from the diodes whose inputs are low through the diodes 
whose inputs are high. As a result, the voltage drop between the input 
and output will increase, whereas, according to the logical relationship 
desired, it should not. Now consider a multi-input AND gate. If all the 
inputs are at a low voltage, the output voltage will be determined by the 
voltage division between the parallel diode forward resistances and the 
gating resistor. If any input voltage becomes high, the corresponding 
diode will have a reverse voltage impressed upon it and therefore will 
exhibit a high back resistance. In addition, there will be a current now 
from the diodes whose inputs are at a low voltage to the diode whose 
input is at a high voltage. As a result, the output voltage will rise slightly. 

In both of the preceding examples, if the amplitude of the spurious 
signals generated is below a certain level, depending on the characteristics 
of the circuitry, they will not be detected by the system. In any event, 
such effects may be minimized by selecting diodes with very low forward 
and high back resistance. In multilevel circuits there is some compensation 
for the attenuation in voltage swing because for an AND circuit the shift 
occurs in a positive direction while for an OR circuit it occurs in a negative 
direction. 

Another item not previously considered is that the diode back resist­
ance, while very large, is not infinite. In a single level circuit this does 
not affect the permissible values for the gating resistor. However, it places 
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an extra load on the input signal. For example, in the OR gate of Fig. 4 . 4 , 
if A is at Vn and Β at Vu current will flow from A to Β through Rf of the 
first diode and Rb of the second. The sources of the input signals must 
be capable of supplying this current. In multilevel networks the effect of 
the diode back resistance is to reduce the maximum permissible values of 
the gating resistors. 

The actual load to be placed on a given network must also be con­
sidered when determining the values of the gating resistors. The resistive 
part of the load may be treated, by Thevenin's theorem, as a 
resistor returned to a supply voltage F,. If the first level of switching is 
an OR gate, the load can serve as the gating resistor provided Vi is positive 
with'respect to F«. If is positive with respect to Vi, the maximum per­
missible value of the first-level gating resistor may be found by a procedure 
similar to that described earlier for determining a second-level resistor. In 
solving for a second-level resistor under actual load conditions, the first-
level resistor must be replaced by the Thevenin equivalent of the first-level 
resistor and the load. 

4 . 2 . 3 . VOLTAGE AND CURRENT REQXΠREMENTS IN GATING CIRCUITS 

From the preceding discussion of multilevel diode gates, it is evident 
that the current required to drive the input lines increases rapidly with 
the number of levels. The current increase is a direct function of power 
supply and resistor tolerances, the number of diodes, and the signal voltage 
swing. The current increase is less for higher voltage supphes, but the 
power dissipation in network resistors becomes greater. As usual, a com­
promise must be made between increased power dissipation and increasing 
current in high level gates. 

The current required to drive a multilevel circuit can be reduced by 
choosing F+ and V- such that (F+ - F^) and (Vi - F " ) are much 
larger than (F^ - F^). Though a large value of (F+ - F " ) facilitates 
switching action (since the absolute change in voltage will be greater in a 
given charge or discharge time), there is more power dissipation in the 
gating resistors and a risk that, in the event of an accidental open circuit, 
voltages in excess of the breakdown voltage may appear across diodes. 

A major deficiency of diode gates is that their outputs cannot be 
heavily loaded. Since a diode gate does not constitute a constant current 
source, current amplifiers such as cathode followers or enütter followers 
must be incoφorated in each two-level or three-level circuit. After pro­
pagation through several gates and current amplifiers, the input signals must 
have their voltage amplitude restored by means of voltage amplifiers. 
Because diode gates have a relatively low input impedance, it is necessary 
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that they be driven by a relatively low impedance (constant current) 
source. 

Since the power consumption of switching circuits increases as the 
square of the vohage swing, the latter should be as small as possible con­
sistent with reliable operation. However, at low signal levels the voltage 
drop across a diode becomes appreciable compared to the signal swing. 
For example, if a diode has a 0.25 volt forward voltage drop, and signal 
voltage swings of only 2 volts are used, there will be a 12.5% level 
shift of the signal through the diode. Also, at megacycle frequencies 
large currents are required to switch diode logic circuits, thus limiting 
the number of circuits that can be driven by one current amplifier. In 
Section 4.4.2.2, the use of transistor gates is described. These gates can 
be adequately switched by small signals, and a large number of them 
can be driven by a single transistor current amplifier. 

In computing the load current to be suppUed by a flip-ñop in a large 
sequential network, account should be taken of the case where both 
outputs of a flip-flop drive a combinational circuit which is also driven 
by another flip-flop. In this case, the load to be supplied by the other 
flip-flop will be diminished because of the aid that is always received from 
the first. This type of situation is referred to as current sharing. When 
current sharing is taken into account, the total current drain on a flip-
flop will be found to be less than if the sum of currents to each circuit 
were considered independently. For detailed descriptions of methods of 
computing currents and resistor values in diode networks, the reader is 
referred to Gluck et al [1953], Hussey [1953], Scobey et al [1956], 
and Yokelson and Ulrich [1955]. 

4.2.4. SWITCHING SPEED IN DIODE GATES 

The switching speed obtainable in diode gates is adversely affected by 
a numt)er of factors. The most important of these are circuit capacitances 
and diode recovery time. The effects of load capacitance, stray wiring 
capacitance, and diode interelectrode capacitance may be determined by 
conventional electrical network analysis. The net effect is that the value 
of the gating resistors must be reduced from the maximum value permis­
sible when these capacitances are ignored. When a semiconductor diode 
has been conducting heavily in the forward direction, and the applied 
vohage is suddenly reversed, a time lag, referred to as diode recovery 
time, occurs before the diode assumes its normal value of back resistance. 
However, recovery time for some newer diodes is under 10 nanosec 
(where 1 nanosec = 10"® sec), so it need not be a serious Hmitation 
to high speed circuits. The finite back resistance of a diode also affects 
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switching speed. The net effect is that for a given switching speed, the 
value of the gating resistors must be reduced. The fact that the forward 
resistance of a diode is not actually zero has Uttle effect compared to the 
tolerances in resistor values and uncertainties in circuit capacitances in 
a gating network. 

4.2.5. PYRAMID GATES 

Frequently it occurs that two or more switching functions required 
in the construction of a network have a number of common inputs. For 
example, suppose / i = ABC and / 2 = ABCDEF, A saving in the total 
number of switching elements required may be realized by using an 
arrangement such as shown in Fig. 4.6(a), referred to as a pyramid. 
Though it is actually a two-level gate (ANI>-AND) each section can be 
designed independently. It is only necessary that the source of each 
input signal be capable of supplying the current drawn by the resistor in 
each section. A two-level OR-OR pyramid is shown in Fig. 4.6(b). 

{ABCDEF)^ 

Ε F 
ÁABO 

A B C 

A N D gates 

A B C 

{A^B*C), O F F 

AA*B^C*D+E+F) 

OR gates 

FIG. 4.6. Pyramid arrangements 

Though, in general, a multi-input gate represents a single level network, 
an expression like A + Β + C D, for example, might be used in the 
two-level form A -\- (B + C D) if (Ö4-C + D) were available. 
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4.2.6. ALGEBRAIC REDUCTION OF HIGHER LEVEL GATES 

TO LOWER LEVEL GATES 

As we have seen, when all circuit parameters are considered and 
adequate safety tolerances included, the design of multilevel networks 
becomes complicated. Since the current at each level increases, and the 
values of voltages and resistors become more critical, more than three 
levels are seldom used. In fact, the number of levels is often limited to 
two. 

Higher level gates may be reduced to lower order ones by multiplying 
out the factors in the hi¿ier level expressions. As an example, consider 
the expression, f4=-AB[{C + D + E){C + D + E) + FG]. As written, 
this represents a four-level network. Multiplying out the terms in paren­
theses yields an expression that represents a three-level network: 
Γ3 = AB [CE + CE + D + F G l Performing the indicated multiplication 
yields an expression that represents a two-level network: / 2 = ABCE + 
ABCE + ABD + ABFG. If the functions / 4 , /a, and / 2 were mechanized 
by diode networks, they would require 16, 14, and 19 diodes, respectively. 
As a rule, a lower-level network will require more diodes than a higher-
level one. That this did not occur in going from the fourth- to the third-
level network in the example is due to the simplification obtained as a 
result of the special nature of the terms in the parentheses. To see what 
happens in the worst case, replace the terms in the parentheses as follows: 
h = AB [(H + I + J)(K-i- L M ) + FGl In this case the correspond­
ing three- and two-level networks will require 34 and 50 diodes, re­
spectively. 

4.2.7. REDUCTION OF THE LEVEL OR NUMBER OF ELEMENTS IN A 
COMBINATIONAL CIRCUIT BY THE USE OF STORAGE ELEMENTS 

In Section 4.2.6 we saw that, as a rule, a lower-level gate produced 
from a higher-level one by algebraic manipulation requires more gating 
elements. In special cases it is possible to reduce both the level of com­
binational networks and the number of switching elements required by 
the introduction of auxiliary flip-flops. As an example consider the 
expression 

/ = (AB-l·CD'}•EF)(KL + MN'l·P). 

In this form, 18 diodes would be required to generate / in a three-level 
combinational network. If all the terms were multiplied out to produce a 
second-order expression, 42 diodes would be required. We will consider 
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( α ) ( b ) 

FIG. 4.7. Pedestal-pulse gate circuits 

now the effect of introducing two auxiliary ñip-ñops, U, V, The term 
(AB + C D + EF) will be used to set one nip-flop and the term (KL + 
ΛίΛ̂  + Ρ) will be used to set the other. Normally, there is a unit time 
delay from the instant at which an input signal occurs to the time at which 
its effect is observed at the output of a flip-flop. Therefore, time must be 
introduced into the expression for / as shown 

ft = (AB + CD + EF)t(KL + MN + P)t = (UV)t+i. 

Thus the original expression can be mechanized by the use of two set-
reset flip-flops and two two-level combinational networks, one with nine 
diodes and the other with seven, plus the input circuits for carrying the 
reset signals to the flip-flops. In practice a flip-flop is triggered at times 
within each operating cycle defined by signals derived from a clock. 
The timing signal is combined with other terms in the flip-flop input 
equation. For example, the input equation for setting the flip-flop, Í/, 
might be (AB + CD-l· EF)Tn, where ΓΗ could refer to a single clock 
signal, or a function of several timing signals. 

Note that whereas a combinational circuit alone would indicate at 
time t whether the function / were true at time t, the sequential circuit 
does not provide this indication until time r 4- 1. For assurance that the 
value of (AB + C D + EF) is compared with the value of (KL + ΛίΛ^ + Ρ) 
that occurred at the same time, both flip-flops are reset after each com­
parison. Thus, the restrictions on the use of such auxiliary flip-flops are 
that the delay introduced be tolerable (normally, a system can be designed 
to accept such fixed delays), and that there is time to reset the flip-flops 
before introducing a new set of input signals. 

4 . 2 . 8 . PULSE-PEDESTAL GATE CIRCUIT 

A requirement that often arises in digital computer systems is the 
gating of a voltage pulse signal by another signal in the form of a dc 
voltage level. Diode gate circuits for positive and negative voltage signals 
are shown in Fig. 4.7. In both cases, the output pulse occurs during the 
period of coincidence of the input signals. 

In Fig. 4.7(a) a dc supply in the load holds the output line to K .̂ 

J " h " 1 -

tX 0 - J L | ^ ο-ΛΛΛ, J II o -Y-
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When the input to the resistor is Vu the diode (which is back biased) 
blocks passage of an applied positive pulse of amplitude less than ( F ^ -
F I ) . However, when the input to the resistor is F^ , the diode is biased in 
the forward direction, allowing passage of the pulse to the output. In Fig. 
4.7 (b) , if the input to the resistor is Vu the diode is back biased and blocks 
passage of the applied pulse. When the input to the resistor is F^ , the 
diode (now biased in the forward direction) allows passage of the applied 
pulse. 

The need for pedestal gating arises whenever a system calls for dc 
gating networks to be used with binary storage elements which require 
pulse inputs. The characteristics of different flip-flop circuits are described 
later in the chapter. When the triggering of a flip-flop from one stable 
state to another calls for input signals in the form of voltage pulses rather 
than levels, the pulse pedestal gate circuit can be used to convert the dc 
voltage level outputs of a dc gating network to the pulse type signals 
required as flip-flop inputs. 

Pulse pedestal circuits are commonly used as a means of controlling 
the transition of a synchronous computer from one superstate to another. 
The outputs of all dc gates to be used for triggering flip-flops are com­
bined in a pulse-pedestal circuit whose pulse input is derived from a clock 
pulse generator which supplies pulses at regular intervals. Since the 
pulse-pedestal circuit can have an output only if a clock pulse is present, 
the states of the flip-flops cannot be altered except at the time of occur­
rence of clock pulses. 

4.2.9. GENERATION OF COMPLEMENTARY FUNCTIONS 

If a switching function, /, is synthesized by some combination of 
elementary functions, then the complementary function, / , can always be 
synthesized by some other function of the variables involved. In general, 
the complementary function can be realized physically only if some device 
is available to provide the complement of the switching variables. A 
flip-flop with two output lines provides both a signal and its complement 
and, therefore, permits the generation of / by means of AND and OR 
circuits alone. For example, if / = (AB + AC), then f = (A + SC) Can 
readily by generated by combinations of AND and OR circuits, provided 
A, B, and C are available. There are times, though, when it may be 
desirable to limit the number of elementary signals in complemented form 
used in constructing a switching function. These are occasioned by 
practical circuit considerations. Even though both the complemented and 
uncomplemented signals are available from a flip-flop, a power amplifier 
may be required for each of the outputs that is to be used as an input 
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to many other circuits. Also, additional wires are required, which may be a 
disadvantage if the signals have to be transmitted an appreciable distance. 

It is often more convenient and simpler to form the complement of a 
complex signal, i.e., one developed from a large number of elementary 
signals, by applying it to the input of a suitably designed voltage amplifier, 
which has the characteristic that when a signal is appUed to its input an 
amplified and inverted form of the signal appears at its output. Inverter 
circuits, which are physical realizations of the complement operator, are 
described in the sections on vacuum tube and transistor circuits which 
appear later in this chapter. Because inverters may introduce serious time 
lags and distortion of wave forms, especially if one or more of them are 
in cascade within a multilevel gate, it is often desirable to limit their use 
in switching networks. This may be done by transforming a given equa­
tion. For example, replacing (A + B) by ÄB eliminates the need for an 
inverter (provided the switching variables are available in complemented 
as well as uncomplemented form). 

Often, the problem of optimization of a switching network is equiva­
lent to minimizing the number of elementary switching circuits, usually 
AND and OR gates, required for the realization of specified functions. When, 
in addition, it is desirable to limit the number of complemented signal 
sources or the number of inverters, derivation of an optimum circuit is 
not as clear cut. 

4.3. Vacuum Tube Systems of Circuit Logic 
The early electronic digital computers used vacuum tube circuitry 

extensively for gating and storage. However, after an evolutionary period 
of about ten years' duration, tubes were replaced more and more by other 
devices. At the present time practically all new machines under develop­
ment utilize combinations of solid state devices for the functions of cir­
cuit logic (as well as for the main store). 

Because of their historical importance, and the fact that a large num­
ber of machines using vacuum tubes in their logical circuitry are still in 
operation, a brief description of vacuum tube gating and storage circuits 
will be provided. One of the basic circuits is the famihar inverter circuit, 
shown in Fig. 4.8. To operate this circuit as a binary switch, the input 
signal is chosen to either cause the tube to be fully conducting or to 
be cut off. The function of the voltage divider is to scale down the output 
voltage of one circuit to the proper level for input to the grid of another 
circuit. The capacitor improves the circuit response time. An increase 
in voltage in the positive direction on the grid causes the tube to conduct 
more current, thereby increasing the voltage drop across the load resistor 
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FIG. 4.8. A vacuum tube inverter 

and reducing the output voltage. A decrease in voUage on the grid has 
the opposite effect. If a sufficiently large negative voltage is applied to the 
grid, the tube will be cut off, and the output voltage will be equal to the 
positive supply voltage. It is apparent that if the two values of a binary 
variable are represented by a pair of voltages, then application of one 
voltage to the input of the inverter can cause the complementary voltage 
to be produced at the output. Whether a given voltage represents a 1 or 
a 0 is at the discretion of the designer. He may, in fact, reverse the 
convention from place to place within a machine if by so doing he can 
effect simplifications in the over-all circuitry. Of course, account must be 
taken of what conventions are used in any section. In Fig. 4.9 a circuit 

Output 

FiG. 4.9. A parallel inverter 

comprised of two inverters sharing a common load resistor is shown. It 
serves as an inverting OR gate for positive signals and an inverting AND 
gate for negative signals. Both the AND and OR functions can be generated 
by combinations of inverter and parallel inverter circuits, as shown in 
Fig. 4.10. 

A o — [ inv 

Β 

Ä 

^i~^^:^^AB A^B 

FIG. 4.10. AND and OR gates formed from inverters 
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A Static flip-flop circuit can be formed from two inverters by regenera-
tively coupling the output of each to the input of the other. This circuit, 
based on the Eccles-Jordan multivibrator circuit, is useful both in ma­
chines using dc coupled gates as well as in machines using ac coupled 
gates. The basic nature of the vacuum tube static-flip-flop circuit 
is shown in Fig. 4.11. The circuit shown can actually be monostable or 
astable as well as bistable, depending on the impedances Ζ χ and Z 2 . 
The circuit will be bistable only if both Z i and Z 2 contain dc paths. 
Typically, Z i and Z 2 are identical parallel RC branches. The use of the 
circuit affects its design. For example, as a counter (see Chapter 6) the 
circuit requires symmetrical inputs. When used as a stage in a shift 
register, separate inputs would be required for data pulses and shift com­
mand signals. Usually, a flip-flop is not used to drive a diode gating 
circuit directly because spurious pulses coupled from one diode input line 
to other input unes may cause unwanted triggering of the flip-flop. 

Theoretically, any combinational switching function can be derived 
from the use of the inverter and the parallel inverter circuits. This is 
because they provide the operations of Boolean complementation and 
addition which, as stated in Chapter 3, are adequate for generating any 
Boolean function. However, a number of other types of electronic cir­
cuits are available for various practical purposes. One of the most im­
portant of these circuits is the cathode follower, which is a physical 
realization of the "single identity" operator E2 in Table 3.6. However, it 
is not used as a switching element, but for other puφOses. Its high effec­
tive input impedance (compared to an ordinary amplifier) and a low 
effective output impedance (from 200-1000 ohms), make it useful as a 
current amplifier and an impedance matching device for coupling a high 
impedance circuit to a low impedance one. Figure 4.12 shows a schematic 
of a cathode follower utilizing a triode. Use of a pentode in such a circuit 
would provide a lower input capacitance and a higher gain. However, the 

FIG. 4.11. Basic vacuum tube static FIG. 4.12. Basic cathode follower circuit 
flip-flop circuit 
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pentode circuit is not as satisfactory for handling large input signals. In 
practice, cathode follower circuits are better suited for driving diode OR 
gates whereas inverters are better for driving diode AND gates. An OR gate 
for positive signals can be realized by a circuit comprised of two cathode 
followers sharing a common load resistor. When both tubes are fully 
conducting, the output vohage is high. Also, if either tube is cut off, there 
is only a negligible drop in output voltage. When both tubes are cut off, 
the output voltage drops to the value of the negative supply voltage. 

4.3.1. THE DIODE GATE, FLIP-FLOP SYSTEM 

In this system of circuit logic, diodes are used for AND and OR gates, 
inverters for complementation where desirable, and vacuum tube flip-flops 
for storage. The output signals of the flip-flops are coupled to the inputs 
of cathode followers, which are provided both to isolate the flip-flop from 
its load, and to provide the current source called for by the diode gates. 
Each steady state output signal of the switching network is used as one 
of the inputs to a pulse pedestal gate in the appropriate input circuit of a 
designated flip-flop. The other input to all of these pulse-pedestal gates 
comes from a clock pulse source. This arrangement places the entire 
system under control of the clock, for no flip-flop can be triggered except 
at times when clock pulses appear. 

4.3.2. THE PENTODE GATE SYSTEM 

Multigrid tubes have also been used as gating elements in vacuum 
tube computers. Not all multigrid tubes can serve as practical gating 
elements because, in general, the different grids have different quantitative 
effects on the plate currents and therefore the signal voltages applied to 
them would have to be adjusted accordingly. One tube in which the 
control and suppressor grid each have approximately the same degree of 
control on plate current is the 6AS6. A specially designed gating tube, 
the GL-5915-A, has two independent control grids, and it can be utilized 
as a two input inverting AND gate for positive signals. The cut-off voltage 
is the same on both grids, and the tube is normally cut off by bias voltages 
applied to these grids. The appHcation of two appropriately large positive 
signals to both grids simultaneously causes the tube to conduct, producing 
a negative output signal at the plate. 

Logic circuitry using pentodes for gating was developed at MIT for the 
Whirlwind Computer. The pentode circuit, shown in Fig. 4.13 operates 
as an AND gate in which pulse signals applied to the grid are gated under 
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FIG. 4 . 1 3 . Pentode pulse gate 

the control of a dc gating signal or a wide pulse applied to the suppressor 
grid. A positive output pulse is produced at the point indicated when the 
gating signal and the input pulse are both positive and sufficiently large. 
An important characteristic of this circuit is that the output pulse can be 
made of suitable shape and amphtude to drive other pentode gates 
directly. 

In a circuit logic system built around a pentode gate, the dc outputs 
of ffip-flops would be used as the inputs to the suppressor grids of the 
pentode gates. The pulse outputs of these gates could be used either as 
inputs to diode OR gates or as inputs to flip-flops. In the latter case pulse 
transformers could be used at the inputs to the flip-flops in order to obtain 
negative pulses, which are more suitable for triggering flip-flops. The out­
puts of the diode OR gates can be used as the pulse inputs to other pentode 
gates or as inputs to the flip-flops. 

Asynchronous and/or synchronous operation may be used with this 
system of circuit logic according to which produces a desired function 
with minimum circuitry. In asynchronous operation each network could 
be activated either by a start signal or an end of operation signal from 
another network. 

4 . 3 . 3 . THE AC SYSTEM 

The so called ac system of circuit logic was developed at the National 
Bureau of Standards. It is used in their SEAC and DYSEAC computers, 
and in the MIDAC and MIDSAC computers built at the University of 
Michigan. In this type of system all signals are in the form of pulses, i.e., 
there are no signals in the form of dc voltage levels. The system includes 
diode gates for generating the AND and OR functions, pulse transformers 
for producing inversion, and electromagnetic delay lines for storage. The 
nonlogical, but essential, function of power amplification is provided by 
a vacuum tube. 
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This system of circuit logic is essentially formed from only one type 
of standardized unit, which is a combination pulse gate and regeneration 
circuit. This circuit, sometimes referred to as a pulse repeater, is shown 
schematically in Fig. 4.14. When appropriately combined with delay units 
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FIG. 4 . 1 4 . Circuit and block diagram of a pulse gate and regeneration circuit 
for an ac system 

it serves as a dynamic flip-flop. At the left end of the schematic are diode 
AND gates whose output is combined in an OR gate. (Though only two 
AND gates are shown, a large number of multi-input AND gates would 
usually be included in the circuit.) The clock signals applied to the AND 
gates serve to synchronize all input pulses. The principles involved in 
the design of diode switching circuits for pulse inputs are essentially 
the same as for dc level inputs, though considerations pertaining to switch­
ing speed are more important. Because of the various capacitances in a 
system, the signal that appears at an input may be degraded both in shape 
and amplitude. To limit this degradation to tolerable limits, one may 
regenerate the pulse after each small switching network. Pulse reshaping 
and synchronization to the timing of the clock waveform is achieved as 
follows: The signal input applied to the lower AND gate overlaps the lead­
ing edge of the clock waveform, thus assuring an output beginning with 
the leading edge of the clock. This output (clamped between + 2 and —5 
volts) is amplified and fed back to the input of the upper gate. After the 
signal input to the lower gate has decayed, this delayed and amplified 
signal sustains the output of the circuit until completion of the clock 
signal. In detail, the regeneration process is as follows. The input pulse 
to be regenerated is applied at the point shown at a time before the clock 
pulse is positive going. The signal passes through the OR gate to the grid 
of the tube, causing it to conduct. This produces a negative pulse at the 
plate of the tube and a positive pulse at the point shown on the secondary 
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o£ the transformer. This output pulse is fed back to the input of the tube 
via another AND gate, and the tube is kept in a state of conduction as long 
as the clock pulse is present. Each regeneration circuit derives large 
current amplification from a 10-1 stepdown turns ratio in the transformer. 
As a result, the output can drive up to 12 AND gates of other repeater 
circuits. (For a detailed description of this circuit the reader is referred 
to the articles by Elboum and Witt [1953] and by Haueter, Alexander 
and Greenwald [1953].) 

Inversion is accomplished by use of the negative output pulse of the 
transformer in the regeneration circuit. When such pulses are applied to 
any of the inputs of an AND gate, the effect is to inhibit the generation of a 
positive output signal. A two-input AND gate with one inhibiting input is 
a physical realization of the inhibiting switching function (see F 3 or F5 
in Table 3.7). It may be considered as a type of AND gate in which an 
output is not produced if certain control signals are present. Schematically, 
an inhibiting input to a gate is usually designated by a small circle placed 
on the input line where it touches the function box. 

As indicated earUer, a dynamic flip-ñop is used in this system. It is 
formed from the repeater circuit shown in Fig. 4.14 by returning the 
positive output of the transformer via a delay element to the input of a 
third AND gate connected as shown in Fig. 4.15. To synchronize the 
flip-flop's operation with the internal clock of the computer, a "start" 
pulse is appUed to the 1 input, causing a stream of clock pulses to be 
recirculated via the delay Une and the lower AND gate. To set the flip-
flop to the 0 state, a pulse is appUed to the inhibiting input of the AND 
gate, labelled in Fig. 4.15 as tíie 0 input. This halts the recirculation. 
The flip-flop just described is essentially that shown in Fig. 3.15(a). 

The basic timing source in the National Bureau of Standards system is 
a 1 Mc sine wave. Since the input-output delay of the pulse gate and re­
generation circuit is less than .25 /xsecs, the basic timing waveform is 
distributed in four phases, 90° apart. When connecting circuits in cascade, 
successive ones are driven by successive phases of the clock. The net 
effect of this phasing scheme and the regenerative connection of the cir­
cuit is to insure that the signal inputs to a circuit clocked by phase η 
(which are restricted to the outputs of circuits clocked by phase η - I) 
are present before the appearance of clock phase η and that clock phase η 
is present after the signal inputs have decayed as assumed in the descrip­
tion of Fig. 4.14 on page 121. Among practical difficulties associated 
with this system of circuit logic is the fact that one must keep track of 
the proper clock phase for each circuit and distribute the clock wave­
forms accordingly. Also, because multiple clock phases constitute an addi-
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tional design parameter, the design effort to minimize the total number 
of circuits employed, or to minimize delays in propagation of pulses 
through cascaded circuits is increased. As far as economy is concerned, the 
components saved by a minimum requirement for separate amplification 
circuits are offset by the number of diodes used for other than circuit logic 
purposes. 

4 . 3 . 4 . THE ASYNCHRONOUS, DC COUPLED SYSTEM 

In the logical description of combinational networks, it is usually 
assumed that an input variable has an instantaneous effect on the output 
of the network. In practice, unwanted delays may produce so-called hazards 
in the transient behavior which can result in malfunctions when the combin­
ational circuits are incorporated into a sequential network. 

In a synchronous computer, the elementary arithmetic and lo^cal 
operations occur at fixed intervals defined and controlled by the clock. 
The over-all speed is determined by the expected response time of the 
slowest elements under estimated worst case conditions. The problem of 
hazards does not normally occur in such a system because the interval be­
tween successive clock pulses is specified to be long enough for transients 
to die out. 

Generally speaking, in asynchronous systems each new operation is 
initiated by a completion signal produced by another group of circuits 
after the execution of the preceding operation. Therefore, individual 
switching operations do not require a predetermined duration corres­
ponding to the maximum time required by any of them, but are deter­
mined solely by the electrical parameters of the circuit performing the 
operation. As a result, greater over-all speed is obtainable since each new 
operation can begin immediately upon completion of the preceding one. 

There are varying degrees of asynchronous operation. For example, 
in an elementary form, a new completion signal is simply produced by 
routing the preceding completion signal through a delay whose magnitude 
corresponds to the maximum time required for a given set of circuits to 
operate. In another form, the operation of each set of circuits is examined 
by a checking circuit that provides completion signals only when the set 
of circuits completes its function. Finally, the asynchronous feature may 
be at the level of individual logic elements. In asynchronous circuits 
where there are no clock pulses, the signal propagation time through 
chains of elements is limited only by the response time of the elements 
and the over-all speed is determined by the average speed of the com­
ponents. 

The speed of synchronous circuits is usually indicated by specifying 
the clock frequency. A convenient measure of speed in an asynchronous 
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* Huffman, D. A. [1957], Design of hazard-free switching circuits, 7. ACM, 4, 47-62. 
Unger, S. H. [1959], Hazards and delays in asynchronous sequential switching cir­
cuits, IRE Trans. Circuit theory, 6, 12-25. 

system is the operation time. This is the interval from when an input 
signal to a circuit reaches a critical value to when the output signal 
reaches a critical value. 

As indicated earUer in this section, the new state to which a sequen­
tial network advance may depend upon the delays encountered in various 
paths within the network. To eliminate the hazards presented by the possi­
bility of "races" to new states in asynchronous circuits, certain techniques 
have been worked out.* While considerable additional circuitry may be 
called for to ehminate hazards in the general case, the amount may be re­
duced appreciably or omitted if certain states or sequences would not occur 
naturally, or if external delays may be introduced economically. 

Asynchronous systems are associated with dc coupled circuits as 
opposed to the ac coupled circuitry found in synchronous systems. In an 
ac coupled system, capacitors or transformers may be used to inter­
connect logical elements. In the dc coupled system not only are the 
elements interconnected by means of resistive networks but each element, 
e.g., a flip-flop, is also dc coupled internally. The signals in dc coupled 
circuits are normally in the form of one of two voltage or current levels, 
rather than a pulse or no pulse at specified times as in clock controlled 
systems, and as previously indicated, the steady state output signal of a 
logical block is coupled directly to the inputs of other blocks. The use of 
dc coupled circuitry in an asynchronous system makes proper operation 
independent of variations in shape of input waveforms and does not requhre 
strict control of propagation time to insure arrival of these waveforms in 
coincidence with a clock signal. Servicing is simplified because a dc coupled 
asynchronous machine can be put in a state of static equilibrium for as 
long as desired and its operation checked by an inspection of the steady 
state voltages at strategic points. Completion circuits may be included 
to detect failures in operation of other circuits, thereupon causing the 
machine to stop and indicate a malfunction. Another reason why asyn­
chronous dc coupled circuitry can be faster, is that while in capacity 
coupled circuits a change in signal level must be followed by an inverse 
change to reach equilibrium of the capacitor, in a dc coupled circuit the 
signal needs to change in voltage in only one direction. 

Because the operation of an asynchronous system can be made inde­
pendent of the relative speeds of its elements, correct operation may be 
obtained without the need for matching speeds and without synchronizing 
signals. This is especially important when the individual circuits are so 
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fast that the time required for the flow of information from one part of 
the computer to another is comparable to the operation times of the 
elements themselves. For example, signals are delayed by about 1 
nanosec/foot, and transistor computer circuits with operation times less 
than 10 nanosec have been built. In very high speed systems, such as that 
under development at the University of lUinois, asynchronous circuitry 
offers an important advantage by not requiring precise knowledge of intra-
system transit times to assure correct operation. On the other hand there 
are certain disadvantages. For example, an asynchronous system requires 
considerably more logical elements than a synchronous system because of 
the circuits required to generate completion signals and hold information 
while it is in transit, even after considering the saving resulting from the 
absence of circuitry for a clock and its gates. Also, an asynchronous 
system introduces engineering design problems because of the drift nor­
mally encountered with dc coupled circuits. However, the problem of 
drift in a switching circuit is considerably less than in a linear ampUfier. 

The eUmination of hazards from asynchronous circuits makes them 
speed independent* in that correct operation does not depend on the rela­
tive speeds of their elements. Speed independent circuits aUow a special type 
of completely asynchronous operation in which information can continue 
to flow only when aU preceding elements in a chain have reacted to it. 
To meet the conditions of speed independence, individual logical elements 
must be speciaUy designed and so-caUed last moving points provided to 
shnpUfy the design procedures. A last moving point is a location in a 
circuit which by its new output gives proof that a new state of a ckcuit 
has been reached. However, because these circuits need not respond within 
a fixed interval, as circuits in synchronous systems must, reliabiUty of 
operation is improved. Relative insensitivity to deterioration of compo­
nents and variations in circuit parameters, which may also be used to relax 
requirements for uniformity in component specifications, often justifies 
the extra components used to eliminate hazards in asynchronous circuits. 

With speed-independent networks within an asynchronous computer 
signal changes need not occur in a definite time sequence. ParaUel actions 
can occur without giving rise to "race" conditions if logical elements are 
incorporated which have the logical property of producing an output only 
when all of several incoming signals have appeared. This output can be 

* For formal deñnitions of speed independence see: Muller, D. E. and Bartky, W. S. 
A theory of asynchronous circuits, in Annals of the Computation Lab,, 29, pp. 
204-243, Harvard Univ. Press, 1959; also, Univ. of Illinois Digital Computer Lab. 
Repts. Nos. 75 and 78, 1956 and 1957. Also, see Nelson, J. C. Speed Independent 
Counting Circuits, Univ. of Illinois Digital Computer Lab. Rept. No. 71, 1956. 
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used as a completion signal to indicate that all of several parallel opera­
tions have occurred, and permits more complex paralleling schemes than 
possible with synchronous circuits. 

Three techniques have been used in the design of speed-independent* 
networks at the University of lUinois. The first consists of using certain 
rules for interconnecting previously designed circuits to form more com­
plex ones. As an example, consider the interconnection of a counter and 
a shift register to form a circuit for generating any given number of shifts. 
These two units could be interconnected in a serial fashion, but the prop­
erty of speed independence is best illustrated by having them operate in 
parallel, as shown in Fig. 4.16. The counter element A changes state / 
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FIG. 4 . 1 6 . Control of two parallel 
operations by an operation 

completion circuit, C 

times before the counter stops, where / depends on the initial setting of the 
coimter and is less than 2*» where (2*» - 1) is the capacity of the counter. 
The shift register element Β changes state whenever a shift occiurs. The 
completion circuit C prevents either the counter or register from getting 
more than one step ahead of the other. If the shift register operates faster, 
the next shift will be delayed until the signal from A appears at the input 
to C. If the counter acts faster, initiation of the next count is delayed until 
the signal from Β appears. The time taken by the complete system is 
the greater of the times taken by the two units plus the time for 2i opera­
tions of the completion circuit. 

The second technique is used for designing the basic logical circuitry. 
The fundamental logical requirements of the machine may be described by 
a set of Boolean equations, as in the case of a synchronous computer. 
Then, the conversion from a synchronous to an asynchronous system 
may be made as follows. First, each flip-flop in the synchronous system is 
replaced by two, since a second one is required to store information dur-

* See: On the Design of a Very High Speed Computer, Univ. of Illinois Digital 
Computer Lab. Rept. No. 80, 1957. 
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ing the process of gating into the first. Secondly, a two-wire system is 
introduced to connect each flip-flop pair with direct connections from the 
second to the first. During the transmission of information, one Une wiU 
always be 0 and the other 1. A 1 or a 0 on one of the Unes determines a 
bit of information. To distinguish individual bits, the Unes are cleared after 
each transmission by applying the same signal to both. The final step in 
converting to asynchronous operation consists of adding completion cir­
cuits where necessary. 

The third technique makes use of a change chart which Usts the signal 
changes which take place at the nodes of the network together with an 
ordering of these changes from which a speed independent circuit can be 
derived. The end result can be expressed by a set of Boolean functions. 
In the very high speed computer project at the University of Illinois, 
programs have been written for its ILLIAC computer for the purpose of 
simulating the behavior of circuits and testing them for speed independ­
ence. Without such programs the design of these circuits would not be 
practicaUy feasible, since the checking process is usuaUy too tedious to be 
performed by hand. 

The asynchronous dc coupled system of circuit logic was proposed by 
the Princeton Institute for Advanced Study, and extensive refinements 
have been developed at the Digital Computer Laboratory of the University 
of lUinois. It was used with vacuum tube circuits in the I.A.S. MANIAC, 
University of lUinois ILLIAC and other computers of the I.A.S. family. 
Fig. 4.17 shows the principal gating circuits in the early ILLIAC computer. 
The inverter and twin cathode foUower have already been described. 
The vacuum tube diode circuit acts as an OR gate for negative input 
signals and as an AND gate for positive ones. By placing the load resistor 
in the cathode circuit rather than in the plate circuit, one would obtain 
an OR gate for positive signals and an AND gate for negative signals. 

4.4. Transistor Systems of Circuit Logic 

4.4.1. POINT-CONTACT TRANSISTOR QRCUITS 

In designing systems of circuit logic based on the use of transistors, 
two major problems peculiar to transistor circuits must be taken into 
account. First, there are problems associated with the low input impedance 
of a transistor. Second, in high speed circuits, there is a problem due to 
delays in response, resulting from the storage of minority carriers when a 
transistor is operated in a region of saturation (see pages 129 and 132). 

Systems of circuit logic for point-contact transistors are different from 
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those for junction transistors. For computer systems, point-contact tran­
sistors have now been replaced by junction transistors. The presentation 
of point-contact transistor circuitry is therefore limited, and included prin­
cipally because of historical importance and inclusion of these circuits in 
older computers still in operation. 

4AJ.L Point-Contact Transistor Flip-Flops 

This section will be devoted to a brief summary of the characteristics 
and limitations of the most commonly used types of point-contact tran­
sistor flip-flop circuits. Three states of a transistor are of interest in the 
design of flip-flop circuits. They are: (1) The "active" state, in which 
the transistor behaves as an active, power ampUfying element. (2) The 
"on" state, in which the current flow is such that the transistor appears as 
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a low resistance device. (3) The "off" state, in which the transistor ap­
pears as a high resistance device. The characteristic curve shows that a 
point-contact transistor connected as shown in Fig. 4-18 (a) has two stable 
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FIG. 4.18. (a) Single point-contact transistor flip-flop, and (b) Voltage-current 
characteristic of emitter circuit 

states, one characterized by smaU negative values of emitter current /^, 
and the other by large positive values of 7 .̂ If the emitter bias voltage and 
resistance have appropriate values, the circuit can be triggered from 
one stable state to another. This type of operation is not possible with a 
single vacuum tube. 

An obstacle to high speed operation of point-contact and junction 
transistors arises from the delays in response due to the phenomena of 
saturation and hole storage. If the collector voltage for a p-n-p transistor is 
not sufficiently negative to collect all holes suppHed by the emitter, the holes 
tend to remain in the body of the transistor. Upon reduction of the 
emitter current to zero, the collector resistance will remain low until 
the stored holes are removed by the collector ñeld. When the holes are 
generated by the emitter faster than the collector can remove them, the 
transistor is said to be saturated. 

A capacitor placed between the emitter and collector terminals would 
increase the high frequency coupling between emitter and collector, 
thereby decreasing the transition time from one state to the other. How­
ever, this circuit has a disadvantage in that a high impedance collector is 
coupled back to a low impedance emitter (to reduce high frequency gain). 

The circuit of Fig. 4.18(a) is shown triggered by a positive pulse which 
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produces a transition from low to high conduction. From Fig. 4.18(b) 
it is apparent that triggering of the circuit back to a state of low con­
duction requires application of a negative pulse. The need for pulses of 
opposite polarity to trigger the flip-flop at successive times can be cir­
cumvented by using a rectangular input waveform and differentiating it to 
yield a positive and negative pulse at the leading and traiUng edge, re­
spectively. The switching time of the circuit must be longer than the 
width of the rectangular input pulse, or else a single rectangular waveform 
will trigger the circuit through both states. The dependence of this cir­
cuit's operation on the shape of the input waveform and narrow triggering 
pulses make it undesirable from the standpoint of reUability. 

The so-called "current" types of single transistor flip-flops are de­
scribed by Wilhams, F. C. and ChapUn, G. B. B. [1953]. The basic cir­
cuit, shown in Fig. 4.19, depends for its operation on the fact that the 
transistor in its "active" state simulates a current ampUfier and can, there­
fore, be designed to switch a current between an external diode and itself. 
This type of circuit is relatively insensitive to transistor parameter varia­
tion and can be designed for either a saturating or nonsaturating mode of 
operation. Its advantages are economy of components and power. How­
ever, there are certain disadvantages: (1) Since gates can be connected 
only at one point, two flip-flops are required if a variable and its comple­
ment must be used as signal sources. (2) The circuit is very sensitive to 
narrow noise pulses when it is in the "off" state, because there is no satura­
tion to overcome. (3) The margins on pulse width and ampUtude for 
complement triggering are not as good as for a two-transistor flip-flop. 

The basic form of a two-transistor point-contact saturating flip-flop 
Is shown in Fig. 4.20. A composite voltage-current curve, which can 
serve as a basis for the design of the dc circuit, may be obtained from the 
single characteristic curves of the two transistors by adding the emitter 
currents of each for successive emitter voltages. An operating point 
may be set anywhere on this characteristic curve by choosing a suitable 
load to be inserted in the position of Re. 
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FIG. 4.20. Basic two-transistor (point-contact) saturating flip-flop. 

A two-transistor flip-flop eliminates two objectionable characteristics 
of the one transistor flip-flop described—^namely, dependence on triggering 
by narrow pulses produced by differentiating a rectangular input waveform 
and availability of only one output point for driving other ckcuits. The 
operation of the two-transistor flip-flop can be clarified by referring to the 
characteristic transistor gain function shown in Fig. 4.21. Assume Üiat one 
transistor is in high conduction (operatmg on the right hand section of the 
gain ciu^e). Therefore, its collector potential will be near ground, thus 
holding the other transistor in a state of low conduction by making its 
emitter potential negative with respect to its base. The circuit can be 
triggered to its other stable state by either positive or negative pulses 
appUed to both emitters since the high gain region of the curve Ues to the 
left of the operating point of one transistor and to the right of the operatmg 
point of the other. However, as also apparent from the curve, negative 
trigger pulses are preferable since the curve decreases much more rapidly 
in the negative dkection. 

Various types of coupUng circuits may be used to increase the gain 
of the flip-flop feedback loop during the switching transients. For example, 
a capacitor may be placed between the base of each transistor and the 
coUector of the other. Important characteristics of the capacitor coupled 
type of circuit are: (1) StabiUty with respect to noise triggering is im­
proved by the hole storage in the "on" transistor, since any noise pulse 
too narrow to last beyond the turn off time of the saturated transistor 
wiU fail to trigger the flip-flop. (2) Triggering sensitivity as weU as the 
width of pulses suitable for triggering is proportional to the size of the 
capacitors. (3) The maximum frequency of operation is inversely pro­
portional to the size of the capacitors. Transformer coupling may be 
obtained by placing one winding of a transformer between points χ and y 
and the other between the two bases (see Fig. 4.20). The advantage of 
the transformer coupled circuit is improved complement triggering sensi­
tivity, because: (1) Each transistor acts like a blocking oscillator during 



132 4. SWITCHING AND STORAGE CIRCUITS 

the switching time, thereby improving the switching transient. (2) The 
transformer couples the current directly from collector to base and the 
collector simulates a current generator in the switching. 

The transistor flip-flops described in the preceding paragraphs are all 
driven to saturation. Once a point-contact (or junction) transistor has 
become saturated, it is difficult to turn off because of minority carrier 
storage effects. When triggering a p -n-p transistor at the emitter, a pulse 
width greater than the hole storage time is required. When triggering at 
the base, the pulse width does not have to be as wide as when triggering 
at the emitter, but considerable power must be applied to clear out stored 
holes. The time required to clear out stored minority carriers is referred 
to as minority carrier storage time. It may be computed from tg = K\ In 
(1 + hx/ho) in which hx is the excess base current due to saturation, 
I TO is the base current during turn-off, and AT', is a constant determined 
by the transistor's characteristics. If neither transistor in a flip-flop is 
driven to saturation, there will be no delay due to minority carrier stor­
age. Thus by establishing a stable point in the active region the flip-flop's 
operable repetition rate can be increased. The nonsaturating flip-flop 
of Fig. 4.22 differs from the circuit of Fig. 4.20 in that two germanium-
silicon diode pairs are added. They produce an essentially constant voltage 
difference, clamping the collector-base voltage and preventing the base 
from going negative with respect to the collector. The nonsaturating 
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circuit has certain limitations: (1) The output levels are not as consistent 
unless clamping diodes are added, and the output voltage swing is approxi­
mately half that from a saturating circuit. (2) It is more sensitive to 
narrow noise pulses. (3) Nonsaturating circuits are more sensitive to 
variability and drift in transistor parameters (a major problem with point-
contact transistors) than saturating circuits. This is because the collector 
voltage varies with collector current instead of stabilizing at the com­
paratively stable collector voltage which exists at saturation. (However, 
stabilization schemes limit the speed of a circuit). 



4 . 4 . TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 133 

44,12. A Semiconductor Diode, Point-Contact Transistor System of 
Circuit Logic 

In systems of circuit logic utilizing point-contact transistors, the role 
of the transistor is restricted to storage and amplification, (because of wide 
variation in the dc characteristics of the transistors) while semiconductor 
diodes are utilized for the function of gating. Fig. 4 . 2 3 shows such an 
arrangement, suitable for junction transistors also. The input to the 
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FIG. 4 . 2 3 . A transistor driven diode gating network 

transistor is one of the outputs of a transistor nip-flop. The function of 
the emitter follower circuit is to provide power gain so that several gates 
may be driven by the flip-flop. The output of the emitter follower is shown 
connected to an input of only one of several gates which it may drive. 
The output of this gate, an OR circuit, is shown driving an input of an 
AND gate. In systems of this type the gating networks are Umited to two 
levels. If the output of the AND gate were required as an input to several 
other gates or flip-flops, it would be fed first to the input of a transistor 
amplifier. Diodes Di and D2 are clamps that hmit the pulse amplitude of 
the AND gate's output. Synchronizing clock signals could be appUed as one 
of the inputs to each AND gate in the system. Then no gate in the system 
could produce an output except during the occurrence of a clock signal. 

4 . 4 . 2 . JUNCTION TRANSISTOR CIRCUITS 

An important difference between point-contact and junction tran­
sistors Ues in the parameter of current amplification, a, which is the ratio 
of the increment in coUector current caused by an increment in emitter 
current. For point-contact transistors, a is greater than unity. For junction 
transistors, it is normally less than unity. 

Another important difference is that junction transistors are available 
in two basic types, a so-called n-p-n as weU as a p -n-p type. The point-
contact transistors are generally of the p -n-p type. These terms were 
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chosen to indicate that in one type, the n-p-n, positive charge carriers or 
holes are in the majority in the base region, whereas in the p -n -p negative 
charge carriers or electrons are in the majority in the base region. With 
an n-p-n transistor, current flows in an opposite sense to that in the 
p-n-p transistor, and the supply voltages are of opposite polarity. With 
an n-p-n transistor, both emitter and collector resistances are high when 
these elements are positive with respect to the base. When the emitter 
is made negative with respect to the base, it emits electrons which are 
attracted toward the positive collector and constitute the collector current. 
The availabiUty of junction transistors in both n-p-n and p -n-p types 
provides the designer with an added degree of freedom in forming systems 
of circuit logic. This will be brought out in the sections following. 

Corresponding to the phenomenon of hole storage in a p -n -p tran­
sistor is that of electron storage in an n-p-n transistor. In an n-p-n tran­
sistor, if the collector voltage is not sufficiently positive to collect all 
electrons supplied by the emitter, the electrons become trapped in the base 
region. Where a distinction is not necessary, the term minority carrier is 
often used to denote either holes or electrons, whichever is in the minority. 

The first high frequency transistor to become available was the grown 
junction germanium transistor. However, the alloy, mesa, micro-alloy and 
epitaxial transistors which appeared later are more suitable for switching 
circuits because of relatively low and consistent values of extrinsic base and 
collector resistance. The alloy transistor is capable of high peak power, 
while the mesa and micro-alloy transistors offer high speed operation, the 
former at high voltage ratings and the latter with good saturation charac­
teristics. The epitaxial transistor offers high speed switching at higher 
power levels. 

4.4.2.1. The Basic Junction Transistor Circuits; the Inverter and 
Emitter Follower 

Corresponding to the vacuum tube inverter and cathode follower cir­
cuits are the transistor inverter and emitter follower circuits. They are 
useful not only for the functions of signal amplification (and inversion in 
the case of the inverter), but also serve as the basis of a number of 
systems of switching circuit logic. 

A schematic of a basic p -n-p junction transistor inverter circuit is 
shown in Fig. 4.24. (For an n-p-n transistor, the polarity of the supply 
voltages would be of opposite sign). When the input is positive with respect 
to the emitter, the transistor does not conduct, and, therefore, the output 
voltage will be near that of the collector supply voltage. It is not equal 
to the supply voltage because of a small leakage current present in tran­
sistor circuits. When the input is negative with respect to the emitter, the 
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transistor. Both circuits provide a large current gain and a voltage gain 
sUghtly less than unity. They also provide a relatively high input impedance 
and a low output impedance. For the p-n-p circuit, the output signal 
mil be somewhat more positive than the input signal. This small bias can 
be offset by means of the voltage divider in the input circuit. 

If the supply vohages chosen are adequate to maintain a large voltage 
difference between base and collector, this will tend to alleviate saturation 

transistor will conduct and the output voltage will be near ground. One 
function of the input voltage divider is to convert the output voltage levels 
of an inverter to values appropriate for inputs to another circuit. Another 
important function is to limit the base input current in order to keep the 
transistor out of saturation. The capacitor reduces the time required for 
the output waveform of the circuit to follow sudden excursions in the 
amplitude of the input waveform. It improves the response to positive ex­
cursions (usually measured in terms of the waveform's rise time) by sup­
plying a surge of input current when the transistor is put into the conducting 
state. It improves the fall time by providing a low impedance path for the 
removal of any stored minority charge carriers in the base-emitter region. 

The output voltage waveform of the p -n -p transistor inverter has a 
fast rise time characteristic, but is not as good with respect to fall time. 
This is due to two causes. First, time is required to remove the minority 
carrier charge by collector current. Also, the current for returning the 
load to its negative potential must flow through Rc, which has a relatively 
high value, in order to limit collector current. For an n -p-n transistor, 
the opposite situation, with respect to the rise and fall times of the output 
voltage waveform, is true. If it is important that both rise and fall times 
be fast, then the p -n-p and the n-p-n circuit can be combined in a push-
pull type of circuit. 

Modifications of the basic inverter circuit have been developed aimed 
at reducing or preventing the buildup of minority charge carriers. 

A schematic of a basic p -n-p junction transistor emitter follower cir­
cuit is shown m Fig. 4.25. A similar circuit is obtainable with an n-p-n 

- j ^ Input waveform 

y \ Output waveform j 
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effects. However, care must be exercised when this is done to prevent 
excessive dissipation in the transistor. 

The rise time of the p-n-p circuit is adversely affected because of 
the requirement for current flow through Re. The fall time of the n-p-n 
circuit suffers because of the same reason. As in the case of the inverter 
circuits, p -n-p and n-p-n transistors can be combined to provide a cir­
cuit with a good rise and fall time. 

4.4.2.2, Junction Transistor Gating Circuits 

A number of logical switching functions may be synthesized by com­
binations of the inverter and emitter follower circuits already described. 
For example, if two inverter circuits (see Fig. 4.24) are connected in paral­
lel with a common collector resistor, there results a AND gate, i.e., given 
inputs A , Β on the bases, the output at the common collector point is AB, 
Also, if two emitter follower circuits (see Fig. 4.25) are connected with 
a common emitter resistor, the output at the common emitter point is AB, 
In these two cases, the use of n-p-n in place of p -n -p transistors would 
produce the OR, (A + B\ and NOR, (AB\ functions, respectively. Fig­
ures 4.26(a) and (b) show how both p-n-p and n-p-n transistors may 
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" Î5V ^ -5V = 0 

(c) 

ßo ΙΛΛ/V J Ä a a I 

(d) 

[AB^O 

FIG. 4 .26 . Junction transistor gating circuits: (a) AB, (b) {Ä + B\ (c) AB, 
(d) {AB + O . 
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FIG. 4.27. (a) Basic transistor NOR circuit (p-n-p type), and (b) Modification for 
higher speed operation 

boxes labelled Ζ may be resistors or diodes. Diodes are preferable for 
limiting input current and for preventing feedback of signals between 
inputs. The resistor Rt in conjunction with the supply voltage pro­
vides a bias to reduce the transistor leakage current h to a minimum 
when the transistor is cut off. When conducting, the transistor is saturated 
and offers a low impedance. The number of allowable inputs, m, is limited 
chiefly by the input loading, although a crosstalk factor would also have to 
be considered if the Z's were realized by relatively low resistances. The 
number of circuits, n, that the output is capable of driving is limited by 
the loading of the output. The response time of the circuit can be im­
proved by placing a small capacitor, 30-100 μμί, in parallel with each 
input resistor, or, for an even higher frequency of operation, by incorporat­
ing a germanium and a silicon diode into the circuit, at the points shown 

be combined to yield other logical functions of two variables. Actually, a 
single inverter circuit may be used to generate a function of two variables 
or even of three, as shown in Figs. 4.26(c) and (d) . In these cases, 
signal sources are used to supply current that otherwise would be obtained 
from a power supply. Such circuits are critical in operation and consider­
able care must be exercised in their application. 

4.4,23. A System of Circuit Logic Based on Transistor NOR Circuits 

The transistor NOR circuit is a reaUzation of the NOR switching func­
tion described in Chapter 3. It allows the synthesis of switching networks 
from various arrangements of a single logic building block. It reduces 
the problem of matching inputs and outputs which is present in systems 
composed of a number of different logic circuits, and also alleviates prob­
lems associated with the loading of logic circuits. 

A representative transistor NOR circuit is shown in Fig. 4.27(a). The 
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FIO. 4.28. Basic transistor-resistor logic circuits (n-p-n type) 

considered as being formed either from two resistor coupled inverters 
or from two two-input TRL circuits. The TRL system of circuit logic 
(sometimes referred to as NOR logic) offers the advantage of reUability 
with simplicity and economy, e.g., it is less dependent on collector satura­
tion and base-emitter voltage than DCTL circuits (described in Section 
4.4.2.4). 

The response time of the TRL circuit can be reduced by placing a 
capacitor in paraUel with each gating resistor in order to produce a cur­
rent spike at the leading and traiUng edges of the signals. However, the 
use of the circuit is complicated by the fact that if there is a simultaneous 
transition of more than one input signal from a lower to an upper level, 
fictitious spikes appear in the output, even though one or more other 
inputs are at the lower level). These spikes can propagate through several 
stages, amplified at each, because the speed-up capacitors in each stage 
present a low impedance to these spikes. This difficulty may be overcome 
by restricting the logical design to prevent movement of more than one 
input at a time from a lower to an upper level, or by restricting the 
number of inputs to two. The former process reduces the flexibility of 
the system and the latter effectively cancels the economy of components 
of the TRL circuit. A more direct approach is to use higher frequency 
transistors rather than speed-up capacitors and extra transistors. 

in Fig. 4.27(b). The subtraction of vohage drops between the diodes 
keeps the collector out of heavy saturation and permits operation in the 
area of 50 to 100 nanosec. 

The circuit shown in Fig. 4.27(a) utilizes p -n -p transistors. By using 
supply voltages of opposite polarities, n-p-n transistors could be used 
instead. In that case the input and output signals would be positive in­
stead of negative voltages. 

When resistors are used for the impedances shown in Fig. 4.27(a) 
the circuit is often referred to as a TRL (for transistor-resistor logic) cir­
cuit. The basic switching and storage building blocks of the TRL system 
using n-p-n transistors are shown in Fig. 4.28. The flip-flop can be 
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FIG. 4.29. Surface barrier transistor logic circuits: (a) NOR, (b) Sheffer stroke 

because of the small emitter-collector voltage drop. The bases of the 
transistors are connected to control voltages originating from the output 
of other similar circuits or directly from nip-flop collectors. If any base 
is at ground potential, that particular transistor will be nonconducting. 
Therefore, the output will be at - 3 volts. If all base voltages are suflä-
ciently negative, the output will be close to ground potential. Therefore, 
this circuit produces the NOR switching function of the input variables. 
The circuit in Fig. 4.29(b) essentially represents a set of inverters in 
parallel. If any base voltage is sufficiently negative, the transistor will 
conduct, causing the output voltage to be near ground potential. There­
fore, this circuit produces the Sheffer stroke switching function (Fg in 
Table 3.7). These switching circuits have rise and fall times less than 0.1 
/usee. One of their disadvantages is that the transfer characteristics are 
such that a noise pulse in excess of about 0.1 volts on the base may be 
amplified and appear in the output. 

The basic DCTL flip-flop circuit uses only two transistors and two 
resistors. Figure 4.30(a) shows this basic flip-flop with associated input 

442,4, Systems Using Direct Coupled Transistor Circuits 

Surface barrier and alloy junction transistors are characterized by 
low voltage drops, low power consumption, and rapid recovery time. 
Special gating and storage circuits have been devised to exploit these 
properties. The basic gating circuits developed by the Philco Corporation 
are simple, the transistors being used in a way similar to the way relays 
are used in switching circuits. Examples of these circuits are shown in 
Figs. 4.29(a) and (b) . These circuits, characterized by a small number of 
passive components as well as direct coupUng, are referred to as DCTL 
(for direct coupled transistor logic) circuits. The transistors must have 
a high ratio of base-emitter voltage to collector-emitter voltage at satu­
ration (so that a saturated transistor can keep off a gate it is driving). 

In Fig. 4.29(a) the transistors are connected in series, which is possible 
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( a ) ( b ) 

FIG. 4,30. Basic D C T L flip-flop with input circuits 

circuits. The input circuits, consisting of transistors Γι and Γ4 serve to 
set or reset the flip-flop, and are cut off except during an input pulse. 
Depending on the state of the flip-flop, either transistor T2 or Γ3 may be 
conducting. The collector voltage of the non-conducting transistor is 
determined by the current drawn from the base of the conducting tran­
sistor (which saturates heavily). In the circuit shown, the two collector 
voltages are approximately - 0.04 and - 0.6 volts. The rise and fall 
times are both less than 0.1 />tsec. 

One limitation of the basic DCTL flip-flop circuit is that it contains no 
well determined transient memory or delay (although hole storage pro­
duces an uncontrolled delay) and so has an uncertain response to a pulse 
occurring at the same time as its set or reset input. Also, the low collector-
voltage swing is insuflScient to drive circuits requiring larger signals. A 
variation of the basic DCTL flip-flop circuit that alleviates some of its 
objectionable features is obtained by placing a silicon junction diode in 
the feedback path from the base of each transistor to the collector of the 
other with the orientation shown in Fig. 4.30(b). Each diode simulates 
a constant voltage source during forward conduction and, while recovering, 
in reverse conduction. The use of the diode results in a somewhat larger 
collector voltage swing, in less saturation, and in shorter resolution and 
fall times. The time constant improvements are due to the hole storage 
effects of the diodes which act to draw out the holes stored in the base of 
the conducting transistor. The diode also improves the inverter transfer 
characteristics. 

A relatively simple way of preventing saturation in a circuit is to 
include breakdown diodes at appropriate points. The volt-ampere char­
acteristic of an idealized breakdown diode is shown in Fig. 4,31(a). 
This characteristic is closely approximated by silicon junction diodes which 
are available with breakdown voltages from 4 volts and up. In Fig. 4.32 
a modification of the basic direct coupled flip-flop is shown. It is kept 
out of saturation by the silicon junction diodes Di and D2 which have 
a combined volt-ampere characteristic as shown in Fig. 4.31(b). Diodes 
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FIG. 4 . 3 1 . Volt-ampere characteristics of idealized breakdown diodes 

Da and D4 are also breakdown diodes, but with a breakdown voltage 
greater than that of Di and D2. Ds and D4 are always kept in the broken 
down state to maintain a constant voltage drop between the base of one 
transistor and the collector of the other. Under stable conditions one 
transistor conducts heavily and the other hghtly. If transistor Γι is con­
ducting heavily, then Di is broken down and D2 is conducting in the for­
ward direction. The circuit of Fig. 4.32 using 2N711 transistors is oper­
able up to about 5 Mc. 

As already pointed out, a major factor limiting the switching speed of 
saturating transistor circuits is the delay caused by minority carrier storage. 
These stored carriers are most quickly removed by applying a reverse-
bias voltage to the base-emitter diode. Therefore, a transistor may be 
switched oft more rapidly by bringing its base to an off-bias voltage in­
stead of to ground. The flip-flop circuit shown in Fig. 4.33 achieves a 
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FIG. 4 . 3 2 . A nonsaturating binary counter FIG. 4 . 3 3 . Base gated flip-flop 
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higher switching rate than the basic DCTL flip-flop by the use of off-bias 
gating. When V2 is properly chosen, not only does the gate switch off the 
conducting transistor, but also it supplies an amount of current to the 
load resistor of the nonconducting transistor equal to the amount the 
transistor will conduct after the switching action is completed. This 
pseudocoUector current reduces the delay normally preceding the switch-on 
transient. As a result, the delay from the time of appUcation of the trigger 
pulse until the end of the switching transient is only about 20 nanosec 
using SB-100 surface barrier transistors. 

The single input flip-flop circuit shown in Fig. 4.34 is kept out of 
saturation by the use of diodes and dividing resistors which prevent the 
conducting transistor from saturating. When the coUector voltage of the 
conducting transistor drops to about 0.5 volts, the diode conducts, pre­
venting a further drop in collector-base voltage. This reduces the adverse 
effects of minority carrier storage, since there are fewer carriers to be re­
moved from the base when the conducting transistor is triggered off. The 
steering diodes, Di and D2, aUow the trigger to be either a pulse or a square 
wave. Also, they provide isolation between the two sections of the 
flip-flop. 

If in the DCTL flip-flop of Fig. 4.30, a paraUel resistor, capacitor 
combination is placed in each base lead, there results a flip-flop with 
higher switching speed. This RC coupled flip-flop has a transition time 
about 20% less Üian the direct coupled circuit. The fimction of the 
resistor is to Umit the base current in order to reduce hole storage delay 
tune. The capacitor aids in switching off a transistor by driving its base to a 
positive voltage. Unfortunately, another effect of the resistance in the base 
circuit is to reduce the stabiUty of the flip-flop, because it reduces the 
base current into the conducting transistor. There are a number of devices 
for improving the switching speed without sacrificing stabiUty. One way 
of improving both speed and stabiUty is to add an emitter foUower in 
each of the cross-coupUng arms. Also, the delay time due to hole storage 
can generaUy be reduced to one-half by the use of nonsaturating circuitry. 

Figure 4.35 shows a modification of the basic RC coupled flip-flop, 
designed to provide nonsaturating operation. A resistor inserted from the 
base of each transistor to ground forms a voltage divider which limits the 
voltage swing of the base. A paraUel RC network inserted between the 
common emitter point and ground provides dc feedback which causes the 
emitter to stay at a level about 0.3 volts positive with respect to the 
base of the conducting transistor. Since the base to emitter voltage is 
independent of the emitter resistance, the choice of resistance controls 
the emitter current. Fixing of the base voltage and emitter current deter­
mines the collector current. The transistor is kept out of saturation by 
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FIG. 4.34. A nonsaturating flip-flop FIG. 4.35. A nonsaturating RC 
coupled flip-flop 

choosing a collector resistance suflBciently small to hold the collector volt­
age of tíie conducting transistor sufficiently negative with respect to the 
base. 

Figure 4.36 illustrates a ffip-flop circuit m which an emitter follower is 
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FIG. 4.36. A saturating emitter follower coupled flip-flop 

used to provide an active coupling network. It allows fast switching action 
to be obtained because of two principal effects. First, it is not affected by 
hole storage. Second, its low source impedance allows high charging cur­
rents to be supplied to the stray and internal capacitances. The outputs 
of the emitter followers also provide convenient output terminals because 
of their buffering action. The transition time for the emitter coupled flip-
flop is about 70% less than that of the direct coupled flip-flop. The emitter 
follower flip-flop circuit can be modified to yield non-saturating operation, 
by using the emitter biasing method employed to provide non-saturating 
operation in the RC coupled flip-flop (see Fig. 4.35). 

4.4,2.5, A System of Dynamic Pulse Circuitry 

The circuits shown in Fig. 4.37 have been used'at IBM as the basis 
of a system of logic for a high speed parallel computer application. These 
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FIG. 4 . 3 7 . A dynamic pulse system of circuit logic 

circuits were designed to use high speed p -n-p drift transistors and to 
operate at a pulse repetition rate of 10 Mc. The input pulses are specified 
to be in the form of a one-half cycle sine wave with an amplitude of —1 
volt and a maximum width of 40 nanosec. A noteworthy characteristic of 
the system is that only one power supply is required. 

The AND and OR gates are similar in appearance to the direct coupled 
transistor gating circuits with dc input signals described in Section 
4.4.2.4. These circuits differ principally in that the base input signals are 
pulses and the output of each circuit is fed to a pulse transformer which 
can drive several loads. 

The pulse storage circuit was designed to operate with asynchronous 
inputs and to produce synchronous outputs. The storage function is 
achieved essentially by the storage of charge on the capacitor C. Pulse 
inputs to transistor T2 charge the capacitor C, and the charging current 
produces an output pulse. The charge on C will gradually decrease, but 
for a period of 10 μsec will be large enough to inhibit further inputs to 
Γ 2 . During this period, inputs to Γ 2 will not produce an output, but will 
reestablish the charge on C, allowing an additional 10 μsec of storage. 
An input to Γι will remove the charge on C and allow the next input to 
Γ 2 to produce an output. The readout process destroys the stored informa­
tion, and it must be rewritten if it is to be retained. 

4.4.2,6. A Gated Pulse Amplifier System 

The circuits shown in Fig. 4.38 have been used at Sylvania Electric 
Products, Inc. in a system designed to operate on both dc and pulse 
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type signals. One of the basic circuits of this system is the pulse pedestal 
gate, shown in Fig. 4.38 (a) . It is used for the detection of coincidence 
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FIG. 4.38. A gated pulse amplifier system of circuit logic, (a) pulse-pedestal gate, 
(b) pulse amplifier, (c) combined pulse-pedestal gate and pulse amplifier. 

between the dc output of a static nip-flop and a clock pulse. When the 
input voltage from the flip-flop is relatively high, current flows through 
Ru R2, Di, and the transformer secondary winding, while D2 is cut off. 
When a positive pulse is applied across the transformer secondary wind­
ing, Di is cut off and D2 conducts, allowing the gated current to flow in 
the load circuit. When the input voltage from the flip-flop is relatively 
low, the current supply is effectively removed, thereby disabUng the gate. 
The capacitor is provided to insure that a fast change in the pedestal level 
does not of itself produce an output pulse. The circuit is relatively insensi­
tive to input pulse level variations. 

Another major circuit of this system is the pulse ampUfier shown in 
Fig. 4.38 (b) . It is used wherever a large output current is required, as 
in the case where many flip-flops and gates must be driven by a single 
source. The function of the capacitor is to improve the coUector current 
rise time by providing a large initial surge of base current. After the 
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capacitor is charged, resistor Ri Umits the drive current to minimize 
minority carrier storage effects. The discharge of the capacitor at the end 
of a pulse period facihtates rapid recovery of the transistor. In Fig. 
4.38(c) the pulse amplifier is combined with the pulse pedestal gate to 
provide current gain for the gate output. This combination is used when­
ever the pulse output of a gate must pass through two or more other 
gates. The function of the diode D is to prevent saturation of the transistor. 

For AND and OR operations in addition to those provided by the pulse-
pedestal gates, conventional diode gates are used. However, as shown in 
Fig. 4.38(d), the output of each dc level gate is fed to an emitter follower 
output circuit. This effectively isolates the diode gates from their load. 
The inputs of these gates are obtained from the outputs of static nip-
flops, and the dc outputs of the emitter followers may be used for the dc 
level inputs to the pulse-pedestal gates. The output circuit load itself 
serves as the load resistor of the emitter follower circuit. 

The static flip-flop circuit used in this system is shown in Fig. 
4.38(e). It was designed to operate at a pulse repetition frequency of 
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FIG. 4 . 3 8 . (Continued from page 1 4 5 ) : (d) dc gates, (e) flip-flop. 
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1 Mc. The circuit is basically the Eccles-Jordan configuration with push-
pull emitter followers incorporated in the feedback paths from the col­
lector of each transistor to the base of the other. The purpose of the 
emitter followers is to isolate the flip-flop transistors from loading effects 
of the internal regenerative coupUng circuits and the external load. They 
permit faster switching action, and are capable of driving several gates. 
The emitter followers, Γβ and Γβ, are required only when a dc AND gate 
is to be driven. They then supply a negative drive current and Γ 3 and Γ 4 
discharge the load capacitance. For all other loads Γ 0 and Tq can be 
replaced by diodes, as indicated in Fig. 4.38(e). Γ 3 and Γ 4 then supply 
the drive currents and the diodes discharge the load capacitance. The 
function of the other diodes is to hold the collector of the conducting 
transistor at a voltage ample to keep it out of saturation. 

4.4.2 J. Systems Based on Current Switching Circuits 

All the transistor switching circuits described thus far operate in 
what may be termed a voltage mode. In this section, systems of logic are 
described which are based on the use of circuits operating in a so-called 
current mode, wherein the current from an essentially constant current 
source is switched. Circuits of this type may be designed for either satur­
ating or nonsaturating operation. The discussion following will be con­
fined to nonsaturating current switching systems, these being capable of 
higher speed operations. 

4.4.2.7.1. NONSATURATING COMPLEMENTARY CURRENT 
SWITCHING SYSTEMS 

In the design of high speed circuits, consideration must be given to 
the delays that may be introduced by minority carrier storage as well as 
those due to the usual circuit parameters that limit frequency response. 
The greater the saturation delay due to minority carrier storage, the less 
time will there be available for transition to the switching threshold of 
the stages being driven. Therefore, by operating the transistor in a region 
out of saturation, the requirements on the rise and fall times of a chrcuit 
for a given over-all delay may be reduced. 

While the circuits to be described in this section could use other 
transistors, they were designed for use with drift type transistors, and to 
introduce delays of only 20 nanosec per circuit. Circuits using these tran­
sistors are not only simple and relatively insensitive to noise, but 
also capable of a high frequency of operation. Also, the characteristics 
of drift transistors are such that their most favorable operation is found 
in a higher voltage, higher current region where the circuits are non-
saturating. To allow operation of the transistor within this optimal region 
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FIG. 4.39. Complementary current switches 

These circuits are simply differential amplifiers in which the circuit para­
meters are chosen to allow the transistors to operate in a region of good 
frequency response and low collector capacitance. In the p -n-p circuit, 
one input is referenced to ground, and in the n-p-n circuit one input is 
referenced to - 6 volts. The swing of the input signals in either circuit is 
just enough to switch current completely into either transistor. In the 
p-n-p circuit, when the input is at +0.4 volts, Ti is biased off and T2 is 
conducting, and when the input is at - 0 . 4 volts, the reverse situation 
occurs. To make the output swing about —6 volts, a small current bias 
is added through the resistor returned to the - 1 2 volt supply. For the 
p -n-p circuit, the output voltage swing is from —5.6 to —6.4 volts. 
Because of the voltage shift within each switch, the output of one switch 
cannot be coupled directly to the input of another of the same type. 
However, switches of opposite types can be directly coupled as observa­
tion of the input and output signals of each indicates. 

Gating circuits may be formed from the basic current mode switch 
by connecting transistors in parallel with Γι in either the p -n-p or n-p-n 
circuit. Figure 4.40 shows a three input gate formed by adding two tran­
sistors in parallel with Γι of the p -n-p current mode switch. A similar 
gate constructed of n-p-n transistors would have outputs (ABC) and 
(A + Β + C) corresponding to the outputs (A + Β + C) and ABC of 
the p -n -p gate shown in Fig. 4.40. Because these gates have two useable 
outputs, each of which is the complement of the other, there is no need 

with low signal voltage swings, it is necessary that the circuits used be 
capable of controlUng the operating region of the transistor so that it is 
kept within specified voltage and current ratings. These requirements 
are satisfied by using a transistor as a current generator driving other 
transistors. These circuits may be either ac or dc coupled. 

Representative p-n-p and n-p-n current switches that can serve as 
the basis of a current switching system of logic are shown in Fig. 4.39. 



4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 149 

, - l2V -I2V 

o ABC 

FIG. 4.40. A p-n-p complementary current switch gate 

for a separate inverter building block in the system. As a result, there is 
also a reduced over-all delay in long logic chains frequently including 
inverters. Complex switching functions can be constructed by combining 
circuits similar to the one shown in Fig. 4.40. For example, assume a 
circuit similar to the one in Fig. 4.40 is used to generate φ + Ε) and DE-
If these two output points are connected to the output points of 
{Ä + Ε -\- C) and ABC, respectively, in Fig. 4.40, the complementary 
functions produced at those points by the resulting circuit would be 
{A Λ- Β + C)(D + Ε) = (ABC + DE) and (ABC + DE), It is pos. 
sible to generate any function using either p -n -p or n -p-n gates exclu­
sively because each contains inversion in addition to its other logical pro­
perties. However, in general, use of both types of circuits will enable 
switching functions to be generated with fewer transistors than if only one 
type is used. 

A flip-flop circuit can be formed by intercoupUng a p -n -p and an 
n-p-n current mode switch. A flip-flop formed in this manner is shown 
in Fig. 4.41. Note that the direct rather than the inverted output of each 

%6V ''-IZV 

FIG. 4.41. A complementary current switch flip-flop 

switch is coupled to the base of the other. The circuit is set to one state 
or the other by means of a pull over transistor added in parallel with 
each switch. An OR function can be incorporated into each of the flip-
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FIG. 4.42. Complementary current switches 

ceding section. In the p -n -p switch, the constant current at point ρ will 
flow through whichever transistor has the more negative base voltage. 
Therefore, either Γχ or T2 will conduct a constant current, according to 
whether the input to Γι is greater or less than the bias voltage on Γ 2 . 
Operation of the n-p-n switch is similar. Both circuits can be made non-
saturating because collector current is controlled. These circuits are not 
only suitable for high speed switching, but, because of the large voltage 
swings employed, relatively insensitive to noise. 

If output number 2 is not required, a simplified form of the current 
switches may be formed. Figure 4 . 4 3 shows the simpUfied complementary 

Output 

Input 

"+367 -36V 

FIG. 4.43. Simplified complementary current switches 

current switches in which transistors Γ 2 and Γ 4 of Fig. 4 . 4 2 have each 
been replaced by a semiconductor diode. 

flop's input circuits by adding transistors in parallel with the pull over 
transistors. 

4 . 4 . 2 . 7 . 2 . A SYSTEM BASED ON NONSATURATING COMPLEMENTARY 
CURRENT SWITCHING AND INHIBITING CIRCUITS. The basic nonsatura­
ting complementary current switches used in this system are shown in 
Fig. 4 . 4 2 . They are essentially the same as those described in the pre-

Output * 1̂̂^ } \ ^Output^Z 
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A modification of the basic p -n -p complementary current switch, 
referred to as an inhibitor, is shown in Fig. 4.44. When Γ 2 conducts, 

To emitter of n-p-n 
switch to be inhibited 

FIG. 4.44. p-n-p complementary current inhibitor 

its entire collector current flows into the common emitter resistor of the 
n-p-n current switch to which the collector of Γ 2 is connected. This brings 
the emitters of the n-p-n switch to ground potential (provided that Re 
is suflSciently less than the common emitter resistor of the n-p-n switch). 
Because the signal input to the n-p-n switch can never be more positive 
than ground, both transistors of the n-p-n switch are back biased, and 
both of its outputs will be +5 volts regardless of the input. Thus the 
n-p-n switch is inhibited. The diode to ground prevents saturation of 
T2 under dc worst case conditions. The other coUector of the inhibitor 
can either be connected to a - 5 volt supply through a resistor, to provide 
a regular p -n -p switch output, or used to inhibit another n -p-n switch. 

Figure 4.45 is a schematic of a simpUfied flüip-flop circuit formed from 

. 5 V n r 

-47«—e^-

-36V 

3V' 
«Output 

Reset 

+36V 

FIG. 4.45. SimpUfied complementary current flip-flop 

an inhibitor and two simpUfied n-p-n current switches. The fUp-flop is 
triggered by momentarily switching off the "on" transistor. Since it has 
outputs only of positive sign, it can drive only p-n-p gates and switches. 
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An important feature of this flip-flop is that both AND and OR gates can be 
incoφorated within it, thus allowing appreciable savings in components in 
a large switching system, AND gates may be incorporated by adding tran­
sistors in parallel with Γ3 and Γ4, and OR gates incoφorated by paralleling 
transistors with Γι and Γ2. 

Figure 4.46 is a schematic of a flip-flop with both positive and nega-

p-n-p Inhibitor p-n-p Inhibitor 

FIG. 4.46. A complementary current flip-flop with four outputs 

tive outputs and capable of driving n-p-n as well as p -n -p circuits. 

4.5. Magnetic Core Systems of Circuit Logic 

4.5.1. INTRODUCTION 

A magnetic core is a small toroid formed of a material exhibiting 
ferromagnetic properties. Representative dimensions for a core used in 
logic circuits are inner and outer diameters of 0.08 in. and 0.12 in. 
respectively, and a thickness of 0.03 in. The magnetic core is a versatile 
computer element capable not only of being switched from one stable 
state to the other within microseconds but also of remaining in a specified 
state without a continuous dissipation of energy. The use of the magnetic 
core as a gating element will be described first. In the succeeding section 
its use in information storage applications will be described. 

Let us consider briefly the switching properties of a magnetic core. 
Figure 4.47 shows the idealized hysteresis loop of a ferromagnetic ma­
terial. If a core is magnetized at the point of the loop designated as Br 
and is subjected to a negative magnetic force, — Hm, it will traverse the 
downward path indicated by the arrow, and arrive at the point on the 
loop, Oe. When the magnetic force is withdrawn, the core will return to 
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the point -B , . . While the application of -Hm to a core in the Br state 
produces a large change of flux ΔΦι, the application of - H m to a core at 
-Br produces a small change of flux ΔΦ^. Similar remarks apply when 
-\-Hm is appUed to a core either at state -Br or +Br, the point being that 
once a core has been switched to a stable state by a magnetic force, it 
wUl remain in that state until a comparable magnetic force of opposite 
sign is appUed. (Successive appUcation of forces of Uke sign essentiaUy 
leave the core unaffected). This behavior is analagous to that of a set-
reset type of flip-flop wherein a signal on an input line wiU have an effect 
only if the preceding input signal was on the other input Une. When an 
appUed magnetic force adequate to switch the core is withdrawn, the core 
wiU return to a state of positive or negative magnetic remanence ( + 5r or 
-Br) according to whether the appUed force was positive or negative, 
respectively. The two stable states +Br and —Br define the 1 and 0 state, 
respectively. 

The hysteresis loop shown in Fig. 4.47 is, as stated, ideaUzed since 
discontinuous breaks are not obtainable with existing ferromagnetic ma­
terials. The hysteresis loop of a representative ferromagnetic material 
which approaches the ideal is shown in Fig. 4.48. The more rectangular 

Β (gauss) 

-H 

FIG. 4 . 4 7 . Idealized hysteresis loop of a 
ferromagnetic material 

FIG. 4 . 4 8 . Hysteresis loop of a 
representative ferromagnetic material 

in shape the hysteresis loop, the more suitable is the material as a switch­
ing element. 

The operation of a simple magnetic gate wiU now be described. Con­
sider the circuit shown in Fig. 4.49. Three windings (two input windings, 
A, D, and one output winding C) are formed on a toroid of suitable mag­
netic properties. Assume that the core is initially in magnetic state —B^, 
(see Fig. 4 .48) . If a positive current pulse of sufficient magnitude is 
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Input 

Inpu ts 

FIG. 4 . 4 9 . A simple magnetic core gate 

applied to winding A, the magnetic state of the core moves to + Sm. On 
removal of this pulse, the magnetic state recedes slightly to +Br. If, sub­
sequently, a negative current pulse is appUed to Β (i.e., one producing 
the opposite magnetizing effect as that produced by the pulse at A), the 
magnetic state of the core is switched to —Bm, (receding subsequently 
to -Br). 

It is clear that signals are required on both input windings alter­
nately in order to obtain an appreciable signal on the output winding. 
Consecutive inputs on only one of the input windings (without an inter­
vening input signal on the other input winding) produces only negligible 
output signals, since successive application of forces of like sign essentially 
leaves the core undisturbed. Specifically, two consecutive signals on winding 
A produce a change of flux (B^-Br), while two consecutive signals on 
winding Β produce a change of flux —{B^—Br). 

In the course of forming the desired output signal, certain other 
undesirable signals may be formed: A signal on an input winding may also 
induce a signal (of opposite sign to the desired output signal) in the output 
winding C. Also, a signal on one input winding may also cause a feed­
back signal into another input winding as well as produce an output signal 
on winding C. These unwanted signals may be effectively removed, if neces­
sary, by means of appropriate circuitry. 

A symbolic representation useful for describing magnetic core logic 
circuitry is shown in Figure 4.50. The core is represented by a circle. A 

- ψ -

(b) C (c) 

FIG. 4 . 5 0 . A symbolic representation for magnetic core logical elements 
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/V, ^ / 

(b) 

FIG. 4.51. Schematic of a magnetic core in terms of (a) a controllable transformer, 
(b) a variable impedance 

schematics, conventional dot notation is used to indicate winding polarity, 
with the added definition that current into a dot terminal corresponds to 
a negative magnetizing force, and wiU set the core to the 0 state. In 
Fig. 4.51(b), if the core is in state 1 when current, /, is appUed the 
core wiU switch. A relatively large counter-emf, e, wiU be generated in 
winding Ni and the core wiU look like a relatively large impedance to 
the driving source. If the core is in state 0 when / is appUed, the 
counter-emf wiU be smaU and the core wiU look like a smaU impedance 
to the driving source. 

4.5.2. TRANSFER LOOPS (Loev et ai [1956]) 

Before continuing with a description of different types of gating cir­
cuits, the basic types of transfer loops that may be used for coupUng these 
circuits to one another wiU be considered. A transfer loop is a circuit 

line with an arrow pointing to the circle represents an input that sets 
the core to the binary state indicated just inside the circle. Open arrows 
imply pulses, and closed arrows dc signals. Double arrowheads of either 
type serve to indicate that the existence of this input will hold the core 
to that state despite the presence of other input signals. The symbol on 
the input Une may indicate either a timing input, or designate the source 
of the input signal (and the time when it appears). Lines origmating at 
the circle represent output circuits. A signal is present on the output line 
when the core is switched to the state shown at the ori^n of the Une. 
In Figure 4.50(c), there is a significant output only when the core is 
switched from a 1 to a 0 state by a signal on Une C. This is a conditional 
transfer circuit since an input on B, which also sets the core to the 0 
state, does not produce an output. 

A magnetic core may be used either as a controUable transformer or 
as a variable impedance, as shown in Fig. 4.51(a) and (b) . In both 
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that connects two or more cores for the purpose of information transfer. 
A transfer loop normally includes an output winding of a transmitting 
core, an input winding of a receiving core, and one or more diodes. The 
three types of transfer loops which will be discussed, namely the single 
diode loop, the spUt winding loop, and the inhibit loop, permit synthesis 
of all logical circuitry of a digital information processor. 

A basic transfer loop is the so-called single diode loop. It permits 
permanent storage, and unconditional transfer of information to one or 
more receiving cores when an advance current is appUed to the trans­
mitting core. Such a loop, connecting core A to core B, is shown in 
Fig. 4.52. According to the symbolic representation defined, if an "input" 

Input ^ N^f^ 
Output 

FIG. 4 . 5 2 . Schematic and symbolic representation of a single diode transfer loop 

current is applied to winding N3, core A wiU be switched to state 1 (if it 
is in state 1 at the time the input current is appUed, no effect is produced), 
and if an "advance" current is appUed to either winding Noi or ÍV02, 
core A wiU be switched to state 0 (if it is in state 0 already, no effect is 
produced). The only condition for which the appUcation of an "advance" 
current to core A can produce an effect on core Β is if at the time of 
application, core A is in state 1 and core Β in state 0. Then, as a result 
of the advance current being appUed to core A, core Β wiU be switched 
to state 1. This occurs as foUows. The advance current, by definition, 
switches core A to state 0. This induces a signal voltage F i in winding 
Nu causing a transfer current U to flow in the transfer loop. If the diode 
characteristics and the design of windings Λ̂ ι and Ν2 are proper, the trans­
fer current flowing through Λ̂ 2 will be sufficient to switch core Β to state 
1. Additional receiving cores may be switched by connecting their input 
windings in series with the transfer loop. To show why the advancing of 
core Β produces no effect on A it is only necessary to consider the case 
when Β is in state 1 and A in state 0. The current h wiU switch Β to 
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state 0 and induce a voltage in winding N2. This voltage produces a cur­
rent in the transfer loop tending to switch A to state 1. However, the cur­
rent is Umited to a value less than that required to switch A because of the 
relatively high impedance of Ni relative to N2, and the nonUnearity of 
the diode which causes it to present a higher impedance to smaUer input 
signals. The reason why the appUcation of current on the "input" Une 
of core A has no effect on core Β is that this current induces a voltage 
across Λ̂ ι opposite in polarity to Vi (see Fig. 4.52), and for which the 
diode presents a high impedance to the flow of current. 

The spUt winding loop, shown in Fig. 4.53, aUows conditional trans-

Input ^ 
- Output 

FIG. 4.53. Schematic and symboUc representation of a split winding transfer loop 

fer between cores and permits logical operations upon isolated cores. It 
is only necessary to consider the operation of this circuit for two initial 
states of ^ , B. First, consider the case where A and Β are both in state 0. 
When the advance current pulse hi is appUed, it divides into branch cur­
rents / i and I2. Since A is in state 0, winding Ni offers negUgible impe­
dance. Since h flows into a dot terminal and I2 into a nondot terminal 
on equal windings of A, the net magnetizing force on A is nearly zero, 
and does not change the state of ^4. If core A is in state 1 and Β in state 
0 when the advance current is appUed, the 1 wiU be transferred from 
A to B. By design, Ni is large relative to other impedances in the transfer 
loop and h wiU be much smaUer than I2, The effect is that a transfer 
current. It, equal to one half the difference of h and I2 flows through a 
winding of N2 turns on core B, and sets Β to state 1. Branch current h 
clears A to state 0. Information can be transferred from A to Β only 
during the application of advance pulse / o i . At all other times one or the 
other of the diodes wiU inhibit the flow of transfer current. A can be 
switched back and forth between the 1 and 0 states during a sequence 
of operations without affecting B. 
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The spHt winding transfer loop is immune to the backward flow of 
signals; the switching of the load core Β by other inputs cannot send 
noise current back to core A. Therefore, a single transmitting core in a 
spUt-winding transfer loop can switch as many as five or six receiving 
cores simuhaneously. In general, this cannot be done with the single diode 
loop, because when the receiving cores are later sensed they have an 
additive effect for the backward flow of current. 

The inhibit loop, shown in Fig. 4.54, is a special form of split-winding 

Input 

Input / j O ^ 

FIG. 4.54. Schematic and symbolic representation of an inhibit transfer loop 

circuit interconnecting cores A and C as shown. This type of loop offers 
a reliable method for conditionally inhibiting the transfer of information 
from one core to another. If cores A and C are in the same state, no 
effect will be produced on core Β when advance current loi is appUed, 
since ¡2 = When A is in state 1 and C in state 0, 12 > h and the net 
magnetizing force appUed to Β is adequate to set it to 1. Conversely, 
when A is in state 0 and C in state 1, Β is set to 0. In all cases, A and C 
wiU both be in state 0 after appUcation of / o i . 

The inhibit loop permits the synthesis of certain logical operations 
that might otherwise be difficult to reaUze. It also has the isolating ad­
vantages described for the spUt-winding transfer loop. 

4.5.3. GATING CIRCUITS. 

Magnetic core realizations of the most commonly used gating circuits 
will be described next. We wiU consider first the operation of negation. 
It may be obtained by a suitable choice of the inputs in Fig. 4.50(c). 
For example, let the input on 4̂ be a timing pulse, ίχ, which uncondi-
tionaUy sets the core to state 1. If the signal to be negated, /?, appears 
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on line Β at time Í2 , the core will be set to state 0 (without producing 
an output), and, therefore, the next shift pulse, ts, appearing on Une C 
does not produce an output on Une D . Conversely, if 3. ρ pulse did not 
occur at time t2 the appUcation of ts wiU produce an output on Une D. 
Thus, D = pt^. 

Two methods of realizing the OR function with single diode transfer 
loops are shown in Figs. 4.55 and 4.56. The circuit in Fig. 4.55 can 
be used when both transmitting cores are energized by the same advance 
pulse, and that in Fig. 4.56 is required when A and C are energized by 

FIG. 4.55. Magnetic core OR gate with 
single advance pulse input 

FIG. 4.56. Schematic and symbolic 
representation of a magnetic core OR 
gate with two advance pulse inputs 

advance pulses occurring at different times. The number of inputs that 
can be mixed into one receiving core is limited mainly by the additive 
effects of 0 output voltages from transmitting cores. The OR function 
can also be obtained by using the spUt-winding transfer loop, e.g., by 
connecting the output windings Λ̂ ι of the two transmitting cores in series. 

Two magnetic core AND circuits are shown in Fig. 4.57. The informa-

( a ) (b) 

FIG. 4.57. (a) Magnetic core AND gate formed from "negation" circuits, and 
(b) magnetic core AND gate 
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* Vorndran and Kaiser [1955]. 

tion pulses (which need not occur simultaneously) are designated by 
q, r, and the clock pulses by tu Í2, ts. In Fig. 4.57(a) cores A and C 

each perform a negation, and comprise an OR circuit which sends a signal 
to Β at time ts only if at time Í2 neither q nor r were present. Core Β 
also performs a negation and an output is obtained at time ti only if ρ 
were present at time Í2 , and if neither A nor C had produced a signal at 
the preceding time ts. The AND circuit of Fig. 4.57(b) uses the output 
of one core A to provide the advance current pulse for a second core B. 
This advance current exists only if ρ had occurred and can produce an 
output from Β only if q had occurred. Clock pulse t^ is needed to clear 
Β for the case where q occurs and ρ does not. 

The operation of these core circuits is sequential even within a single 
switching function unit, in contrast to the operation of diode logical 
circuits. Therefore, in combining a number of units, it must be arranged 
that information pulses originating in various units at different times, 
arrive at a combining unit within a prescribed time interval. One method 
of satisfying this requirement is to use delay cores, another is to postpone 
the extraction of data from one or more of the originating units. The 
first scheme requires extra cores, the second a greater variety of shift 
(timing) pulses. However, the use of multiple timing sources does not 
necessarily result in a proportional increase in the number of power amph-
fiers. In any large system a number of power amplifiers will be necessary. 
If multiple timing sources are used, these amphfiers simply are distributed 
differently than in single or double source systems. Some of the advan­
tages of magnetic core logic circuitry are low power and space consump­
tion, high reliability of operation and a long expected Ufe. Also, since 
cores are low impedance devices they are relatively free from pick-up 
and cross talk. The limitations of the magnetic core system of logic de­
scribed are its serial nature, its inflexibility for certain applications, and its 
presently limited frequency of operation. The first of these Umitations may 
be alleviated by use of multi-input magnetic core gates in conjunction with 
transistor flip-flops as described in the section foUowing. 

4.5.4. A MuLTi-iNPUT CORE GATE, TRANSISTOR FLIP-FLOP SYSTEM* 

A schematic of a multi-input magnetic core gate is shown in Fig. 4.58. 
The actual number of control windings on a core is variable. Whereas, in 
the diode gates described in Section 4.2, the steady state output of each 
gate was interrogated by a voltage clock pulse, in this arrangement a 
current clock pulse is used to interrogate the state of magnetization of 
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FIG. 4.58. A multi-input magnetic core gate showing the clock and
output waveforms

the core. The form of the current pulse applied to each core is also shown
in Fig. 4.58. The preparatory clock pulse applies a small positive magneto­
motive force to the core and the main clock pulse a large negative mag­
netomotive force. If there is no current in any of the control windings,
application of the composite clock pulse causes the magnetic state of the
core to move along a hysteresis loop to saturation, first in the positive
direction, then in the negative direction, and finally to be left at a point
of negative remanence. Whenever a current is applied to one of the
control windings, it is in the direction that produces a negative magneto­
motive force. Even if only one control winding has current applied to
it, the magnetic state of the core is sufficiently biased in the negative
direction to prevent switching of the core to a state of positive saturation
by the preparatory pulse. When current is present in more than one con­
trol winding, the core is biased even further in the negative direction.
When current is not present in any control winding~ the application of the
composite clock pulse causes a voltage to be induced in the control wind­
ings, and the output winding in the form of a small negative signal due
to the preparatory pulse, followed by a large positive signal due to the
main clock pulse. When current is present in one or more control wind­
ings, the voltage induced in these windings is essentially zero. If the
presence of current in a control winding is defined to represent 1 and the
presence of a voltage pulse in the output winding also represents 1, then
the arrangement shown in Fig. 4.58 acts as a multi-input NOR gate. An OR
gate may be formed by connecting the output windings of two or more
cores in series.

The currents in the cores may be controlled by vacuum tube or tran­
sistor flip-flops. A number of control windings, on different cores, can
be connected in series across the output of a single flip-flop, though the
voltage induced across these control windings by the flow of current in
other windings must be considered in the design of the flip-flop. Either
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a single output winding, or a number of them in series serve as inputs to 
a set-reset flip-flop. Accordingly, the output windings are referred to as 
trigger windings. When a 1 is produced on a trigger winding, the small 
negative pulse is blocked by a series diode and the large positive pulse 
used to trigger a flip-flop. When a 0 is produced on a trigger winding, 
the output signal may be considered negligible for a single core. However, 
when a 0 is produced on each of several trigger windings connected in 
series, the effect is compounded. The total number that can be so con­
nected to a flip-flop input is limited by the voltage ratio of a 1 and a 0 
on a trigger winding. Also, a clamping diode may be required on the 
flip-flop input if a 1 signal can appear on several series-connected trigger 
windings simultaneously. In both of the cases described, a larger number 
of input trigger windings can be accommodated by separating them into 
two or more series combinations. 

The number of control windings per core is Umited by the wire size, 
and, if a transistor flip-flop is used, the cutoff current of the output tran­
sistor. When all the control windings on a core are in the 0 state, the 
magnetomotive force due to the sum of these currents must be consider­
ably less than that produced by a 1 on one control winding. Otherwise, 
the core will be negatively biased to the point where appUcation of the 
clock pulse wiU not switch it. 

Though each control winding is functionaUy equivalent to a diode in a 
diode gate, whether this represents a saving is questionable because of the 
expense of forming these windings compared to the very low price of diodes 
for frequencies under 250 Kc, the approximate limit of operation of the 
core circuits. While the only gating power required is clock pulse power, 
even at these frequencies there are problems in generating and transmitting 
the large currents required. The system also suffers from inflexibility in 
several respects. For example, because the loading on the gates is critical, 
the actual load must be individually computed for each network, and a 
change in one or more switching functions usuaUy necessitates a recompu-
tation of the loading. Also, if pyramiding is employed, in general more 
than one clock period is required to generate a function (since only OR 
combinations of gate outputs can be formed without the use of additional 
gates) and, conversely, if all switching functions are to be formed in one 
clock period, the savings of pyramiding cannot be reaUzed. Though the 
system is flexible with respect to the choice or number of dc vohage levels, 
because the flip-flop inputs and outputs are ac coupled through the 
gate windings, the multi-input core gate did not come into any appreciable 
use for logical circuitry because of its limitations compared to other types 
of circuitry. For example, the transistor NOR circuits (section 4.4.2.3) are 
comparable in cost, do not have the logical deñciencies described, and 
permit a higher frequency of operation. 
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4.5.5. THE TRANSFLUXOR 

The transfluxor* is a magnetic core device composed of a material 
with a nearly rectangular hysteresis loop and having two or more aper­
tures. It is similar to other core devices in that its response to an input 
signal is controlled by a setting pulse which it previously received and 
stored. However, the process of generating an output in the transfluxor 
does not affect the setting pulse, so a single setting pulse can be stored 
and then used to control the device indefinitely. The transfluxor can be 
used not only as an on-off switch, but also can be set to yield an output 
at any desired level between "oft" and maximum "on". 

The principles of operation and general properties of the transfluxor 
will be described briefly with reference to a two-aperture unit as shown 
in Fig. 4.59. The two circular apertures form three distinct legs in a mag-

Blocked Unblocked 

FIG. 4.59. Schematic of a two-aperture transfluxor and symbolic representation 
of blocked and unblocked states 

netic circuit. The windings Wi, on leg 1 and Ws and WQ on leg 3 are shown, 
for the sake of simpUcity, with single turns. Assume that a current pulse 
is appUed to Wi of direction and magnitude such that there results a 
clockwise flow of flux which saturates legs 2 and 3. Consider now the 
effect of applying an ac current to w s , producing an alternating mmf 
along a path surrounding the smaUer aperture. When this mmf has a 
clockwise or counterclockwise sense, it wiU tend to produce an increase 
in flux in leg 3 and a decrease in leg 2, and vice versa, respectively. In 
neither case are increases in flux possible since the legs are already 
saturated. Consequently, there can be no flux flow. When the transfluxor 
is in this state, no vohage is induced in the output winding WQ, and the 
transfluxor is said to be in a blocked state. 

If there is appUed to Wi a current pulse of direction and magnitude 
such that a counterclockwise mmf is generated intense enough to produce 
a mmf in closer leg 2 larger than the coercive force but not large 
enough to aUow the mmf in leg 3 to exceed the critical value, the satura­
tion of leg 2 wiU reverse but leg 3 wiU not be affected. In this condition, 
the alternating mmf around the small aperture resulting from the ac cur-

* Rajchman and Lo [1956], [1955]. 
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rent in W:^ will produce a corresponding flux flow around the small aper­
ture. This flux flow, which may be thought of as a back-and-forth transfer 
of flux between legs 2 and 3, will reverse indefinitely with each reversal of 
phase in the ac current. The alternating flux flow induces a voltage in the 
output winding Wo during this "unblocked" or "maximum set" state of the 
transfluxor. 

To summarize, the transfluxor is blocked when the directions of rema­
nent induction of the legs surrounding the smaller aperture are the same, 
and unblocked when they are opposite. In the blocked state the magnetic 
material around the small aperture provides essentially no coupling be­
tween the primary, >V3, and secondary, Wo, windings, while it provides a 
relatively large coupling between these two windings in the unblocked 
state. 

A limit is imposed on the permissible amplitude of the ac by the fact 
that, when in the blocked state, a sufficiently large ac in the phase tending 
to produce counterclockwise flux flow could change the flux in leg 3 by 
transferring flux to leg 1. This limit is increased by the use of unequal 
hole diameters, making the flux path via legs 1 and 3 much longer than 
via legs 2 and 3. 

The driving (clockwise) pulses, which cannot unblock a blocked trans­
fluxor can be arbitrarily large. As a result, when the transfluxor is un­
blocked by proper setting, these pulses may not only provide the required 
minimal reversing magnetizing force around the small aperture, but also 
substantial power to deliver large output currents. The priming (counter­
clockwise) pulses must be of sufficient magnitude to provide the required 
magnetizing force around the small aperture, but insufficient to provide 
it around both apertures. 

In the preceding description of the on-off operation of the transfluxor 
a "maximum set" state was referred to. However, the transfluxor can also 
be set to any level in a continuous range. Once set, it will deUver in­
definitely an output proportional to the setting. 

When priming and driving, the flux in leg 1 is not affected by the 
interchange of flux between legs 2 and 3, so there is no coupUng between 
the input and output circuits. When setting, there is also no coupUng 
between input and output circuits because no flux is changed in leg 3, 
but only in legs 1 and 2. The same appUes when blocking occurs after 
driving, rather than priming, since the drive pulse has already saturated 
leg 3 in the direction of blocking and no further flux change is possible. 

A hysteresis loop as rectangular as possible is desirable because: 
(1) it lessens the undersirable interchange of flux in the blocked condition 
due to imperfect saturation of legs 2 and 3; (2) it lessens the coupUng 
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FIG. 4 . 6 0 . Schematic of a three-aperture transfluxor and symbolic representations 
of different magnetic states 

This device can be operated as a two-input sequential gate, i.e., an out­
put is produced if the two inputs / I , Β are applied in the order A, B, and 
no output is produced if they are appUed in the order B, A or if one input 
is absent. The operation is as foUows: After a clear pulse, the legs, 2, 3, 
and 4 are saturated downward. The output flux path around the last aper­
ture via legs 3 and 4 is blocked and neither the prime nor the drive pulse 
can produce any flux change. The flux path around the second aperture 
via legs 2 and 3 is also blocked so that the signal Β cannot produce any 
flux change. However, the flux path around the first aperture via legs 1 
and 2 is not blocked and the signal A can reverse the direction of flux in 
leg 2 by transfer of flux to leg I. li A were present and leg 2 were re­
versed, the flux path via legs 2 and 3 is unblocked, with the result that 
the occurrence of Β can now reverse the flux of legs 2 and 3. This returns 
leg 2 to its original downward direction, reverses leg 3 and unblocks 
the flux path via legs 3 and 4. The output flux path is now imblocked. 

between legs 1 and 3, providing better isolation of control and output 
circuits; (3) it provides a sharper threshold for the setting current pulse, 
thereby making the transfluxor more suitable for switching applications. 

The transfluxor exercises control by means of the amount of flux 
which can be transferred for an indefinitely long time between legs 2 
and 3, and which can be set by a single pulse to any desired value in a 
continuous range. It operates as if the output magnetic circuit consisted 
of a conventional one-apertured core with the essential property that the 
effective cross-sectional area of that core can be adjusted by a single set 
pulse to any desired value from practically zero to a maximum value 
equal to the physical cross-sectional area of its smallest leg. 

The use of more than two apertures creates many new modes of 
flux transfer and increases the kind and number of switching and storage 
functions. Consider the three-apertnre transfluxor shown in Fig. 4.60. 
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and a succession of priming and driving pulses will produce an output 
indefinitely. 

A five-aperture transfluxor is shown in Fig. 4.61. This device may be 

Set i : : 

SeiD 

S e t ^ 

FIG. 4 . 6 1 . Schematic of a ñve-aperture transfluxor and symbolic representations 
of blocked and unblocked output states 

operated as a four-input AND gate. The occurrence, in any order, of all 
four input signals is required to open the gate. The operation of the unit 
is based on the fact that the output flux via legs 1, 2, 3, and 4 around the 
central anerture can be blocked by any one of the four legs, and is un­
blocked only when the sense of flux saturation around the central hole is 
the same in all legs. There are two unblocked states corresponding to 
two senses of flux rotation around the central aperture. One of these 
states may be eUminated by using one leg as a reference, yielding a three-
input gate. 

4.6. Superconductive Switching Elements 

Circuit elements still under development which show great promise 
for computer applications are those based on the use of superconductive 
materials. In metals not classified as superconductors the electrical resist­
ance drops as the temperature is lowered until a point is reached (in the 
lew temperature region above absolute zero) where the resistance remains 
constant as the temperature is lowered further. In a superconductor the 
resistance in the low temperature area drops abruptly from a value that 
varies between 10-^ and 10-^ of room temperature resistivity to a value 
which, as far as has been determined, is equal to zero. The point at which 
this occurs is referred to as the critical temperature, Tc, or superconductive 
transition temperature.* Another important property of superconductors 
is that the appHcation of a magnetic field greater than a critical value, 

• There are 21 elements, as well as a number of alloys and compounds, that are 
superconductors with transition temperatures ranging between 0°K and 17°K. 
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destroys superconductivity. The value of He in the region O '̂K ^ Γ ^ 
is approximately equal to HQ [ l - i T / r j ^ ] , where HQ is the critical mag­
netic field at Γ = 0°K. The critical magnetic field curves in Fig. 4.62 

2 4 6 
T e m p e r a t u r e ®K 

FIG. 4 . 6 2 . Critical magnetic field, H^, curves for several superconductors 

show that increasing the magnetic field lowers the transition temperature. 
TTie area below each curve represents a region of superconductivity and 
the area above a region of normal resistivity. For example, if lead is held 
at a constant temperature of 5*K in a magnetic field of 200 oersteds, it 
will display superconductivity, while if the applied field is increased to 600 
oersteds the superconductivity will be destroyed. The existence of a super­
conductive transition temperature and a critical value of magnetic field 
provides the nonlinearity required for switching. A superconducting switch­
ing element called a cryotron, invented by D. A. Buck, at M.I.T., is 
based upon exploitation of these phenomena. The temperature of the 
element is held constant and it is switched from a superconducting to a 
normal state by application of a magnetic field greater than He- For each 
superconductor, a choice of temperature about 0.2*Κ less than the zero 
field transition temperature allows operation with small magnetic fields— 
between 50 and 100 oersteds. For tantalum, this operating temperature 
is about 4.2°K. The fact that this corresponds to the boiUng point of 
heUum at a pressure of 1 atm., and therefore the temperature of most 
storage tanks for liquid heUum, is one reason for the use of tantalum in 
the early experiments. 
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In an early experimental form, the cryotron consisted of a 1-in. strip 
of 0.010 in. tantalum wire inside a single layer control winding of 0.003 
in. insulated niobium wire (shown schematically in Fig. 4 .63(a)) . Current 

( a ) (c) 

FIG. 4 . 6 3 . (a) Wire-wound cryotron, (b) crossed-film cryotron, (c) block diagram 
of a cryotron 

in the control winding creates a magnetic field which causes the central 
wire, designated as the gate wire, to change from a superconducting to 
a normal state. The control winding is a superconductor with a relatively 
high transition temperature. Niobium was used for this reason and be­
cause of its good ductility and tensile strength. Because of its relatively 
high value of critical field at the operating temperature, the control wind­
ing remains in a superconducting state at all times. Average power dis­
sipation per cryotron is about 10-* watts. A unique property of the cryo­
tron compared to vacuum tubes or semiconductors is that control is 
independent of the sign of the control current and, therefore, when the 
gate circuit is in its superconducting state, there may be current now 
in either direction. 

Before continuing with a description of the cryotron, two other im­
portant properties of superconductors will be described: (1) The Meiss­
ner effect, namely, because in the superconducting state the magnetic 
induction is zero, there must be superficial currents which produce an 
internal field that cancels the appUed field. (Actually the currents occupy 
a thin surface layer and the magnetic induction decreases to zero within 
a very small penetration depth which for most superconductors is of the 
order of 10"^ cm), (2) If the amount of current a superconductor carries 
exceeds a certain limit, the superconductivity will be destroyed. For con­
ductors whose dimensions are large compared to the penetration depth, 
the value of this critical current, / c , is that which produces a magnetic 
field. Hey at the surface. The variation of Ic with temperature is similar 
to that of Ho. 

The cryotron acts as a current ampUfier since the resistance of the 
gate can be varied to control current. The condition for current gain is 
that the amount of current in the control winding that produces a critical 
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field is less than the amount of current in the gate circuit that destroys 
superconductivity. When (4πη) > (2 / r ) , η being the number of turns 
per unit length of the control winding, and r the radius of the gate wire, 
one element can be driven by another without intermediate current trans­
formation. 

In pulse circuits, the gate current of one cryotron becomes the control 
current of another. For this condition, the frequency at which the power 
gain becomes unity is given by Rg/Lc, where Rg is the normal resistance of 
the gate circuit, and Lc the inductance, of the control winding. Though Lc 
and Rg are on different cryotrons, the L/R time constant (assuming all 
cryotrons in a network have the same values of L and R) serves as a 
convenient measure of potential operating speed. L/R is independent 
of the cryotron's length, (for L and R each increase linearly with length), 
and decreases as the fourth power of the diameter (for L decreases as the 
square of the diameter, and R increases as the inverse square). 

In practice the frequency of operation of the cryotron turns out to be 
less than what would be expected from consideration of the L/R time 
constant alone. Current through a gate normally conducting raises its 
temperature (in some cases above Tc) and reduces the value of He. 
Because the control winding acts as a thermal insulator, the thermal time 
constant may be several hundred microseconds. Its relative importance 
can be reduced by increasing the number of turns on the control winding. 
This reduces the amount of control current required to produce a critical 
magnetic field at the expense of increasing L and the L/R time constant. 
Eddy current effects, which become relatively greater for smaller gate 
diameters, impose a further limit on the speed obtainable with a wire-
wound cryotron. Magnetic flux, excluded from the gate wire in the 
superconducting state, penetrates into the wire when the superconductivity 
is destroyed by a magnetic field greater than He. The region of normal 
conduction starts as a thin outer shell, and as the flux moves inward, 
eddy currents are induced in this region. The heat generated by the eddy 
currents retards the growth of the normal phase. A similar phenomenon 
occurs in the normal to superconducting transition. Even with the smallest 
wire practical, delays resulting from eddy currents limit the transition 
speed to about a microsecond. 

Various schemes have been proposed to increase the speed of the 
wire-wound cryotron: Since resistivity in the normal state varies over 
several powers of ten among various superconductors, an increase in 
speed may be obtained by using alloys of greater resistivity. Another 
scheme is based on the fact that the superconductive currents are within 
a thin surface layer. Thus, removal of the core of the gate wire would 
increase the resistance in the normal state (in proportion to the ratio of 
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original to new cross-sectional area) without impairing operation in the 
superconducting state. An equivalent arrangement would be to deposit a 
thin layer of superconducting material on an insulating wire. However, 
because of basic speed limitations, as well as difficult production prob­
lems encountered in miniaturization, further development of the wire-
wound cryotron has been discontinued. For faster switching, one of the 
dimensions of the cryotron must be greatly reduced. An approach cur­
rently being investigated is the use of thin metallic films, deposited on a 
glass substrate, for both the control and gate conductors. (Thin film 
memory devices are described in Sections 5.3.6 and 5.3.7). The use of 
stencils in the deposition permits construction of several complete circuits 
at a time and, therefore, greater miniaturization and simpler fabrication. 
It is estimated that about 1000 thin film cryotrons could be contained in a 
cubic inch. 

Films of lead and tin with thicknesses of 10-*^ cm or less are easily 
evaporated. Tin is used for the gate and lead for the control conductor 
because He is much less for tin (Fig. 4.62 shows that at 3**K these values 
are 100 and 700 oersteds, respectively). In the crossed film cryotron 
(shown schematically in Fig. 4.63(b)) a gain > 1 is achieved by using a 
control strip much narrower than the gate strip. L/R time constants of 
about 100 m/isec appear to be obtainable with this type of arrangement. 

A disadvantage of tin is that because its zero field value of Tc (3.7'K, 
see Fig. 4.62) is less than 4.2''K, the boiUng point of helium at at­
mospheric pressure, the heUum cryostat must be operated at a reduced 
pressure. The use of tantalum instead would eliminate this diflBiculty. 
However, suitable evaporated tantalum films are very difficult to produce 
because of tantalum's high melting point and its excellent properties as a 
getter. Films which have been produced thus far have exhibited anomalies 
which, it is believed, are due to impurities introduced during evaporation. 
For example, films formed at 10~^ mm Hg did not become superconduct­
ing even when cooled to 1.5*'K, and films produced at about 10-« mm Hg 
became superconductive only when cooled to 1.6''K. For bulk tantalum, 
the zero field value of Tc is about 4.4**K, as shown in Fig. 4.62. For this 
reason, considerable effort is being expended on developing the technology 
of producing improved thin films. At M.I.T., equipment is being devel­
oped to allow evaporation of films at a pressure of 10-^^ mm Hg. 

Future developments will depend on a better understanding of the 
phenomena of superconductivity, further data on the mechanism of super­
conducting circuits, and a study of the mechanism by which evaporative 
films are formed and the problems of producing films with desired physical 
properties. Until the various factors that influence the structure of the 
film are better understood, it is difficult to tell whether observed super-
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conducting properties are representative of films in general or only of 
those produced by a specific process. Also, the use of new alloys and 
circuits that exploit the special characteristics of the thin film configura­
tion can lead to improved switching times. 

A nip-flop can be formed from two cryotrons by placing each gate 
circuit in series with the control winding on the other cryotron and con­
necting the two branches in parallel. If both branches are superconduc­
tive, the current divides equdly. However, if one is superconducting and 
the other even partly in the normal state, all the current from the supply 
flows in the superconducting branch. Figure 4.64 shows a block diagram 

rC 

0 Input 
^supply 

I Input 

Input cryotrons 

'supply 

Η Flip-flop 

I Output 
'read 

Output cryotrons 

0 Output 

FIG. 4.64, Cryotron flip-flop with input and output cryotrons 

of a cryotron flip-flop with input and output circuits. A pulse appUed to 
the control winding of one input cryotron drives that branch resistive, 
eventuaUy causing aU the current to flow in the other branch. This repre­
sents one stable state. A pulse applied subsequently to the other input 
cryotron estabUshes the opposite stable state. If a number of input cryo­
trons are connected with their gate circuits in series, they function as an 
OR gate, and if connected with their gate circuits in paraUel, as an AND 
gate. For each stable state of the flip-flop, one of the read-out cryotrons 
wiU be resistive and the other superconductive. A read-out pulse, appUed 
at the junction of the read-out cryotron gate circuits, chooses a path 
accordingly. 

4.7. Computing Elements for Gigacycle Operation 
We wiU consider here briefly two types of circuits developed for 

operation at Gc frequencies (10» One, the parametric oscülator, is 



172 4. SWITCHING AND STORAGE CIRCUITS 

based on a nonlinear circuit parameter, and is an example of a microwave 
circuit operating within a frequency band not extending to zero. The other 
is based on the negative resistance property of the tunnel diode and, like 
most of the circuits described earlier, uses base-band signals, occupying 
a band from zero (or near zero) to some upper limit. 

In the phase locked subharmonic oscillator, energy is transferred by 
a nonlinear element from a pump frequency to a lower frequency whose 
relative phase represents the information. The nonlinear capacitance of a 
special semiconductor diode, referred to as a microwave or parametric 
diode, is used because of the diode's small size and suitability for opera­
tion at extremely high frequencies. The capacitive reactance is varied at 
the pump frequency, which is an even multiple (usually two) of the char­
acteristic frequency of the tank circuit. The tank is controlled by injection 
of a steering signal which excites oscillation in either a 0* or 180" phase. 
These two phases represent the two values of a binary variable. Since the 
rise time of a signal takes at least 10 cycles of the carrier frequency 
an information rate of 1 Gc implies a fundamental frequency in excess 
of 10 Gc. The tolerances necessary in the pump and signal circuits are 
severe, and emphasis has shifted to tunnel diodes and thin film cryotrons. 

The tunnel diode, so called because its operation is based on the 
quantum mechanical tunnel effect (which describes how electrical charges 
move through the device, see Esaki [1958]) is a two terminal device made 
from a heavily doped semiconductor, i.e., one with impurity densities 
10^ to 10^ that of conventional p-n junction diodes. The characteristic of 
the tunnel diode which is exploited is the stable negative resistance that 
appears over part of the volt-ampere operating region (see Fig. 5 .22(a)) . 
The two regions on either side can be defined to represent the two binary 
states. Power gain can be realized when switching from a low voltage state 
to a high voltage state because a large change in output current can be ob­
tained by means of a smaU input trigger current that drives the operating 
point over the maximum of the characteristic. One or two tunnel diodes 
can serve as a threshold majority gate and single bit store, provided there 
is suitable biasing and loading. Germanium tunnel diodes have been re­
ported with switching times less than 1 nanosec. This speed is attribut­
able to the fact that signals are transmitted within the diode by an electro­
magnetic field rather than the motion of charged carriers. There are other 
advantages too. They are smaller than transistors, operate over a tempera­
ture range greater than that of germanium and silicon transistors com­
bined, and at nuclear radiation levels about two orders of magnitude 
greater than practical with transistors. Because of its inherent simplicity 
and low cost of fabrication it is potentially a low cost element. 
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To overcome the tuimel diode's bidirectional action in signal propa­
gation, an auxiliary transistor or tunnel rectifier may be used. One hybrid 
circuit, a two-input NOR gate, uses a tunnel diode for threshold action and 
current gain, and a transistor for isolation between signal channels. Because 
gain is not sought from the transistor, it can be operated near its cutoff 
frequency. The circuits are connected by matched microstrip transmission 
lines. Each input signal is applied to a resistor, in the emitter circuit of the 
isolation transistor, which approximates a matched termination and keeps 
signal reflection to a minimum. The tunnel diode is coupled directly to the 
transistor collector, and capacitively to a 500 Mc sine wave current source 
used to retime and reshape all output signal waveforms. Because of phase 
inversion in each gate, two forms of the circuit are used—one with a p-n-p 
and one with an n-p-n transistor. In the absence of input signals, the diode 
in each circuit switches on opposite half cycles of the sine wave. Thus, two 
levels of logic can be performed during a full clock cycle. 

At 1 Gc each operation takes 1 nanosec. It takes this much time for 
electromagnetic energy to propagate 1 foot in free space. Thus, in 
machines operating near this rate, propagation time becomes a Umiting 
factor and the computing elements must be packed within a small space. 
To fully exploit the potentiaUties of microwave computer elements re­
quires, among other things, the continued development and refinement of 
means of interconnecting these elements, e.g., the use of low impedance 
microstrip transmission lines and thin film conductors. With present low 
impedances represented by tunnel diodes at microwave frequencies there 
are parasitic inductances associated with the leads and as a result it may 
be necessary to solder the diodes directly between the conductors of a 
low impedance microstrip line. Parasitic oscillations at very low frequen­
cies can be produced if the impedance of the bias supply is not maintained 
at a low enough level (dc instability). 

4.8. Specialized Switching Networks 

4 . 8 . 1 . TRANSLATIONAL NETWORKS 

Translational networks are used most often to translate a coded rep­
resentation of data from one form to another in order to mechanize cer­
tain control functions. These networks are also referred to as switching 
matrices or function tables, because the elements of the network are 
often arranged schematically, or even physically, in an array resembling 
a matrix or table. A translational network is commonly constructed almost 
entirely from diodes and resistors. 
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As Stated earlier, control signals are commonly obtained from the 
value of code bits stored in a group of flip-flops. Translational networks 
may be used to satisfy either of two basic types of requirements. In one, 
it is required that the presence of each of a set of permissible values of 
a code group causes one or more control lines to be energized. In the 
other, it is required that the presence of a signal on a given Une causes two 
or more other Unes to be energized. Translational networks satisfying 
each of these requirements are often referred to as many-to-one and one-
to-many networks, respectively. In the general case, each of the permis­
sible values of a coded group of bits must cause more than one output line 
to be energized. This caUs for a many-to-many switching network, 
which, as wiU be shown later, can be constructed from a combination of 
a many-to-one and a one-to-many network. 

The many-to-one network, also referred to as a decoding network, 
is devised so that for each combination of conditions on its input Unes, 
only one of its output Unes is energized. For a given output Une to be 
energized, aU input Unes to which it is connected must be energized. In 
Fig. 4.65(a) is shown a schematic of a representative network, with two 
input variables and four output Unes. Inspection of Fig. 4.65(a) shows 
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( α ) (b) 
FIG. 4 . 6 5 . Representations of a many-to-one rectangular switching matrix with 

two input variables 

that each of the output Unes Z>i through 2)4 corresponds to the output of 
an AND gate. SpecificaUy, the output signals have the following values 

Di ^ BÄ Di= BA 

D2 = BA 2)4 = Β A 

It is apparent then that a many-to-one switching network is nothing more 
than an assemblage of AND gates. The utility of considering the assemblage 
rather than the individual gates wiU be more apparent after the ensuing 
discussion. 
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For purposes of convenience, a network of the type shown in Fig. 
4.65(a) may be represented symbolically as in Fig. 4.65(b). In Fig. 
4.65(b), the resistors have been omitted, and the diode connections have 
been replaced by dots, with the understanding that all the dots on a verti­
cal line represent inputs to an AND gate. Figures 4.66, 4.67, and 4.68 
show three of the different forms that a matrix with three input variables 
can assume. Note that in Fig. 4.66 there are eight three-input AND gates, 
and in Figs. 4.67 and 4.68, there are 12 two-input AND gates. The number 
of diodes required in all three arrangements is the same. However, in 
Fig. 4.66, there is equal loading of the input signals. In Fig. 4.67, there 
is unequal loading of the input signals, for C and C appear as inputs to 
many more AND gates than either A and Ä ox Β and E, In Fig. 4.68, 
there is more balanced loading of the input signals. In both Fig. 4.67 and 
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FIG. 4.66. A many-to-one rectangular 
switching matrix with three 
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FIG. 4.67. A many-to-one pyramidal 
switching matrix 

Fig. 4.68 use is made of pyramiding, i.e., the construction of complex 
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FIG. 4.68. A many-to-one pyramidal switching matrix 
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Boolean functions from simpler ones already available (see Section 4.2.5). 
For example, in Fig. 4.67, the functions ABC and ABC are not formed 
birectly from the elementary inputs A, 5 , C, and C, but, instead, by corn-
dining each of the inputs C and C with the output of the AND gate generat­
ing AS. The use of pyramiding does not provide a saving in diodes for 
three input variables, but for more than three input variables the savings 
in the number of diodes, compared to the rectangular matrix, increases. 
Table 4.1 shows the number of diodes required for a rectangular matrix, 
and also for a pyramidal matrix (assuming all minterms (logical prod­
ucts) of η variables are to be formed). In general, pyramidal arrange­
ments may be formed as follows. First of all, the minterms of two input 
variables are formed. Each of these is combined with a third variable. 
Each of the minterms of three input variables is combined with a fourth 
variable, etc. 

Neither the rectangular nor pyramidal matrix results in a translational 
network with the minimum number of diodes if η is greater than three. 
The minimum network can be obtained by the following procedure. First, 
the full set of variables is separated into two groups (equal if the number 
of variables is even and differing by one if odd). This partitioning process 
is continued until each group contains either two or tíiree variables. The 
number of diodes is the same whether a rectangular or pyramidal matrix 
is used for each two and three variable group. The outputs of two groups 
are combined by an array of two-input AND gates, the process being 
repeated until all minterms have been formed. For large n, Üie number of 
ways of combining the groups becomes large and, in general, different 
combinations require different numbers of diodes. All possible combina­
tions must be considered to determine the network with the minimum 
number of diodes. The form of matrix most economical of diodes for 
four input variables is shown in Fig. 4.69. The column on the far right 
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FIG. 4 . 6 9 . The most economical form of a four-input many-to-one switching matrix 
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in Table 4.1 shows the minimum number of diodes required for a given 
number of input variables. 

TABLE 4 . 1 . Number of diodes, N, required for different forms of 
translational networks 

Nimiber of input 
variables 

η 
2 
3 
4 
5 
6 

Rectangular 
matrix 

Pyramidal 
matrix 

Minimum 
network 

Ν = , 1 ( 2 « ) Ν = i n + s - 8 2n+i 2 " + 2 _ g 
8 8 8 

2 4 2 4 2 4 
6 4 5 6 4 8 
1 6 0 1 2 0 9 6 
3 8 4 2 4 8 1 7 6 

In the one-to-many network, also referred to as an encoding network, 
each of several energizable input lines may be used to energize all the 
output lines connected to it. These output signals can be used to cause a 
group of operations to be executed elsewhere in a system. The schematic 
of a one-to-many network with four input and five output lines is shown 
in Fig. 4.70. The control functions to be performed by this network may 
be expressed as follows 

O1O2O3O4O5 

/2 

OI02030405 

/ | 

/2 

FIG. 4 . 7 0 . Representations ot a one-to-many switching matrix with pyramiding 

A signal on line h is to energize lines Oi, O2, O3 

A signal on line I2 is to energize Unes Oi, O3, O5 

A signal on line h is to energize Unes O2, O4, O5 

A signal on line I4 is to energize lines O3, O4, O5 

These relations can also be expressed by considering all the input signal 
conditions that cause a particular output line to be energized. In this 
particular case 
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0 1 = / i - f h 

0 2 = / i + /3 

0 3 = / l + /2 + h 

O, = h + h 

= I2 + h + h 

These relations show that a one-to-many network is simply an assemblage 
of OR gates. Any of the forms of the many-to-one matrix can also be 
used for the one-to-many matrix. It is only necessary to reverse the 
orientation of all diodes and return the resistors to a voltage of opposite 
polarity. Fig. 4.70 provides an example of pyramiding — O 3 being formed 
from an OR combination of Oi and and O5 from an OR combination of 
O4 and / 2 . 

A many-to-many network can be readily constructed by using the 
output Unes of a many-to-one network as inputs to a one-to-many net­
work. One appUcation of such a network in a digital computer would be 
to control the execution of the elementary commands called for by an 
instruction. A group of flip-flops can store the codes of various instruc­
tions, and a many-to-one network used to energize a unique output line 
for each code. By using the output Unes of the many-to-one network as 
the inputs to a one-to-many network, a set of control Unes can be ener­
gized for each instruction code. (See the discussion on microprogramming 
in Chapter 7.) 

A many-to-many network can also be used as a mathematical func­
tion table. In this case, the network is so constructed that when the code 
of the argument is entered on the input Unes, the pattern of signals pro­
duced on the output Unes corresponds to a binary coded representation 
of the function. However, this is a very expensive and impractical type of 
mechanization for tables of appreciable size. Instead, tables of functions 
are usuaUy stored in large capacity storage systems of the types described 
in Chapter 5. 

4.8.2. DISTRIBUTION AND COLLECTION NETWORKS 

If a computer has both dynamic and static storage units, there must 
be some means of converting from dynamic to static storage and vice 
versa. The former process is referred to as distribution (or staticizing) 
and the latter as coUection. Distribution and coUection are also referred 
to as serial-to-paraUel and paraUel-to-serial conversion since information 
is converted from a form in which there is access to only one bit at a 
time to a form in which there is access to several bits at a time, and 
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vice versa. A schematic of a distribution unit is shown in Fig. 4.71. Du 
02, and D3 each represent a delay equal to that between successive bits. 
The signal, 5, controls the gates Gi through G4 and is chosen to represent 
the time at which the contents of the delay line, composed of the indi­
vidual delays, are to be sampled and transferred to the flip-flops, FFi 
through FF4, Since information is advancing serially bit by bit from the 
input through the delay line, it is clear that the information that is trans­
ferred to static storage will be determined by the time of occurrence of the 
signal 5. The length of the delay line in unit pulse times must, of course, 
equal the number of pulses to be staticized at a time. 

A schematic of a collection unit is shown in Fig. 4.72. Information is 

I 

I E 

input 

<?2 

I s 

FIG. 4 . 7 1 . Schematic of a distribution unit 

FF 

^ 3 

FIG. 4 .72 . Schematic of a collection unit 

stored in the flip-flops. The signal S passes through the delay channel, 
arriving sequentially at the inputs to gates Gi through G4. Thus, at sue-
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cessive times, a signal is entered onto the output line by each gate con­
nected to a flip-flop in the 1 state. 

If the period between successive bits is more than a few /xsec, the 
delay line becomes too large, and distribution and collection are accom­
plished by means of reading information from a dynamic store into a 
shift register and stepping information from the register into the store, 
respectively. The shift register combines the properties of storage and 
unit delays. A description of various shift registers is provided next. 

4.9. Shift Registers 

Each stage of a shift register is built around a bistable element, to­
gether with control circuitry that, upon command, causes the contents of 
each stage Ri to be transferred to stage Ä i + i . These elements may be 
vacuum tube or transistor flip-flops, magnetic cores, ferroelectric cells, or 
any other form of binary storage device. Shift registers are widely used 
in computers for storage, shifting, delay, serial-to-parallel and parallel-to-
serial conversion, etc. If parallel input lines are provided, it can serve as a 
parallel-to-serial conversion device. Parallel readout lines enable it to be 
used as a serial-to-parallel converter. 

The serial shift register serves principally to provide buffer storage, 
accepting information when available and delivering it when desired. It 
can also provide speed buffering by being pulsed at one rate when 
receiving information and at another when delivering it. Whenever a shift 
command is received, each stage is cleared and made to accept the previ­
ous contents of the preceding stage. If used simply as an external read-in 
device, shift pulses will be received every time a new bit is to be entered. 

Information is shifted down the register by pulsing all stages simul­
taneously, thus causing each stdred bit to advance simultaneously. The 
information in each stage must be stored somewhere while the following 
stage is being cleared. This intermediate storage may be by means of 
capacitors, electromagnetic delay lines, or an auxiliary flip-flop register. 
(Often the turnover time of the flip-flop itself provides an adequate delay.) 
The use of an auxiliary flip-flop register, with appropriate gating, permits 
bidirectional shifting. The operation of several types of shift registers will 
now be described. 

In the shift register shown in Fig. 4.73 the content of each bistable 
storage element is shifted to the next higher order element when a shift 
pulse is applied on the line indicated. The output of each Ri is connected 
to the input of Ri^i by means of a gate which retains the state of Ri for 
a short time after its contents have been altered, and passes the state of 
Ri on to Ri^i, 
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Shift Clear Clear 

r 
Clear ^+1 Clear 

Shift 

FIG. 4.73. A logical arrangement for 
a shift register 

FIG. 4.74. A shift register with 
inductive intermediate storage 

mediate storage. A clear pulse is apphed to all stages, and causes any stage 
in the 1 state to emit a pulse. This pulse, after being delayed, resets the 
next higher order stage after a time greater than that necessary for it to 
recover from the previous clear operation. 

In the arrangement of Fig. 4.75 the shift register proper is comprised 

Copy // into 

, Clear 

IT 
AR. 

Clear ri /| HAND 

AND ^ + 1 AND 

"Copy/iJ- into /j 

FIG. 4.75. A high speed dc coupled shift register with flip-flop intermediate storage 

of one group of storage elements, Ru while the storage elements, lu are 
used for intermediate storage. A single shift operation is effected by ap­
plying command pulses to input lines 1, 2, 3, and 4, in that order. A 
pulse on line 1 clears the intermediate storage register. The pulse on Une 
2 copies any I's in the main shift register into the intermediate register. 
The pulse on Une 3 clears the main shift register. The pulse on Une 4 
causes the I's in the intermediate storage register to be copied into the 
shift register one bit to the right of their original positions. 

An alternate logical arrangement is one wherein gates are provided 
for transferring O's as weU as I's between stages. Such an arrangement 
is shown in Fig. 4.76. A pulse will pass through only one of the gates, 

Figure 4.74 shows an arrangement using inductive delays for inter-
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Shift 
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I Gate 
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FIG. 4.76. Shift register with gates for transferring 0*s and Ts 

depending on which state the corresponding bistable element is in. The 
delays prevent a bistable element from being triggered before a satis­
factory signal is transmitted to the next higher order. Though shown in 
the input Unes to the bistable elements, the delays could have been placed 
in the output lines instead. 

A shift register can also be formed from dynamic storage elements. 
A typical arrangement is shown in Figure 4.77. AND and OR gates are 

Element / Element / +1 

Store 
Shift 

Dynamic 
storage 

Dynamic 
storage 

Dynamic 
storage 

Dynamic 
storage 

Feedbaci^ 
V pathy 

Feedback\ 

Gatel • O R - Gate2 i— Gatel - O R - Gate2 

FIG. 4.77. Shift register comprised of dynamic storage elements 

inserted into the feedback path of each dynamic storage element as shown. 
As long as a gate enabUng signal is maintained on the store Une, the 
normal feedback path is maintained via gate number 2. To produce a 
shift, the "store" signal is removed and a signal appUed to the "shift" Une. 
The first action interrupts the feedback path via gate number 2, but aUows 
the circulating pulse from stage / to pass through gate number 1 of stage 
/ + 1, thereby effecting the shift. After the shift is executed, the "store" 
signal is reappUed. For correct operation, the shift signal must be held 
operative for one pulse time, and must be properly phased relative to 
the clock pulse inputs to the dynamic storage elements. 

In the shift registers described in the preceding paragraphs, the bi­
stable elements could have been either vacuum tubes or transistors. 
When magnetic cores are used as the bistable element, other logical 
arrangements are possible. The various magnetic core shift re^sters. 
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some of which are described next, differ principally in the nature of 
their transfer loops and in the number of cores required per bit of 
storage. 

The arrangement in Fig. 4.78 requires two cores per bit. One set of 

FIG. 4.78. Schematic of a two core per bit shift register with shimt diode 
transfer loops 

cores is used for storage, and the other to provide delays. A complete 
shifting operation is performed by the successive appUcation of shift 
current pulses, h and t2, to the windings shown. AppUcation of the h 
signal to a core containing a 1 wiU induce a large voltage in the transfer 
loop, as a result of which the magnetic state of the core to the right wiU 
be changed from 0 to 1. AU cores to which the h pulse has been appUed 
are in the 0 state and are ready to accept input signals from the inter­
mediate cores when the Í2 pulse is appUed. For serial input operation, 
new information may be inserted into core A at any time between h 
pulses. For paraUel input operation, the new information is placed in 
alternate cores at a time when these cores are not otherwise pulsed, 
and is then shifted out seriaUy by the alternate appUcation of pulses ti 
and ^2. ParaUel readout is obtainable by the addition of a separate read­
out winding. This type of circuit is at present operable at rates up to 
250 Kc. A circuit simUar to that of Fig. 4.78 may be obtained by the 
use of single diode transfer loops (described in Section 4.5.2). 

Figure 4.79 shows a shift register with three cores for every two bits. 

Output 

FIG. 4.79. A serial shift register using three cores per two bits and single 
diode transfer loops 
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If information is assumed initially to be in cores A and Β (and A' and B\ 
etc.), ti will transfer one bit from Β to C, t2 will transfer one bit from 
A to B, and /a will transfer one bit from C to ^ ' at the same time that 
new information is inserted into A. The technique of using η 4- 1 cores 
and /i-hl advance pulses for every η bits may be extended indefinitely 
if the economics of the situation warrants it, i.e., if it is desirable to save 
cores and diodes at the expense of additional drivers. 

A parallel shift register comprised of single diodes and split winding 
transfer loops is represented in Fig. 4.80. Cores A, B, C, . , , constitute 

l n p u t - * H 

FIG. 4.80. A parallel shift register with single diode and split winding transfer loops 

the shift register, and Mi, M 2 . . . are the output cores. Information is 
inserted serially under control of h and / 2 . During the serial shift the 
split-winding loops between the register cores and the output cores pre­
vent the transfer of information to the output. When the last bit of a 
word of predetermined length is inserted into A, the preceding bits of 
that word are in C, . . . The application of advance pulse ip will 
transfer the information in parallel into the output cores. 

A reversible shift register, synthesized by means of split-winding 
transfer loops, is shown in Fig. 4.81. Information may be shifted from 

FIG. 4.81, A reversible shift register with split winding transfer loops 

left to right by means of pulses h and Í2, or from right to left by pulses 
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Í3 and t4. Reversible operation is possible because of the isolating, rever­
sible character of the spUt-winding transfer loop. 

In the shift register shown in Fig. 4.82, temporary storage during the 
readout operation is obtained not by the use of additional cores but by 
condensers in RC delay networks. As shown, there is a shift winding on 
each core, and all of these windings are connected in series. The appUca­
tion of the shift pulse saturates all cores in the direction chosen to 
represent 0. This causes an output to be produced from each core which 
had been saturated in the direction representing 1. This output charges 
the condenser, which upon completion of the read-out operation dis­
charges through the succeeding core in such a direction as to record a 1. 

The shift register shown in Fig. 4.83 consists of a number of tran-

Input o 

Shift o 

Input 

Shift o 

FIG. 4.82. A one core per bit serial 
shift register 

FIG. 4.83. A serial transistor-core 
shift register 

sistor-core combinations in each of which the core provides storage and 
the transistor serves as a power ampUfier. The transistor is normaUy cut 
off. When conducting it induces a positive magnetic field. If the core is 
originaUy in a saturated state at the bottom of the hysteresis loop, 
designating storage of a 1, the application of a smaU current pulse to 
the shift winding produces a change of flux which in turn induces a 
negative voltage at the base of the transistor. As a result, there is a flow 
of current through the coUector and its associated winding. This current 
shifts the state of magnetization of the core stiU further in the same 
direction. This regenerative process continues until the core is shifted 
to the saturated state representing 0. At saturation, the permeabiUty of 
the core is low so that the gain around the feedback loop consisting of 
the transistor and the two windings to which it is connected becomes 
less than unity, and the transistor current is cut off. If the core were 
originally in the 0 state, application of the shift pulse would have pro­
duced no effect since no change in flux would have been produced. 

To set any core to the 1 state, current is appUed to the input winding 
which causes a positive voltage at the base of the transistor which drives 
the transistor into cut-off. The output of each stage is used to reset the 
core in the foUowing stage. After appUcation of the shift pulse aU the 



186 4. S W I T C H I N G A N D STORAGE C I R C U I T S 

stages which previously stored a 1 change to a 0 and during the regener­
ation process described each of these stages supplies energy which after a 
delay sets the succeeding stage to the 1 state. 

The transistor-core shift register has three important advantages over 
core-diode shift registers. First of all, it does not require a shift pulse 
of predetermined amplitude and width, but only a small trigger pulse 
which causes each stage to generate its own shift pulse. Second, in core-
diode shift registers the shift pulses are of large magnitude (since they 
supply the total energy) and pass through all the cores. For cores with 
nonsquare hysteresis loops, some output voltage is produced even by a 
stage in the 0 state. As a result, the ratio of output for 1 to that for 0, 
which may be considered a signal to noise ratio, is poor. In the transistor-
core shift register, a stage in the 0 state never generates a shift pulse 
through its core. The third advantage relates to buffering between stages. 
In the core-diode shift register, an undesirable feedback action can occur 
because the series diode is so oriented that it passes current induced in 
the input winding of the second core upon readout, when that core is in 
the 1 state. This current will tend to set the first core to the 1 state. To 
alleviate this problem, a number of devices have been used in core-diode 
shift registers such as having a different number of turns in the input 
and output windings, a nonsymmetric coupUng loop, or a diode shunted 
across the input winding. However, these devices all lower the efficiency 
and worsen the operating margins. In the transistor-core shift register 
perfect buffering is obtained because the collector is cut off during the 
read-in operation. 

4.10. Auxiliary Circuits 

In addition to their use in gating circuits and as the basic elements of 
flip-flops, inverters are also useful for a number of miscellaneous auxiliary 
functions calling for signal ampUfication. The vacuum tube cathode 
follower and its counteφart, the transistor emitter follower, also finds 
use not only as a switching element but for a number of applications 
calling for a current ampUfier. 

One or more members of a group of circuits referred to as trigger 
circuits may be used in a digital computer system for the puφose of 
generating discontinuous or impulsive output signals having either a 
specified periodicity or time relation to input signals. Trigger circuits are 
classified, according to the number of their absolutely stable states, as 
foUows: 

(1) Relaxation osciUator circuits, which continuaUy osciUate between 
two quasi-stable states. Among the more common relaxation 
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oscillators (which may be either free running or synchronized) 
are the multivibrator and free-running blocking oscillator. The 
multivibrator is not widely used in digital computers. The 
blocking oscillator (useable from IKc to > IMc) is useful in 
clock amplifying circuits. From a clock source, such as a timing 
track on the surface of a magnetic drum or disk, it generates a 
synchronized output of impulsive signals with sufl&cient power 
to drive a large number of switching circuits. 

(2) Single stable-state circuits which, upon being suitably triggered, 
pass to a quasi-stable state in which they remain for a time 
(determined by circuit parameters) before spontaneously return­
ing to their stable state. These circuits are used to replace input 
signals that may be either intermittent or of varying or undesirable 
shape and ampUtude by output pulses of standard shape and 
amplitude. They are also used to produce an output pulse 
suitably delayed with respect to the input. Among single stable-
state circuits are the delay multivibrator (one-shot delay circuit), 
and the biased blocking oscillator. The one-shot delay circuit is 
suitable as a delay unit because the duration of its quasi-stable 
state is easily controlled over wide hmits, and because there are 
points in the circuit where the potentials are steady except during 
a transition state. It is useful, too, as a source of rectangular 
pulses suitable for gating signals. The biased blocking oscillator 
is used to generate pulses of short rise and fall times and narrow 
width. It is stable in a quiescent state and brought to a quasi-
stable state of short duration by a suitable trigger input. In this 
state a large oscillation is produced, usually lasting one period. 

(3) Two stable-state circuits, which are switched from one stable 
state to the other by a suitable trigger input signal. Flip-flops 
are examples of such circuits, and they have been discussed imder 
systems of circuit logic where they find their principal use. 

The auxihary circuits mentioned so far were current and voltage 
amplifiers used in conjunction with the switching network and special 
circuits for generating timing signals with adequate power. Another area 
in which special circuits are required is in the circuitry for gaining access 
to the various locations in the main store. Because of the large capacity 
of a main store, it is uneconomical to construct it from active storage 
elements. As a rule, it is formed instead from less expensive passive 
elements. A number of special circuits, described in Chapter 5, are re­
quired to gain access to a specified location in the main store and to record 
or sense information. 
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In addition to the auxiliary circuits that may be used in conjunction 
with the arithmetic, control, and main storage units, others will generally 
be required to couple the circuitry of the computer proper to various 
input and output devices. These circuits are used principally to transform 
signal levels between the computer and input-output devices. For example, 
high level current sources, driven by low level circuits in the computer, 
fnust be provided to drive output printers and other peripheral equipment. 
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5. Large Capacity Storage Systems

5.1. Introduction

This chapter provides an introduction to the subject of large capacity
storage systems. We shall loosely define "large capacity" to mean any­
where from several thousand to several million bits. A storage system in­
cludes not only the storage medium but also the means for gaining access
to specific locations in the store and for the recording and reading of
information.

Large capacity storage systems for digital computers may be used for
either internal or external storage functions. An internal store is used to
hold the program of instructions to be executed and also provides space
for the storage of intermediate and final results. An external store is used
for the preparation of a program and auxiliary data in a form suitable for
subsequent entry into a computer. External storage media are used also
for the maintenance of large files of programs and other input data as
well as for the storage of output data. Whether a specific type of storage
system is better suited for internal or external storage or can be used for
either will depend on a number of criteria. These will be considered in
the sections following.

Criteria important in the evaluation of large capacity storage systems
are: cost per bit, reliability, maintainability, physical size, power con­
sumption, etc. These will be considered in the descriptions, later in this
chapter, of specific storage systems. At this point we will comment, in
a general way, on four important distinguishing characteristics of storage
systems: namely, operating speed, volatility, erasability, and access time.

Operating speed refers to the rate at which information is transferred
into or out of the storage system. Once access has been gained to a
desired location in the store, the rate at which information is read out
will depend on the nature of the store. The operating speed of an internal
storage system need only be great enough to make the delay in recording
into and reading out of storage compatible with the time required' to
execute arithmetic and logical operations. Since a higher operating speed
increases the cost of a system, some compromise is usually reached be­
tween speed and cost. However, there are special situations where a
high price may be paid for a small increase in speed.

194
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Volatility, in reference to a storage medium is used to indicate whether 
power must be continually or periodically supplied to retain information 
previously stored. A volatile storage medium requires the application of 
power while a nonvolatile one does not. Examples of nonvolatile storage 
media are punched cards, punched tape, magnetic tape, the magnetic sur­
face of a revolving drum or disk. Examples of volatile storage are the 
electrical charge on the surface of a cathode-ray storage tube, and the pulses 
recirculated in an acoustic delay line. If power were not applied to restore 
the charges on a cathode-ray tube, they would gradually leak off. The 
pulses recirculated through an acoustic delay line become attenuated and 
distorted in shape and therefore power must be appUed to ampUfy and 
reshape these pulses. Thus, volatile storage systems, whether of the static 
or dynamic type, require that the stored information be periodically re­
generated. The required frequency of the regeneration cycle for a particular 
system depends on the rate at which information degenerates in that 
system. 

ErasabiUty is another important characteristic of a storage medium. It 
is essential for an internal storage system but not necessarily for an ex­
ternal one. Storage in the form of punched paper cards or tape or photo­
graphic storage is not erasable while electrical phenomena such as mag­
netic dipoles, electrical charges, and vohage pulses are. 

Access time, i.e., the time required to gain access to an item in storage, 
is one of the most important figures of merit of a large capacity storage 
system, because it Umits the over-aU speed of computation within a com­
puter. The access time of a particular storage system wiU depend on the 
means employed to select items from storage. Primarily, the storage selec­
tion scheme depends on whether information is stored in a spatial or 
temporal pattern or in a combination of both. TheoreticaUy, there is no 
basic difference since the location of stored information, like any other 
location, may be determined by specifying coordinates (in space and/or 
time) referred to a specific frame of reference. We will consider next the 
nature of both "time domain" and "space domain" storage. 

Space domain or static storage refers to storage systems in which each 
storage element permanently occupies a specified physical location, and 
there is equal accessibiUty, at aU times, to any of the elements in the 
store. Examples of static storage elements are relays, flip-flop circuits, 
cathode-ray tubes, magnetic cores. Nonvolatility, a low cost per bit plus a 
fast switching time make magnetic cores especially suitable for the main 
store of a high speed computer. Access may be gained to a particular one or 
group of storage elements by means of a switching network referred to 
as a selection network. This network selects a particular storage element, 
or group of elements, when it receives the coordinates assigned to the 
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* In magnetic core storage systems, the selection problem may be simplified by the 
use of magnetic core selection switches. See Section 5.3.2.4 and references under 
Magnetic Core Storage at the end of this chapter. 

particular element in the system. There is no problem of resolution or 
drift in the locating system as in time domain storage systems. The logical 
nature of such a selection network will now be described. Assume, first 
of all, that there is a transducer, associated with the address of each 
storage location in the memory. Whenever it is required to read out of 
the memory, it is only necessary to cause the output of a specified trans­
ducer to be read. Further, an arbitrary address, i.e., a set of coordinates, 
may be assigned to each item in the store. Then, to select a particular 
item from the store, it is only necessary to insert the address of the re­
quired item into a register. If the store has η addresses, then the register 
must have at least ρ binary places, where ρ is an integer greater than or 
equal to log2A2. The contents of this register can be used to control the 
selection of any address in the store by means of a many-to-one switching 
network. The Boolean expression for the output of this network is of 
the form 

/ = AiTx + A2T2 + . . . + A^T^ (5-1) 

where each At represents a particular one of the 2^ states of the address 
register. It is apparent from Eq. (5-1) that when the address register 
holds the address, Au i.e., when Ai is true, the output of the network is 
simply Ti, the output of the specified transducer. It is also evident that 
the complexity of the switching network depends on the number of storage 
elements in the system. 

To provide for the entry of information into any of the η locations 
of the store, η signals of the form 

Ti = AJ (5-2) 

must be formed, where / represents the information to be recorded. 
Since, in the basic general puφose type of computer, access is provided to 
only one store address at a time, only the transducer corresponding 
to the A i which is currently true will receive the signal to be recorded. 

If the switching network* is formed from diode gating circuits, appre­
ciable savings may be reaUzed by the use of pyramiding and minimum net­
works (described in Chapter 4 ) . 

In static stores containing elements whose states must be periodically 
regenerated (like the charged spots on cathode-ray tubes or the magnetic 
states of the cores in certain core storage systems) time is consumed not 
only in acquiring access to a particular item in storage, but also in 
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regenerating information that otherwise would be lost by gradual deteriora­
tion and/or the process of interrogating the state of the elements. 

Time domain or dynamic storage refers to storage systems in which 
there is access to a particular storage location only at specified times. 
The stored items pass a stationary transducer or set of transducers sequen­
tially. To select a particular item, for reading or recording purposes, the 
time at which it will be accessible to one or more transducers must be 
specified. The access time to a particular item increases with the number 
of items (all other factors remaining constant) since more items must 
pass a transducer before a particular item is reached. An increase in the 
number of items does not, however, necessarily increase the complexity 
of the selection switching network. In a dynamic storage system the av­
erage time required to extract an item from the store is important. This 
average access time is simply one-half the maximum access time. 

There are two principal types of dynamic storage systems. In one, 
information is stored by means of a carrier propagated and recirculated 
through a stationary delay medium, e.g., an acoustic wave propagated 
through a path of mercury (see Section 5.6). In the other, information 
is stored on a recording surface which is rotated to provide each station­
ary transducer with access to storage locations along a track; this type 
of store allowing two modes of operation—one in which storage loca­
tions (sectors) are assigned specific addresses, as in a static store, and 
another in which information is dynamically stored in a delay line 
formed by placement of a record and a read transducer along a single 
track. In the first type of delay Une, the total delay between successive 
appearances of the same item of information is determined by the velocity 
of propagation of the signals through the medium and the length of the 
path from the input to the output transducer; in the latter type by the 
angular velocity of the rotating medium and the angular separation of the 
input and output transducers. Access is gained to a specific item, for either 
recording or reading, by energizing a gate to an input or output trans­
ducer, respectively, at the proper time. 

Dynamic storage systems may further be classified as synchronous or 
asynchronous, depending on whether the relative speed of the stored data 
with respect to the transducer stations is constant or not. Magnetic drum 
and disk systems are considered synchronous, even though the angular 
rotation rates are not constant, because the stored data is referenced with 
respect to a clock recorded on one of the tracks (see Chapter 7) . Within 
certain temperature limits ultrasonic delay lines provide a delay which is 
practically constant. Magnetostrictive delay lines provide an essentially 
constant delay over a considerably wider range of temperature. A mag­
netic tape storage system is considered asynchronous because of the 
relatively large fluctuations in speed of the moving tape. 
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Synchronous and asynchronous storage systems each call for a different 
type of selection scheme. Two fundamental ways of locating an item in a 
synchronous store are as follows: In one scheme, a marker pulse received 
from the storage system (or some other specified "start" signal) is used 
to open a gate so that clock pulses can be entered into a so-called pulse 
position counter. After a count has been reached equal to the number 
of bits in a word of storage, the counter is reset and simultaneously 
causes a pulse to be entered in a word counter. At any given time, the 
contents of the two counters indicate the word as well as the particular 
bit position in that word that is currently accessible. Therefore, to per­
form an operation on the contents of any particular storage location, it is 
only necessary to enter the address of that location in a register, and to 
provide logical circuitry that detects a coincidence between the contents 
of the register and the current contents of the word counter. In the second 
scheme, tags indicating the address of each word in the store are also 
stored, usually in a separate address line. Logical circuitry is provided to 
detect a coincidence between the address currently being read from the 
address Une and that placed in the address register. This scheme of selec­
tion is particularly useful in magnetic drum or disk storage systems where 
the nonvolatility of recorded data allows the contents of an address line to 
be permanently recorded. Regardless of which scheme is used, it is usually 
desirable to search for and indicate the address of the succeeding word 
rather than the current one, in order to allow certain preparatory opera­
tions to be performed. In the first scheme this is accompUshed by placing 
in the address register a number one less than the address actually sought. 
In the second scheme, the address tags are so placed that the tag read 
from the address line during any given word time is the address of the 
next word to be available from the main store. 

The most convenient way of selecting an item in a magnetic tape 
store is by searching for a tag or address associated with each unit or 
block of data. The size of this block is based on the characteristics of the 
tape transport control mechanism (see Section 7.5.6 and A. 1.3). 

In a dynamic storage system both a static and a dynamic selection 
network may be desirable. As an example, consider a magnetic drum or 
disk memory with a single transducer associated with each channel. Here 
a static selection scheme is used to connect a particular read/record head 
to a common ampHfier circuit, and a dynamic selection scheme to define 
the time interval during which the connection is made. Head selection 
networks are described further in Sections 5.2.6 and 7.6.3. 

In the sections following, there are descriptions of various types of 
storage systems, each based on the exploitation of a particular physical 
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property or properties of specific materials. Most of the space is given 
to storage media based on magnetic phenomena because they now dominate 
the field. Practically all high speed memories are being built from ferrite 
cores (and to a much lesser extent, from multi-aperture devices). For 
medium speed, the magnetic drum (or disk) memory is dominant. The 
most versatile, and widely used combination input-output and auxiliary 
storage medium is magnetic tape. Promising new high speed memories mag­
netic in nature are superconductive devices (for about 1 to possibly 100 
million bit capacities) and thin fibn devices (for capacities up to perhaps a 
million bits). For smaller capacities (about 10,000 to 100,000 bits) but 
very high speeds the tunnel-diode store is promising. The apertured 
ferrite plate and twistor are finding limited use, and their future is 
doubtful. The cathode ray tube memory is described because it was 
the first important high-speed memory and is still operational in many 
machines. The mercury delay line is included principally for historical 
reasons. Other types of delay lines and the diode-capacitor memory are 
included because of their usefulness in special though limited applications. 
The ferroelectric memory is included simply as a matter of general interest 
even though its development has not been completed and its potential 
advantages overshadowed by other memories developed subsequently. 

5.2. Dynamic Magnetic Storage 

In a dynamic type of magnetic storage system, information is recorded 
by means of a transducer which induces magnetic dipoles in a moving 
magnetic surface. Sensing of the recorded dipoles is facilitated by rela­
tive motion between the magnetic surface and á read transducer. (In a 
static magnetic storage system no mechanical motion is involved, record­
ing and sensing each being accomplished by applying an electromagnetic 
force to separate, magnetically alterable elements. 

Recorcüng of binary data on a magnetic surface is based on the same 
magnetic phenomenon, namely magnetic hysteresis, used for the recording 
of data in magnetic cores. In Fig. 4.48 the hysteresis loop of a typical 
magnetic recording medium is shown. If a positive magnetizing force is 
applied of sufficient amplitude to bring the medium to the point B^, then 
even after the magnetizing force has been completely removed, a residual 
flux density, + Br, will remain. A similar set of events occurs after the 
application and removal of a magnetizing force of opposite polarity. If 
the applied magnetomotive forces are great enough to cause saturation 
of a cell on the magnetic surface, the residual fluxes Br and - Br are 
practically independent of the previous condition of the magnetic surface. 
These residual fluxes may be used to indicate the recording of a 1 or 0. 
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5.2.1. THE RECORDING TRANSDUCER 

The transducer used for recording or sensing information on a mag­
netic surface is referred to as a magnetic head. Conventional head designs 
consist of a core of magnetic material around which are wound several 
turns of wire. In earlier head designs, the cores were usually formed from 
laminations of a metal like Permalloy or mu-metal. Heads, as shown in 
Fig. 5.1, are now usually formed from two ferrite pieces by joining them 
in such a way that a usable gap is formed, as shown in the figure. Wires can 
be conveniently wrapped around one or both of the pieces before they are 
joined. The head on the right in Fig. 5.1 simplifies the wire wrappmg 

FIG. 5.1. Magnetic head designs 

operation since it is done on the straight I section. It also allows closer 
spacing between heads, an important consideration in forming a short 
delay Une. Ferrites are used because of their low eddy current losses and 
high permeabiUties in the megacycle region. If a core is of high permea­
biUty, the flux set up by passing a current through the coil wiU largely be 
confined to the core material. The flux will fringe around the minute gap 
(a typical value being 0.0005 in.), and if the gap is placed suflSciently 
close to a magnetic surface, the fringing flux penetrates this surface in 
completing its path from one side of the gap to the other (see Fig. 5.2). 

R e c o r d i n g f l u x 
r e c o r d i n g 
nned ium 

FIG. 5.2. Recording flux pattern for recording on a magnetizable surface 

If the magnetic field is sufficiently strong and the gap is sufficiently close 
to the magnetic surface, a smaU but usable magnetic dipole wiU be induced 
in the surface in the region of the gap. The polarity of this dipole is de­
termined by the direction of current flow in the head winding. The mag­
netic head is placed as close to the surface as mechanical considerations 
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1 2 3 4 Head spacing in lO"^ in. 

FIG. 5.3. Read voltage variation with head spacing 

Often, a metallic nonmagnetic shim is placed in the gap in order to 
generate (from eddy currents) mmf's that oppose the main flux. As a 
result more flux is forced out of the gap. Within limits, the leakage 
flux may also be increased by a greater gap length with only slight de­
gradation of maximum recording density obtainable if flux can be reversed 
rapidly relative to the speed of the medium. 

Recording current may be reduced by an increased number of turns 
(although a limit is imposed by frequency response requirements, the 
resonant frequency being lowered by more turns), and by using a head 
whose magnetic reluctance Ί{ is less. Since % = Ι/μΑ, where / is the length 
of the mean path of the flux, A the cross sectional area, and μ the permea­
bility of the material through which the flux passes, a longer gap length 
(where μ is low) means a larger value of % 

A convenient way to apply recording current in either of two direc­
tions is by means of a center tapped winding. Current applied to one half 
of the winding produces a flux opposite in sense to that produced by 
current applied to the other half. In a head used for reading only, the 
gap length should be small to reduce the magnetic reluctance (thereby 
increasing flux through the head) and to permit high density recording. A 
head with a single winding may be used for both recording and reading, the 
winding being switched to a record or read amplifier as needed. Usually, 
a combination record-read head has separate windings for these functions; 
also, its gap length is determined by the reading requirement. To prevent 
large signal pick-up from a record winding from entering a read amplifier, 
there should be adequate separation and/or shielding between record and 
read windings (on the same or different heads). 

will allow, because of the rapid attenuation of the flux density away from 
the gap. The nature of this attenuation is shown in Fig. 5.3. 
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5.2 .2 . THE READING PROCESS 

It has been shown how binary data may be recorded by appUcation 
of a recording current of sufficient ampUtude to saturate a magnetic sur­
face in either of two polarities. The polarity of the recorded dipole must 
subsequently be sensed by the reading process. UsuaUy this is done by 
some type of phase detection system. In these systems the reading process 
is dependent on relative motion between the head and the residual flux 
patterns from the surface. (Static sensing schemes, referenced in the 
literature cited at the end of this chapter, are not, as a rule, suitable 
for digital computer applications). This causes a magnetomotive force to be 
induced in the head winding proportional to the rate of change of the 
flux, resulting in a smaU but useable voltage signal. Figure 5 .4 shows 

Time - ^ y i / ^ T i m e 

(a ) (b) 

FIG. 5.4. Read voltage waveforms from induced positive (a) and negative poles (b) 

the nature of these read voltage signals. The extent of the period in which 
the flux entering the read head is at a maximum value determines the 
width of the interval within the dashed Unes. The recording waveform is 
usually such that this interval is smaU compared to the width of the read 
waveform. The sensing process is classified as nondestructive because the 
recorded information is not altered by it. Information recorded on a mag­
netic surface is considered nonvolatile because it is retained without 
periodic regeneration, and even when power is removed from the system 
(provided transient signals produced by the removal do not generate 
appreciable currents in the heads). 

5 . 2 . 3 . EFFICIENCY OF STORAGE 

When a magnetic surface is used for data storage, it is usuaUy desirable 
to be able to record as many bits per unit of area as possible. One may 
consider the question of the density of stored information obtainable, 
referred to as packing density, in terms of a linear and transverse recording 
density. The Unear recording density is the number of pulses recorded per 
Unear inch in any channel, and the transverse density is the number of 
channels recorded per inch in a direction perpendicular to the channels. 

The Unear recording density is a function of the width of the gap be­
tween the pole faces of the head's magnetic core. When the wavelength 
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* This expression is based on an assumption of uniform magnetization throughout 
the thickness of the medium. If the thickness is large compared to the gap length, 
the recording field does not penetrate uniformly through the medium and the 
expression is not vaUd. 

λ of the recorded signal is equal to the gap length g there is a zero out­
put. The gap length g is optimum when it is equal to ηλ/2 (where η is an 
mteger), the output signal being attenuated for gap lengths on either side of 
these points (see Section 5.2.4.). Transverse recording density is Umited 
primarUy by the compactness of the heads and the tolerance to which they 
can be positioned. 

5.2.4. THE MEMORY TRANSFER FUNCTION 

The memory transfer function of a magnetic recording system is de­
fined as the ratio of output voltage from the read head to input current 
to the record head. If the recording current were held constant, the 
memory transfer function would exhibit a 6 db/octave rise with frequency 
for a head whose output was proportional to the rate of change of flux, 
provided no other phenomena entered. Experimental results show that 
this is approximately the case at relatively low frequencies (up to about 
a few kUocycles). However, for higher frequencies the response faUs 
away from the 6 db/octave rise and eventuaUy decreases with frequency. 
This deviation, considered as a loss, is a result of the foUowing contribu­
ting factors: spacmg loss, thickness loss, gap loss, head loss, and self-
demagnetization (see WaUace [1951]; also Hong [1958], Miyata and 
Härtel [1959], Hoagland and Bacon [1960] and Came [1961]). 

Spacing loss, resulting from separation of the head and record­
ing medium has been shown experimentally to be approximately equal 
to 55 d/k db, where d is the spacing between head and magnetic surface 
and λ the recorded wavelength (λ being a function of the recording fre­
quency and speed of the medium). Factors which may cause the spacing 
to be increased erraticaUy are: (1) foreign matter on or defects in the 
recording surface, (2) accumulation of static charge on the recording 
surface, (3) erratic movement of the recording surface away from the 
head. In magnetic drum recording (Section 5.2.6) the latter phenomenon, 
referred to as runout, results from any eccentricity in the path described 
by the moving surface. In magnetic disk recording (Section 5.2.7) it is 
much less pronounced, and may result from flexing of the disk. 

The thickness loss (in db) has been esthnated to be 20 logio[(27r8A) / 
(1-exp (-2πδ/λ))]*db, where δ is the thickness of the recording medium. 
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At low frequencies, for which λ > > δ, the read voltage is propor­
tional to δ and to the frequency. At higher frequencies, for which λ < < δ, 
the response is independent of the thickness since the limited penetration 
into the medium makes its thickness unimportant. 

The nature of the gap loss can be visualized by noting that if the 
gap length is approximately equal to one wavelength, there is essentially 
no field produced to magnetize the medium. The gap loss has been esti­
mated to be 2 0 logio [(7rg/A)/sin db, where g is the effective gap 
(which is generally smaller than the actual gap in the head). 

Eddy current and other losses within the heads are in accordance 
with the established behavior of magnetic circuits and will not be con­
sidered explicitly. 

The phenomenon of self demagnetization appears in magnetic record­
ing as a result of the fact that adjacent small magnetic dipoles exert a 
torque upon each other upon leaving the magnetic field of the record head, 
the torques tending to return the dipoles to a random state. The retentivity 
of the magnetic medium tends to hold them in the magnetized state, but 
experiments show that self-demagnetization increases rapidly once very 
short wavelengths are encountered. Figures of merit such as the ratio 
H/B are generally used to assess the effect of self demagnetization on a 
particular storage medium. 

5 . 2 . 5 . MAGNETIC RECORDING CODING TECHNIQUES 

A number of techniques have been developed for translating a se­
quence of binary signals, in the form of a sequence of voltage or current 
levels or pulses, to a sequence of recording current signals suitable to 
actuate a recording head. The particular recording technique employed 
determines the procedures best suited for correctly interpreting the recorded 
flux patterns. This will be brought out in the ensuing parts of this section. 

Each magnetic recording coding technique falls into one of two broad 
categories. In one, referred to as the "return to zero," or R Z system, the 
recording waveform is always returned to zero amplitude before generation 
of the waveform for the next bit position. In the non-return-to-zero or 
N R Z system the recording waveform is not returned and held at zero 
amplitude after each bit. 

Techniques for erasing stored data also fall into two categories. In 
the ac method, the medium is returned to a nonmagnetized state by the 
application of high frequency ac signals to an erase head winding. In the 
dc method, the medium is saturated in one direction corresponding to 
that defined to represent 0 by the application of a large amplitude dc 
signal, or by a permanent magnet placed close to the recording surface. 
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5.2.5,1. RZ Recording 

The return to zero or RZ method of recording can assume any one of 
a number of alternate forms. In the three-level form, a pulse of current is 
appUed to the magnetic head in either one of two directions, according 
to whether a 1 or a 0 is to be recorded. For each bit recorded, the 
medium is saturated in one direction or the other. The recording current is 
always returned to zero between the recording of individual bits. 

In an early form of two level RZ recording, a separate erase head is 
used to saturate the medium in a direction defined to represent 0, and a 
pulse is applied to the record head only when the medium is to be saturated 
in a direction representing 1. A head arrangement for this scheme of 
recording is shown in Fig. 5.5. After passing the read head, each cell 

other data other data 

Data to be 
recirculated '^'^" 

FIG. 5.5. A head arrangement for two-level RZ recording 

is returned to the 0 state. This allows either a 1 or a 0 to be recorded in 
any cell, by the application or nonapplication of a current pulse, re­
spectively, regardless of the state of tiie cell before it passed the erase 
head. Whenever it is desired to recirculate information already recorded, 
the output of the read head is coupled through appropriate switching 
circuitry, to the current amplifier that drives the record head. 

The three level system has the feature that a distinct signal is pro­
duced within each cell (thereby allowing the absence of a read signal 
from a cell to be used as a definite indication of a malfunction). Because 
of this characteristic, it does not require a dc amplifier in the read circuit 
(which is required in a two level system for response to a series of O's 
that may occur in the recorded information pattern). 

The graph in Fig. 5.6(a) relates, for a particular sequence of bits, 
the recorded flux density, φ, that would pass through a reading head as 
a function of time. Figure 5.6(b) shows the output voltage of the head, 
which is proportional to the derivative of this flux. The patterns in Figs. 
5.6(a) and (b) assume relatively small recording densities, i.e., a rela-
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lively large spacing between recorded bits. Beyond a certain recording 
density, the results of interaction between adjacent recorded cells becomes 
noticeable as shown in Figs. 5.6(c) and (d) . Note that the flux density 
returns to zero between adjacent cells only when there is a transition from 
a 1 to a 0 or vice versa, so the output voltage waveforms depend not only 

( c ) 

1 0 0 1 1 0 

I 0 0 0 I 0 I I I 

( e ) 

( h ) 

( i ) -

( ) ) • J L L i 

FIG. 5.6. Read waveforms in RZ recording for various recording densities, 

on the recording in individual cells, but on the particular sequence re­
corded. When the recording density is increased still further, tíie effects 
of interaction become more pronounced as shown in Figs. 5.6(e), (f), 
and (g). Though the various output voltage waveforms in Figs. 5.6(b), 
(d) , (e) , (f), and (g) appear markedly different, still they all possess 
one characteristic, by means of which a 1 can be distinguished from a 
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0. For a 1 the output signal is going negative in the second half of 
a cell, for a 0 it is going positive. Therefore, if the output vohage 
waveform is differentiated, a signal will be produced which will be negative 
in the center of each cell where a 1 is recorded, and positive where a 0 
is recorded. Differentiation of the signal in Fig. 5.6(g) is shown in Fig. 
5.6(h). After amplification, inversion, and clipping, the output signal 
would appear as shown in Fig. 5.6(i). If it is then appUed to a coincidence 
gate with clock pulses tuned to occur at the center of each ceU, the final 
result would be as shown in Fig. 5.6(j). 

A disadvantage of the differentiating technique is that it attenuates 
the read signal. As a result, additional ampUfication, which also amplifies 
pulses due to noise sources, must be introduced. 

If the recording density is very higji and a long sequence of either Vs 
or O's is recorded, the smaU ripple signal resulting from the RZ nature of 
the recording, may not be adequate to produce a satisfactory output 
signal. Schemes for correctly interpreting the read waveform at high 
recording densities are generaUy complex and critical in operation. 

5.2.5.2. NRZ Recording 

The non return to zero, or NRZ method of recording is somewhat 
similar to the two-level form of RZ recording using dc erasing. How­
ever, there are two principal differences. First of aU, recording current 
is appUed for the recording of both O's and I's. Secondly, the recording 
current is appUed for the fuU width of a ceU so that there is no return to 
a reference zero state of saturation between ceUs. As a result, the medium 
is contmuously magnetized to saturation in either of two directions, and 
reversals of direction occur only when there is a transition from a 1 to 
a 0 or vice versa. 

The nature of the record current and the read voltage are indicated 
in Figs. 5.7(a) and (b) . It is evident that in reading, a positive pulse 
indicates a transition from 0 to 1 and a negative pulse a transition from 
1 to 0. A precise indication of the end of individual bit positions can be 
provided by pulses from a separate clock channel. The original waveform 
may be obtained from the read waveform by causing the positive pulses 
to trigger a read flip-flop to an "on" state, and the negative pulses to 
reset it, generating tiie waveform shown in Fig. 5.7(c). 

Comparison of Fig. 5.7(b) with Fig. 5.6(b), and consideration of 
the nature of the record current waveform, shows that the NRZ system 
theoreticaUy aUows an information rate twice that obtainable with RZ 
recording. A Umiting factor in both cases is the distance along the re­
cording surface within which a transition can be made between states of 
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FIG. 5.7. Record and read waveforms in NRZ recording 

positive and negative saturation. In RZ recording the frequency of flux 
reversals is independent of the information pattern, while in NRZ recording 
it is a maximum for a sequence of alternating I's and O's. However, even 
in this case NRZ recording calls for only half as many flux reversals and, 
therefore, only half the pulse repetition rate. The NRZ system has a 
greater duty cycle than the RZ system, since currents must flow through 
the recording heads in one direction or the other continuously. However, 
a compensating factor results from the fact that the actual pulse frequency 
at the recording head is reduced by one-half, compared to the RZ system. 
This allows a greater number of turns of wire to be used in the head, and 
thereby reduces the amplitude of the driving current that must be supplied 
to it to produce a specified flux density. 

Referring to Fig. 5.7(b) one sees that there is a separation be­
tween the trailing edge of a positive pulse and the leading edge of the 
negative pulse. As the recording density is increased, a point will be 
reached at which the shoulder separating the two disappears. Beyond this 
point, the read voltage amplitude diminishes rapidly due to demagnetization 
effects in the recording medium as a result of interference between di­
poles in adjacent cells. Of course, RZ recording is also limited (and at a 
lower information rate) by demagnetization effects. 

Let us here delineate the principal advantages and limitations of 
both the RZ and NRZ recording techniques. First, RZ recording is sub­
ject to noise that appears because old information is not erased in the 
interval between adjacent pulses; while transformer coupling cannot be 
used in NRZ recording because current does always flow through the 
head winding. At low bit densities RZ recording allows use of a narrow 
band-pass read amplifier, while NRZ recording requires a wide band 
amplifier because of the low frequencies represented by uninterrupted 
streams of O's or I's and the high frequency presented by alternate I's 
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and O's. At higher bit densities, because of flux spreading and self­
demagnetization a wide band amplifier is also required with RZ recording.
Such an amplifier has a worse signal-to-noise ratio than a narrow band
amplifier. If a wide band amplifier is not used, the read amplifier's out­
put will vary appreciably with the frequencies presented by the informa­
tion pattern, making it difficult to set a reliable threshold for signal dis­
crimination. At high densities, an uninterrupted string of 1's or O's also
tends to cause flux saturation in a head, and, as a result, near zero values
for induced voltage swings.

A so-called return-to-bias system is like RZ recording in that the
direction of current is reversed between write 1 pulses (being returned
not to zero amplitude, as in RZ recording, but to an opposite polarity
that saturates the medium in a direction defined to represent 0) and like
NRZ recording in that current is never returned and held at zero ampli­
tude. Because uninterrupted streams of O's are possible, it too requires a dc
read amplifier. Many of the difficulties described here may be alleviated
by phase modulation recording, described in Section 5.2.5.3.

5.2.5.3. Phase Modulation Recording

The distinguishing characteristic of the phase modulation system of
recording is that two current signals, of equal duration and opposite
polarity, are used for the recording of each bit. These signals may be
either the RZ or the NRZ type, Le., either current pulses or states may
be used. Consideration of Figs. 5.8(a) and (b) shows that at higher
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FIG. 5.8. Record and read waveforms in Ferranti phase modulation recording
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recording densities there will be little difference between the RZ and NRZ 
current waveforms, although the duty cycle of the NRZ system is slightly 
higher. On the other hand, the NRZ system is slightly superior in writmg 
over previously recorded information. (The upper dashed lines define the 
boundaries of cells and the lower ones define the centers.) 

By the use of two polarities per bit one is assured that regardless 
of the information pattern there will be at least one flux reversal over 
the interval of two adjacent cells. This scheme also restricts the band­
width requirements to the octave between the information rate and twice 
this frequency. Because of this narrow band pass, a higher signal-to-
noise ratio is obtainable from the read amplifier. The output voltage 
waveform, in Fig. 5.8(c), shows either a positive or negative peak near 
the center of each cell, according to whether a 1 or 0 was recorded, this 
information being derived from the direction of the zero crossover. To 
recover the recorded information this waveform is sampled by pulses 
timed to occur at the center of each cell. An important feature of the phase 
modulation system is that the timing pulses may be derived from the sig­
nificant zero crossings of the waveform itself. (Various schemes may be 
used to reject the nonsignificant zero-crossing that occurs between cells 
of like content). 

Because this type of recording is phase (rather than amplitude) 
sensitive, the threshold level setting and signal interpretation problem 
is avoided. Even small amplitude signals will be detected as long as the 
noise pulse is significantly less than the signal. With amplitude sen­
sitive systems an error can result from either a weak signal or large noise 
pulse alone. In phase modulation recording the signal-to-noise ratio must 
be very low for the zero crossing point to be shifted enough to result in 
misinterpretation of the recorded waveform. 

As indicated in Fig. 5.8(c), there is an increase in peak amplitude 
in going between two cells not holding like data (i.e., from 0 to 1 or 1 
to 0 ) . By using a read system in which a flip-flop is triggered only in 
the event of a change signal, the demagnetization effects in the recording 
medium may be made negligible. 

Variation of read voltage amplitude with recording density for phase 
modulation recording on a disk surface with three types of magnetic coat­
ing is shown in Fig. 5.9. (Plating thicknesses are a few tens of micro-
inches, the oxide thickness in the 200 to 500 microinch range, the head 
characteristics as follows: a ΥΛ mil read-write gap, a Hi-Mu 80 laminated 
core structure with a 40 turn winding, inductance of about 25 microhen­
ries). An extremely thin coating results in less self-demagnetization (which, 
for short wavelengths decreases sharply as thickness is reduced), greater 
resolution and less head trailing effect (i.e., demagnetization of the medium 



5.2. DYNAMIC MAGNETIC STORAGE 211 
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FIG. 5.9. Read voltage variation with recording density for three types of magnetic 
coatings (Courtesy of Remington-Rand UNIVAC; Jacoby, M. [1962]) 

Still within the field of the head when record current polarity is reversed). 
A high ratio of coercivity to remanence also reduces self-demagnetization, 
and it is important that the hysteresis loop be rectangular to reduce the 
trailing effect and self-demagnetization (see Miyata and Härtel [1959]). 

5.2.6. MAGNETIC DRUM STORAGE 

At present, magnetic drums and disks (described in the section follow­
ing) provide the most economical storage of large amounts of data (see 
Table 5.1) for medium speed storage applications. Drums are used both 
as the main store of medium speed computers and the auxiliary store of 
high speed computers. A block diagram of a dynamic magnetic storage 

Record 
head 

Current 
amplifier 

Switching Sync. 
network FF 

FIG. 5.10. Record-read system for one channel of a dynamic magnetic store 

system, essentially the same circuitwise for a drum or a disk system is 
shown in Fig. 5.10. In either case, there is a metalUc surface coated with 
a magnetizable medium, a motor for driving the surface, a set of read 
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and record heads, and circuitry as indicated. Usually the medium consists 
either of a magnetic oxide dispersion that has been sprayed onto the sur­
face and burnished after hardening; or a magnetic material or compound 
that has been plated onto the surface (see Fig 5.9). The plated surface 
is superior to the oxide surface magnetically and also mechanically, for 
it produces a harder, less abrasive surface. As indicated in the discussion 
on recording techniques, the signals read off the surface are not of suitable 
ampUtude or shape to be used by the sequential switching networks of 
a computer. Therefore, circuitry is provided to amplify the read signals 
and convert them to proper shape. 

One of the most difficult problems in the design of a magnetic drum 
storage unit is to maintain a smaU clearance between the magnetic surface 
and the read and record heads. No more than a smaU clearance, 0.0002-
0.0001 in., can be aUowed if a large recording flux density, needed for 
saturation of the medium, is to be produced without "excessive" record 
currents and read amplifier gain. Saturation of the medium with less re­
cord current reduces circuitry, power consumption, the traiUng effect of 
the head and improves resolution. There must be Umited variation in this 
clearance during operation. Variations in this spacing stem from two 
principal sources, namely mechanical and temperature effects. Any ec­
centricity in the drum surface wiU cause cyclic variations in the clearance 
between a fixed head and the surface of the drum. The variation in the 
path described by the surface of the drum is referred to as "run out." It 
may be reduced to less than 1 mil by use of a cyUnder that has been 
dynamically balanced and turned on its own bearings. (A slight variation 
in drum diameter from one end of the cyUnder to the other can be com­
pensated for by the mitial setting of the heads.) Other sources of spacing 
variation are vibrations and the mechanical deformation that takes place 
when the drum is rotated at high angular velocities. If the drum and the 
structure supporting the heads do not have the same temperature coeffi­
cient of expansion, the changes in dimensions occurring from temperature 
deviations from the norm wiU alter the set clearance between the drum 
and its heads. To circumvent this problem, air supported head mounts have 
been developed whose compliance maintains a minute head to surface spac­
ing. In the hydrodynamic type, the lift is produced by the film of air 
circulated by the rotating surface while in the less widely used hydrostatic 
type an external air supply ejects compressed air under the head. 

Information on the drum surface is recorded along several distinct 
tracks. Each track is defined by the imaginary line traced by a head as 
the magnetic surface passes beneath it. The number of tracks per inch of 
axial length may vary, but currently may be anywhere from 20 to 80. 
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The width of the track is determined by the width of the head core. Though 
a wider track results in less storage capacity, it results in a larger read 
signal and reduces errors that might arise from flaws along a narrow 
track. There are many ways in which information may be arranged 
within the tracks. There may be parallel access to all tracks, or to several 
parts of a particular track, or there may be access to only one of several 
tracks at a given time. For the former cases, there are separate record 
and/or read amplifiers for each track or for each head, whereas in the 
latter case, only one record and one read ampUfier plus appropriate selec­
tion circuitry might be used for the entire memory. 

Access is gained to the various items of stored information by the 
same motion that is utiUzed for sensing. The drum angular velocity 
in different designs varies over a wide range (see Table 5.1). The maxi­
mum velocity is limited by the drum's moment of inertia, and hence, its 
physical dimensions. In static address dynamic storage systems (see page 
197), if there is only one head per track, the maximum access time is the 
period of one revolution. The use of more heads (and associated circuitry) 
per track can reduce this figure. It may also be reduced by programming 
techniques like minimum access coding and address interlacing (see Sec­
tion 7.5.4). If a track is used as a delay line, access time may be improved 
by less separation between record and read heads (implying additional 
head pairs to secure the same amount of storage). 

In early static address systems for stored program arithmetic com­
puters, a read and/or a record ampUfier was suppUed for each head. This 
is an uneconomical procedure since the mode of operation of these ma­
chines is such that only one position of the memory is consulted at any 
given time. An alternative is to use only one record and one read ampUfier 
and cause either of them to be connected to the head desired. The con­
nection is made by a selection matrix which causes a path to be estabUshed 
between the desired head and the input Unes of the read ampUfier or 
output Unes of the record ampUfier. If the speed requirements of a machine 
are suflSciently low, then the switching delay introduced by a relay network 
can be tolerated. For medium and high speed machines, electronic circuits 
are used which permit power switching at high speed. These selection 
circuits may be comprised of vacuum tubes or transistors or combinations 
of these elements with magnetic core switches. The switching network 
is controlled by the track (or head) part of an instruction's address which 
is held (with the sector number) in an address register. (See Section 
7.5). For a description of a head selection switch formed from transistors 
and diodes and capable of selecting one out of a 100 heads, see Seader 
[1958]. 
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5.2.7. MAGNETIC DISK STORAGE 

There are various applications where the use of one or more magnetic 
disks, usually in the form of stainless steel or magnetically plated alumi­
num, may be preferable to a magnetic drum. One of the principal 
advantages of a magnetic disk store is that it provides a large amount of 
magnetic surface in a relatively small volume. If the disks are rigid, the 
problems of run-out associated with a magnetic drum type of store are 
alleviated. Even with relatively flexible disks, proper spacing between 
heads and disks can be maintained with less severe mechanical tolerances 
in manufacturing and less extensive maintenance procedures. Maintenance 
of a constant separation between the heads and the recording surface is 
usually achieved by use of an air bearing (see Section 5.2.6). 

Single magnetic disk stores with capacities of from 100 to 500 kilobits 
have been produced which are competitive with drum stores such as those 
listed in Table 5.1. However, magnetic disks are gaining more extensive 
application in multi-disk units of several hundred megabits capacity, re­
ferred to as mass storage units, intended primarily for information retrieval 
systems. One of the earliest of these, designed at the National Bureau of 
Standards, (Rabinow [1953]) was to have 588 disks of 20 inch diameter 
and a bank of 128 heads. The capacity of this unit using a recording density 
of 100 bits/inch would be a quarter billion bits. The IBM-RAMAC disk 
file (Noyes [1957]) was the first operational multi-disk unit to be widely 
used with digital computers. It contains 50 disks so mounted as to rotate 
about a vertical axis. There are 100 tracks per side, each track having a 
capacity of 500, 8-bit alphanumeric characters. The disks, 24 in. in dia­
meter and 0.1 in. thick, are of aluminum coated with iron oxide. The density 
of recording on the inside track is about 100 bits per inch and on the 
outer track about 55 bits per inch. The access mechanism, of which there 
may be one or more, positions a pair of heads to any track on any disk. 
These heads are mounted in a pair of arms which can be moved 
vertically to the level of any disk and then radially to straddle it. The 
average access time is 0.5 sec, the maximum 0.75 sec. Head spacing is 
maintained by an air bearing produced from tiny air jets in an annular 
manifold surrounding the magnetic elements. A 0.001-in. spacing is 
maintamed despite any axial run-out in the disk. Reduced precision in 
radially positioning the heads is obtained by using an erase head that 
erases a wider track than the following write gap records. Thus, no 
magnetically disturbed track edges contribute noise to a newly recorded 
track which might not coincide precisely with the track previously written. 
The accuracy required in positioning a head along a track is reduced by 
use of a self-clocldng system rather than a timing track. (See Seader [1957] 
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The maximum time required to locate an item in storage is the sum of 
the maximum head positioning time and the latency time ( the latter being 
defined as the period of one revolution). In a rotating memory with fixed 
heads the access time is some fraction of the latency time, depending 
on the number of heads per track and techniques for addressing informa­
tion (see Section 7.5.4.). If constant frequency recording is used, the outer 
tracks will have a lower recording density than the inner one, so for im­
proved utilization of storage capability, a large disk is usually divided 
into two or more zones, each operating at a different frequency and with 
the maximum pulse density on the innermost track of each zone. In earlier 
units, as cited above, the positioning arm moved axially as well as radi­
ally, presenting a severe mechanical design problem and resulting in a 
relatively long access time. In most current units a separate positioning 
arm for each disk holds as many heads as there are zones on both sides of 
a disk, and positions heads along tracks within a specified zone. 

Present mass storage units, such as listed in Table 5.1, have capa­
cities near one billion bits, with pulse densities averaging about 400 ppi 
(pulses per inch), and average access time per positioner under 100 ms. 
These capabilities can be increased greatly: advanced recording systems 
will permit a several fold increase in recording density, improved posi­
tioning systems can extend the number of tracks per inch, from the present 
average figure of about 50, by another order of magnitude, and positioning 
time can be reduced by use of several independent positioners. 

5.3. Static Magnetic Storage 

5.3.1. MAGNETIC CORE STORAGE 

Magnetic core storage devices are based on the use of materials ex­
hibiting hysteresis loops which are practically rectangular. These materials 
include nickel iron alloys, molybdenum permalloys, and ferrites. Three 
basic ways these cores may be fabricated are: (1) from thin ribbons of 
a metallic material wound into a toroidal core, (2) from powdered metals 
sintered in toroidal form, and (3) from ferrites molded in toroidal form. 
Both metallic ribbons and ferrites are available that exhibit nearly rect­
angular hysteresis loops (similar to the loop shown in Fig. 4.48). The 
metallic cores offer the advantage (in relatively small capacity storage 
appHcations) of a lower coercive force. However, the ferrite cores have 
a faster switching action, are lower in cost and lend themselves to mass 
production. A typical ferrite core has an outside diameter of 0.050 in., 
an inside diameter of 0.030 in., and is 0.015 in. along its axis. For any 
given material, switching current requirements decrease linearly with the 
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diameter (since the flux path is along a circumference). Because a ferrite 
core is brittle, the ratio i.d./o.d. for small cores is held to about .60 to 
.75, adversely affecting hysteresis loop squareness. 

For memory applications, the core material should satisfy the follow­
ing requirements: 1) time required for switching (i.e., flux reversal) should 
be small to allow higher data rates; 2) effective incremental permeabiUty 
at the positive and negative residual flux points should be smaU so that 
a partially disturbed core (see sections following) produces no effective 
output; 3) reduction of residual flux caused by repeated interrogating 
current should be smaU to lessen the probability of eventually losing 
recorded information. Materials whose loops exhibit a greater degree of 
rectangularity are better in aU these respects. If a memory core is to 
be selected by coincident currents (see Section 5.3.2) it is important (for 
positive, reUable switching action) that the hysteresis loop have a square 
knee. 

The switching time τ (in seconds) is deñned by Eq. (5.3) 

r = SJiH-H,) (5-3) 

where Η is the applied magnetomotive force (in oersteds). He the coercive 
force of the material (the value of Η where the hysteresis loop crosses 
the Η axis) and the switching constant. In coincident current operation, 
Η cannot exceed 2Hc, In practice Η is chosen ^ 1,5 He for optimum 
discrimination between fuU and half excitation. For a wide variety of 
ferrites and metals, S«, does not vary significantly, but the coercive force. 
He, can be varied considerably by changes in composition and heat treat­
ment. For faster operation, materials with a larger He are used, and 
higher drive currents are required. 

Magnetic cores exhibit the foUowing characteristics pertinent to their 
use in a large capacity storage system. First of all, they provide non-
volatiUty of stored data. Once a core has been set to a particular state, 
it wiU remain in that state untU a disturbing force of proper sign and 
ampUtude is applied. For example, if the power supply is cut off deUber-
ately or accidentally, information in the cores wiU not be altered except 
if the transients are large enough to disturb the cores' remanent states. 
Also regeneration circuits do not have to be provided to prevent the loss 
of information resulting from a process of gradual degradation (as, e.g., 
in an electrostatic storage system, where the charge graduaUy leaks off 
unless periodically restored). However, the read-out process is essentially 
destructive in nature and as a result, either regeneration circuitry or a spe-
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cial nondestructive read-out scheme must be provided (see Section 
5 . 3 . 2 . 5 ) . The switching time is fast, of the order of a microsecond. 

5 . 3 . 2 . COINCIDENT CURRENT CORE ARRAYS 

The coincident current type of memory depends on a two-level ampli­
tude discrimination scheme for core selection. Cores with a rectangular 
hysteresis loop are arranged in two dimensional arrays, as shown in 
Fig. 5 . 1 1 . To record or regenerate a bit of information in a single core, 

Read or clear 

Write or restore 

restore 

Sense 
winding 

FIG. 5.11. Coincident current magnetic core storage array, showing directions of 
current flow for read or clear, and write or restore operations 

a pulse of current of magnitude /m/2 is applied simultaneously to the 
row and column wire threading that core. Im is chosen of such magnitude 
that the magnetizing force Hm it produces is adequate to switch a core, 
whereas Im/2 is not. Therefore, the core at the intersection of the energized 
X and y lines will be switched, whereas all other cores along the same 
X and Y lines are only partially disturbed. 

The read-out process is similar to the recording scheme. Interrogation 
pulses both of the same polarity are applied to the selected X and Y lines. 
If the application of these pulses causes the core to be switched, a 
voltage pulse will be induced in the read-out winding. For example, 
assume that the interrogation pulse is chosen of such polarity as to pro­
duce a negative magnetizing force. Then if the core is in state — Br, 
(Fig. 4 . 4 8 ) the interrogation pulses produce no effect, whereas if it were 
in state + Br, a switching action would be effected. Thus the state of 
the core prior to interrogation can be inferred from the effect of inter­
rogation. After interrogation, the state of the cores before interrogation 
is restored by means of circuits actuated by the read-out signal. 
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The whole array is threaded by a single read-out wire, referred to 
as a sense winding. A voltage pulse will appear on this sense winding 
only when the interrogation of a selected core causes that core to switch 
from one state of saturation to the other. For minimum coupling between 
the drive and sense windings, they should be placed at right angles to one 
another. This would result in no flux leakage and a relatively small 
capacitance between the wires. Though the diagonal pattern provides some 
coupling because of the 45" relationship between the wires, it is still 
satisfactory while easier to fabricate. Note that in any row or colunm, 
the direction of the magnetically induced voltages due to a partial selection 
is opposite in alternate cores so that opposing induced voltages cancel each 
other, allowing the signal from the selected core to dominate. 

Each of the straight wires used for driving and sensing effectively pass 
a single turn through each core. The large currents needed to produce an 
adequate magnetomotive force can be obtained from saturable transformer 
or diode decoding matrices. Multiple turns would reduce current require­
ments, but would make the array more costly and diflScult to fabricate and 
decrease the operating speed. 

In the writing and interrogating scheme described, current pulses must 
be generated in two directions, one for recording and one for sensing. If this 
is not convenient, two sets of wires may be used. Also, if the hysteresis 
loop of the core is far from ideal, it is desirable for improved reliabiUty 
of operation to have a ratio greater than two between the current in the 
selected core and the largest current in any nonselected core. For example, 
a selection ratio of 3 to 1 can be obtained in either of the following ways: 
A current of l^/l is sent through the X and Y Une of the core to be 
selected, as before, but in addition all other selection windings are driven 
with currents of - 7,^/6. Thus the net current in all cores except the 
selected one is 7^/3 or - 7^/3. Another scheme providing a 3 to 1 
selection ratio makes use of an extra winding passing through all cores, 
and requires simpler driving current circuitry. A current ll^ß is appUed 
to the X and Y line of the core to be selected, and an opposing current 
- 7^/3 is passed through the additional winding. Thus is appUed to 
the selected core and either IJZ or - 7^/3 to aU others. In both of these 
schemes the directions of aU appUed currents are reversed during read-out. 
Also the opposing currents are appUed just prior to the selecting currents 
and maintained until the selecting currents have been removed. 

There are certain disadvantages to the coincident current selection 
technique: Restriction of the magnitude of the appUed mmf produces a 
Umitation in switching speed and aUows only small tolerances in the am-
pUtude of the drive current. Also, the less than ideal rectangularity of 
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the hysteresis loop limits the permissible size of an array (see Section 
5.3.2.2). 

5.5.2.7. Selection of a Word at a Time 

In a high speed computer a better balance can be achieved between 
time spent in arithmetic operations and in data transfer to and from the 
memory if there is parallel access to all bits of a word. One way to accom­
plish this is to provide as many two-dimensional arrays as there are bits in 
a word. Then each word is addressable simply by its X, Y coordinates, and 
a particular Ζ plane is always associated with a particular significant place 
in a word. A particular configuration which has been found to be prac­
tical is arranged as follows: Each two-dimensional array has a set of X 
and Y windings and a current of Im/2 can be applied to any X and Y 
winding at a time. Corresponding X and Y windings in each plane are 
connected in series. For each XY plane, there is a separate Ζ drive wind­
ing (designated as an inhibit winding) which passes through all cores in 
the plane, and, also, a separate sense winding. The operation is as follows: 
since corresponding X and Y windings in different planes are connected 
in series, application of drive current to a particular XY address causes 
a 1 to be recorded in the corresponding positions of all planes. There­
fore, to allow a recording of I's in some XY planes and O's in others, an 
opposing current, - Im/2 is applied to the Ζ drive winding in all XY 
planes in which a 0 is to be recorded. In reading, the directions of the 
applied XY currents are reversed and the Ζ winding is not used. The indi­
vidual bits of the word are read from the sense windings. 

Though the inhibit and sense windings are not used simultaneously, 
it is not practical to replace them with a single winding for the following 
reasons: First of all, in order to cancel induced signals that are unwanted, 
the sense winding passes through alternate cores in opposite directions 
(see Fig. 5.11). The inhibit winding must pass through all cores in the 
same direction relative to the X and Y drive windings. Also, there would 
be a problem in isolating the large voltage applied to the inhibit winding 
from the corresponding sense amplifier. If not isolated, the amplifier 
would be driven to saturation and could not recover in time to respond 
to the small amplitude of the read-out signals. 

Some important parameters of a core storage system are the simplicity 
of the wiring configuration, the selection ratio, and the number of drive 
lines. A more complex core selection system (see Section 5.3.2.4) can 
reduce the number of drive lines, e.g., a quadruple-coincident selection 
system for a 4096 bit storage plane can be built requiring only 64 drive 
lines compared to 256 unidirectional lines for a two-dimensional selection 
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system. However, the use of more dimensions in the selection system 
within the array means more wires, a smaller selection ratio, and passage 
of each driving current through more cores. 

5.5.2.2. Disturb Signals 

We will review here various unwanted signals that are generated dur­
ing the operation of a coincident current memory because of less than 
ideal rectangularity of the cores' hysteresis loops and other causes. First 
of all, we note that only moderate rectangularity is suflBcient to prevent 
demagnetization due to the cumulative effect of successive half amplitude 
signals. A more serious problem is that voltages induced in the sense 
winding by all the half excited cores on the selected lines are ciunulative 
and may swamp the desired read-out signal. (The effects of disturb volt­
ages induced directly from the drive windings may be essentially eliminated 
by threading the sense winding in such a way that there is an equal 
number of positive and negative ñux linkages. 

As an example, consider a selection ratio of one-half. In this case, 
whenever a core is selected by application of Im, a half selection current 
of Im/2 is appUed to aU other cores in the row and column intersecting 
the core. If a half select read signal is applied to a core containing a 1, 
the state of the core is changed from 1 to Ir. If a half select write signal 
is appUed to a core containing a 0, the state of the core is changed from 0 
to 0 ;̂. The resultant states are referred to as disturbed 1 and disturbed 0 
states, respectively. When half select signals are appUed alternately in 
the write and read directions, minor hysteresis loops are traversed as 
shown in Fig. 5.12 (a) . Since the difference between the first and successive 
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FIG. 5.12 (a) Minor hysteresis loops from half-select signals, (b) strobing 
of sense voltage. 
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minor loop traversals is usually small, it is assumed here that each core 
arrives at a stable minor hysteresis loop after several half select signals. 
The output flux obtained in reading a core in a disturbed 1 state is less 
than that from a core in an undisturbed 1 state, and when a core in a 
disturbed 0 state is read, an unwanted signal is produced by the process 
of restoring the undisturbed 0 state. 

In reading, a partially selected core (operating in a symmetrical 
coincident current loop) will not produce the same small disturb signal 
when in the 1 remanent state as in the 0 remanent state. Earlier it was 
stated that to reduce the effects of disturb voltages, the sense winding 
should Unk all partially selected cores in a way that equahzes the number 
of positive and negative core linkages. However, there is a pattern of 
information along the selected X and Y lines for which the difference 
signal (commonly referred to as delta noise) is a maximum. The pattern 
(and its complement) yielding the maximum deha noise is called the worst 
storage pattern. 

A technique used to alleviate the delta noise problem is to apply 
after each read or write operation a demagnetizing half excitation referred 
to as a post-write-disturb pulse. This tends to equahze the reversible flux 
changes for the two remanent states during subsequent half excitations, 
by carrying all cores to either the Ir or 0^ state. The diagonal sense wind­
ing pattern effectively cancels voltages induced from the unselected cores 
except for the voltage differences caused by the relatively small difference 
in slope between the left hand portions of the 1 and 0 minor hysteresis 
loops. 

The most frequently used method to discriminate against disturb volt­
ages is to time strobe the output voltage. This technique is effective be­
cause the reversible flux changes on half excited cores occur faster than 
the kreversible flux changes on the selected core. Fig. 5.12 (b) shows 
sampUng of the sense hne voltage after the waveform on the left (represent­
ing a worst combination of half-select and delta noise voltages) has 
decayed. 

The rectangularity and uniformity of present day ferrite cores is such 
that an array much larger than 64 x 64 cannot be operated reUably with a 
single sense winding. For larger arrays, the problem of disturb voltages 
can be solved by spHtting the sense winding (see Best [1957]). 

5.5.2.5. Core Storage Cycle 

Let us review briefly the nature of writing and reading in a core 
storage array in which each bit of a word is read simultaneously from cor­
responding positions of all XY planes. To write, a drive current - 1^/2 
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is applied to a selected row and column in all planes, simultaneously with 
the application of an opposing current 7^/2 through the inhibit winding 
in all XY planes where a 0 is to be recorded in the selected position. 
Thus, writing is essentially a "write 1" process. To read, a drive current 
Im/2 is applied to the selected row and column in a direction opposite 
to that for writing. Thus reading is essentially a "write 0" operation and 
previously recorded I's are detected by inspecting the sense winding at 
the time when the cores switched from 1 to 0 are developing their maxi­
mum output voltage. This mode of operation makes it desirable to estab­
lish an operational sequence in which each write operation is preceded 
by a read operation regardless of whether a word is to be written into or 
read from the memory. This is because when writing, the preceding read 
(write 0) operation clears the word, and when reading a subsequent write 
operation (write 1) is needed to restore those cores switched from 1 to 0 
by the read operation. Other routine operations necessary to the con­
sultation of the memory in a particular system may be included in an 
over-all operational sequence referred to as a core storage cycle. For 
example, after the write operation, a post-write-disturb pulse may be 
applied to all cores (through the inhibit windings). During this period, 
the addressing circuits can be set to the address of the storage location to 
be consulted in the cycle following. 

The cycle time of a random access memory depends on several factors: 
1) time for address decoding, 2) transmission time along write and read 
lines, 3) switching time of a memory element (e.g., Eq. (5-3)) , 4) time 
before reading to allow decay of a large signal pick-up by a sense winding 
during writing (even after measures to reduce pick-up and its effect on 
the sense ampUfier), 5) delays in sense ampUfication circuits. 

5324, Memory Drive Systems 

In an η X η coincident current array, the problem of switching into 
cores is reduced to that of switching into 2n channels. Two many-to-one 
diode matrix switches (described in Chapter 4) could be used for this 
purpose, the output of one switch driving the X Unes and the output of the 
other driving the Y lines. Since two driver circuits are required per Une 
to obtain current flow in two directions, 4Λ drivers are required. In some 
of the early core memories, there were two tubes and two one-turn wind­
ings at each line to provide the two polarities of drive. Each tube suppUed 
a current of about 0.5 amps. In present large arrays, the number of cur­
rent drivers is often reduced by the use of sets of external switching cores 
to drive the storage array. Also, joint use of coincident currents, diode mat­
rices, and magnetic core matrices all contribute to an efficient selection 
system for a large array.) 
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An important fact entering into the design of a magnetic core switch 
is that it is only necessary for a single switch core to be driven to one 
state, while all others can be in the opposite state. For example, before 
energizing currents are applied to the core switch, all cores are in the 
same remanent state and after they are applied only one of them is 
switched. This is in contrast to the coincident-current memory matrix where 
the cores can be in any pattern of positive and negative remanent states. 

The first type of magnetic switch we will consider is the biased co­
incident current switch shown in Fig. 5.13. All cores are biased by a 
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FIG. 5 . 1 3 . Biased coincident-current magnetic core switch 

direct current which is equal in magnitude and opposite in sign to the 
excitation of a row or column line. Simultaneous excitation of both a 
row and column multitum line switches the core. At the termination of 
the row and column drives, the dc bias restores the selected core to its 
initial state. Each core of the array has an output winding (not shown 
in Fig. 5.13) coupled to a row of the memory array. A similar switch 
has output windings coupled to the columns of the memory arrays. The 
switch provides part of the address decoding, both polarities of output, 
and a better impedance match to the output of the drivers. The latter 
capability results from the fact that several turns can easily be provided 
on the switch cores because they are larger than the memory cores and 
only a relatively small number of them are required. For example, only 
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an 8 X 8 switch array is required to drive the X (or Y) lines of a 64 X 64 
memory array. A switch similar to the one in Fig. 5.13 is the anticoin-
cident current switch. It has no bias hne, so a selection is made by first 
sending reset current through all X lines except the one containing the 
core to be selected. Then, current in the set direction is applied to the 
Y line containing that core. To reset, the Y line current is termi­
nated and reset current applied to the X line containing the selected core. 

We will consider next a multicoincidence magnetic switch. Figure 
5.14(a) shows a switch of this type with three inputs and eight outputs. 
In this figure and also Fig. 5.14(b) the mirror system of notation for 
magnetic core circuits is employed to indicate the location and polarity 
of the windings: The cores are represented by the dark horizontal lines, 
and the various drive lines by the vertical lines. A short diagonal line at 
the intersection of a core and wire indicates that a particular drive wind­
ing is present on that core. The convention is to consider the current in a 
wire as a beam of light. The core will be driven to a set or reset state 
in accordance with whether the diagonal line, considered as a mirror, 
reñects the beam to the left or right. The operation is as follows: The 
output signals of the flip-flops holding the Ζ (or F ) address control a 
set of drivers. After all cores of the switch have been reset by application 
of a current through the restoring winding, current is applied to one 
winding of each input pair according to whether the corresponding flip-
flop is in the 1 or 0 state. For every combination of states of the flip-
flops, one core will have all windings driving it toward the set state 
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FIG. 5 . 1 4 . (a) Multicoincidence magnetic core switch, (b) biased multicoincidence 
magnetic core switch 



226 5. LARGE CAPACITY STORAGE SYSTEMS 

while others will have some windings driving them toward the set state 
and some toward the reset state. The number of turns of the reset winding 
is k - I times that on the set windings where k is the number of binary 
positions QO so only the selected core is set. Since all of the driver cur­
rents are additive on the selected switch-core, in a larger matrix the 
drivers can supply less current to each winding. Also, a larger number of 
series windings will be driven by each driver. 

In Fig. 5.14(b) another form of magnetic switch referred to as a 
biased multicoincidence switch is shown. In this case, the X (or Y) 
address flip-flops control a set of bias drivers. The magnitude of the 
current generated by any bias driver is adequate to switch any core it 
affects to the state N. For each address in the flip-flops, one and only 
one switch core will receive no bias current. For example, if the flip-
flops hold Oil (binary three) a bias current is applied to each switch 
core except number three. After a particular core has been selected (by 
not having a negative, biasing current appUed to it), the next step is as 
follows: A pulse of current is applied to aU switch cores by the set driver 
in such a direction as to drive each of them to positive saturation if they 
were initially unbiased. However, since only the selected core has no 
initial bias, it is the only one actually driven to a state of positive satura­
tion. Switching of the selected core induces a voltage in its output winding 
which may be used as an Z or y drive signal for the storage array. The 
selected switch core is returned to its initial state by appUcation of current 
from the reset driver. 

When the number of windings per switch-core, or the number of 
windings connected in series becomes greater than desirable, these fig­
ures may be reduced by doing some preselection with the aid of diode 
switching networks. 

5.5.2.5 Nondestructive Readout 

Before describing certain schemes for sensing the state of a mag­
netic core without altering it (in order to avoid the necessity of re­
storing it) we will review some basic characteristics of ferromagnetic 
materials. Such materials usually have smaU regions (about .1 mm in 
length) called domains in which all electron spins are aUgned. (There 
are also cases where domains do not form, the magnetization changing 
direction in a continuous manner). Regions separating domains with dif­
ferent alignments are known as domain walls. When an external magnetic 
field is applied, domains similarly aligned grow, extending their walls 
and reducing adjacent domains. Domain rotation, i.e. rotation of the 
magnetic moments of all domains, may also occur (though this happens 
more frequently in fields of higher intensity). 
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Nondestructive readout based on the phenomenon of elastic motion of 
domain walls is described by Newhouse [1957]. A magnetizing force much 
greater than the coercive force can be applied without causing switching 
if it is applied for only a brief interval (about .1 f t sec) . During this 
period walls can be moved only short distances, within their elastic limit, 
and the movement is reversed when the force is removed. The readout 
voltage varies by a ratio of about three to one, depending on the core's 
remanent state, and the peak output is about 15% of that produced by 
switching. The reversible flux change may also be aided by two other 
processes: (1) temporary coherent rotation over a small angle within 
domains, (2) temporary domain reversals around imperfections in the 
material. 

In quadrature field methods, readout is by means of a magnetic field 
orthogonal to the remanent flux (which is m a ckcular path around the 
core). Since sensing is based on rotation of magnetic moments rather than 
domain wall motion, the state of the core is inferred from the polarity 
rather than the ampUtude of the readout voltage. The readout rate can be 
very high because the magnetic moments can rotate within the readout 
pulse's rise time. Wiring an array of elements as in Fig. 5.15 (a) is 
diflBcult; it is also difficult to produce cores with holes as shown in Fig. 
5.15 (b) . Though the FLUXLOK scheme, shown in Fig. 5.15 (c) , re-
quh-es more ampere turns for driving than the scheme of Fig. 5.15 (b) , 
it uses a standard core, and the readout solenoid is relatively easy to wke. 
In the FLUXLOK system, the opposing circular mmf's set up in the core 
cancel one another, leaving its remanent state essentially unaffected. The 
magnetic moments are rotated slightly; but when the disturbing field is 
removed, realign to their original orientation. The output waveform has a 
positive and a negative pulse at the leading and trailing edge (whose 
interval is defined by the interrogating pulse), respectively, or vice versa, 
depending on the initial orientation of the circular flux. 

In the RF sensing method (Widrow [1954]) a burst of RF current of 
one frequency is appUed to a selected coordinate of an array and another 
frequency to a selected coordinate (using the same windings employed in 
writing). The output voltage produced by each core at the intersection 
has a difference frequency component. Its phase for the two possible 
residual flux states of the core differs by 180°. The cores are not switched 
because the frequencies (in the region of 6 Mc) are so high that there is 
not time in a half cycle for a permanent change, and current in the oppo­
site direction during the next half cycle restores any temporary change. 
Because of its complexity and critical operation, this technique has found 
Uttle appUcation. 

The so-called 0-flux method (Olsson [I960]) is based on possible 
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FIG. 5.15. Nondestructive sensing arrangements for magnetic core storage 

use of the demagnetized (0-flux) state of a core to represent one of the 
two binary states. It allows a readout frequency comparable to that of 
conventional (destructive) readout schemes with lower readout currents 
(less than 100 ma for an .080 inch core of low coercivity). 

Since reliability of operation is a prime consideration, evaluation 
of a sensing method must take into account such items as the squareness 
and uniformity of cores that are acceptable, the amount and complexity 
of circuits required and the output signal-to-noise ratio. Readout methods 
producing relatively low signal-to-noise ratios are better suited for a word 
organized memory (Section 5.3.2.6), where no half-activated cores are in 
series with an activated core on a sense line to contribute disturb signals. 

5.5.2.6. The Word Organized Memory 

We will now describe a magnetic core storage arrangement (see Fig. 
5.16) somewhat different from those considered in the preceding sections. 
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FIG. 5.16. Linear selection: word organized magnetic core storage array 
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The operation of this array, whose selection scheme is called "word-selec­
tion" or "Hnear-selection," is as follows: First of all, switching is 
performed external to the array itself. Secondly, each row corresponds to 
a word. To read a word, the selected row is driven with a pulse of suffi­
cient ampUtude to switch aU cores in the row to positive saturation. This 
causes voltages to be induced on aU column windings where the cores of 
the interrogated row were at a state of negative remanence. To write or 
rewrite a word, a current half the ampUtude required for switching is 
appUed to the selected row in the direction opposite to that for reading, 
i.e., one producing a negative mmf. Simultaneously, write currents of the 
same ampUtude are applied to those columns in which the cores of the 
selected word are to be driven to a state of negative saturation. This 
results in a switching action where those columns intersect the selected row. 

Because read-out is by external word addressing and involves no 
current coincidence, the read-out Unes are free of disturb signals from 
cores of other words. Extraneous signals on the read-out Unes occur only 
as a resuh of the minor flux changes of those cores on the selected row 
which are driven further into saturation and these are easily distinguish­
able from a major flux change. In contrast to coincident-current operation, 
the less than ideal squareness of the hysteresis loop does not limit the 
permissible size of the array. The read-out signal is clean and simpler to 
detect, there is no hmitation on the magnitude of drive current that can 
be appUed, as with internal coincident current selection, and because of 
the large tolerances, the driving circuits can be simpler, too. By increasing 
this current, the read-out switching speed can be increased to the Umit 
imposed by the characteristics of the external switch and the heating of 
the memory cores should they be switched at the high repetition rates 
possible with the short switching time. Since the write operation does 
depend on current coincidence, the writing currents and hence the speed 
of writing are limited accordingly. 

To summarize briefly, in coincident-current memories half-select 
currents are critical in amplitude and waveshape, the core material must 
have a high squareness ratio (since this affects the sum of half-select 
voltages), the cores must be selected for uniformity (to improve noise 
rejection by canceUation effects) and the sense amplifier design is critical 
because of high level noise from partially disturbed cores. In word or­
ganized memories these requirements are greatly relaxed; in particular, the 
greater tolerance on drive current allows reliable operation over a wider 
temperature range despite a temperature coefficient of coercivity of .5 to 
.7%/C° for ferrite core materials. On the other hand, above the region of 
10,000 bits or so, a word-organized memory requires considerably more 
associated semiconductor elements for addressing, writing and sensing 
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FIG. 5.17. Section of apertured ferrite plate 

(about five times as much for a 100,000 bit memory and about ten times 
as much for a million bit memory). 

5.3.3. THE APERTURED FERRITE PLATE 

Production of magnetic core assemblies similar to those described in 
Section 5.3.2 involve complex assembly operations if the total number of 
bits is very large. This is because of the difficulties involved in threading 
wires through the tiny ferrite cores. The ferrite plate storage system, 
originated at RCA, is composed of thin (0.020 in. in prototype models) 
plates molded, with a regular array of holes, from a rectangular hysteresis 
loop ferrite (see Fig. 5.17). It combines the relatively high density of 
storage sites of a continuous medium with the high access rates of indi­
vidual cells: These ceUs are defined by the apertures, for, by applying a 
magnetic field that produces either a clockwise or counterclockwise flow 
of magnetic flux in the small area of material surrounding each aperture, 
a bit can be stored in terms of the direction of remanent magnetization 
about each aperture. With a center-to-center spacing of the holes greater 
than twice the hole diameter, the interaction between holes is negligible. 
In a standard 1 6 x 1 6 array in which the plate is less than an inch square 
the holes are 0.025 in. in diameter with 0.050 in. between centers. About 
300 ma are required for switching; the switching time is around 1.5 /xsec. 

Apertured ferrite plates can be operated either as a coincident-current 
or word organized memory. The "word select" type is used almost ex­
clusively because it is less dependent on the uniformity of cells on a 
plate, in addition to its other advantages. (For a description of both types, 
see Rajchman [1957]. In the "word select," memory, a stack of plates 
can be driven by an external switch which energizes the selected word loca­
tion without half-exciting other locations. The address selecting switch, 
too, can be made of a stack of plates, and can be set in register with 
the storage stack. An address selecting conductor, simply a straight 
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wire, is passed through each set of apertures in register. The switch stack 
is threaded, also, by X and Y selection windings. 

To summarize, the apertured ferrite plate is more economical to 
fabricate and test than a corresponding number of cores, and the assembly 
and wiring of plates into a large memory is considerably simpler than the 
fabrication of a magnetic core assembly. An important problem still to be 
solved in the development of this type of memory is the production of 
plates with more uniform characteristics. 

5.3.4. THE TRANSFLUXOR ARRAY 

The blocked and unblocked remanent conditions of a transfluxor 
(see Chapter 4) may be used for binary storage in a random access store 
with coincident current selection. (See Fig. 5.18.) Coincident-current write 
pulses, applied simultaneously to the windings unking leg 1 (Fig. 4.59) in 
a selected row and column, set the selected transfluxor to either a blocked 
or unblocked state. For read-out, a pair of pulses, one in the prime and one 
in the drive direction, is applied to each read line. If the transfluxor is 
unblocked, fluxes in legs 2 and 3 reverse back-and-forth and return to 
their initial state. If it is blocked, they remain in their initial state. These 
flux reversals induce voltages on the sense winding. 

In a coincident-current core memory the half-select currents must be 
precisely controlled since they must not switch a core. A coincident-
current transfluxor array can be operated by biasing the small hole to 
saturation, applying a drive current to one Une to overcome the bias 
(without switching) and to the other to cause switching. Since these 
drive currents can be larger than in a coincident-current core memory, 
switching can be faster. Because the drive current can vary over a 
wider range, operation is less temperature sensitive. Present coincident-
current transfluxor memories can operate from - 1 0 ° C to H-65°C with 
cycle times of 6 to 10 /xsecs and with a maximum of about 4096 bits per 
sense winding. A word-select transfluxor memory can operate from — 55°C 
to -f 100°C with cycle times of about 1 /xsec. 

The nondestructive nature of the readout process in a transfluxor 
memory simpUfies the readout circuits because there is no need to activate 
write circuits for selective restoring. A program can be read from memory 
with less chance of accidental erasure and, in certain appUcations requiring 
high speed reading only of a semi-permanent electrically alterable memory, 
the write circuits can be disconnected and removed, once the program has 
been loaded. Another potential advantage of a transfluxor memory is that 
write and read operations could be done simultaneously at two addresses. 

In some respects the transfluxor memory does not compare as favorably 
with a core memory, e.g. its windings are more complex and difficult to 
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assemble, it is larger, transfluxors are more difficult to produce and 
test, and the drive system (write and read circuitry) is more complex. 

5.3.5. THE TV^ISTOR 

The action of the twistor storage element is based on the fact that a 
torsion applied to a magnetic wire shifts the preferred direction of mag­
netization into a helical path inclined 45° from the axis. Figure 5.19 
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FIG. 5 . 1 8 . A coincident-current transfluxor storage array 
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FIG. 5 . 1 9 . Twistor storage element: (a) physical form and (b) hysteresis loop 
showing bias due to open magnetic structure 

shows one form of the twistor storage element. It consists of an insulated 
nonmagnetic wire on which there is wound a magnetic wire or ribbon in 
the form of a helix, at an angle of 45* to the axis of the nonmagnetic wire. 
There is also a solenoid about the central wire. Coincident application 
of a current to the solenoid and central wire can produce a magnetic 
field whose lines of flux follow the path through the helical wire and from 
its ends join through the space around the element. Because of the 
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anisotropy produced by its longitudinal tension, the magnetic wire exhibits 
a hysteresis loop that is markedly rectangular. Also, because of the open 
magnetic structure there is a bias in the loop (see Fig. 5.19), proportional 
to the magnitude of the ambient magnetic field. 

The form of twistor first reported was simply a twisted magnetic 
wire with a solenoid about it. Lines of strain produced by the twist yielded 
an anisotropy producmg an easy direction of magnetization. The twistor 
action was obtained by application of current through both the magnetic 
wire and the solenoid. The advantage of the form of twistor shown in 
Fig. 5.19 is that the tension in the magnetic wire is permanently set as 
it is machine wrapped, allowing elements with uniform properties to be 
obtained, while the amount of twist in the simpler twistor is not as easily 
controlled. 

A memory array of twistor wires is shown in Fig. 5.20. It is designed 

1 Read amplifiers 

External 

switch 

— 1 ~ 

I I 1 1 1 1 
1 1 1 1 1 1 
1 1 T 1 1 1 

External 

switch 

-| ' 

External 

switch 

— 1 ~ 

-]i 
External 

switch 

-| ' 

External 

switch 

— 1 ~ 

External 

switch 

-| ' 

External 

switch 

— 1 ~ 
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FIG. 5.20. Word organized twistor storage array 

for linear selection. Insulated copper wires wound with magnetic wire or 
permalloy tape are embedded in parallel lines, spaced ten to the inch, 
between two sheets of plastic. Similar plastic strips with embedded ribbons 
of copper wire are placed about the twistor sheets to provide the word 
selection solenoids. Writing is by current coincidence, a pulse being applied 
to a selected word solenoid and to the twistor wires corresponding to the 
columns of the word in which I's are to be stored. The speed of switching 
may be improved by use of a bias solenoid placed about the entire array. 
Direct current through this solenoid biases the hysteresis loop even farther 
to the left, thus allowing a greater half select current to be applied without 
causing switching. For read-out, the appropriate word solenoid is pulsed 
so as to change stored I's to O's, thereby generating a read-out signal 
in the central wire. This signal is of good amplitude because of the 
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• See Shevel, W. L., Jr. [1959] Observations of rotational switching in ferrites, 
IBM Jour., 3, 93-95, which reports three mechanisms of flux reversal in ferrite 
cores: domain wall motion, incoherent and coherent rotation. The switching 
threshold for incoherent rotation is two to five times greater than for domain wall 
motion, and for coherent rotation about ten times greater. 

number of turns of the magnetic wire. In the twistors previously mag­
netized in the 0 state, small reversible flux changes are produced whose 
radial component is opposite in sign to that of the irreversible change. 
The solenoid current is of the order of amperes, and the central wire 
current tenths of an ampere. The read-out signal is about 15 mv and the 
storage cycle time about 6 /tsec. 

A major disadvantage of the twistor memory is that, because of the 
open magnetic structures, it can be affected by ambient magnetic fields. 
However, the bias solenoid, placed about the entire array to permit faster 
switching, also yields some control over the ambient magnetic field. The 
principle advantages claimed for the twistor memory are a lower cost per 
bit and operation over a wide range of temperatures. 

5.3.6. MAGNETIC THIN F I L M STORAGE ELEMENTS 

One of the newest magnetic elements suitable for large capacity, high­
speed storage systems is the magnetic film element. An array of memory 
elements is formed by distinct islands of a magnetic material vacuum 
deposited on a flat glass substrate. The deposition is made on a heated 
glass substrate in the presence of a dc magnetic field in the plane of the 
substrate so that each element assumes a preferred magnetic axis in the 
direction of the applied field. This establishes two stable states of mag­
netization (both parallel to the preferred direction). The film exhibits a 
square hysteresis loop in the preferred direction and an almost linear 
loop in the transverse direction. The squareness of the hysteresis loop can 
be worsened by the demagnetizing field due to free poles at the edges of 
the film. This effect is negligible, however, provided the ratio of film 
diameter to thickness is very large, e.g., the diameter must not be much 
less than 4 mm for a thickness of 2(X)0 A°. 

In the thin film element, utilization is made of a different phenomenon 
than usually* associated with the switching of ferrite cores. A reversal 
of magnetization is produced not by sequential rotation of the atomic 
magnetic moments, in the form of moving ferromagnetic domain walls, 
but by simultaneous rotation of all atomic magnetic moments (coherent 
rotation). This permits faster switching with moderate driving current. 
Also, because of the favorable surface to volume ratio of thin films, high 
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repetition rates, which produce excess heating in core memories, are 
obtainable. A practical difficulty in this respect results from the fact that 
because of the air return flux path, the elements cannot be too closely 
spaced nor their diameter too small. As a result, the physical size of the 
array makes the propagation time of the driving signal greater than the 
switching time of the element. 

A desirable feature of the thin fihn coincident current array is that it 
allows the conductors for the row, column, and inhibit drives to be made 
by printed circuit techniques. Conventional coincident current operation 
is obtainable by having these conductors run parallel to each other in the 
proximity of each element so that the effects of the currents are alge­
braically additive. The printed windings can be placed on both sides of the 
glass to minimize current requirements and the inductance of the drive 
lines. Because the read output signal is relatively low, the sense winding 
is placed close for maximum coupling, and perpendicular to the drive 
conductors to minimize noise pick-up. Instead of thin glass or glass 
epoxy sheets to carry the printed circuit wiring, it may be possible to 
vacuum deposit the necessary insulation between the Unes as weU as the 
lines themselves. 

Because the flux return paths are through air, there must be adequate 
shielding from external fields. Deha flux effects, which occur as the result 
of a smaU rotation of partiaUy selected elements, can be canceUed by 
positioning the sense windings at the proper angle to the preferred direc­
tion of magnetization. The major noise problems result from unbalanced 
mutual coupUng between drive Unes and sense wires and capacitive 
coupUng between a selected drive line and sense Une. The former problem 
results from random errors in registration of the etched circuit wiring. 
However, present printed circuit wiring techniques are adequate to reduce 
this source of error to the point where strobing of the output signal reduces 
both noise contributions to the point where over-aU signal-to-noise ratio 
is adequate. 

As noted earUer, the squareness of the hysteresis loop depends, within 
Umits, on a large ratio of diameter to thickness of the film. At the same 
time, the read-out signal is proportional to both thickness and diameter. 
Thus, one can do some trading of storage density for magnitude of signal 
output. Of course, a great reduction in spot size increases the problems 
of wiring. In fact, storage has been demonstrated at densities of 10,000 
per square inch with 0.005 in. spots, but the utiUzation of such high densi­
ties depends on the development of practical wiring techniques in addi­
tion to solution of other problems. 

An experimental memory composed of thin film elements is in opera­
tion as part of the TX-2 computer at the Lincoln Laboratory of MIT. 
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Each element is a circular deposit of Permalloy (82% nickel, 18% iron) 
film, 1.6 mm in diameter and 750 A thick. There is a 2.5 mm separation 
between centers of these elements which are on a flat glass substrate 0.1 
mm thick. While successful operation has been demonstrated with a read-
write cycle time of only 0.4 /xsec, the experimental unit is operated with 
an 0.8 /isec cycle which is consistent with the speed of the arithmetic 
unit. The writing current required is about 150 ma. and the output signal 
is about 1 mv. 

The magnetic film array offers a switching time about ten times faster 
than ferrite cores (although a good part of this gain is offset by delays in 
the additional amplifier circuits required for its low level output signals), 
simple fabrication of large arrays, greater economy resulting from lower 
power dissipation and simpler fabrication, and operation over a wider 
range of temperatures than ferrite cores. An evaluation of these advantages 
in the light of problems such as production of uniform elements, reliability, 
and cost awaits further development. 

5.3.7. Superconductive Element Storage 

In Section 4.6, there is a description of a superconductive circuit 
element, the cryotron, which may be either wire wound or vacuum de­
posited. However, as stated in Section 4.6, thin film devices are required 
for greater speed and ease of fabrication. A coincident current circuit 
can be formed by having two or more control conductors on an element 
so oriented that the net magnetic field that acts on the gate is due to the 
sum of the currents on the drive lines. A storage array can then be 
formed by placing cryotron flip-flops at the intersection of row and column 
drive Unes. PrincipaUy because of fabrication difficulties, the use of this 
type of memory has been restricted thus far. 

Subsequent to the introduction of the cryotron, the use of a persistent 
current in a superconducting ring was suggested as a memory device. 
Such currents can be maintained for years, and the two possible directions 
of current offer the two stable states of a binary storage element. A per­
sistent supercurrent element reported by IBM is based on the principle 
of trapping flux in a superconducting film. In an experimental form, a 
thin superconducting film formed by vacuum deposition, serves as a flux 
barrier between drive windings on one side and a sense winding on the 
other when the appUed drive current is below a critical value. Below this 
value, it is presumed that the flux Unes are forced along the film surface, 
inducing circulating currents. Above the critical value, the film is forced 
into a normal conductive state, permitting flux lines to penetrate and Unk 
a part of the film. The induced currents that opposed the field now decay, 
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FIG. 5.21. Persistent-supercurrent thin film storage cell: (a) physical form, 
(b) path of circulating currents 

construction is that the magnetic field of the persistent current is greatly 
localized. Also, it provides the features of the experimental cell while 
enabling better control over fabrication and the important parameters. 
The hole (about 3mm diameter) which need not be round, serves the 
function of the imperfections in the experimental cell. The over-all con­
figuration is designed to trap flux in a doughnut pattern. A "hard" 
superconducting film (i.e., one having a high critical field) of lead sup­
ports and is in electrical contact with a thin crossbar of "soft" (i.e., low 
critical field) superconductive film. The crossbar (800 A thick by 
0.125 mm wide) is relatively "soft" because it is thinner than the sheet. 
The drive and sense lines, which are also strips of deposited lead, are 
placed parallel to the crossbar, the drive line above and the sense line 
below the sheet. Lines of force produced by current in the drive line are 
tightly coupled to the crossbar. The separation of the drive and sense 
lines by the superconducting film eliminates the delta noise problem of 
core memories (produced by the difference between half-select voltages), 
provided the crossbar is not driven to normal conduction, and the drive 
line, crossbar, and sense line are accurately aligned. The rise time, which 
is determined by the rate of transition from the superconducting to normal 
state and the fall time, determined by the L/R ratio of the cell, have an 

and after removal of the drive current the flux is apparently trapped in 
imperfections in the film. 

A form of persistent current device which has been brought to an 
advanced state of development by IBM is shown in Fig. 5.21(a). In this 
form, two circulating rings of current are formed by means of the hole 
and crossbar, as shown in Fig. 5.21(b). A principal advantage of this 
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upper limit of about 10 nanosec. The drive current is less than 150 ma. 
Selection can be by coincident current or other techniques. An array of 
memory elements including X, 7 , and Ζ drive lines and sense line can be 
constructed as a unit from multiple layers of evaporated materials. 

The advantages offered by this type of cell are: a sharp switching 
threshold, a high switching speed, high signal-to-noise ratios since the 
switching time of the cells is much less than the rise time of the drivers, 
low drive requirements, isolation of drive and sense circuits, and non­
destructive read-out. However, a number of problems remain to be 
solved: (1) Additional data is necessary on the physical properties of 
thin films and the mechanism by which they are formed. Multilayer 
fabrication techniques must be developed to provide adequate control 
of the important parameters. (2) In the area of improving storage density, 
it is likely that the hole diameter can be reduced to 1mm (allowing about 
100 cells/in.2) and that about 20 layers of cells can be provided per inch— 
thus allowing from 10® to 10^ bits/ft.^. However, the problems of assem­
bling so great a number of elements in a small volume are considerable. 
(3) There are the problems of operation in a Uquid heUum environment. 
Helium is evaporated as a result of the energy dissipated in switching the 
cells and also as a result of heat conduction along the wires from the 
cryostat to other parts of the computer. Actually a great number of switch­
ing operations and a large number of leads can be tolerated with a moderate 
consumption of heUum; the switching of 10^^ cells/sec. and the conduction 
of heat along 10,000 3-ft. leads each dissipates 1 watt for a total evapora­
tion of 4 htres of helium per hour. 

A continuous plane type of superconductive film memory (Burns et al 
[1961] is relatively easy to fabricate because no holes are required in 
the superconducting plane and its shielding action allows ΛΓ, Y selection 
schemes without delta noise. Because memory cells, switching elements and 
connections can all be produced simultaneously by batch fabrication, very 
high capacity (10 to 100 milhon bits) memories with cycle times in the 
region of 5 /¿sec may be economically producible. 

5.4. Tunnel-Diode Storage 

The tunnel diode (see Section 4.7 also) is a unique device in that it 
exhibits a negative resistance characteristic in the gigacycle area. Two 
unconditionally stable states, A and B, estabhshed on a load line by a 
voltage source VB and a series resistor R are shown in Fig. 5.22 (a) . 
Switching between these stable states can be effected by a single pulse or 
coincident pulses of proper polarity and ampUtude. For example, switching 
from state A Xo Β can be effected by a total increment of current Δ/. 

If the equiUbrium state of a tunnel diode in the circuit of Fig. 5.22 (a) 
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is sensed by applying a large voltage or current pulse, the readout process 
will be destructive since the initial state is inferred from whether a switch­
ing action occurs. In Fig. 5.22 (b) , a nonlinear backward diode (whose 
characteristic curve is the dashed line in Fig. 5.22 (a ) ) is used to allow 
nondestructive readout. Fig. 5.22 (c) illustrates a word organized array of 
such circuits. To read, a negative pulse is applied to the word line only, while 
the digit lines are held near a zero reference potential. If a tunnel diode is 
at A, the back bias across diode D is overcome (although current through 
the tunnel diode is not adequate to switch it) and a negative pulse appears 
at point d. If a tunnel diode is initially at B, there is no output at d. (Use of 
backward diodes to couple tunnel diodes to sense amplifiers also reduces 
attenuation of the readout signal.) Writing can be done by coincident word 
and digit pulses. 

While magnetic memories may be extended to cycle thnes of 1 /xsec to 
100 nanosec, cycle times of 100 to 10 nanosec are obtainable from a tunnel 
diode memory. There are certain Umitations, however. It is inherently 
volatile, requiring dc holding power. The drivers must supply large power 
for short periods, although the drive power per bit (about 2 mw) is smaU 
and the drive circuits simple compared to requirements of other storage 
devices operating at these high rates. Present estimates are that considera­
tions of power consumption, drive circuitry, reliability and cost wiU limit 
the useful capacities of tunnel diode memories to about 4000 to 100,000 
bits. 
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FIG. 5.22. (a) Tunnel-diode characteristic curve, (b) three-element memory 
cell, (c) linear array of three-element cells. 

5.5. Cathode-Ray Tube Storage 

There are a number of storage systems in which binary data is stored 
in the form of the presence or absence of a specified amount of electrical 
charge on the face of a conventional type of cathode-ray tube. A 5-inch 
cathode-ray tube, the size normally used, accommodates a 32 X 32 array 
of spots. These tubes provided an interim solution to the high speed internal 
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storage problem, providing an access time of 12 to 25 /itsec. However, 
they are no longer being incorporated into new systems, having been 
completely displaced by magnetic core storage systems. 

In all cathode-ray tube storage systems, two principles were commonly 
used to retain the stored data for any desired time interval, namely: 
(1) direct use of the secondary emission characteristics of the dielectric 
storage surface, (2) regeneration of each bit after read-out. The Williams 
storage system, also known as the interfering periphery or surface re­
distribution system, is the form of cathode-ray tube storage most widely 
used and is described next. 

The Williams system utilizes a commercial type cathode-ray tube, 
together with a metallic collector screen or plate placed over the outside 
face of the tube, as indicated schematically in Fig. 5.23. If the inner screen 
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FIG. 5.23. Simplified schematic of cathode-ray storage tube 

is bombarded by an electron beam, secondary electrons will be emitted. 
The variation of the secondary emission coefficient, γ, (for a Pi type of 
phosphor screen) as a function of the potential of the surface is shown 
in Fig. 5.24. There is a drop in γ at point b because of the increased 
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FIG. 5.24. Variation of secondary emission coefficient, γ, of a 
type of phosphor surface 

ability of the surface at higher potentials to recapture electrons liberated 
from the surface by the incident beam. If the accelerating potential is 
suflScient to produce a ratio greater than 1, a potential well will be formed 
at some point on the screen, as indicated in Fig. 5.25. The slight negative 
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FIG. 5.25. Potential well formed by γ > 1 

potential mounds are caused by some of the secondary electrons landing 
in the vicinity, and are useful in serving as barriers which reduce inter­
action between wells. The size of the well is approximately proportional 
to the diameter of the beam. If the beam is removed after producing a 
well, the potential distribution will remain for some time. If a metal 
screen is placed near the target, a small signal will be detected at the 
time this well is formed. This is essentially capacitive pick-up, the 
target and outer screen acting as plates of a capacitor and the screen repro­
ducing the potential variations of the target. 

For binary storage, two different patterns must be stored, one of 
which is used as a reading pattern. If the reading pattern is different from 
the stored pattern, the stored pattern will be lost and changed to the 
reading pattern. This change produces a total change of charge on the 
tube face, which is detected by the capacitive action of the external 
screen. Three of the several storage pattern systems based on this mode 
of operation are described next. 

(1) The interrupted double spot system operates as follows: If, 
after a well is dug, the electron beam is cut off and displaced 
sHghtly, the distribution of Fig. 5.26(a) results. Since the second 
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FIG. 5.26. Potential wells formed for storage of a 1 in (a) interrupted 
double spot, and (b) dot-dash storage schemes 

well is formed in the vicinity of the first, secondary electrons 
emitted from the second well will tend to fill up the first well. 
This forms the basis for a binary storage system. The first well 
is formed for each entry. If a 1 is to be stored, a second well 
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is formed; if a 0 is to be stored, a second well is not formed. 
Read-out is accomplished as follows: The first well position 
is interrogated by the beam. If a second well had been formed, 
(i.e., a 1 stored), it would have caused filling of the first, and 
the interrogating beam would remove this fill, thereby producing 
an output signal. If a 0 had been stored, the interrogating beam 
would produce no filling and, therefore, no output signal. 

(2) The dot-dash system is similar except for the fact that the beam 
is not interrupted during movement. When the beam is slightly 
displaced, the secondary electrons emitted from the new position 
partially cancel the positive charge of the first spot, as shown, 
in Fig. 5.26(b). When the interrogating beam is directed to the 
first position, a large negative charging signal, or a smaller one, 
will be detected at the external plate, depending on whether a 0 
or 1, respectively, is stored. 

(3) The focus-defocus system differs from the interrupted double 
spot system in that the beam is left stationary and defocused 
after the original well is formed if a 1 is to be stored. The 
enlargement of the beam caused by defocusing causes electrons 
to be scattered over a wide area, filling the original deep well. 

Because of the destructive nature of the read process, means must 
be provided to restore the contents of a storage cell after it is read, and 
this restoring operation is made a part of the storage cycle. Also, because 
of the volatility of the stored data (due to charge leakage), circuits are 
provided that scan and regenerate the contents of the raster, row by row. 
This regeneration is accomplished during specified cycles set aside for 
this purpose. 

Specially constructed tubes are usually used for two important reasons. 
First, the beam diameter intercepting all storage positions must be very 
small or else there will be too much interaction between adjacent cells. 
Secondly, in tubes not specifically designed for computer applications, 
blemishes on the target surface may result in the presence of areas with 
relatively poor secondary emission characteristics. 

An important parameter of cathode-ray tube storage systems is the 
"read-around" ratio. It is the number of times that a given cell can be 
interrogated in succession without destroying the contents of an adjacent 
cell. It determines the frequency at which the contents of all cells must 
be regenerated. A high "read-around" ratio is desirable to reduce the 
ratio of time spent in regenerating to the time spent in computing. How­
ever, improvement in the "read-around" ratio is obtained at the cost of 
reducing the storage capacity of a given tube. 

A number of special forms of cathode-ray tubes were also developed 
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for use in digital computer storage systems: the barrier grid storage tube, 
the holding gun tube, and the selectron. None of these ever came into 
widespread use, however, for two principal reasons: a relatively high 
cost of manufacture and the introduction of magnetic core storage systems, 
which supplanted all types of cathode-ray tube storage systems. Therefore, 
they are not described here, but are referred to in the bibliography of 
this chapter. 

5.6. Dynamic Delay Line Storage 

In Section 5.2, Dynamic Magnetic Storage, it was shown how a re­
circulating delay line could be formed by directing information from the 
output of a read head to the input of a record head placed along the 
same track. In such a delay line each bit is recorded in a particular area 
of the medium and the medium itself is moved. In the delay lines to be 
described in this section, the pulses to be stored are propagated from a 
transmitter to a receiver via a stationary medium. Since it takes time to 
propagate the energy, the pulses in transit between the source and 
receiver can be considered to be stored in the medium. Delay line stores 
have been built in which the propagation of energy may be by means of 
electrical, acoustic, electromagnetic, piezoelectric, or magnetrostrictive 
phenomena. By repetitively reintroducing the signals into the delay 
medium, in synchronism with a time reference pulse, the temporal lo­
cation of a particular item of information can always be specified, as­
suming the delay is held constant. Because any delay medium has limited 
bandwidth characteristics, causing distortion of the propagated pulses, 
circuitry must be provided to reshape the pulses and preserve the proper 
time relationships. The pulses are amphfied, gated, and reintroduced into 
the delay media by means of these circuits. 

The operation of a delay line as a djmamic information storing device 
is as follows: A temporal serial binary information pattern (pulse-
no pulse) is fed into one end of a path consisting principally of the delay 
element. As a result, the temporal serial also becomes a spatial serial 
pattern (if one could inspect the entire contents of the Une at any given 
time, and if the Une had a capacity of η bits, one would see the last η 
bits that had been inserted into the Une). Recirculation of information 
patterns is provided by closing the loop, from the end of the delay Une 
back to the beginning, by means of the transducers, ampUfiers, and 
gating circuits. 

An important criterion of delay lines for use as a large capacity 
store is the amount of delay provided by a unit length of path. The rate 
of propagation in the delay medium should be suflSciently slow to aUow 
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a large number of pulses of the input information to be stored in a 
physically practical length of line. The memory capacity of such Hues is 
proportional to the length of hne and the repetition rate of the apphed 
signals. Some disadvantages of the electric, acoustic and magnetostrictive 
delay hne stores are an access time that increases with the length of a 
line, and duplication of circuits required when information is stored in 
several Unes to obtain a certain combination of capacity and access time. 

5 . 6 . 1 . ELECTRICAL DELAY LINES 

An electrical transmission Une formed from either lumped or distribu­
ted elements of inductance and capacitance may be used as a delay Une. 
The number of bits that can be stored in the Une depends not only on the 
magnitude of the delay and the repetition rate of the appUed pulses, but 
also on the rise time characteristic of the Une. This is because an amount 
of delay at least equal to the sum of the rise and fall times of a pulse 
is required for each pulse to be stored, and the rise time characteristic of 
any type of Une is proportional to its length. Therefore, increasing (de­
creasing) the length of the hne proportionately increases (decreases) the 
amount of delay so that the number of pulses that can be stored remains 
essentiaUy constant. The maximum number of pulses that can be stored 
in available lumped and distributed constant lines is about 3 0 and 1 5 , 
respectively. The length of line chosen would be determined by the wave­
form of the pulses to be stored. Because the rate of propagation along an 
electrical transmission Une is high, a considerable length of Une is re­
quired to obtain miUiseconds of delay. Therefore, electrical lines are not 
practical except for short delays, e.g., less than 5 0 /xsec. These are suitable 
as one-word registers in dynamic serial-type computers operating at mega­
cycle repetition rates, but are inefficient for a memory of large capacity. 

Electrical delay lines greatly attenuate the input signal but introduce 
only negligible losses at the input or output. Conversely, acoustic delay 
Unes, which are described next, produce Uttle attenuation in the medium, 
but a large amount of attenuation is introduced in the coupUng between 
the Une and the input and output transducers. 

5 . 6 . 2 . ACOUSTIC DELAY LINES 

The relatively slow velocity of propagation of an acoustic wave com­
pared to an electric wave permits a greater delay to be obtained from 
a physicaUy short Une. Radiofrequency signals are transformed by an 
appropriate transducer into an acoustic signal. The acoustic wave is then 
propagated through an appropriate medium untU it reaches a receiving 
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transducer which converts the acoustic signal back to an electrical one. 
In an acoustic delay line storage system the delay medium of Fig. 5.27 
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FIG. 5.27. Block diagram of an acoustic delay line store 

would be an acoustic transmission line terminated at each end by a 
piezoelectric crystal. An electrical signal at A causes vibration of the 
crystal Qu and this disturbance is propagated down the acoustic line 
setting the crystal Q2 into vibration, thereby generating an electrical signal 
at point B. Pulses received at Q2 have to be reshaped because attenuation 
and dispersion, caused by transmission through the line, broadens and 
otherwise distorts the original pulse applied at öi- Regeneration is ac­
complished by using the amplified distorted signal to gate a clock pulse 
which is then recirculated instead of the distorted signal. New data is 
introduced into the line as follows: If a 1 is to be recorded, it is sent 
directly to the input of gate 2; if there is akeady a 1 recorded in this 
position (i.e., a signal is arriving from the amplifier via gate 1), the 
operation is merely redundant. If a 0 is to be recorded, gate 1 is inhibited. 
Information can be read out at any time by application of a read-out 
gating signal to gate 3. 

Important parameters of an acoustic medium are: velocity of propa­
gation, acoustic impedance, temperature coefladent of velocity, attenua­
tion/unit length, signal frequency for which attenuation is a minimum, 
bandwidth characteristics, and phase distortion. Quartz, even though not 
the most efficient electric-acoustic transducer, is used because its acoustic 
impedance comes closest to matching the available media, and it has a 
small value of capacitance, thereby reducing the driving power required. 
For a quartz transducer, the most desirable acoustic media are (in order): 
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(1) zero temperature coefficient glass, (2) impurity-free fused quartz, 
(3) homogeneous magnesium alloys, (4) impurity-free mercury. 

5.6.2.7. The Mercury Delay Line 
One of the most widely used acoustic delay lines in the very early 

years of digital computer development consisted of a mercury transmission 
medium and quartz crystal transducers. For example, the BINAC had a 
tank of 18 separate delay lines, each storing 32 words of 36 bits, and 
the first UNIVAC had 100 delay lines, each storing 10 words of 91 bits. 
Mercury has a relatively low velocity of propagation, a good acoustic 
impedance match to quartz and freedom from unwanted modes of sound 
transmission found in solid media. 

Mercury delay lines may be of two general types. In the single path 
type, the acoustic signal traverses the medium once, from transmitting 
crystal to receiving crystal. In the multiple reflection type the signal is 
reflected back and forth through the medium before reaching the receiving 
crystal, thereby effectively lengthening the delay path. A disadvantage of 
the latter system is that it requires critically machined parts. 

The factors that limit the length of delay line used are: (1) The 
over-all attenuation and wave front dispersion that can be tolerated before 
the signal to noise (including reflections) ratio falls below a usable level 
(usually 10). (2) The access time required in the computer. The majority 
of delay lines have a delay of about 350 / isec. The limitation on the pulse 
repetition rate that may be used is not the acoustic line, but the electronic 
circuitry. Most computers using mercury delay line stores operate in the 
range of 1-4 mc. 

There are many problems associated with a mercury delay line: 
(1) Unless the mercury is free from all contamination, a mismatch 
results at the crystal surface causing serious reflections. Long time stability 
is also a problem since mercury is an almost universal solvent. Best results 
are obtained from triple distilled mercury, and containers of borosilicate 
glass or stainless steel. (2) The quartz transducers must make extremely 
good contact with the mercury. The voltage output of the line is pro­
portional to the deformation of the crystals, and air bubbles or contamina­
tion on the crystal surfaces would damp this vibration, resulting in a 
very large over-all loss of energy. The normal attenuation at each trans­
ducer is about 25 db. This accounts for most of the loss in the line, the 
attenuation through the mercury being only a few decibels per foot. 
(3) The mercury tank requires temperature control, since the velocity of 
propagation of an acoustic wave is directly proportional to the density of 
the medium which, in turn, is a function of temperature. These tempera-
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ture regulating systems are fairly complex, consume a good deal of 
electronic circuitry and space, and add appreciably to the expense of a 
system. There are also problems associated with reflections in the lines, 
and with the external adjustments required to produce the desked total 
delay. A mercury delay Une is thermaUy unstable and susceptible to 
mechanical shock, leakage, and contamination. 

Mercury provides the foUowing advantages compared to soUd trans­
mission media: (1) It is a stable liquid which can be matched to trans­
ducers such as quartz crystals. SoUds generaUy present problems in 
coupUng to suitable transducers. (2) It supports only longitudinal-com­
pression and surface waves, the latter being suppressed when the Uquid is 
enclosed in a tank. SoUds generally support shear waves. (3) Careful 
distiUation provides uniform characteristics. There are no localized strains 
to cause spurious patterns. 

5.6.2,2. The Fused Quartz Delay Line 

A delay Une can be constructed using a rod of fused quartz as the 
delay medium, and quartz crystals as the transmitting and receiving trans­
ducers. Though both shear and compressional waves can be transmitted 
through the medium, the shear mode is preferable because its rate of 
propagation is less, thereby yielding a longer time delay for a given length 
of material. However, even in the shear mode, the velocity of propagation 
through fused quartz is almost three times as great as in mercury, and 
rods long enough for large delays are impractical. However, a long delay 
can be obtained in a practical form by use of a shape which causes the 
transmitted wave to be internally reflected several times before it reaches 
the receiving transducer. The multiple reflection Une consists of a flat plate 
whose sides form a polygon. A typical plate might be formed from a 
fused quartz blank about 8 in. in diameter and 1/2 in. thick. The lengths 
and angles of the sides of the polygon are chosen to provide the desired 
multiple reflection path from the input transducer, which is bonded to one 
side, to the output transducer bonded to another side. A delay of about 
1000 /Asec can be obtained from an 8-in. diameter blank. The production 
of the multiple reflection line is a precision process that includes machining, 
grinding, and poUshing of the facets. The blank must be of high purity 
to eUminate spurious reflections from air bubbles and foreign particles. 
The input and output transducers may be either ac or Y cut quartz crystals. 

The fused quartz Une is superior to the mercury Une in that it has a 
higher signal to noise ratio, a temperature coefficient of velocity only about 
one thbrd that of mercury, a better impedance match to quartz crystal 
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* Blackburn, J. F. (ed.) [1949] M.LT. Radiation Lab. Series, Vol. 17, McGraw-Hill, 
New York. (Also, see Huntington et al. [1948].) 

transducers, and better mechanical stability. On the other hand, it is 
difficult to produce high purity blanks, and the reflecting surfaces in 
multiple reflection lines require high precision machining. 

Fused quartz has the lowest attenuation figure of solid materials 
suitable at high frequencies. In the shear mode of transmission the atten­
uation is about .08 db/ft per megacycle and in the longitudinal mode it is 
.05 db/ft per megacycle. This compares to about 1.8 db/ft at 15 mega­
cycles for mercury in a .3 cm inner diameter tube (based on the expression 
for attenuation in a tube of mercury; .054 //d*, where / is the frequency 
in megacycles and d the inner diameter of the tube in inches). The shear 
mode of transmission is the one principally used in quartz delay Unes 
because it is not subject to mode conversion upon reflection (which can 
cause spurious pulses) and beam spreading is less, yielding an improved 
signal-to-noise ratio. The velocity at 20°C for fused quartz is about 150 
inches/msec in the shear mode (233 in the longitudinal mode) compared 
to 57 inches/msec for mercury. 

5.6.3 MAGNETOSTRICTIVE DELAY LINES 

The magnetostrictive delay Une is based upon the magnetostrictive 
effect exhibited by certain materials. When a magnetizing force is appUed 
to such a material, it exhibits a change in length. The reverse effect also 
occurs, i.e., a stress applied to such a material produces a change in its 
magnetic state. (Specifically, when tension is applied to a wire, the ferro­
magnetic domains align themselves in a direction away from the wire 
axis.) This change may be detected by the change in magnetization that 
occurs when a magnetic field is applied. The delay is obtained from 
the time required to propagate the stress wave disturbance along a length 
of wire, rod, or similar configuration of a material possessing magneto­
strictive properties and having a high remanence. The amount of delay 
depends on the length and physical properties of the material. 

Permanent 

Magnetostr ict ive wire Li^,,^^)J j ~ 
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A schematic of a magnetostrictive delay hne is shown in Fig. 5.28. 
When a pulse of current is applied to the transmitting coil, a contraction 
of the wire immediately inside the coil takes place. This causes a stress 
wave to be propagated along the hne in both directions. To reduce re­
flections at both ends, damping pads of a suitable material, such as synthe­
tic rubber, are clamped about the wire at both ends. Also, the parts of the 
line between each coil and the nearest end are annealed to provide added 
attenuation. At the vicinity of the receiving coil, there is a remanent 
magnetic dipole as the result of a polarizing field induced by a permanent 
magnet. The arrival of the stress wave at the region of R changes the 
permeabiUty of the whe, momentarily disturbing the induced dipoles and 
the field cutting R. Thus, after a given delay, a voltage pulse is induced 
in the receiving coU as the result of a current pulse being appUed to the 
transmitting coU. 

The input current step produces a pulse in the output coU at the 
times of its leading and trailing edges, as shown in Fig. 5.29(a). The 

m . I I 

( a ) (b) 

FIG. 5 . 2 9 . Resolution of output voltage pulses as a function of width of the 
input waveform in a magnetostrictive delay line 

time interval, t, between the positive and negative peaks of this pulse is 
determined by the geometry of the coil. To obtain a symmetrical voltage 
output pulse and a maximum packing of bits, the width of the input cur­
rent pulse is made equal to t. The length of the transducer coils must be 
accurately determined to match the input pulse. If low levels of current 
and voltage are to be employed, the efficiency of the transducers should 
be high. It can be improved by the use of ferrite core materials to direct 
aU flux into the wire and to sharply define the edges of the field. 

The stress wave may be transmitted either in a longitudinal or torsional 
mode. On Unes of appreciable length (say, greater than one foot) the 
wire is coUed to provide convenient packaging. For coUed lines of ap­
preciable length, transmission in the torsional mode offers the advantages 
of a substantiaUy reduced velocity of propagation and reduced dispersion. 
A mode conversion can be made near the entry and end-points of the 
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FIG. 5 . 3 0 . Regenerative loop for a magnetostrictive delay line 

and retime the output pulses each time they circulate through the delay 
line. The squaring circuit produces an output of fixed amplitude inde­
pendent, within limits, of the input amplitude, and also biases off spurious 
signals due to unavoidable reflections from the terminations of the delay 
Une. The synchronizer causes the recirculating pulses to be kept in 
synchronism with a master clock. The delay of the line is adjusted so 
that data pulses arrive back midway between two adjacent clock pulses. 
This provides a safety margin of half a bit period in either direction 
to allow for variation of delay with temperature, and also for variation 
of clock frequency. The current amplifier converts the synchronized 
voltage pulses into the current pulses required at the input coil. 

Read-out coils may be placed at appropriate positions along the line. 
For computer storage, a number of delay lines can be assembled to pro­
vide either serial or parallel operation. For serial operation, all the bits of 
a word would be stored on a single delay line. For parallel operation, 
each bit of a word would be stored at corresponding time positions on 
different lines. 

Some typical parameters of a magnetostrictive delay line are minimum 

line, and the line between need not be of a magnetostrictive material. By 
the use of other materials, such as copper or phosphor bronze, in which 
the velocity of propagation is less than in nickel, the length of line for a 
given delay may be reduced. When nonferromagnetic materials are used 
either for a better velocity of propagation, temperature coeflScient of 
velocity, etc., magnetic end pieces must be provided. This can be done 
either by brazing short pieces of nickel to the ends of the line, or by nickel 
plating a short length of the wire at each end. Taps may be provided as 
required on lines using the longitudinal mode with negligible attenuation. 
At present, lines using the torsional mode can be tapped only in the 
short longitudinal mode section at each end. 

Figure 5.30 shows a block diagram of the circuitry used to regenerate 
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bit rates of 100 kc and maximum bit rates of 500 kc to 1 mc. The L40 
delay hne package of Ferranti Electric, Inc. provides a maximum delay 
of about 5000 /tsec which, at a bit rate of 500 kc will store about 2500 bits. 

5.7. Diode-Capacitor Storage 

A 10,000 bit diode-capacitor memory built at the National Bureau 
of Standards for its SEAC computer stores binary information as the 
charge on a capacitor. The state of each element is defined by the sign 
of its charge. TTiis system has a relatively high random access rate com­
pared to acoustic delay line and cathode-ray tube stores. The basic cir­
cuit for a storage element of the array is shown in the dashed enclosure 
of Fig. 5.31(a). The points Oi, O 2 , . . . On are used for both reading and 
recording. The two diodes associated with each storage capacitor act as 
a squeezer, connecting the capacitor to the read or record circuit when 
one of these operations is called for. During holding, i.e., between read 
and record operations, the two diodes are each back-biased so that only 
minute currents can now into or out of the capacitor. 

The contents of a particular word, /, are read as follows: Points, Oi, 
bi are forced to ground potential. As a result, one diode in each of the 
η pairs within a word conducts, producing voltages across the associated 
resistors. If the initial charge on a capacitor produced a drop of — 2 volts 
across it, when the squeeze is applied a pulse of - 2 volts amplitude 
appears at the corresponding output point, decaying with a time constant 
RC. If the capacitor had been charged to + 2 volts, a pulse of -h 2 volts 
would appear at the output. The positive and negative pulses are inter­
preted as the values 1 and 0, respectively. Regeneration is required after 
a read-out operation, because the capacitor is partially discharged. 

To record in a particular word, each point Oi, O 2 . . . On is forced 
to the desired voltage, either + 2 or - 2 volts, while the diodes are being 
squeezed, i.e., while the diode bus lines are at zero potential. When the 
diodes are returned to their normal voltages, +4 and - 4 volts, each presents 
a high impedance. Therefore, the charge on the capacitor cannot readily 
leak off, and will be unaffected by later changes at the corresponding out­
put point, provided the absolute magnitude of the voltage at the output 
point does not exceed 2 volts. 

A gating amplifier is needed at each output point to sense the polarity 
there during read-out, and to force Oi to the desired polarity during a 
recording operation. As shown in Fig. 5.31(a), a single gating amplifier 
serves the same bit on each of many words. A particular word is selected 
by squeezing the proper pair of buses to zero voltage, while holding all 
the other pairs at their normal value of + 4 and - 4 volts. Each bit of a 
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word is accessible simultaneously at the gating amplifiers. A write operation 
in a particular word does not disturb the others since all diodes in all 
other words remain backward biased. 

A selection matrix suitable for use with the diode-capacitor store is 
shown in Fig. 5.31(b). Its advantage here over a diode matrix is that it 
does not draw a large amount of standby power. However, it does require 
more input drivers than does a diode matrix. Normally the X and Y 
buses are held at —10 and +10 volts, respectively. This puts a backward 
bias on each diode so effectively no current flows through any transformer 
primary. If either one X bus is raised to 4-10 volts, or one Y bus is lowered 
to —10 volts, there would still be no current flow. However, if each of 
these operations is initiated simultaneously, one transformer at the inter­
section of the two buses will conduct. As a result, the transformer secon­
daries will apply a squeeze to the buses in the selected word. 

The finite forward conductance of the diodes reduces the ampUtude 
of the output pulse, and increases the time to charge the capacitor ade­
quately during recording. However, the effect of finite diode back resis­
tance is critical. During the holding operation, relatively long times wiU 
elapse, and even minute currents through the diodes could result in no 
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charge being left on a capacitor, or even a reversal in the sign of the 
charge. Thus the diode back resistance determines the maximum per­
missible time interval for a holding operation. To maintain the stored 
information, regeneration must be provided at periods less than this 
interval. This regeneration cycle is controlled by the memory control 
circuits which cause the contents of each cell to be read and re-recorded. 

Though the cycle time of the NBS memory using junction diodes is 
10 /isec, Kaufman [1959] describes a memory used to assess the difficulty 
of reducing cycle time for a 1000 bit plane to 10 nanosec, by using ex­
tremely fast diodes. 

5.8. Ferroelectric Storage 

Ferroelectrics are crystalline materials which have a permanent elec­
tric dipole moment, and in which the plot of polarization produced by 
varying the intensity of an applied electric field, exhibits a hysteresis 
loop similar to that of a ferromagnetic material. This hysteresis occurs 
because the dipole moment is reversible. Corresponding to the saturation 
and remanence of magnetic induction or flux density in a ferromagnetic 
material is the saturation and remanence of electric charge in a ferro­
electric material. The use of the term ferroelectric does not imply that 
such materials contain any iron, but only that they are analogous, in the 
way described, to ferromagnetic materials. Among the ferroelectric ma­
terials are barium titanate, triglycine sulphate, potassium dihydrogen 
phosphate, and Rochelle salt. Single crystals of a ferroelectric show a 
particularly square hysteresis loop, as indicated in Fig. 5.32(a) which 
shows the shape of the hysteresis loop for barium titanate using a 50 ^ 
vohage. Barium titanate has been investigated most extensively because of 
its relatively short switching time (about 1 μscc), high saturation polariza­
tion and high Curie temperature of 120°C which allows operation over a 
wide practical temperature range. 

The construction of a ferroelectric memory ceh, shown schematically 
in Fig. 5.32(b) is similar to that of a capacitor. However, as indicated 
in Fig. 5.32(a), the ferroelectric material exhibits an almost square hyster­
esis characteristic instead of the linear relationship between voltage and 
charge that exists over the operating range of a capacitor. If a positive 
field intensity greater than Ei is applied, and then reduced to zero, a 
charge remains. Similarly, if a negative field intensity greater than 
-El is apphed and then reduced to zero, a charge -Pr remains. The 
applied electric field intensity is equal to the appUed voltage, v, divided 
by the crystal thickness. The dynamic capacitance, C/, of the ferroelectric 
storage element is equal to the ratio of change in polarization per unit 
volume to the change in the appUed field. The capacitance can be shown 
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to be equal to the area of the ferroelectric crystal used times dP/dV. 
The storage element may be considered as a device with two stable 

states, corresponding to + P , . and -Pr. If it is in state + P r and a positive 
pulse of voltage is applied, the peak output voltage will be small since 
the change in polarization from + P r to point c is small. A typical read-out 
circuit is shown in Fig. 5.32(c). Its output capacitance is chosen so that 
it has a relatively high capacitance compared to Q , so a low output voltage 
can also be explained by the fact that the capacitance, Q , of the storage 
element is low between +Pr and point c. If the storage element is in state 
-Pr and a positive pulse is applied, the output voltage will be much 
higher since the change in polarization from state -Pr to c is large; also 
the capacitance of the storage element between —Pr and point c is much 
larger than the capacitance of the output capacitor. A 1 is stored by 
the application of a negative pulse at the input terminal. Read-out is 
obtained by means of a positive voltage pulse. If the cell contains a 1, 
i.e., is at state, - P r , a large charging current passes through R producing 
a large output signal as shown. If the cell contains a 0, i.e., is at state 
+ Pr, application of the read-out pulse produces a small charging current 
through R and a negligible output signal. The rectifier prevents storage 
pulses from appearing at the output. 

Because several independent sets of electrodes can be placed on the 
same crystal and satisfactory operation obtained without appreciable cross­
talk between adjacent cells, a ferroelectric storage array can be constructed 
as shown in Fig. 5.33. On the two surfaces of a ferroelectric crystal, e.g.. 
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barium titanate, conducting bars are vacuum deposited, the conductors on 
opposite sides running perpendicular to one another as shown. The con­
ductor widths and spacings may range from 0.2 mm to 0.1 mm, and the 
crystal thickness is in the same range. A particular cell is selected by 
energizing the appropriate X and Y conductors. Switching can be accom­
plished with pulses of 10 volts ampUtude and a few microseconds dura­
tion. Signal-to-noise ratios of about 10 to 1 can be obtained. A selection 
matrix for use with the memory can also be constructed from ferro­
electric elements. A serious problem is that the writing of information into 
one part of the store causes partial voltages to be impressed upon un-
selected elements in the store. Even if the polarization of the unselected 
sections is only partiaUy reversed by these voltages, the effect of many 
write operations is cumulative and may completely reverse unselected ceUs. 
One way of overcoming the lack of a definite coercive field is to use a 
diode at each ceU to provide a bias which can only be overcome by simul­
taneous appUcation of X and Y select voltages. However, this is an 
imeconomic procedure. Another system suggested is to deposit on one 
side of the crystal, before deposition of the electrodes, a semiconducting 
layer. This provides a nonlinear element at each ceU in an economic way. 

At high field strengths (about 5 kv/cm) required for short switching 
tunes, if an appUed pulse does not cause switching, another pulse can 
be appUed subsequently (as much as 10 min. later) to complete the 
switching. Also, there is no threshold field strength below which no 
switching occurs, so whatever field strength is applied, reversal wiU occur 
provided there is sufficient time for it. The variation of coercive field with 
speed of switching in single crystal barium titanate is evidenced by the 
fact that for a 50 cycle/sec hysteresis loop, the coercive field is about 
twice that for a 1 cycle/sec loop. The coercive field, as a function of fre­
quency, increases up to the point where heating effects cause a decrease. 
This indicates the maximum frequency at which the crystal can be oper­
ated. For a practical ceU volume (0.1 mm^ by 0.1 mm thick) operation is 
attainable to about 100 kc before heating effects become noticeable. 
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The principal advantages of the ferroelectric memory are: (1) it is 
voltage operated requiring current only of the order of a few milliamps, 
and small power consumption; (2) it provides a good density of storage, 
a practical 20 x 20 array being obtainable from a crystal surface 1 in.^ 
and 0.004 in. thick with 0.004 in. conductor widths (100,000 bits/in.^ 
not counting volume for wiring, connections, etc.) 

The major difficulties in the utilization of ferroelectric storage elements 
are the following: (1) With present techniques, it is difficult to grow 
large single crystals of good quality. This limits the amount of storage 
on a single crystal surface to about a 32 X 32 array. (2) Operation above 
a critical frequency causes a decrease in the coercive field as a result of 
heating effects, and may result in permanent damage to the ferroelectric 
properties. This limits the access time to about 10 /xsec. The useful com­
puting speed is limited further by the need for regeneration to prevent 
switching by the cumulative effect of successive partial disturb pulses. 

Possibilities remain to be explored towards developing a material 
with a well defined coercive field. For example, impurities may be intro­
duced into the crystal lattice in such a way that a permanently polarized 
surface layer is produced. In this case, the switching energy would be 
determined not by the energy to produce new domain walls, but to move 
existing ones. There is also the possibiUty that switching could be pro­
duced with lower energy by coherent rotation of the polarization if suffi­
ciently small single domain particles were used. Another possible develop­
ment is the use of thin evaporated films of ferroelectric material. Barium 
titanate has already been produced in this form. 
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6. Arithmetic Operations 

In Section 6.1 a number of the schemes which have been devised to 
perform certain elementary operations in a digital computer are described, 
namely, counting, generation of pulse patterns, addition, subtraction, 
multiplication, and division. 

Section 6.2 describes certain basic procedures of numerical analysis, 
which can be used either directly as the basis for mechanization or in­
directly as the basis for constructing programs by means of which op­
erations for the extraction of roots and the generation of trigonometric 
functions may be performed. 

Techniques for scaling a problem, i.e., taking measures to assure 
that the values of all variables generated in the course of computing will 
be within the bounds of the machine's capacity are described in Section 
6 . 3 . 

Section 6.4 describes certain schemes that have been devised for 
converting numbers from binary to decimal notation and vice versa. 
These schemes are used principally to allow information in decimal form 
to be entered into or brought out of a binary digital computer. 

6.1. Algorithms and Logical Designs for Mechanization of Basic 
Arithmetic Operations 

6 . 1 . 1 . COUNTING 

6 . 1 . 1 . 1 . Counting with Set-Reset Flip-flops 

Each of η flip-flops in a collection can be assigned one of the weights 
2 ^ - ^ . . . 2^, 2S 2^ and so interconnected that signals that appear serially 
from a source S cycle the flip-flops through 2" states starting with zero and 
ending with 2'»-^ (in binary representation), and after state 2*»-̂  reset the 
counter to zero. The flip-flop input signals can be modified to allow re­
setting to zero at other times, e.g., for clearing prior to counting, or after 
reaching the value 9 if straight binary-coded decimal representation (see 
Table 6.8, Section 6 . 1 . 3 . 1 ) is to be used. 

As an example, a counter comprised of three set-reset type flip-flops 
will be described. Table 6.1 shows the successive states of each flip-flop. 

2 6 6 
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As ^2 ^ 1 Time 

0 0 0 1 
0 0 1 2 
0 1 0 3 
0 1 1 4 
1 0 0 5 
1 0 1 6 
1 1 0 7 
1 1 1 8 

The nature of the signals required at the inputs to each flip-flop may be 
determined by inspection of the table, for an input signal to a particular 
flip-flop must be supplied only when the state of that flip-flop must 
change to represent the next count. The input requirements of each flip-
flop will be considered in turn. Flip-flop Ai (representing the least sig­
nificant bit of the count) must change from one state to the other each 
time a signal from S appears, i.e., if the flip-flop is in state Ai, the next 
signal from 5 must set the flip-flop to state Αχ and vice versa. 
Therefore 

αχ = AiS αχ = Αχ3 

The second flip-flop A2 changes from state 0 to 1, i.e., from A2 to A2 
upon receipt of a signal from 5 only if the state A2AX existed prior to 
receipt of the signal. It changes from 1 to 0, i.e., from A2 to A2 only if 
the preceding state was A2A1. Therefore 

0 2 ~ Α2Αχ5 ¿ 2 ~ Α2Αχ8 

Similarly 

¿73 = A2A2AXS äi = ΑιΑ2Αχ5. 

The six required input signals to the three flip-flops may be formed by 
a diode gating network as shown in Fig. 6.1(a). Note that the technique 
of pyramiding, described in Chapter 4, is employed in the forming of 
this network. If, instead of set-reset flip-flops, single-input flip-flops are 
used, only three input signals are required, namely 

Ci = S C2 = Ci5 C3 = C2C1S. 

This results in a simpler gating network, as shown in Fig. 6,1(b). 

TABLE 6.1. Successive states of a three stage binary counter 



268 6. ARITHMETIC OPERATIONS 

" 3 

^2 

( a ) 

i 
C2 Tí 

( b ) 

FIG. 6 . 1 . Diode gating network for generating input signals to a three stage binary 
counter composed of (a) R-S flip-flops, (b) Τ flip-flops 

6.1.1.2. Bistable Counter Circuits 

The circuit shown in Fig. 6.2(a) is similar to the complement type 

Carry output 

r 
Input -χ 

Counter 

Counter 
I 
Counter Η Counter 

Pulse input 

( b ) 

FIG. 6.2. (a) A bistable counter circuit, (b) Cascading of circuits to form a 
multistage counter 

of static flip-flop. Successive pulses (in this case, negative) on the input 
line cause first one amplifier and then the other to be nonconducting. 
The counter is said to be in the 1 or 0 state depending on which am-
phfier is conducting. Upon application of the input pulse both amplifiers 
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are cut off. After the applied pulse has died away, the circuit becomes 
quiescent with the previously nonconducting amplifier now conducting 
and vice versa. The carry output of the circuit is simply the output of 
the amplifier which produces a negative pulse when the counter changes 
from the 1 to 0 state. A positive pulse appears on the carry output lead 
when the state of the circuit changes from 0 to 1, but this has no effect 
v/hen used as the input to another bistable counter. 

6.1.1.3. Multistage Counters 

6.1.1.3.1. CONNECTION OF BISTABLE COUNTER CIRCUITS IN CASCADE. 
A multistage counter can be formed by connecting bistable counter cir­
cuits in cascade, as shown in Fig. 6.2(b). Such circuits produce a count 
by summing and storing a unitary weighted pulse stream input. Pulses 
can be applied to the input at intervals not less than the operating time 
of one stage. The inputs can be synchronous or not. The time required 
to assume a new steady state depends on the length of carry propagation. 
For an η stage counter the maximum time is nd, where d is the interval 
from when an input waveform to a stage reaches a critical value to when 
the output waveform of that stage reaches a critical value. 

6.1.1.3.2. MULTISTAGE COUNTERS WITH ANTICIPATORY CARRY. In­
spection of the counting process in the binary number system shows that 
upon the addition of an increment 2-»», any columnar bit changes (from 
1 to 0 or 0 to 1) only if all less significant bits contain 1. Therefore, 
upon receipt of an input pulse t, the condition for any stage B< of a 
counter to change is provided by the signal 

bi = Bi-iBi-2 . . . ^0^· 

If one were to mechanize the circuit directly from such equations, diffi­
culties would occur, for a counter having a large number of stages, because 
of the many terms involved in the AND gate inputs to the more significant 
stages. The circuit shown in Fig. 6.3(a) alleviates this condition at the 
cost of a slight decrease in speed. It operates as follows: The current 
count is stored in a group of bistable counter circuits. Upon receipt of 
an input pulse the first stage may generate a carry. This carry is propa­
gated through a series of gates, each of which is controlled by the state 
of a bistable counter circuit. The carry propagation is stopped by the 
first counter circuit in the 0 state. It takes less time to propagate a 
carry through a gate than to trigger a counter circuit. Therefore, each 
counter circuit can be triggered by the counter circuit in the next less 
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Carry propagation gates 

_ A N D . A N D 

1 1 1 
Pulse input 

Counter Counter Counter 
Pulse input 

( a ) 

Carry 

Bz By 

ANDj-igz^zH^yPn | A N D [ - S | B \ HAND 

Count command 

(b) 

FIG. 6.3. Multistage counters with a two-input/stage carry propagation line, 
(a) using bistable counter circuits, (b) using R-S flip-flops 

significant position only after it has served the function of passing a 
carry to the succeeding stage. The maximum time to reach the steady 
state is dependent on the speed of the carry propagation circuit. 

The counter shown in Fig. 6.3(b) utihzes set-reset flip-flops. Its 
operation is based on the fact that any stage Bi should change from 0 to 1 
or 1 to 0 in accordance with the following equations 

bi = BiBi^i . . . 

bi = BiBi^i . . . ^0^· 

Upon presentation of an input pulse t, a carry is propagated from the 
least significant end of the counter until it reaches a stage in the 0 state. 
The duration of the count command signal must be greater than the 
propagation time of the maximum carry chain. Each stage that receives 
a carry signal is caused to change state after it has served the function 
of passing a carry to the succeeding stage. The maximum time to reach 
the steady state is dependent on the speed of the carry propagation circuit. 
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6.1.1.4. Dynamic Binary Counters 

Let us consider how a counter may be constructed from a number of 
trigger type dynamic flip-flops of the type shown in Fig. 3.16(b). The 
input-output equation for the least significant stage Ai is simple since 
the least significant bit alternates between 0 and 1 with each input pulse. 
Any other stage should change state when there is a transition in the 
preceding stage from 1 to 0. This transition is recognized by sensing 
the present output of a stage and its output one pulse period earUer. 
Accordingly, the input-output relations for a two-stage coimter would be 

(^i),+i = (A,),T + {A,),T 

{A2)in = iÄ2)i [iA,UÄi)i^i] + (^2).[(^i).(^i)i+i] 
where Ai, A2 represent the first and second stages, respectively. The term 
{Ä2)iiAi)i(A\)i^i states that if the second stage is in the 0 state and 
stage one is changmg from 1 to 0, stage two should change from 0 to 1. 
The term (A2)i[{Ai)i(Ai)i^i] states that if A2 is in the 1 state, it 
should not change to 0 untU stage one changes from 1 to 0. Note that the 
expression for ( ^ 2 ) i + i is of the same form as ( ^ i ) i + i . 

With the arrangement shown in Fig. 6.4 a new accumulated coimt 

Unit 
delay 

— ^ I 1 Ai(Ai('\AkZ...A\Tx 

FIG. 6.4. Typical stage of a dynamic binary counter 

is provided after only one pulse period. Each stage employs a trigger 
type of dynamic flip-flop as before. However, there is a difference in the 
input-output expression for each stage. In this case, each stage changes 
state whenever aU the preceding stages are on and a count pulse Ί is 
applied. A significant difference in the two counters is that m the latter 
the number of variables in the inputs to the OR gate increases as the 
number of stages in the counter increases. This is not so in the case of 
the former counter. 

6.1.1.5. Use of a Multibit Delay Line as a Counter 

An n-bit number stored in a delay Une can be changed by a single 
positive or negative increment at a time by means of a simple logical 
scheme. The scheme is based on the special nature of the change which 
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can occur when 2-** is added to or subtracted from a number. When 
2-»* is added to a binary number, starting from the least significant bit 
each 1 in a sequence of I's will be changed to 0, and the first 0 that is 
encountered will be changed to a 1, at which point the process stops, 
i.e., the more significant bits will be left unchanged. For example 

.011001111 Original number 

.000000001 - f 2 - ^ 

.011010000 Sum 

This simple operation can be mechanized as follows: Assume that the 
bits of the original number appear serially, being represented by succes­
sive states of a flip-flop A. The only equipment required to add 2"^ to 
this number is another flip-flop Β and a simple combinational circuit. 
The flip-flop Β will always be set to the 1 state prior to the addition 
process, and will be set to the 0 state by the first 0 that appears in the 
original number, i.e., by the signal Ä, The correct sum may be formed 
by an exclusive OR (i.e., a sum modulo 2) gate having the input variables 
A, B. The arrangement is shown in Fig. 6.5. The actual process that 

Β 

Timing 
signal 

Exclusive 
j q O R 

AB^AB 
Arithmetic sum 

FIG. 6.5. Logical arrangement for serial addition of a single increment 

takes place is indicated by the successive states A, Β 

.011001111 Successive states of A 

.000011111 Successive states of Β 

.011010000 Α^Λ-ΑΒ 
The algorithm for subtraction of a single increment states that each se­
quence of O's in the given number is changed to a sequence of I's, and 
that the first 1 encountered is changed to a 0 at which point the process 
stops. By a simple modification, the above circuitry may also be used for 
subtraction of a single increment. The combinational circuit remains 
the same, but it is necessary to alter the 0 set input signal to the flip-flop 
B, Before either operation takes place, a signal Ρ or indicating an addi-
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tion or subtraction, respectively, is provided, and the 0 set input signal to 
the flip-flop Β becomes ÄP + AP, Therefore, during subtraction, the 
flip-flop Β will be set to 1 initially as before, but now it will be set to the 0 
state by the first 1 that appears in the original number A , The normal 
and the mechanized pseudo-operation for subtraction are illustrated below 

.011001100 Original number 

.000000001 - 2 -

.011001011 Difiference 

.011001100 

.000000111 
Successive states of A 
Successive states of Β 

.011001011 ΑΕΛ-ΑΒ 

Three-state arrangement: 

Flip-Flop A\ 

ä=B 

Flip-Flop B: 
b^C 
b^C 

FUp-Flop C: 
c^A 

Sequence of States: 

Flip-Flop A: 
a = CÄ 
ä = CA 

Flip-Flop Β: 
b = A 
b = A 

Flip-Flop C: 
c = Β 

(a) 

c Β A 
0 0 1 
1 0 1 
1 1 1 
1 1 0 
0 1 1 
1 0 0 
0 1 0 

Information flow 

Sequence of States: 

C 
1 
1 
0 
1 
0 
0 
1 

Β 
1 
o 
1 
o 
o 
1 
1 

A 
O 
1 
O 
O 
1 
1 
1 

HC BHAH 

Information flow 

(b) 

FIO. 6.6 Three-stage pattern generators 
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6.LL6. Pattern Generators 

If a group of flip-flops is to be used solely for the function of generat­
ing a number of distinguishable states (which are used to control other 
operations), it is not necessary that the states change in the same sequence 
as would a counting device. By eliminating the restriction, a saving can 
be effected in the number of gating elements required to generate the 
flip-flop input signals. Strictly speaking, it is not necessary that a counting 
device change states in a sequence of successively greater binary number 
representations, since it is possible to translate from any code to another. 
However, it is simpler to perform conventional arithmetic operations on 
the outputs of such counters. 

Figure 6.6 shows the input equations for a three stage pattern genera­
tor, composed of RTST flip-flops (Section 3.7.1, Fig. 3.14(d)) . If R-S 
flip-flops are used, the input equations to flip-flop A in Fig. 6.6(a) would be 

a =^ BÄ ä = ΒΑ. 
This circuit arrangement has the characteristic that the configuration 000 
is not used. If the circuit should ever get into this state, it could not 
normally leave it. This possibility may be avoided by altering the input 
equation a to 

a = BÄ + CB. 

The term CS has no effect other than to move the circuit from state 000 
to 001. 

A slightly different arrangement is shown in Fig. 6.6(b). It also has 
the characteristic that the configuration 000 is not used and represents a 
stalled state. To provide for getting out of this state, the input equation a 
is changed as follows 

a = CÄ + CE. 
In addition to generating control signals of the form f(A, B, C) , 

circuits of this type can also be used to generate cycles of sequential 
pulse patterns. For example, in Fig. 6.6(b) the A output of flip-flop A 
generates the pattern 0100111. 
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FIG. 6.7. A pattern generator formed from a magnetic shift register 
with end-around shift 

A pattern generator can also be based on a shift register. For example, 
a magnetic shift register such as that shown schematically in Figure 6.7 
could be used. (The basic operation of such registers is described in Sec­
tion 4.9). By using only an end-around feedback, as in Figure 6.7, a 
pattern once inserted will be propagated so long as shift pulses are applied 
to ti and / 2 . The length of this pattern is n, where η is the number of 
stages. By tapping off at various points, e.g., at ei and €2, one can obtain 
the same sequential pattern with various displacements in time. Longer 
sequences (up to 2*»-^) can be obtained by feeding back signals from 
intermediate points and combining these with the end-around feedback 
by means of an OR gate or other logic. 

6.1.2. BINARY ADDITION 

6.7.2.7. Serial Binary Adders 

The addition of two binary numbers, represented by ^ 1 . . . ^n, and 
Bi . . . Bn, is accomplished by the generation of sum Si and carry d bits 
respectively, as shown in Table 6.2, where Ci_i indicates the carry bit 
produced in the preceding bit column! For example, in the decimal sys­
tem, the addition of 6 and 7 produces a sum of 3 (modulo 10) and a 
carry of 1, so the answer is 13. 
Several methods of addition are known. They fall into two classes, namely 
those in which the number of I's in corresponding bit positions of the ad­
dends and the generated carry pulse trains are counted, and those in which 
logical operations are built up to obey the addition table. 

6.1.2.1.1. ADDITION BY COUNTING. Addition may be performed 
either by a digital or analog summation of increments. In the digital 
method, pulses representing corresponding bits of Ai, Bi, and d-i are 
arranged to occur at slightly different times and are counted by a two 
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Number of Ts S^ 
C<_i mA^,B^,C^_J^ (carry) (sum) 

0 0 0 

1 0 0 
0 1 0 
0 0 1 

0 1 1 
1 0 1 

1 1 0 

1 1 1 

1 0 1 

2 1 0 

3 1 1 

stage binary counter. Then the sum and carry bits are obtained from in­
spection of the states of the first and second stages, respectively. After­
wards, the counter is reset to zero pending the arrival of the next bits of 
the input numbers and the generated carry. The timing of the signals 
involved m this method is indicated in Fig. 6.8. The Ci_i pulse is 

θ 
Reset 
pulses 

I bit period 

FIG. 6 . 8 . Relative timing of signals to a sum and carry producing counter 

counted first so that the output pulse, which may occur at the same time 
as the reset pulse, can follow the input pulses as closely as possible. 
Even so, sufficient time to count two pulses must elapse between the first 
of the inputs and the output signals. This delay in operation is unavoidable 
with an adder of this type and may usually be considered a serious dis­
advantage. 

In the analog technique, the input pulse trains are arranged to occur 
simultaneously. The amplitudes of these signals are added, and the number 
of I's deduced from the level of the combined signal. Thus the output is 
available almost immediately (except for delays inherent in the natural 

TABLE 6 . 2 . 

C,
Bi

0 0 o
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time constants of any electrical circuit). A block diagram of a type of 
level discriminating adder is shown in Fig. 6.9(a). The sum of the ampU-

β Amplitude 
adder 

Delay 

I-level 
discriminator 

2-level 
discriminator! 

3-level 
discnminotorj 

Carry 

( a ) 

S u m 

G 

Amplitude 
adder # 1 

Amplitude 
adder # 2 

Delay 
1 

A Β C¡-\ A Β C¡-\ 

(b) 

FIG. 6.9. Level discriminating adders 

tudes of the pulse trains Bu Q - i is apphed to three discriminators of 
levels 1, 2, and 3, respectively. Each produces an output pulse if the 
corresponding number of inputs is 1. An improved and simpler form of 
level discriminating adder, shown in Fig. 6.9(b), is based on the fact that 
the sum bit may be obtained by subtracting twice the value of the carry 
bit from the number of Ts in Ai, B^ and Ci_i. The output of amphtude 
adder No. 1 is of the opposite sign to the inputs, and its level is limited so 
that the same output is produced from two or three I's; there is no 
output for a single 1 input. The output, after being delayed and 
restored to the original polarity, is designated Ci_i. The amphtude adder 
No. 2 gives an output pulse when / !{+ ßi -h Ci_i - Id = 1, smce Q 
is of opposite sign to Au Bi, and Q - i , and these pulses form the sum bits. 

Neither level discriminating adder produces a correct answer until the 
input pulses have aU reached their standard amplitudes. Normally, 
spurious results may be avoided by suppressing the output of the adder 
until the input pulses have reached their final amplitude. To make the 
levels sufficiently distinct, the permissible variation in the nominal amph-
tudes of the input and Q pulses are usuaUy held to within ± 5 % . Though 



2 7 8 6. ARITHMETIC OPERATIONS 

this analog adding circuit requires a higher precision of operation than 
digital circuits, the precision is well within the capabilities of the state of 
the art. 

6 . 1 . 2 . 1 , 2 . ADDITION BY USE OF LOGICAL OPERATIONS. If a circuit is 
to be used only to add any single power of two to an arbitrary number, 
then a simplification is possible over the circuit required to add two 
arbitrary numbers. Consider Example 6 .1 

Example 6.1 
η 7 6 5 4 3 2 1 0 
^ = 0 1 0 1 1 0 1 1 
23 = 0 0 0 0 1 0 0 0 

5^ = 0 1 1 0 0 0 1 1 5^ = Sum (modulo 2) of (A, 2«, C^+j) 
= 0 0 1 1 0 0 0 0 C^ = carry bit from the ( i - l ) t h order. 

Since 2^ and d can never be 1 at the same time, the adder circuit re­
quired will never have to deal with three input signals simultaneously, 
but only two. A schematic of such a circuit is shown in Fig. 6 . 1 0 . Since 
2^ and the delayed carry can never be 1 simultaneously, their logical sum 
may be thought of as a conventional single binary input signal, and is 
represented in Fig. 6 . 1 0 by B. A circuit that accepts two binary inputs, 

7 ^ 

Exclusive 
OR 

AND 

I bit 
delay 

-S^AB ^AB 

-C^AB 

FIG. 6.10. A half-adder 

A, Β and produces the output signals S and C as shown in Fig. 6 . 1 0 is 
termed a half-adder. The term half-adder derives from the fact that a 
full adder can be constructed from two half-adders. This can easily be 
demonstrated. First, consider the equations for the sum and carry of an 
adder with arbitrary inputs, A^ B^ These equations can be obtained from 
Table 6 .2 by noting the set of values of Au B^ and Ci_i for which St 
and Ci, respectively are 1 

Si = AiBid^i + AiBid^i + AiBid^i + AiBiCi ( 6 - 1 ) 

Ci = AiBiCi^i + AiBiCi.i + AiBid^i + AiEid^i. (6-2) 
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When the outputs S and C of one half-adder are used as inputs to another 
half-adder as shown in Fig. 6.11, equivalent expressions for Si and Ci 
result 

Ai 
Br 

Exclusive] 
OR 

AND I bit 
delay 

Exclusive] 
OR 

AND 

-Si 

1 
O R h ^ / 
IT 

FIG. 6.11. An adder comprised of two half-adders 

5, = (^A,Bi -h AiB^j Ci.x + (AiEi + AiB^ C,>i. 

Ci = AiBi -h {AiEi + ÄiBd Ci.i 
In the adder of Fig. 6.11 it is assumed that corresponding bits of the 
two addends arrive simultaneously. Both Ai and S< must pass through 
two half-adders, whereas Ci_i passes only through one. The one bit 
delay is required to store C, till the bits of A and S in the next more 
significant place arrive, at which time it is added to them. If the two 
addends do not arrive simultaneously, the modification shown in Fig. 
6.12 may be used. For example, its use would be indicated if the adder 

Exclusive 
OR 

AND 

Br 

I bit 
delay 

Exclusive] 
OR 

AND 

FIG. 6.12. An adder suitable for use with a recirculating type of main store 

were to be included in the regenerative loop of a circulating type of 
storage unit. In this case, the input A i from the main store will usually 
arrive slightly earlier than the external input Bi which passes through 
gating circuits before reaching the adder. 

The sum and carry of two serial binary inputs may be generated 
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without recourse to half-adders by straightforward mechanization of the 
expressions in Eq. (6-1) and (6-2). Each equation can be mechanized 
by means of four three-input AND gates whose outputs are combined in 
a four-input OR gate. There is an additional requirement which, though 
not shown explicitly, is implied by these equations. A delay must be 
provided at the output of the combinational circuit that mechanizes Eq. 
(6-2) so that the carry produced at time t - 1 can be combined with the 
bits of the addends appearing at time /. Actually Eq. (6-2) would not be 
mechanized directly because it is a redundant form. This is shown by the 
following algebraic manipulation which leads to the simplified expression 
for Ci given by Eq. (6-3) 

Ci = ÄiBiCi^i + AiSid^i + AiBid^i + AiBiCi.1 (6-2) 

= B,Ci^i(Ai + Ad + AiBid^i + AiBid^i 

= Bid^i + Aißid^i + AiBid-i 

= d M + Aißd + AiBid-i 

= d-Mi + Bd + AiB,d-i 

= Ald-i + C - i ^ i ) + d-iBi 

= AlB, + d-i) + d-iBi 

= A,Bi + Aid-i + d-iBi, (6-3) 

Equation (6-3), d = AÍBÍ 4- Aid-i + d-iBu could have been obtained 
directly from consideration of the binary addition process, by noting that 
a carry is produced whenever any two of the inputs are equal to 1, 
regardless of the value of the third input. 

Since the output of a switching circuit can, in general, be used as the 
input to a number of points, it is economical, wherever possible, to con­
struct required functions by incorporating and modifying simpler functions 
already formed. Therefore, it would be desirable to form the network for 
mechanization of Eq. (6-1) by means of an addition to the network for 
mechanizing Eq. (6-3). One way this could be realized would be to 
utilize the following expression 

Si = d{Ai + Bi + d-i) + AiBid-v (6-4) 

Comparison of column 9 with column 4 in Table 6.3 shows that Eqs. 
(6-1) and (6-4) are equivalent. 
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TABLE 6.3. Truth Table for Generation of S,; = C,(A, + B, + C,_I) + A,B,Ci_l

2 3 4 5 6 7 8 9

Ai Bi C,-l C, Ci (Ai+Bi+Ci-l) C,;(A,+B,+C,-l) A,BiCi-l 5,

0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 0 1
0 1 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 1 0 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 0 1 1

Figure 6.13 shows a schematic of an adder which produces the sum and

Ai
8i
Ai
Ci-I
8;
Ci-I

Ci-I

c,.

FIG. 6.13. An adder based on mechanization of the equations:

Ci = AiB, + AiCi-1 + Ci-IBi ,
S, = C,(Ai + Bi + Ci-l) + AiBiCi-l

carry in accordance with Eqs. (6-3) and (6-4). A comparison of the
mechanizations of Si by means of Eqs. (6-1 ) and (6-4 ) shows the
following. Mechanization of Eq. (6-1) calls for four three-input AND

gates and one four-input OR gate. Mechanization of Eq. (6.4) calls for
one three-input and one two-input AND gate, one three-input and one two­
input OR gate, and an inverter. While the latter arrangement requires
fewer gating elements (10 compared to 16) it calls for a three level
OR-AND-OR circuit, compared to a two level circuit for the former.

In all the adders based on logical operations which have been described
thus far, a simple delay element was employed to cause the carry from
one order to be combined with the addend bits of the next more significant
order. In other adders, advantage may be taken of the fact that a flip-
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flop's inherent delay in switching and its storage capability can be used 
to delay and store a carry. Figure 6.14 shows three different adders 

CC 

fír\ 1 

C -
Ai-

Exclusive 
O R 

Exclusive 
OR 

( a ) 

^ 4 Ä N D 

CC i i 

Bi 

A-3 A N D 
C ^ — 
^ A N D 

?η]ΑΝΡ|-*ρ 
O R h - ^ 

CC 
Ü 

A N D NOR 

AiBi 

(b) 

c C c — A N D 

-|0R C A N D NOR 
• O R I — 5 / 

I a n h U J n o r U P — 

( c ) 

FIG. 6.14. Three adders utilizing a carry flip-ñop 

in which the required delay of the carry is obtained by use of a flip-flop. 
At each bit time, the output of the carry flip-flop will indicate whether a 
carry was produced by the next less significant order. For a set-reset type 
of flip-flop the input signals to the carry flip-flop are 

c = AiBi c = AiBi. 

The states C and C indicate that a carry was or was not produced during 
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the preceding bit time. The input equations to the flip-flop are derived 
by observing the following. Since the carry at the beginning of an addi­
tion is 0, the flip-flop is set initially to state C, When AÍBÍ has the value 
1, a carry must be produced, so the carry flip-flop is set to state C. If a 
carry is produced in one position, it will be produced in the next more 
signiñcant one unless the case AÍBÍ occurs. In other words, the cases 
Ai!Bi and AÍBÍ produce a carry signal if and only if there has been a 
carry from the preceding position. Therefore, if AÍBÍ or AÍBÍ occur, the 
state of the carry flip-flop is correct and need not be altered. When AÍBÍ 

occurs, a carry cannot be produced so the carry flip-flop must be reset 
to state C. 

The three arrangements shown in Fig. 6.14 differ in the nature of the 
logical circuits used in conjunction with the carry flip-flop C. Fig. 6.14(a) 
uses only AND and EXCLUSIVE OR circuits; Fig. 6.14(b) uses only AND and 
OR circuits; Fig. 6.14(c) uses AND, NOR, and OR circuits, and would be 
useful in the case where the complement of A and Β were not available 
as an input to the adder. Any of a number of shnilar arrangements can 
be speciñed. The one chosen will depend on the types of logical building 
blocks one chooses to use, restrictions imposed on the maximum level 
of gating circuits, and the form in which the bits of the addends are 
available. The building blocks chosen will, in turn, depend on a number 
of factors: the frequency of operation, the relative reliability and cost of 
combinations of specified building blocks for a given application, the size 
and power requirements of different building blocks, etc. 

Each of the adders described in this section can be differentiated from 
preceding switching networks in that for every combination of input 
variables there are two distinct output signals, namely, the sum and the 
carry. Such a circuit is considered a multiple output switching network. 
The classification is arbitrary, since both the sum and carry may be 
generated separately, i.e., by two single output switching networks. How­
ever, the important point is that by considering the adder circuit as a 
unit, i.e., a multiple output switching network, certain duplications of 
circuitry may be avoided (e.g., see Eq. (6-4) and the discussion preceding 
it) since often the same terms or factors may be required as part of 
both output functions. 

It should be emphasized at this point that, while block diagrams some­
times serve as a convenience, they are not necessary to describe logical 
configurations. If suitable symbols have been provided for all switching 
and storage elements, all sequential circuits may be described logically 
by means of Boolean algebraic equations that describe the input-output 
relations in these circuits. The indicated uses for block diagrams and 
logical equations will be considered in more detail in Chapter 7. 
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6,1.2.2. Use of a Delay Line for Augend-Sum Storage 

In the scheme for serial addition shown in Fig. 6.15, it is assumed 

I Timing pulses 

From 

external store A 

Delay line ^ -

Timing pulses 

FIG. 6 . 1 5 . A serial adder utilizing a delay line for augend-sum storage 

that the number Bi . . . JS« is stored in a delay Une storage device of 
length nD, where D indicates a unit delay, and that the bits Ai . . . An come 
from an external store. The bits on each input Une are represented by 
pulses. The gates 1 and 2 wiU not pass incident bits Αχ . . . An nor carry 
bits, except at times prescribed by the arrival of suitable timing pulses. 
This enables any particular number to be selected from the external 
store and added to that already contained in the delay line. The clear 
pulses are apphed when it is desired to erase the contents of the delay 
line. If they are appUed during the time interval when there is an input 
on A, then the contents of the delay Une Β are replaced by the input on 
Une A, since the arithmetic sum /4 + 0 is formed by the adder and 
entered into delay Une Β. This is effectively the same as if the contents 
of the delay Une were fbrst cleared and then the input on A added, except 
that it saves the time required to separately clear the delay line. 

6.1.2.3. Use of a Shift Register for Augend-Sum Storage 

One or both inputs as weU as the output of a serial adder may be 
stored in a circulating memory. However, the use of a shift register for 
at least one of the two numbers permits the sum to be stored for further 
manipulation if desired. In this way it can serve as an accumulator, since 
as the bits of the augend are read into the adder, room is provided for 
the sum bits. 

In Fig. 6.16, the bits of one number Bi . . . Bn are stored in a static 
register, the contents of which can be shifted, one bit at a time, to the 
right on receipt of clock pulses if the signal for a shift is present on the 
Une marked "shift." Nothing occurs except when the shift gates 1 througji 
n-1 and the gates s, c are pulsed. Then the sum is produced by the adder 
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Shift 

Si 

Clear 4Sh 

From external store 
> í L j 

Adder 
S u m , 5 / 

FIG. 6 . 1 6 . A serial adder utilizing a shift register for augend-sum storage 

bit by bit upon receipt of successive clock pulses. Each bit of the sum 
is successively shifted into flip-flop Βχ and the carry for the next stage, if 
any, is entered into the carry flip-flop C. The carry flip-flop is cleared prior 
to an addition. 

The scheme of Fig. 6.17 is a variation of the arrangement in Fig. 6.16. 

Shift 

From 
external store 

ΊΟ 
H 3 

1 

FIG. 6 . 1 7 . An alternate logical scheme for serial addition utilizing a shift register 
for augend-sum storage 

It is based on considering the sum and carry in terms of the variables Bi 
and Ci_i, as described in Table 6.4. From Table 6.4, it is evident that if 
Ai = Ci, then the sum and carry are simply Β i and Ci_i, respectively; 
it A i ^ Ci they are Bi and Bi respectively. In Fig. 6.17, the flip-flop A 
receives the bits of one addend Ai , . , An from an external store, and 
flip-flop C stores the carry bits. Upon receipt of shift pulses, the contents 
of the Β register are shifted right and the output of Bn is sent either directly 
via gate 1 or inverted via gate 2 into Βχ, Concurrently, the output of Bn 
is sent directly to C via gate 3, when gate 2 is actuated, i.e., it A C, 
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TABLE 6.4.

Ai C'_I B, Sum Carry

0 0 0 o =B, o = Ci-l
0 0 1 1 = B, o = Ci-l
1 1 0 o = B. 1 = C,-l
1 1 1 1 = B, 1 = C,-l
1 0 0 1 = B, 0= B,
1 0 1 o =B, 1 = B,
0 1 0 1 = B, o =B,
0 1 1 o =B, 1 = B,

6.1.2.4. A Serial Accumulator

The arrangement shown in Fig. 6.18 indicates how bistable counter

FIG. 6.18. A serial accumulator

circuits can be utilized to form an accumulator. The circuits intercon­
necting the counters do not function as logical OR gates, but only as
buffers, since there is never a signal on both inputs simultaneously. The
bits of the incident number, Al " .. At" are applied to each stage sequen­
tially. Each counter accomplishes two functions. First, upon receipt of an
input signal it adopts a state representing the value of the sum bit for that
stage. Secondly, it produces an output signal if there is a carry. Before
an incident bit is applied to the input of any stage, time must be allowed
for any carry produced in the next less significant stage to have passed the
succeeding stage.

6.1.2.5. Parallel Binary Adders

In a parallel adder all the bits of a word are accepted by a static
register at the same time. There are as many sets of input lines as there
are bits, and an adding circuit is associated with each bit. To allow the
description of some specific parallel adders, certain assumptions will
be made. Assume that the addend is stored in flip-flops A" the augend
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Time/ Time / + 1 

Bi Ci-1 Ci Bi 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

The result is: bi = A.d-i + Aid-i. The combinational circuit for C, 
is formed from an expression which states the set of values of Ai, Bi, d^u 
for which the variable d has the value 1. One form for this expression 
is 

d = AiPi + Aid-i + Bid-.i 

Since there is no carry in the least signiñcant place, i.e., Co = 0, the 
expression for Ci is simply d = ΑχΒι, 

If the input equations to the flip-flops Bi are examined, it is apparent 
that each 6. is a function of Ci_i (or Ct_i) which, in turn, is a function 
of -^1 . . . Ai^i, Bi . . . From this it is evident that if the input equa­
tions to a flip-flop Bi were made an explicit function ot Ai,., Ai, Bi.,, Bi, 
there would, in general, be so many terms that the corresponding gating 
circuit would be unpractical to construct. One solution is to insert some 
power amplifying device, e.g., a cathode or emitter follower, for each d 
and Ci, Even so, a long time would be required for the transients to die out 
after a new addend and augend appear in the A and Β registers. The maxi­
mum length of this transient will determine the maximum time interval 
from arrival of the operands until the sum is available and ¿t can be made 
to operate. The duration of this transient is proportional to the number 
of bits in each operand. The transient may be eliminated by storing the 
bit-by-bit sum in Bi, the carry in Ai, and then proceeding in the next 

in flip-flops Bi, and that it is desired to store the sum in the flip-flops B<, 
(flip-flops Ai, Bi are assumed to be of the trigger or complement type). 
The input equations to the flip-flops Bi may be derived by noting in 
Table 6.5 the states of Ai and Q - i at time t, for those cases where there 
is to be a change in Bt at time t + 1. 

TABLE 6.5. 
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bit time as if ^ i and Β i still contained an addend and an augend. Each 
step may then be considered as a half-addition. The addition of 11 and 
6 would be as shown in Example 6.2. 

Example 6.2 

Decimal number Contents of A^, B^ Clock period 

11 
6 

17 

01011 
00110 Bi 

01101 
1 ^i 

01001 Bi 
1 ^i 

00001 Bi 
1 ^i 

10001 Bi 
00000 ^i 

The truth table for the half adder is shown in Example 6.3. 

Example 6.3 

Time/ Time t + 1 

A, B, A, B, 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

2

3

4

s

1
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* See Burks, Goldstine, and von Neumann. "Preliminary Discussion of the Logical 
Design of an Electronic Computing Instrument. Princeton Institute for Advanced 
Study, 1947. 

From Example 6.3 the foUowing difference equations may be derived 

(Bdt^i = (Α,Β, + Ä.Bdt 

(Adt+i = (A.Bdt^ 
Input equations to the flip-flops Ai, Β ι that wiU cause these relations to 
be satisfied are 

bi = Ai 

Qi - AiBi 

These input equations are derived from the preceding truth table by 
noting the states of both At and Β ι at time t which lead to a change 
in A i and B^, respectively, at time ii+i. 

The end of the addition is indicated when aU Ai = 0, i.e., there are 
no more carries. The maximum time for an addition is, in terms of clock 
periods, equal to the number of bits in the operands, and requires the 
same time as a serial adder. The average time, however, is less for a 
series of additions on operands that may be considered random numbers. 
The average number of successive carries that wiU occur in the addition 
of two 40-bit numbers containing random bits is ^ 4.6.* Although its 
logic is simple, this adder is not very efficient when the large number of 
components that has been added for a shght decrease in the time required 
for an addition is considered. 

We wiU now consider a parallel adder in which the maximum and 
average addition times are reduced further by means of a more complex 
logic. The operation of this adder is based on considering each operand 
as n/2 adjacent groups of two bits each (where η = the total number of 
bits in each operand). The first step in the addition process consists of 
storing the sum (modulo 2) of the operands within each two-bit group 
in the two A flip-flops within each group. Also, each odd-numbered 
(i.e., less significant) Β flip-flop in a group of two, is set to 1 if the less 
significant two-bit group produces a carry. Each even-numbered Β flip-
flop is reset to 0. Then the process is continued with a series of half-
additions. The logical sequence from time ί to ί - f 1 is described in Table 
6.6. 
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TABLE 6.6 Successive states of flip-flops in a parallel adder

Timet Time t+ 1

A, A'+l B, B'+l Ai A'+l B'+2 B'+l

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 1 1 0 1 0
1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 1 1 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 0

From Table 6.6 the following equations may be derived

(A i)t+l = (AiBi + A i.8i)t

(A i+1)t+l = Ai+l(AiBiBi+l + AiBiBi+1 + A iBiB i+l + A iB iBt"+l)

+ Ai+l(Ai8iBi+l + A iBiBi+1 + A iBiBi+1 + A iB iB i+1)

(Bi+2)t+l = (A i+1 Bi+1)t + [AiB i (A i+l + B i+1)]t

(Bi+1)t+l = o.
If the flip-flops Ai, 81, are of the set-reset type, the input equations that
cause these relations to be satisfied are

bi+2 = A i+1Bi+1 + A iB i(A i+1 + Bi+l)

hi+2 = (Ai + Hi) (A i+l + Bi+1) + A i+1Bi+1

hi+1 = 1 b i+1 = 0
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These input equations indicate that it would be appropriate to use two-
input (set-reset) flip-flops for the Bi and single-input (trigger) flip-flops 
for the Ai. The maximum time for an addition is, in terms of clock periods, 
equal to n/2 where η is the number of bits in each operand. The average 
time is considerably lower. The end of an addition is indicated by all 
odd-numbered Bi being equal to zero. The maximum time may be reduced 
to n/x clock periods by dividing each operand into groups of χ bits each. 
However, the formulation for the carry becomes more involved as χ 
increases. The arithmetic process is clarified in Example 6.4. 

Example 6.4 

Decimal 
equivalent 

11 0 1 0 1 1 
6 0 0 1 1 0 Bi 

13 0 1 1 0 1 
4 0 0 1 0 0 Bi 

1 0 0 0 0 1 Ai 
16 1 0 0 0 0 Bi 

17 1 0 0 0 1 
0 0 0 0 0 0 Bi 

Clock 
period 

1 

2 

3 

4 

6.1.2.6. A Parallel Adder with Carry Flip-flops 

This discussion on parallel adders will be concluded with a description 
of a parallel binary adder which can readily be modified to serve as a 
parallel decimal adder (as described in Section 6.1.3.2). As in Section 
6.1.2.5, assume that the addend is stored in flip-flops Ai, the augend in 
flip-flops Bi, and that their sum will be stored in flip-flops Bi. It is also 
assumed that there is one carry flip-flop d after every fourth bit of the 
operands. More frequent carry flip-flops would reduce only slightly the 
number of gating elements required, at the cost of increasing the time 
required for an addition. The Bi flip-flops are assumed to be of the single 
input complement type and the Q flip-flops of the set-reset type. 

The mode of operation of this adder may be outlined as follows: 
(1) Upon the arrival of the initiating clock pulse ίο there is an input 
signal to each Bi flip-flop if the corresponding Ai flip-flop is in the 1 state. 
For example, for the first group of four bits (Bo, ^ i , Β 2, Β ζ) 

(bo)t=o — ^oto (6 ι ) ί=ο = Alto 
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This step actually consists of forming the sum (modulo 2) in each column 
and, for the time being, ignoring the generation and propagation of any 
carries. (2) Upon the arrival of the next clock pulse h, each flip-flop Bi 
receives an input signal if the original addend and augend are such that 
a carry would have been propagated to stage Bi from B Í _ I , where both 
Bi and Bi-i are within a given group of four bits. A carry can be propa­
gated to a given stage only if: (a) both operands are 1 in the preceding 
stage, in which case the value of the operands in less significant places 
is of no consequence; or (b) there is an uninterrupted sequence of less 
significant columns in which the value of at least one of the operands 
is 1, immediately followed by a lesser significant column in which both 
operands have the value 1. The Boolean algebraic statement of the 
original conditions capable of producing carry input signals (bi)c to the 
flip-flops Bi are, for the first group of four bits (Bo, Bi, B2, B^) 

(Ol), = AoBoh 

(b2)c = [ΑιΒχ + (ΑιΒχ + ÄiB{)AoBo]to (6-5) 

( ¿ 3 ) c = [A2B2 + (A2B2 + Α2Β2)ΑχΒχ 

+ {A2B2 + Ä2B2) (ΑχΒι + ÄMAoBoVo. 
Remember that at time h, the Bi flip-flops no longer contain the original 
augend, for each Bi flip-flop was set to its complementary state wherever 
the corresponding A i flip-flop was in the 1 state. However, this presents 
no problem since at h the A i still contain the original addend, and to 
express the input signals to the Bi flip-flops at time h, it is only necessary 
to complement the value of the Bi as given in Eqs. (6-5) wherever the 
corresponding ^4i is in the 1 state, and to replace to by ti. The input 
equations bi at time t = 1 are, accordingly 

(^i)i-i = AoBoti 

{biii^i = [ΑχΒχ + (^1^1 + ΑχΒΜΜι 

= {ΑιΒχ + Bi^o^o)^! = ^i^i^i + ΒιΦύΐ'ΐ 

(bz)t^i = IA2B2 + (A2B2 + Ä2B2)AiBi (6-6) 

+ {A2B2 + Ä2B2) {ΑχΒχ + ΑΙΒ{)ΑΜ\ 

= (Α2Β2 + B2B1A1 + B2BiBoAo)ti 

(3) Upon arrival of clock pulse ti each carry flip-flop is to be set if a 
carry would be propagated out of a given group of four bits upon addition 
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of the original addend and augend bits. The conditions for the propagation 
of a carry to a given stage were stated in item (2) . The set signal for the 
first carry flip-flop C 3 is 

( C 3 ) i - 1 = ( ^ 3 ^ 3 + B^2A2 + B^B2BrAi + B^B2BiBoAo)tx 

= A^B^ti + 5 3 ( ^ 3 ) ^ - 1 . 

(4) Up to this point each group of four adjacent bhs has been considered 
almost as if it were isolated from the others. The carry flip-flops, Ci+3, 
provide the necessary links. In general, the carry produced by one group 
of four bits may affect both the sum and carry bits in more significant 
places. Accordingly, additions must be made to the Bu Bt+i, 5 (4 .2 , 

and Ci+3 flip-flop input equations for all groups except the least 
significant one. Therefore, for / = 4, 8, 12 . . . ( Λ — 3 ) , where η = 39 for 
an assumed register of 40 bits (and where Í2/10 designates the interval 
from the appearance of Í2 through tio) the flip-flop input equations are: 

bi = AiíQ + C , - i í 2 n o 

bi+i = Ai+iíQ + AiBiti + BiCi-it2fio 

bi+2 = Ai+lh + + ^t+l(*i+l)i-l 

6i+3 = Ai+:ito + Ai+2Bi+2h + -öi+2(*t+2)<-i (6-7) 

-h Bi+2Bi+iBiCi-it2fio 

d+i = Ai+^Bi+^ti -f Bi+2Bi+2Bi+iBrCi^it2iio 

where ^2/10 represents the logical sum of Í2 through ho. Flip-flops C 3 , C 7 , 
C i i , . . . C35 are reset by ^2, , . , ho, respectively. 
The end of the addition process is indicated by sensing completion of all 
carries, i.e., by detecting the condition €^€η€η€ΐ5 . , , Cishín-
This permits an addition to be performed in an asynchronous manner. 
For a large number of additions this aUows an average time for addition 
which is considerably less than that required for synchronous operation, 
where a maximum time interval must be assigned for each addition. The 
speed of addition could be increased further if fewer carry flip-flops were 
used. However, this would be very costly in the number of additional gating 
elements required. If more carry flip-flops were used, the speed would be 
decreased appreciably while the number of gating elements required would 
be reduced only shghtly. 
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6.7.2.7. Parallel Adders with Full Length Anticipatory Carry Chains 

The adder shown in Fig. 6.19, becomes operative upon application of 

Carry, C 
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A N D 

OR Η 

Inv 

Counter 
/izC-^/izC 

UzO 

A N D 

Add 

Carry, C 

H A N D 

Counter[-{ÄND 

Τ 
Add 

FIG. 6.19. A parallel adder with bistable counter storage and an anticipatory 
carry chain 

an "add" command, simultaneously applied to the inputs of all stages. 
The flip-flops Ai may comprise either a buffer register or a shift register 
with serial or parallel read-in. Carry pulses generated in each stage are 
propagated only through gates. The accumulator is comprised of a set of 
bistable counters Bi, Each Bi is triggered only after a carry has passed 
that stage (assuming a carry is propagated to it) . The maximum time to 
produce the sum is dependent on the speed of the carry propagation 
circuit. 

For a fast addition operation in a parallel computer, carry pulses 
should be passed through as few gates and other circuits as possible. 
Also, these gates and other circuits should be fast operating. The adder 
shown in Fig. 6.20 operates in two major steps: First, carries are gen-

^ 2 h 

Carry 
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^ a k A N D 

Carry 
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-Bz Sum 
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5 | - A N D 

A\ 

/ I 

FIG. 6.20. A parallel adder with flip-flop storage and an anticipatory carry chain 



6.1. M E C H A N I Z A T I O N O F O P E R A T I O N S 295 

erated and propagated through carry gates from less to more significant 
stages; as a carry pulse reaches any particular stage it is also stored by 
means of a carry ñip-ñop C. Secondly, when all carries have been propa­
gated, a pulse Í2 is applied to all Bi input gates simultaneously, as a result 
of which the arithmetic sum of A and Β is stored in B. The maximum 
time to produce the sum is dependent on the speed of the carry propaga­
tion circuitry. 

6.7.2.5. A Parallel Adder with a Fast Carry 

Even though, in a parallel adder, the addends are applied simul­
taneously to all stages, there will be a delay before the most significant 
stage of the adder assumes its final value, because of the serial nature 
of carry propagation. Most synchronous computers employ carry circuits in 
which the full length carry time must be allowed in each addition. The 
required time interval is provided by a separate timing device, with a 
safety margin to allow for tolerances in both the carry circuit and timing 
device. By using the carry circuit to time its own fuU length carry time, 
an improvement may be effected in the timing reliability of the carry 
system. 

A significant decrease in the time required for carry propagation 
can be achieved if advantage is taken of the fact that on the average 
the length of a one's carry sequence is only a small fraction of the maxi­
mum sequence (being 4.6 stages in a 40 bit addition). 

A simple carry circuit is shown in Fig. 6.21(a). It cannot provide its 
own tuning because of the carry interruptions and starts caused by 
columns where AB and AB exist, respectively. The arrangement shown 
in Fig. 6.21(b) provides for two carry lines into and out of each stage. 

^outHOR 

A N D 

( α ) 

íT'out—iÖR 

^°out—iÖR 

( b ) 

FIG. 6.21. (a) A simple carry circuit, (b) A circuit to propagate 0 and 1 carries 
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As a result, the cross coupUng shown in Fig. 6.21(b) may be eliminated, 
and it becomes apparent now that there are, in general, places within 
an n-stage addition operation where the sum and carry bits may be formed 
independently of information in preceding bit places. In constructing an 
adder* based on this observation, the state of the carry Unes should be 

* Gilchrist, B., Pomerene, J. H., and Wong, S. Y. [1955], Fast carry logic for digital 
computers, IRE Trans. El. Computers, 4, 133-136. 

One line C^ corresponds to the usual carry Une. The other Une C^, has a 
signal when there is no carry from the next less significant stage. By pro­
viding for 0 carries as weU as 1 carries through the use of separate carry 
chains, there results a circuit that can provide its own timing. At the 
beginning of an addition, both carry Unes are off. This condition wiU be 
met if both carry inputs to the least significant stage are held off. The 
carry propagation is begun by applying a signal to the Une of the least 
significant stage. This carry wiU then proceed down the 0 chain until it 
reaches a stage where /IB is 1, at which point the carry switches over to 
the 1 chain. Similarly, it will proceed down the 1 chain until it reaches 
a stage where ÄB is 1. Finally, it wiU emerge from the most significant 
stage as either a or O to signal the end of the n-stage carry. The 
carry wiU always pass seriaUy through aU η stages. 

If the truth table for the formation of a carry is arranged as shown in 
Table 6.7, it becomes apparent that if either AB or ÄB exists, 
independent of du 

TABLE 6.7. Truth table for carry generation

Cin A B Cout

0 0 1 0 }0 1 0 0 = em1 0 1 1
1 1 0 1
0 0 Q 0

} = AB
1 0 0 0
0 1 1 1
1 1 1 1
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* In the (8-4-2-1) code (1100), the binary equivalent of 12, is not deñned. 

viewed as off or 1 for O and off or 0 for C^. Both carry hnes are off at 
the start of an addition. This is enforced for the interior stages by an 
exphcit paraUel inhibition on the lines or by operating on the AB and ÄB 
inputs. Carries are begun by releasing the inhibitions on aU stages, includ­
ing the selected carry into the least significant stage. At this time, carry 
sequences wiU arise from the selected input carry, and from every interior 
stage having AB or AB. Thus the serial aspect of the carry is restricted 
to sequences of stages for which A B. 

Feeding the C^ut and C^out Unes in each stage to the input of an OR 

gate, and the output of aU such OR gates to an n-input AND gate, permits 
a carryless determination of the equality of two addends, this mode being 
obtained by not releasing the paraUel carry inhibitions. In this case, an 
output is obtained from the carry completion gate if, and only if, two 
addends are equal. (Other comparators are described in Section 6.1.4.3). 

6.1.3. DECIMAL ADDITION 

6.1.3.L Serial Decimal Adders 

When designing a decimal adder, one must choose first of aU a binary 
code group to represent each decimal digit. Any decimal digit can be 
represented by the states of a group of four or more bistable elements. 
A number so represented is said to be in a binary-coded decimal form. 
There are many forms of binary-coded decimal representation, differing 
in the number of bits per group (usuaUy four or five) and the weights 
assigned to each position in the group. A total of 70 weighted four-bit 
codes, including those with negative weights have been found. The most 
obvious binary-coded decimal representation is referred to as the straight 
binary, or (8-4-2-1), decimal code. It is shown in Table 6.8. In this code, 
the representation of 694 is 

6 9 4 
(0110) (1001) (0100). 

Whenever binary-coded decimals are operated upon, attention must be 
paid to the fact that each group is distinct. For example, consider the 
binary-coded decimal representation of 694. If it were multiplied by two, 
simply by a single shift left, there would result 

(0110) (1001) (0100). X 10. = (1100)* (0010) (1000). = ^ 2 8 
The error in the result arises from neglecting the fact that, if the operation 
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8 4 2 1 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

on a particular binary-coded decimal digit produces a number greater 
than nine, a carry is produced which must be added to the next most 
significant digit, and the digit producing the carry must also be adjusted. 
Table 6.9 shows that a multiplication by two can be accomplished by 
a shift left operation only if a digit is ^ 4. 

TABLE 6.9. 

2 X 0000 — 0000 = 0 
2 X 0001 = 0010 = 2 
2 X 0010 = 0100 = 4 
2 X 0 0 1 1 = 0110 = 6 
2 X 0100 = 1000 = 8 
2 X 0101 = 1 0000 = 1 0 
2 X 0110 = 1 0010 = 1 2 
2 X Ol l i = 1 0100 = 1 4 
2 X 1000 = 1 0110 = 1 6 
2 X 1001 1 1000 = 1 8 

The use of binary-coded decimals can relieve the user from the task 
of converting numbers from decimal to binary representation prior to 
inserting them into a machine, and of converting the binary output of the 
machine. For example, ten numerical keys can be provided on an input 
device, so wired that when the operator presses any one of them the 
corresponding binary-coded decimal signal is inserted into the machine. 

TABLE 6.8. The straight binary decimal code 

Decimal (8-4-2-1) Decimal code 
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Similarly, each of the ten binary-coded decimal signals can be used to trip, 
say, a corresponding numerical key in an output typewriter. If the internal 
arithmetic units of the computer operate in the binary system, binary-
coded decimal inputs to the machine must be converted to true binary 
numbers before being operated upon by the arithmetic unit. In Section 6.4 
the subject of conversion between binary and binary-coded decimal rep­
resentation is considered in more detail. 

Though there are many binary-coded decimal representations, in 
practice the choice is usually confined to one of a small set of four and 
five bit codes. In the discussion following, only four-bit decimal codes will 
be considered. 

Assuming a particular code has been chosen, the general approach 
for testing its suitability in an adder is to form a truth table. In this case, 
there would be 200 input conditions, corresponding to all possible combina­
tions of values of the two addends and the carry from the preceding stage. 
For each possible input combination, the value of five output bits will be 
defined, namely, the four bits of the sum digit and the carry bit. A simpler 
procedure may be used for certain special choices of the four bit code. 
Two of the most commonly used codes will be described next. 

In the straight binary decimal code, four binary places are assigned 
weights of 1, 2, 4, and 8 respectively. A decimal adder to operate on 
these decimal code groups can be formed from a binary adder with the 
following simple modification. When the sum digit produced in any decimal 
place is ten or greater, indicating that a carry must be propagated from 
one code group to the next, the carry must be generated and the sum 
digit itself corrected to yield a value less than ten. 

Another commonly used four bit decimal code is referred to as the 
excess-three code. It is a nonweighted code wherein each dechnal digit d 
is represented by a code group which, if interpreted as a conventional 
binary number would represent d +3, This is shown in Table 6.10. 

The excess-three code has certain useful properties. First of all, it is 
self-complementing, i.e., the nine's complement (see Section 6.1.4.2.3.) 
can be obtained simply by interchanging ones and zeros. Also, because 
there is at least one 1 in the representation of each digit, the conditions 
of zero or no digit can be readily distinguished. Another advantage is 
that a carry bit occurs automatically out of the most significant position. 
This follows because, if the sum of two decimal numbers is ^ 10, the 
sum of their excess-three code representation must be ^ 16. However, 
it is necessary to correct the sum digit whether or not there is an over­
flow. Specifically, if the sum digit is ^ 16, three must be added to it, 
(smce the sum does not have an excess-three bias), if it is < 16, three 
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Decimal Binary excess-three 

0 0011 
1 0100 
2 0101 
3 0110 
4 Ol l i 
5 1000 
6 1001 
7 1010 
8 1011 
9 1100 

must be subtracted (since an excess three has been added twice). This 
necessitates additional storage elements for storing the sum of each excess-
three code group, so that it may be corrected. FinaDy, since for every 
entry in Table 6.10 there is another entry where the I's and O's are inter­
changed, a decoder used to obtain a 1 out of 10 representation will place 
equal loading on both outputs of the flip-flops holding the excess-three code. 

The logical design of a serial excess-three code decimal adder will 
now be described. Assume that the bits of the two addends appear serially 
at successive bit times t in two flip-flops, A, B. Successive sum and carry 
bits are produced and stored in flip-flops S and C respectively. The times 
at which the least significant bits of each code group appear in A, Β will 
be indicated by a timing signal Four additional flip-flops 5i, 52, S3, S4, 
are provided in which to form the corrected sum. These flip-flops actually 
serve two distinct purposes. First, they act as a shift register to which suc­
cessive values formed in 5 are sent, and also as a correction register in 
which the corrected simi of each code group is formed. When the cor­
rected sum is formed, these flip-flops again act as a shift register, trans­
mitting their contents back to the main storage unit. At time h any given 
code group will be stored in flip-flops 5, Si, S2, Ss. This number must be 
corrected according to the value of flip-flop C at time ti. However, the 
corrected value must be placed in flip-flops 5i, 52, 53, 54, since at the next 
bit time 5 must be used to store the sum bit of the next two bits appearing 
in flip-flops A, B, The configurations to be assumed by the flip-flops 5i,52, 
53, 54 are shown in Table 6.11. 

TABLE 6.10 



If Si, S2, 53, S4 are two-input RS-T flip-flops, their input equations are 

51 = (5253^ + SC)ti + St'i 

si = (SC + S2S^C)h + Sil 

52 = iSiC + (S1S3 + 5i.?3)C]ri + 5ifi 

= (SiC + SiS^ + SiS^Qh + 5iii 

52 = [(5.7153 + 51^3)^ + 5iC]ii + Sih (6-8) 

^3 = [(S + S2)C + S2C]ti + 52Í1 

'̂3 = l(S + S2)C + S2C]ti + S2Í1 

54 = (S^C + S^Qti + S^t'i = .?3/ι + 53Í1 

54 = (53^ + 530^1 + .?3Íi = 53Í1 + S^t'i. 
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TABLE 6.11.

Time 14 Time 11
S S1 S2 Sg SI S2 S3 S4

Subtract 3
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 1 0

C=O 1 0 1 0 0 1 1 1
1 0 1 1 1 0 0 0
1 1 0 0 1 0 0 1
1 1 0 1 1 0 1 0
1 1 1 0 1 0 1 1
1 1 1 1 1 1 0 0

Add 3

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0

C = 1 0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
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In these equations the terms associated with indicate the input signals 
required for the correction operation, and the other terms cause the flip-
flops to act as a shift register at all other times, i.e., when ti is true. 

6.132. Parallel Decimal Adders 

Parallel decimal adders are more complex. The carry propagation 
time is the important factor as in other parallel adders. A greater variety of 
decimal parallel adders is possible than in the case of binary adders 
since combination series-parallel adders may be designed. For example, 
each digit may be represented bv four bits in parallel while successive 
digits are operated upon serially, or all the digits may be operated upon 
in parallel while the bits comprising the binary representation of each 
digit are operated upon serially. 

As an example of a decimal parallel adder, let us consider a relatively 
simple decimal adder employing the excess-three code and operating in 
a manner similar to the binary parallel adder described in Section 6.1.2.6. 
As stated there, an advantage of having a carry flip-flop after every fourth 
bit in the binary adder is that decimal operation can then be obtained 
with only a small amount of additional equipment. 

To yield correct excess-three code decimal representation, the binary 
sums formed at time h must be modified, +3 being added to each stage if 
it generates a carry and - 3 if it does not. This can be done by appending 
the signals, b^y ba+i, ¿¿+2, ba+s in Eqs. (6-9) to the expressions for bu 

bi+2, öi+3, respectively, in Eqs. (6-7). 

bä = t2 

ba+i = BaCd+it2 + BdCä+it2 (6-9) 

bd+2 = (Bd+i + B¡)CMt2 + (Bd+i + Bä)CMh 

bd+z = Bd+2Bd+\Cd+3t2 + Bd+2BdCd+lt2 

+ Bd^2Bd-\-iCd+yt2 + Bd+2BdCd+zt2» 

Eqs. (6-7) must be modified further: ^2/10 replaced throughout by fa/n, the 
term Bi+^ Bi^2 Q-i /3/11, indicating a stage has the value 9 and there is 
a carry from the preceding stage, substituted for Bi+2 ßi+i C<_i ^2/10 
in Ci+3, and appended to the logic of bi^i, &»+2 and &Í+3. The carry flip-
flops are reset by t s , U, ... h u respectively, and in the carry comple­
tion sensing logic, Í2/11 is replaced by Í3/12. 

6.1.3.3. Parallel Accumulators with Automatic Carry Propagation 

If an accumulator's design is such that it utihzes a step-by-step 
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carry process in arriving at a result, its operating speed would not be ade­
quate for a parallel machine. The speed may be increased by arrangements 
wherein a carry produced in any stage is automatically propagated to 
higher order stages. There are two widely used methods in mechanizing 
such operation. In one, the operation is under the control of two input 
commands, an "add" and a "carry" command which are appUed in 
sequence to all stages simultaneously. In the other, the operation is 
initiated and completed simply by the application of an "add" command 
to all stages shnultaneously. In the descriptions that follow, A i refers to 
the bistable elements of an addend register, and Bi refers to the bistable 
counter circuits of the accumulator. 

The circuit shown in Fig. 6.22(a) functions as foUows. Operation is 

Bi 
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G a t e i t z f ' 
Af 
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D e l a y h ^ / H O R l I p i ^ g g ^ 
}—Bf HGatelh-A-

Delay — Gate4 

(b) 
Add pulse 

Carry pulse 

FIG. 6.22. Typical stage of a parallel accumulator. (Either one but not both 
delay units may be required in these two arrangements.) 

begun by application of the "add" pulse. In each stage in which /ij is 1, 
the corresponding Β i is triggered. If Β i is 0 after being triggered, and A i 
is 1, this indicates that a carry should be propagated to the next more 
significant stage. Therefore, when the carry command pulse is appUed, 
gate 2 aUows it to pass through a stage where a condition for a carry 
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propagation has been met. If the next more significant stage of the ac­
cumulator holds a 1, the carry is allowed to pass through via gate 3. It 
passes through successive gates until a stage is reached where the accumu­
lator holds a 0. The delay element is included only if it is essential to 
insure that a carry does not pass through a stage where it should not. 
This could occur if a carry from a preceding stage arrived at the next 
more significant stage of the accumulator before it changed from 1 to 0. 

The circuit shown in Fig. 6.22(b) produces a faster propagation of 
the carry. It differs from the arrangement of Fig. 6.22(a) mainly in that 
there is no command pulse input to gate 2. As a result, the condition 
BiAi produces a steady state signal that is applied to gates 3 and 4 of 
the next more significant stage before application of the "carry" command. 
If the next more significant stage of the accumulator holds a 1, the steady 
state signal is passed through to the stages beyond via gate 3. After time 
has been allowed for the steady state signal to pass through the maximum 
possible number of stages, the "carry" command is applied to gate 4. 
This causes Bi to be triggered in each stage to which a signal was trans­
mitted from a preceding stage. 

6.1.3.3.1. ACCUMULATORS WITH SEPARATE CARRY STORAGE. If it 
is difficult to obtain signals from the addend register for carry purposes 
after the addend has been entered into the accmnulator, a carry storage 
device may be incorporated in each stage. The carry flip-flop d is set 
to 1 whenever Bi changes from 1 to 0. 

One arrangement utihzing a carry flip-flop is almost identical to that 
shown in Fig. 6.22(a). The only change, outside of the addition of d, 
is the replacement of the signal BÍAÍ at the input to gate 2 by the signal 
Ci. Another arrangement is similar to that of Fig. 6.22(b). The only 
change, outside of the addition of d, is the elimination of gate 2 and the 
substitution of the signal d as the lower input to the OR gate. 

In Fig. 6.23 two types of accumulators are depicted. Circuitry common 
to both is in the center of the figure while that peculiar to circuit 
(a) and (b) is shown in dashed enclosures. In circuit (a) the addend 
is entered upon application of the "add" command. Upon application of 
the "carry" command pulse, Bi is triggered if the next less significant 
stage produced a carry as indicated by the signal d-i- If Bi held a 1 
just prior to receiving a carry, it changes to 0 and causes the signal d 
to be produced. The signal d is sent to the next more significant stage 
to which the "carry" command has already been appUed, and a pulse is 
passed via gate 4 to trigger Bi+i. The carries will be propagated as far 
as necessary, provided the carry command signal is appUed for a sufficient 
period. This method, though generaUy not as rapid as the preceding two. 
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FIG. 6.23. Typical stage of a parallel accumulator 

has the advantage of requiring fewer components and no delay elements 
because of the manner in which the carries are propagated. The principles 
of the arrangement just described can be adapted to the carry propagation 
method of Fig. 6.22(a) to gain an important advantage. The resulting 
arrangement is circuit (b) in Fig. 6.23. The addend is entered as usual. 
WTien the "carry" command signal is activated, a carry signal is trans­
mitted to the next more significant stage via gate 2, if the condition 
AiBi exists. A pulse will also be sent to the next more significant stage 
if a carry pulse from the next less significant stage arrives. This is because 
a carry from the next less significant stage would trigger Bi from 1 to 0, 
thereby causing a pulse to be transmitted to gate 3. The advantage 
of this accumulator is that no pulse or steady-state signal has to pass 
through more than one stage of gates. 

6.1.3.3.2. ACCUMULATORS WITH NO "CARRY" COMMAND INPUTS. Fig­
ure 6.24 illustrates a simple form of accumulator requiring no carry com­
mand. When any Β i changes from 1 to 0, a pulse is sent to the next more sig­
nificant stage via a delay. Operation is slow because in the carry propa­
gation circuit, all the delays are in series. The arrangement of Fig. 6.25 
is faster because a delay Di is introduced only in the stage where a carry 
originates. Operation is as follows: The addend is entered in the usual 
manner. If Bi is caused to change from 1 to 0, a pulse is applied to gate 
3 which allows the "add" pulse to pass to the next more significant stage, 
via delay element Di, (which allows Bi+i to recover in the event it was 
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FIG. 6 . 2 4 . Typical stage of a parallel accumulator with no carry command input 
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FIG. 6.25. Typical stage of a parallel accuinulator with no carry command input 

triggered upon application of the "add" command). A delay element D3 
may be necessary if the switching time of a Bi is appreciable. A carry 
from the next less significant stage will pass without delay via gate 2 
through any stage where a Β i has been triggered to 1. If a Bi is triggered 
from 1 to 0 upon receipt of a carry from the next less significant stage, 
another pulse will not pass via gate 3 because the "add" pulse will no 
longer be present. Delay D2 is a short delay introduced to insure that the 
carry pulse does not switch B< before the carry itself can pass through 
gate 2. If the inherent switching delay of Bi were large enough, D2 would 
not be required. 

The arrangement in Fig. 6.26 allows the carry signals to be generated 
before the addend is entered into the accumulator. In each stage the 
signal for a carry, + y4iC<_i-f ß A - i ) , is produced by a set of 
AND and OR gates, which form the equivalent expression + Bi)Ci_i 
+ /ii^i]. In the other accumulators that have been described, each Β i was 
triggered twice if A i were 1 and there was also a carry from the next less 
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FIG. 6.26. Typical stage of a parallel accumulator with no carry conmiand input 

significant stage. This produced no net effect on B(. The arrangement of 
Fig. 6.26 causes Bi to be triggered only if either of these events, but not 
both, occurs, i.e., by the signal Aid-i + ^ i C i . In Fig. 6.26, an equiva­
lent expression, (Ai + C Í _ I ) ^ ¿ C Í - I , is formed. If this type of accumulator 
is modified to function as a subtractor, a carry signal from the highest 
stage can be used to indicate whether the sign of the difference will be 
positive or negative. In a trial-and-error division process (see Section 
6.1.6.1.1), the subtraction can be prevented from taking place if an indica-
cation is provided of a negative difference. 

The accxmiulators with automatic carry propagation which have been 
described in this section do not have means for indicating the end of 
carry propagation. A multi-input AND gate for sensing a carry in any 
stage could be used with some of them, but is more suited for step-by-step 
carry systems. The arrangement of Fig. 6.21(b) has a fast carry propa­
gation circuit which can readily be provided with means to yield a signal 
when the carry process is completed. The sum is entered into the ac­
cumulator by application of an add pulse to the input gates, as shown in 
Fig. 6.27. This pulse causes each Bi to be triggered if (/4C^,„ + ÄC\n) 
is 1. Note that this corresponds to a conventional half-adder sum signal: 
(AC + AC), 

Í1 
Bi 

OR Gate Gate 

Gate 

Add pulse 

FIG. 6.27. Typical stage of ao accumulator with a 0 and 1 carry propagation circuit 
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6.1.4. THE REPRESENTATION OF NEGATIVE NUMBERS AND THE 
SUBTRACTION PROCESS 

In a digital computer provision is made for representation of negative 
as well as positive numbers by using one of the following two schemes. 
One of these schemes is commonly encountered in everyday usage of 
numbers. It uses a common grouping of symbols to represent a given 
magnitude, and a special symbol to indicate whether the value is positive 
or negative. In other words, each number is represented in terms of an 
absolute value plus a sign, e.g., + 703, - 703. The other method of 
representation relies on the use of a so-called complementary number 
system. The nature of complementary numbers, as w êll as a description 
of the merits of absolute and complementary representation in a digital 
computer will be described in the sections following. 

6J4,L Representation of a Negative Number by an Absolute Value 
Plus Sign 

In this representation, a negative number is distinguished from a 
positive one by an arbitrary symbol (usually, but not necessarily) pre­
ceding the number. For example, either of the following absolute value 
plus sign designations could be employed 

Designation 1 Designation 2 
0.11 = + 3 / 4 1.11 = + 3 / 4 
1.11 = - 3 / 4 0.11 = - 3 / 4 

Because of its wide everyday use, this type of representation in a computer 
simpUfies the preparation of input data, as well as the visual interpretation 
of output data and data stored in the computer. Also, it simplifies multi­
plication and division in a machine. To obtain the correct sign for a 
product or quotient, only a simple circuit is required to compare the signs 
of the operands, yielding a positive value for the sign if they are alike, 
and a negative value if different, (see the discussion of comparators in 
Section 6.1.4.3). For addition, operations are more complex than with 
complementary representation. If the signs are alike, addition is performed 
normally, but if they are different, subtraction must be performed, with 
means to insure that the smaller absolute value is subtracted from the 
larger, and that the correct sign is attached to the result. Negative quan­
tities must be in complemented form before being sent to an adder. If the 
result of an operation is negative, and, therefore, in complement form it 
must be uncomplemented before it is stored, and the correct sign bit 
attached. However, complements may be avoided completely by using 
a subtractor when the signs of the operands are not alike. 
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The input-output relations for a full subtractor are shown in Table 6.13. 

In Table 6.13, d-i represents the borrow produced in the less significant 
binary place and Ci is the borrow resulting from the combination of 
Ct_i, the minuend Ai and the subtrahend Bi. The equations for the differ­
ence and borrow bits are 

Di = AiBiCi-i + ÄiBiCi-i + AiBid-i + AiBid-i 

Ci = AiBiCi-x + AiBiCi^i + AiBiCi^x + AiBiCi^i (6-10) 

= AiBi + AiCi^i + BiCi-\. 

These equations are similar to Equations (6-1) and (6-2) and show 
that the sum for an adder and the difference for a subtractor are of the 
same form. In reference to the production of a negative result by a 

Just as there are half-adders, there are also half-subtractors. The input-
output relations for a half-subtractor are shown in Table 6.12. The minu­
end, subtrahend, difference, and borrow bits are represented by Ai, Bi, 
Di, and Ci, respectively. 

TABLE 6.12. Truth table for a half-subtractor

A, B, D;, C,

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

TABLE 6.13. Truth table for a full subtractor

A, B, C'_l D, C,

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
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subtractor, it should be remarked that a negative result appears in com­
plementary form. However, it is possible to use the subtractor itself as a 
complementer, by subtracting the number to be complemented from zero. 
In passing, note that a subtractor may be considered more fundamental 
than an adder, since an addition may be performed by two subtractions, 
e.g., (A+B) = A - ( 0 - Ä ) . 

6.1.4.2. Representation of a Negative Number by a Complement 

There are two important complementary representations of a negative 
number. One is referred to as the radix complement and the other as the 
(radix - 1) complement. In the decimal system these are known as the 
true (or ten's) complement and the nine's complement, respectively. In 
the binary system, they are the true (or two's) complement, and the one's 
complement, respectively. Complements in the binary system only will be 
discussed here. Similar statements apply to the decimal system. 

The use of complements to represent negative numbers makes it 
unnecessary to build into a computing machine the abihty to both add 
and subtract. Actually, a subtraction takes place when a complement is 
formed, but the advantage derives from the fact that the forming of a 
complement is easier to mechanize than a subtraction. 

6.1.4.2.1. Two's COMPLEMENT REPRESENTATION. Complementary 
representation of negative numbers is similar to the notation used for 
handhng logarithms of numbers less than 1. The two's complement of a 
number is obtained by subtracting the number from 2. An easy way to 
mechanize this operation is to interchange aU I's and O's and add 1 to 
the least significant binary place. For example 

7/16 = 0.0111 

Interchanging I's and O's 1.1000 

Adding 1 in the least 
significant place 1 

Result 1.1001 = - 7 / 1 6 

Any two binary numbers may be added (replacing negative numbers 
by their two's complement) if the following two rules, analogous to those 
in the decimal system are used. First, discard any carry into the two's 
(2^) column, smce M1-M2 = Λίι + (2 - M2) - 2. Secondly, if there 
is a 1 in the one's (2®) column, the sum is interpreted as a negative num­
ber and its magnitude is obtained by taking its two's complement. Because 
of the latter rule, the digit in the one's (i.e., 2^) column is referred to as 
the sign digit. Example 6.5 illustrates the use of these rules 
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Example 6.5 

Binary number 

0.0100 
0.1001 

Decimal equivalent 

4 /16 
9 /16 

Carry 
into 21 
column is 
discarded 

0.1101 

0.0100 
1.0111 

1.1011 

1.1100 
1.0111 

1 I 1.0011 

I 
I 1.1100 
I 0.1001 

13/16 

4/16 
- 9 /16 

- 5/16 

- 4 /16 
- 9 /16 

- 13/16 

- 4 /16 
9 /16 

1 I 0.0101 5/16 

When the bit to the left of the binary point is used to indicate the 
sign of a number jc the range of numbers within the machine is restricted 
to the interval - 2 ° ^ ;c < 2 ° . Machines of this type are accordingly 
referred to as fractional machines. 

6 . 1 . 4 . 2 . 2 . ONE'S COMPLEMENT REPRESENTATION. The one's com­
plement of a number is formed by interchanging all ones and zeros. This 
is easily mechanized since each bit can be altered v/ithout reference to 
other bits. Addition or subtraction can be executed as above, with the 
following exception: whenever an overflow bit is produced at the most 
significant end, this bit must be added in at the least significant end. 
Consider the addition of two negative numbers, — 4 / 1 6 and — 9 / 1 6 , 
as in Example 6 .6 . 

Example 6.6 

Decimal representation 

Addend 

Addend 

- 4/16 

- 9/16 

One*s complement representation 

I 1.1011 

I 1.0110 

Result of 
addition 

End around 
carry 

Sum 

- 13/16 

- 13/16 

1 I 1.0001 

I-
1.0010 



312 6. ARITHMETIC OPERATIONS 

In case of an overflow in subtraction, an end-around borrow would be 
subtracted from the difference. When a positive sum is obtained in adding 
a positive number to a negative one, a carry is generated in the highest 
order. This carry indicates a change in sign from the previous balance 
and must be added to the lowest order to restore the true indication of 
the sum, in one's complement form. 

The advantage of the one's complement is that conversion to the 
true number is so simple. This is important if the results of a computation 
are to be displayed, and to facilitate certain schemes of multiplication and 
division. The one's complement is used in several parallel binary machines. 
An objection to it is that representation of zero is not unique. Two rep­
resentations of zero may occur, namely, the normally encountered one, 
0.000 . . . 0 (sometimes referred to as "plus zero") and 1.111 . . . 1 
(referred to as "minus zero"). Whenever subtraction of two Uke quanti­
ties occurs in a subtractive accumulator, "plus zero" is produced and when 
a number and its I's complement are added in an additive accumulator, 
a "minus zero" is produced. It is possible for either form to be produced 
in any system. For example, the rounded-off product of two very small 
quantities can result in either a "plus zero" or "minus zero" depending on 
whether the signs of the factors are ahke or opposite, respectively. In any 
case, the machine design should be such that the progranuner need not 
distinguish between the two forms of zero in the use of conditional test 
instructions. 

Factors that influence the final choice in the representation of negative 
numbers include: (1) The machine's facihties for complementing. (2) The 
expected relative frequencies of the different arithmetic operations. (3) The 
relative convenience and need of examining numbers in storage for ser­
vicing the computer. (4) The form of numbers to be transmitted to the 
computer from external inputs, and the form in which output quantities 
must appear. 

6.1.4.2.3. SUBTRACTION OF BINARY CODED DECIMALS. Subtraction 
of one binary coded decimal, du from another, ¿ 2 , may be accomplished 
by adding the ten's complement of di, i.e., (10»»-di) to ¿2- Whenever 
di ^ ¿ 2 , indicating a positive or zero remainder, a carry into the 10*» 
column is produced. This carry is discarded so that the net effect of the 
operation is as follows 

¿ 2 + ( 1 0 « - d i ) - W = ¿ 2 - ^ 1 . 

If di > ¿ 2 , indicating a negative remainder, no carry into the 10« column 
is produced. Therefore, the result of the operation is 

d 2 + ( 1 0 ' » - d i ) = 1 0 « - ( d i - d 2 ) . 
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Example 6J 

Decimal Binary-coded decimal 
00 0000 0000 

- 2 3 Ol l i 0110 Nine's complement of 23 

1—1000 1010 
' > 1 End-around borrow 

1000 1001 
0110 0110 Correction 

23 0010 0011 

The result 0010 0011 is the correct difference: 00 - ( - 2 3 ) = 23. 

The correction term is required because, when using a subtractor, the 

The absence of a carry into the 10»» column can be used to indicate that 
the difference is negative and in complementary form. If the minuend is 
negative, the addition of the complement of the subtrahend would produce 
(10»» - di) + (10»» - di). If the carry into the 10»» column is discarded, 
the difference is 10* - (di + ¿2) indicating a negative result. 

An advantage of the nine's complement over the ten's complement is 
that conversion between it and true representation is more straigjitforward. 
The use of the nine's complement requires an end-around carry, but 
this is a negligible comphcation in parallel systems and not always a 
serious one in serial systems. If the nine's complement of di is added 
to ¿2, the result is ¿2 + (10~ - 1 ) - di. Whenever di < ¿2, indicating a 
positive or zero remainder, a carry is produced which is then added in 
end-around fashion to the least significant digit. The difference then is 
equal to [d2 + (10" - 1) - d j ] - 10« -h 1 = ¿2 - di. If di ^ ¿2, no 
carry is produced so the resuh of the operation is (10*» - 1) - (di - ¿2). 
As in the ten's complement system, the absence of a carry into the 10»» 
column is used to indicate that the difference is negative and in com­
plementary form. 

In the nine's complement system, addition of a number and its comple­
ment produces the minus representation of zero, as in any (radix - 1) 
system. To obtain the difference of two hke numbers directly as a plus 
zero, a subtractor may be used. To add, the nine's complement of a number 
is subtracted, and to subtract, the number itself is subtracted. When a sub­
tractor is used, end-around borrows rather than carries must be con­
sidered. Example 6.7 iUustrates the addition of 23 to 0 in a subtractor. 
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difference must be corrected by subtracting six from each decimal code 
group where a borrow has been produced out of the column, as shown 
in Example 6.8, also. 

Example 6.8 

Decimal 
2 
5 

Binary-coded decimal 
0010 
0101 

1101 
0110 Correction 

Difference ( - ) 3 (1) Olli 

The result, (1) O l l i , represents the correct difference, —3, in ten's comple­
ment form. 

Whenever a straight binary-coded decimal number is subtracted from 
another each four-bit decimal group that produces a borrow must be cor­
rected by subtracting six from it, and the difference then would be in the 
form of a (10'*)'s complement, which is referred to simply as a ten's com­
plement. In Example 6.9, this process is illustrated for the case of two 
three-digit binary-coded decimals. (The difference could be obtained in 
nine's complement form by use of an end-around borrow). 

Example 6.9 

Decimal 
257 

- 4 6 5 

Binary-coded decimal 
0010 0101 
0100 0110 

1101 
0110 

— 208 ( - ) Olli 

n i l 
0110 

1001 

Olli 
0101 

0010 

0010 

Correction 

The result, ( - ) 792, represents the ten's complement of the correct dif­
ference, 208. 

Of the 70 weighted four-bit codes, referred to in Section 6.1.2.1., 18 
including the commonly used (2, 4, 2, 1) code are self-complementing, 
i.e., the nine's complement can be obtained simply by interchanging I's 
and O's. A disadvantage of the (8, 4, 2, 1) code is that it is not self-
complementing: interchanging I's and O's yields the 15's complement. To 
obtain the nine's complement, either of the following methods can be 
used: adding 6 to the (8, 4, 2, 1) representation and then inverting. 
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C8 = (d2 + d4 + dg) 
These relations may be obtained by considering the truth table for the 
nine's complement (C8C4C2C1) as a function of the table defining the values 
of the binary-coded decimals {d^d^d2di). This scheme of conversion im­
plies that the bits of the binary-coded decimal must be available in a 
parallel representation, for otherwise the functions C4 and c% could not 
be obtained. 

6,1 A,3, Comparators 

A commonly encountered requirement in general purpose computers 
and data processing systems is a test for the relative magnitudes of two 
numbers, a and b. Three cases are possible: 0 = 6, α < 6, or α > ¿. 
If the absolute values of both numbers are presented serially, least signifi­
cant bit first, the three cases can be distinguished by means of two flip-
ñops as follows. Assume there are two R-S type flip-flops, Fi and F2, both 
of which are reset to 0 prior to the comparison. The successive bits of 
each number are referred to as A and B, Whenever ÄB occurs, Ρχ is set 
to 1. Whenever AB occurs, Ρχ is reset to 0 and F2 is set to 1. If each bit 
of a is equal to each bit of 6, i.e., only the cases AB or ÄB occur, neither 
Fl nor F2 is ever set to 1. To summarize, the input equations to Fi and F2 
are 

fx ^ÄB / 2 = AB 

fx^ R + AB / 2 = 

At the end of the comparison process, one of the following three condi­
tions will exist 

or inverting first and then adding 10 to the result. In the latter case, the 
carry out of the eight's column is discarded, and effectively subtracts 16 
from the result. That both of these procedures yield the nine's comple­
ment of the digit d may be seen as follows 

15 - (d + 6) = (15 - d) + 10 - 16 = 9 - d. 

The nine's complement may also be generated by means of a simple 
logical network that produces the bits q of the complement digit in 
accordance with the following equations 

c\ = di 

C2 = di 

C4 = ^2^/4 + ^ 2 ^ 4 
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Ifa = F1F2 = 1 

I f f l > ¿ , = 1 

lía <b, Fl = 1. 

If it is only desired to distinguish between one of these cases and the 
other two, only one flip-flop is required. For example, whether A > B, 
OT A ^ Β can be determined by a single flip-flop, F, with the following 
input equations 

f=AB f= AB + R. 

If F is 1 at the end of a word, it implies that A > B, and if F = I, A ^ B. 
Another flip-flop, G, can be used to distinguish A < Β from A = Β by 
testing for A = Β 

g = AE + ÄB g = R, 

If G = 1 at the end of the comparison, it implies that A B, 
With dynamic flip-flops, a test tor A ^ Β ov A < Β may be per­

formed as follows. A dynamic set-reset flip-flop F is initially set to 1 by 
a pulse S. The flip-flop stays in this condition unless ÄB occurs. Once 
put in the 0 condition it stays there unless AB occurs. Since, if the flip-
flop is on, agreements, i.e., AB + ÄB, keep it on, it cannot distinguish 
between A > Β or A = B. At the end of the comparison process, F indi­
cates A ^ B, and F indicates A < B. The input-output relation is 

Fi^i = S + AB + ÍAB + ÄB)Fi. 

A similar circuit could be used to indicate whether ^ ^ B, or ^ > B. 
A test for equahty may be performed as follows: A flip-flop, G, is initially 
set to 1 by a pulse, 5. The input G(AB + ÄB) causes the 1 state to be 
maintained as long as corresponding bits in A and Β are equal. The first 
disagreement will interrupt regeneration of the 1 state which cannot then 
be attained regardless of agreement of subsequent bits. At the end of the 
comparison process, G = 1 indicates a = b, and G = 1 indicates a 9^ b. 
The input-output relation is 

Gi^i =S + (AB + ÄE)Gi. 

6.1.5. M U L T I P L I C A T I O N 

In number systems other than the binary, multiplication is normally 
performed by: (1) Inspecting each digit of the multiplier in sequence 
and adding the multiplicand into the partial product a number of times 
corresponding to the multipUer digit. (2) Shifting the partial product by 
one digit place upon the completion of operation (1) . Multiplication in 
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0 1 

0 0 0 

1 0 1 

There are a number of factors which must be taken into consideration 
when providing for multipUcation by a single programmed instruction, 
e.g., the number of components that wiU be required, the maximum and 
average specified execution times (in an asynchronous system) or the 
standard execution time (in a synchronous system), round off procedures, 
the way in which negative numbers are to be treated, etc. Some of these 
items are considered briefly in the paragraphs foUowing. 

Multiplication is an operation consisting essentiaUy of many additions. 
These may be performed slowly by successive additions in a single adder 
circuit, quickly by simultaneous additions in a large number of adders, 
or at an intermediate speed using an intermediate number of adders. The 
size of a multipUer increases with its speed and usuaUy a compromise 
must be made in its design between speed and size, taking into considera­
tion the size of the remainder of the computer. 

As a general rule, the speed specified for a multiplication should be 
arrived at after considering the speed of execution of elementary opera­
tions (e.g., add, subtract, information transfers) and the estimated rela­
tive frequencies of multiplications and elementary operations in the class 
of problems to be solved by the computer. Since in general there wiU be 
considerably more additions than multiplications in programs chosen 
randomly, it is usually not economical to reduce the time required for a 
multiplication to below, say, k times the time required for an addition 
(where k is the ratio of additions or subtractions to multipUcations). 
This is not a hard and fast rule, but caUs attention to the fact that when 
considering increased complexity in equipment, the point of diminishing 
returns should not be overlooked, considering both the economics of the 
design and reUability of performance. 

The product of two n-bit numbers may have as many as 2n significant 
bits. Therefore, if fuU accuracy is required, provision must be made not 
only to form the fuU In bit product in the multiplier, but also means 
must be provided so that it may be transferred to and stored in the 
memory. In those cases where it is neither convenient nor necessary for 

the binary system is simpUfied because, since a multiplier digit can only 
have the values 0 or 1, the number of additions between shifts wiU not 
vary. The binary multipUcation table is shown in Table 6.14. 

TABLE 6 . 1 4 . Binary multipUcation table 
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the fuU 2n bit product to be retained, means must be provided for roundmg 
off the product. Since the operands entering into a muhiphcation are 
obtained from n-bit capacity storage ceUs, and since the products formed 
must also be returned to these cells, it is convenient to round products to η 
binary places. It is desirable that any round-off procedure adopted pro­
duce a mean error of zero, and also a relatively smaU mean deviation. In 
other words, the errors introduced by the rounding process should cancel 
out over a large number of round-offs, and the maximum error introduced 
by one round-off operation should be relatively small. The production of 
a mean error of zero in round-off procedures depends upon the assump­
tion that the remainders (i.e., the η least significant bits of a 2n bit 
product) can be considered to be random numbers. There are programs 
in which this assumption is not valid. The subject of round-oft procedures 
is considered in more detail in Chapter 9. 

If each number is represented in terms of an absolute value plus a 
sign, no difficulty is introduced when one or both of the factors is nega­
tive. The sign bits are merely ignored during the multiplication process, 
and the correct sign bit appended to the product in accordance with a 
simple comparison procedure which indicates whether the factors are 
of hke or opposite sign. If negative numbers are stored in a one's com­
plement form, they may readily be converted to a signed form before 
entering the multipUer. However, the signs of the operands must be 
known prior to multiphcation, and in a serial computer this may cause 
a difficulty since least significant bits usuaUy appear first. A negative 
product would be converted to its one's complement form before being 
transferred to other parts of the machine. If negative numbers are in a 
two's complement form, the complexity of conversion to a signed form 
usuaUy leads to consideration of special multiphcation methods that 
operate directly on numbers in this form. Three such methods are de­
scribed in Section 6.1.5.1.6. 

Another consideration that influences the design of a multipUer is 
whether there is a requirement for either or both of the operands to be 
available in the multiplier, after generation of the product, for use by the 
programmer. 

6.7.5./. Binary Multiplication 

A commonly used method of performing multiphcation consists of 
repeated addition of the multiplicand into appropriate orders of an accu­
mulator. This simple process is applicable whether the operands are pre­
sented in serial or parallel. A description of multiplication by both serial 
and paraUel accumulation is presented m the sections foUowing. 
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Example 6.10 

64 ¿3 ¿2 h 

1 1 1 1 

64 ¿3 ¿2 ^1 

h h h h 

Ρ2βΡ25Ρ24Ρ23Ρ22Ρ21 

¿4 ¿>3 02 bx 

h h h h 

P48Pá7PéQPá6Pá^4ZPé2 Pel 

There are, basically, two ways of controlling the addition of the 
partial products to the contents of the accumulator so that they are 
entered in the proper orders. One is to cause the partial products to be 
shifted before entry into the accumulator. The other is to always enter the 
partial products into the same order of the accumulator, and to shift the 
accumulated sum before entry of the next partial product. Although shift­
ing is a relative term, as a matter of convenience we shall refer to the 
first scheme as shifting of the partial products, and the second as shifting 
of the accumulated sum. Each scheme will now be described in more 
detail. 

In the scheme for shifting of the partial products, as many distinct 
timing signals are provided as there are orders in the multipUer, a one-to-
one correspondence being established between a timing signal and an 
order of the multiplier. Each partial product is channelled to the appro­
priate orders of the accumulator by means of a group of gates controlled 
by these timing signals. The nature of these gates is indicated, for the 
case of a four-bit multiplier, by Eq. (6-11). 

6.1.5.1.1. MULTIPLICATION BY PARALLEL ACCUMULATION. Wherever 
a multiplier bit is 1, a partial product must be added, appropriately shifted, 
to the accumulated sum of the preceding partial products. For example, 
consider a multiplicand represented by ¿4 h ¿2^1 and a multiplier 
04 03 02 01 = 1111. The first partial product is ¿4 h 62 fti and the second, 
third, and fourth partial products are obtained by the process indicated 
in Example 6.10. 
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Γτ = 5304 

fe ~ SsBs "I" 52^4 

''5 — 53^2 + 52B3 + S 1 B 4 

U = SzBx + 52^2 + 5ΊΒ3 + S0J54 (6-11) 

Γ2 — SiBi + 5oB2 

In Eq. (6-11) η represents the 1 input to the /th stage of the accumu­
lator, Si a line on which a timing pulse appears signalling that the /th 
bit of the multipHer is to be inspected and the /th partial product added, 
and Bi represents the /th bit of the multipUcand. The number of terms in 
Eq. (6-11), and hence the amount of circuitry required, is a function of 
the number of bits in the operands. The number of AND gates equals the 
product of the number of bits in each operand, and the number of OR 
gate inputs is two less than this number. 

An alternate way of shifting the partial products is indicated by Eq. 
(6-12) 

Γ7 = S2S1B4 

re = 52(.?i54 + SiB^) 

rs = S2S1B4 + S2(SiB^ + 51^2) (6-12) 

Γ4 = S2{SiB4 + SiB^) + S2(SiB2 + SiBi) 

Γ3 = S2{SiB^ + S1B2) + S2S1B1 

Γ2 = 52(SiB2 + SiB^) 

ri = S2S1B1, 
Here there is no individual timing control Une for each shift command. 
Instead, an indication of the proper shift is provided by a binary-coded 
signal appearing simultaneously on a number of control Unes. For 
example, the two control lines Si, ^2 can provide the signals .?2^i» S2S1,52.?i, 
and 52^1, indicating shifts of 0, 1, 2, and 3 binary orders, respectively. 
For practical lengths of the operands, this arrangement requires fewer 
components than the preceding one. However, if the equations are mechan­
ized in the form shown, multi-level gates are required and if they are 
expanded more gating elements are required. 

In the scheme for shifting the accumulated sum, assume that there 
is available an accumulator each stage of which can, upon command. 
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shift its contents one bit to the right. Assume also that the bits of the 
multiplicand B n . . . B2B1 are always entered into the same orders of the 
accumulator, as shown in Fig. 6.28. The multiplication process is then as 

Bn 

/?9 W /?. 

Bz B\ 

Accumulator Register 

FIG. 6 . 2 8 . A shifting accumulator 

follows: Each multiplier bit is examined in succession, and the multipli­
cand is added into the orders shown whenever the multiplier bit is equal 
to 1. After each sum is produced, the contents of the accumulator are 
shifted right. Note that after entry of the first partial product into the 
accumulator, the least significant bit of the product is determined, and 
that, in general, after entry of the /th partial product the /th order bit in 
the product is determined. Therefore, the lowest η orders of the accumu­
lator are not required for summation, but need only provide the functions 
of storage and shifting. Stage 2n + 1 is needed to temporarily store carries 
from stage In, The advantages of shifting in the accumulator are now 
apparent. First, far less combinational circuitry is required, e.g., in Fig. 6.28 
the 1 input to an R-S flip-flop Ri is Äi+iS, where 5 is the shift command. 
Secondly, less equipment is required for addition, the number of accumu­
lating orders being reduced from In to n + 1. The arrangement shown 
in Fig. 6.28 has another important feature in that the η least significant 
orders of the accumulator can be used to store the multiplier before the 
multiplication process begins. Each thne the accumulated sum of the 
partial products is shifted to the right, so is the multiplier. Therefore, 
the addition of the partial products can be under control of the multiplier 
bit in the least significant stage of the accumulator. At the completion of 
the process the multiplier has been lost, but by that time it is no longer 
needed. If needed subsequently in some other operation it can be obtained 
from the position in storage from which it was copied into the accumulator. 

6.1.5.1.2. M U L T I P L I C A T I O N B Y SERIAL A C C U M U L A T I O N . In a serial 
computer, the registers for storage of the operands and product can be 
either of the static or delay line type. In the latter case, shifts of informa­
tion must be relative to standard tuning signals, and may be produced 
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by the msertion of extra delays in the circulation path. A static storage 
register could be used in a serial mode by causing the bits to be sensed 
in sequence, automatically returning to the first bit in the sequence after 
the last bit has been sensed. In both cases, a zero reference timing signal 
is provided at the time the first bit of a number is to be read. 

A particular scheme for serial multiphcation using delay hne registers 
is shown in Fig. 6.29. At the end of the multiplication, one n-bit delay 

Multiplier storage 

T í 
/Vbit delay ^ I Inv 

Λ A 

A 

Multiplicand storage 
TAj'—' TAi 

Λ/bit lit delay ^ 2 [-j^^ 

Gate I 

Delay 

Bi 
Gate 3 

H G a t e Z M 
W 

Carry 

Adder 

AM 

High orders of product 

Accumulated 
sum Gate 4 

/Vbit delayi«^3 H G a t e S H O R H ^ b i t delay 

τ 

Low orders of product 

FIG. 6.29. A serial binary multiplier with delay line storage 

holds the high order bits of the product and another the low order bits. 
The multiphcation process is as follows: First it is assumed that the oper­
ands have been entered into their respective circulating registers in phase, 
i.e., corresponding orders of the two numbers are read or recorded at the 
same time. Upon appUcation of the multiplication command signal M, a 
one bit delay is inserted into the recirculation loop of the multiphcand. 
A timing signal Γ, which lasts one bit period, and reappears after a 
period of η + 1 bits, is used to define the times at which successive bits of 
the multipUer are inspected. Whenever a multipUer bit is 1, the flip-flop A 
is set to state A, aUowing the bits of the multiphcand to pass via gate 3 
to the adder. Because of the additional one bit delay in the multiplicand 
recirculation loop, the bits of the multiphcand wUl become shifted one bit 
with respect to their original timed presentation each time the loop is 
traversed. This has the desired effect of causing a partial product to be 
always automaticaUy and correctly shifted with respect to the accumulated 
sum. The least si¿iificant bit of the current accumulated sum always 
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appears at the output of delay no. 3 at time T, Future additions of partial 
products have no effect on tíiis bit so it is sent to delay no. 4 via gate 
no. 5. Delay no. 4 stores and recirculates the n/2 low order bits of the 
product. Note that this arrangement is analagous to the multiplication 
procedure using a static shift register where an adder was also used only 
in conjunction with the upper half of the register. Since each shift, addi­
tion operation requires η pulse periods, the whole process is completed 
after pulse periods. At that time gate 3 is closed and the most significant 
half of the product can be read from delay no. 3. 

Certain necessary details such as means for entering the operands, 
starting and stopping the multiplication process, rounding off and with­
drawing the product have been omitted from the preceding descriptions 
for the sake of brevity, since there are a great many possible ways of 
achieving these functions. As far as round-off and storage of the 
product is concerned, the following comments are pertinent. First, each 
machine usually only has provisions for numbers of a fixed word length 
both in the main store and operand register of the arithmetic unit. Nor­
mally this is adequate, for one is usually interested in retaining only the 
most significant half of the product, even though the lower order bits are 
sometimes useful as, for example, in interpolation programs. However, 
there may be a requirement for temporary storage of the highest order 
bit of the least significant half of the product to accomplish a particular 
round-off procedure. Also, if a round-off scheme is used wherein an addi­
tion is made to the most significant bit to be dropped or the least signifi­
cant bit to be retained, an additional time of η bit periods is required to 
produce the rounded product. (See Chapter 9 for a description of round­
off procedures.) 

6.1.5.1.3. SERIAL-PARALLEL MULTIPLIERS. In a serial machine the 
summing of the partial products is done successively by a single adding 
circuit. The time required to sum the partial products may be reduced 
by using several adders. The arrangement shown in Fig. 6.30 makes 
use of η — 1 adders and is referred to as a serial-parallel multiplier, 

Multiplier: An A^ A\ 

ANDhi9, 
Product 

FIG. 6.30. A serial-parallel binary multiplier 
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since one operand, B ^ . . . Ä2B1, is presented in parallel and the other, 
An... A2A1, is applied serially. It is one of the fastest types of mul­
tipliers. The question of which operand is the multiplier and which the 
multiplicand is arbitrary. For the purpose of explanation it will be assumed 
that /4n . . . 2^1 is the multiplier. If .4i = 1 the AND gates allow 
the multiplicand to pass through and the least significant bit of the multi­
plicand appears at the output of adder no. 1 as the least significant bit 
of the product. The other bits of the multiplicand must traverse a delay 
equal to the period between the appearance of successive bits of the 
multiplier. The chain of adders and delays is referred to as a multiplier 
chain. The delays in the chain serve to store each accumulated sum until 
the next partial product can be added, and also to shift it so that the 
partial product is added to the correct orders. For example, when A2 
appears, B 4 , B 3 , and B2 of the first partial product will arrive at the inputs 
to adders no. 3, 2, and 1 , respectively, li A2 = 1 , then B 3 , B2, and Bi 
will also be applied to adders no. 3, 2, and 1, respectively. Note that Bi 
of the first partial product, which is the first bit of the product, has already 
been transmitted out of the multiplier, and that the B 4 just entered is not 
required until the time of arrival of the next multiplier bit. Then it will be 
added to a newly entered B 3 , provided ^ 3 = 1 . The time required for a 
multiplication is a number of bit periods equal to the sum of the bits in 
the product. 

The arrangement of alternate adding and delay circuits has an advan­
tage in that the number of delay circuits required is small, and also 
that the delay inherent in each adding circuit can be compensated by a 
corresponding deficiency in the delay of the following delay circuit. An 
aperiodic form of delay circuit may be used which deUvers its output pulse 
at the beginning of a bit period even if the input pulse occurs late in 
the preceding bit period. An interesting feature of this arrangement is 
that the amount of equipment required is determined by the number of 
bits in the multiplicand and is independent of the length of the multiplier. 
However, both operands are normally of the same length. 

An interesting variation of the serial-parallel multiplier is employed 
in the University of Manchester computer. It makes use of the fact that 
the amount of equipment in a serial-parallel multiplier is dependent only 
on the number of bits in the operand arbitrarily termed the multiplicand. 
To save equipment, the multiplier of the University of Manchester com­
puter is designed to accommodate only η/I bits of the multiplicand at a 
thne. This necessitates breaking the multiplication process mto two major 
cycles and doubles the time required for multiplication. In the first cycle, 
the n/2 least significant bits of the multiplicand, and in the second cycle, 
the n/2 most significant bits, are used to control the output of the AND 
gates. The bits of the multiplier are applied as before. Each "half-product" 
is entered into an accumulator. The number of delay circuits between each 
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Example 6.11 

h h h h h h h h 
Β 1 1 1 0 1 1 

IB 1 1 1 0 1 1 0 
3B 1 0 1 1 0 0 0 1 

Since ^ = 10 11 01 
^2^41 = 01 = 1 
^ 4 ^ 3 = 11 = 3 
A^A^ = 10 = 2 

gate of the multiplier chain and the output of the chain is correct during the 
formation of the first half-product, but for the second half-product there 
are in each case n/1 too few delays. This is corrected by adding the second 
half-product to the n/1 most significant bits of the number in the accumu­
lator, which is equivalent to shifting the second half-product by n/1 places. 

Four or five word periods are required, in the University of Manchester 
computer, to execute simple instructions. This includes one word period 
for looking up an instruction, one for transferring it to the control unit, 
one for looking up the operand, and one or two for the actual execution. 
The multiplication process just described requires only 14 word periods, 
including look up of the multiplication instruction, extraction of both 
factors from storage, and adding the product to, or subtracting it from, 
the contents of the accumulator. A word consists of 20 bits of information 
(which may be used as an instruction or a number) plus a four-bit blank 
space. Since the clock rate of the computer is 100 kc, the word period 
is 240 /isec. Addition of a 40-bit number to the accumulator takes 
1.2 msec, and addition of the product of two 40-bit numbers to the 
accumulator requires 3.36 msec (a speed slow by present standards). The 
high cost of a low ratio of multiplication to addition time is apparent from 
the fact that nearly one fourth of the vacuum tubes in the computer are in 
the multiplier. 

In Fig. 6.31 there appears another scheme for reducing the equipment 
in a serial-parallel multiplier. One operand, B, is appUed seriaUy on the 
Une shown. The quantities IB and 35 are obtained from it by means of 
a delay unit and an adder as shown. The bits of the multipUer are grouped 
in pairs. Each pair can take on any one of four values, namely 0, 1, 2, 
and 3. Accordingly, either zero, B, IB, or 3J5 is added to the adder 
associated with each pair. Since the quantities applied to adjacent adders 
in the multiplier chain are separated by a quaternary order, which is 
equivalent to two binary orders, two-bit delays, 2D, are inserted between 
adjacent adders. To illustrate how this multipUer operates, the multi­
pUcation of β = 111011 by ^ = 101101 wiU be described: The least 
and most significant bit of Β appear at time ii and ίβ, respectively. The 
bits of B, IB, and 3B appear as shown in the timing chart. Example 6.11. 
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~
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Therefore, B, 3B, and 2B are entered in adders no. 1, 2, and 3, respec­
tively. The product is obtained by summing these quantities as follows

111011
10110001

1110110

101001011111
The correctness of this result is readily verified.
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The time required for muhiphcation using the scheme of Fig. 6.31 is 
about the same as for the scheme of Fig. 6.30. Comparison of the two 
arrangements shows that for a large number of bits in the operands, the 
saving essentially consists of replacing each of several adders with three 
three-input AND gates. By grouping the bits of the muhipher in even 
larger groups, and also operating on a group of the multiphcand simul­
taneously, the tune for multiphcation can be reduced further still. How­
ever, a substantial amount of additional equipment is then required. 

Shift OR 

OR 
3 

ORCS: 

GateO 

Shift 

OR 

Switching 
network 

Accumulator 

Sum modulo 2 

to inputs of /4/.| 

-Ai 
-Ri 

•cj. 

^ / Mujtiplicand_register 

FIG. 6.32. Typical stage of an asynchronous binary multiplier 

6.1.5.1.4. A N ASYNCHRONOUS MULTIPLIER. The asynchronous mul­
tipUer depicted in Fig. 6.32 is basically the asynchronous adder of Fig. 
6.21(b) with auxihary circuits. One of its important features consists of. 
sending the bits of the accumulated sum directly to the next lower stage, 
thereby eliminating the conunand and tune required for a separate shiftmg 
operation. 

Whenever the multipUer bit is a 1, indicating that the contents of the 
multiphcand register are to be added to the accumulator, a pulse is 
apphed to the no-carry input of the least significant stage. This pulse 
passes in succession through aU stages. The actual path foUowed is 
determined by the current contents of the accumulator and of the multi­
plicand register. The switchmg network, composed of AND and OR gates, 
has four output Unes labeled 0, 1, 2, 3. Only one of these is activated 
at a time, and m accordance with the number of the inputs Ri, and 
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Ci - 1 which have the value 1. If the total of these inputs is 2 or 3, a
carry is sent to the next more significant stage. If the total of these inputs
is 1 or 3, the value of their sum (modulo 2) is 1, otherwise it is o. The
value of this sum is sent directly to the next less significant stage of t11e
accumulator. Small delays may be necessary in either the input or output
lines of the bistable elements of the accumulator if the delay in the action
of each of these elements is not sufficient in itself.

Whenever the multiplier bit is a 0, indicating that the only operation
to be performed is that of shifting the contents of the accumulator, a
pulse is applied to the shift input line of the least significant stage. This
pulse is propagated to the next stage via either gate 0 or gate 1 and an
OR gate, as shown in Fig. 6.32. In any stage except the least significant
one, the output of either gate 1 or gate 0 is also fed back via one of the
three-input OR gates to the input of the bistable element in the next less
significant stage of the accumulator, thereby effecting the shift operation.

The completion of either an add and shift, or a shift operation alone,
can be sensed by combining in an OR gate the outputs of gate 1, gate 0,
and the switching network in the most significant stage. This signal, in
turn, can be used to initiate the next operation. It is not always necessary,
however, to await completion of one operation before starting the next.
It is actually possible to initiate a new operation as soon as the effects
of the precec1ng one have subsided in the least significant stage.

6.1.5.1.5. A SIMULTANEOUS MULTIPLIER. In a so-called simultaneous
multiplier, steady state signals representing the operands are applied
simultaneously, and after the decay of transients, signals representing the
product are available at the output lines. To see how a multiplier of this
type can be formed, consider the multiplication of a four-bit multiplicand,
a4aSQ2Ql, by a four-bit multiplier, q4bsb2bl, shown in Example 6.12

Example 6.12

a4 a a a 2 a I
b4 bab2 bI

a4 bI aabl a2 bI al bl
a4 b 2 aa b 2 Q2 b 2 QI b2

Q4 ba Qaba Q2 ba QI ba
a4 b 4 Qg b4 Q2 b 4 Q1 b4

When a multiplication is performed by a step by step procedure as in
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the accumulation method, never more than two aibj terms plus a possible
carry from a less significant order have to be added in any order at any
given time. In simultaneous multiplication, the maximum number of
entries in any particular order depends on both the length of the operands
and their value. For example, for n = 4, the maximum number of aibj
terms occurs in the order that generates P4 and is equal to 4. If at, a2, ag,
bt , b2, and bg each have the value 1 then two carries will be produced in
the order where Pg is generated, so that a total of six entries must be added
to produce P4.

If we employ only two and three-input adders, the sum of six entries
can be obtained by the use of two three-input and one two-input adders.
The maximum number of inputs for each column can be obtained by
assuming all bits of both operands equal 1. The maximum number of
entries in each order (which is equal to the number of aibJ terms plus
the maximum number of carries from the next lower order) as well as
the maximum number of carries that can be generated by each order,
for n = 4, is shown in Fig. 6.33. The total equipment required consists

02b ,
o,b2

03b , Sum

°2 b2
Sum

Max.
Pa P7 Ps Ps P4 . P3 P2 P,=o,b,

entries/column I 3 5 6 6 4 2
Max. carries

generated 0 2 3 3 2 0
per column

FIG. 6.33. A simultaneous binary multiplier

of a ,two-input AND gate for the mechanization of each aibJ term plus
whatever adders are required to produce each Pi. Figure 6.33 indicates
a particular interconnection of adders. However, any of a number of
other arrangements could have been chosen. Note, too, that the two
two-input adders in column P7 and the OR gate in column P8 are actually
equivalent to the three-input adder of Fig. 6.12 with the deletion of the
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Example 6.13 

X + 0.1001 9 /16 
y - f 0.0111 7 /16 

1001 
1001 

1001 

0.00111111 63/256 

If the multipUer digit is 1, the multiphcand is added mto the partial 
product and the resuU shifted one place to the right. If the multipUer 
digit is 0 , only the shift is required. 

* Goldstine, H. H. and von Neumann, J. [1947] Planning and Coding of Problems 
for an Electronic Computing Instrument, Institute for Advanced Study, Princeton, 
N J . (U.S. Army Ordnance Contract W-36-034 ord 7481). 

one-bit delay feedback path. The thne required for a multiphcation de­
pends on the number of gates and adders through which the input signals 
must pass before reaching the output. A reasonable estimate can be ob­
tained by determining the longest path which any input may have to trav­
erse. The price of high speed in this type of multiplier is the great number 
of components required for practical lengths of the operands, this number 
pyramiding as the operand length is increased. 

6 . 1 . 5 . 1 . 6 . MULTIPLIERS FOR OPERATING ON NEOATrvE NUMBERS 
IN Two's COMPLEMENT FORM. In this section three different schemes 
are described which can be used m mechanizmg multipliers that can 
operate directly on operands expressed in a two's complement form. 
In the first of these, a pseudo-product is formed, and a particular correc­
tion is apphed to it, in accordance with which of the operands is negative 
(all such corrections are referred to as end point corrections). The 
second scheme does not require such end point corrections. Instead, the 
normal multiphcation algorithm is amended to compensate for negative 
operands, as the succeeding partial products are formed. The third scheme 
utihzes an algorithm for multiphcation that is independent of the signs 
of the operands. Each of these schemes wiU now be described in detail. 

In the first scheme*, multiphcation is always performed as if both 
numbers were positive. Then corrections are apphed to the result if one 
or both operands is negative. Consider first the multiphcation of two 
positive numbers, as shown in Example 6 . 1 3 . 
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Consider next the case of a positive multiplicand and a negative 
multipUer, as shown in Example 6.14. 

Example 6.14 

0.1001 
1.1001 

1001 
0 

0 
1001 

0.01010001 
1.0111 

1.11000001 

X 
(2-y) 

9/16 
7/16 

(x-xy) 
— X 

-xy - 63/256 

Note, first of aU, that the multipUcand is not multipUed by the sign digit 
of y. This is equivalent to multiplying JC by (2 - y) - 1 = x — xy. In 
order to obtain the correct product, i.e., - xy, - χ must be added to 
X — xy. Therefore, if on inspection the sign digit of y is found to be 1, 
indicating that y is negative, the complement of χ is added to the product 
X- xy already obtained to produce the correct product, — xy. 

Now consider the case of a negative multipUcand and a positive multi­
pUer, as shown in Example 6.15. 

Example 6,15 

X — 1.0111 
0.0111 

Ol l i 
Ol l i 

O l l i 
10000 

0.10110001 
1.0001 

1.11000001 

(2-χ) 
y 

- 9 / 1 6 
7/16 

Sign only of χ 

Final correction 

- xy - 63/256 

If the sign digit of χ is not included in the multipUcation, the product 
(1 - x)y is produced. To obtain the correct product, i.e., - xy, -y must 
be added to (I — x)y. However, in many computing machines, once a 
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Example 6.16 

X - 1.0111 2-x - 9 / 1 6 
y - 1.1001 2-y - 7 / 1 6 

Ol l i 
10000 (a) 

10000 (b) 
O l l i 

0.10011111 
1.0001 (c) 

1.10101111 xy-x 
0.1001 +x 

0.00111111 xy 63/256 

Here the sign digit of neither χ nor y is included ui the multiphcation, 
producing an uncorrected product equal to: (1 - x)(l —y) = 1 - x-y 
-xy. By adding the sign digit of χ wherever y = 0, (lines (a ) , ( b ) ) , 
plus the term 1.0001 (line ( c ) ) , the complement of - y , i.e., + y is 
added to the product. Note that smce y is negative, its complement would 
contain a 0 in the sign digit, but by writing the correction term with a 1 

digit of the multiplier has been examined it is shifted to the right and lost, 
i.e., no storage is provided for it in the arithmetic unit, for reasons of 
economy. However, even though y is not available at the end of the 
process for correcting the product, a procedure may be used whereby the 
necessary correction is accomplished as the partial product is being built 
up. This procedure is as foUows: (1) Where y = 0, 1 is added to the 
uncorrected product. This 1 may automaticaUy be added in the correct 
place if only the sign digit of χ is added to the partial product when y = 0. 
This sign digit occupies a position in the product of the same order as the 
digit of y which was 0, and controlled its addition into the product. Since 
it is desired to correct the partial product by the complement of y, 0 
should be added to the partial product where y = 1, and 1 where y = 0, 
except for the least significant place. The sign digit of χ during any addi­
tion is entered into an order of the product equivalent to that of the digit of 
y which controlled its addition into the product. (2) Since the operation is 
halted before the sign of y is examined, a 1 in the sign position and a 1 in 
the units position is added to the partial product as a final correction. 
Inspection of the preceding example shows that the sum of the correc­
tions added is equal to 1.1001, which is the complement of y = 0.0111. 

Finally, there is the case of two negative operands, shown in Example 
6.16. 
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in the sign digit, the extra 1 in the product l - x - y + xy, is also cor­
rected for. This is due to the fact that, since all carries beyond the sign 
are neglected, adding 1 is equivalent to subtracting 1. For example 

0.0100 
1.0000 

V4 

1.0100 = - % 

The process is completed by adding the complement of — x, i.e., + x. 
We will consider now the second scheme. Again, multiplication is 

normal if both multiplier and multipUcand are positive. If either one or 
both are negative, the normal multiplication algorithm is amended as 
follows: (1) If only the multiplier is negative, then upon reaching the sign 
columnar position in the multiplier, add the complement of the multipli­
cand into the partial product instead of the value of the multiplicand 
(which would normally be done upon detection of a 1 in a columnar posi­
tion of the multiplier). (2) If only the multiplicand is negative, whenever 
a 1 is detected in the multiplier, in addition to adding the multiplicand to 
the partial product, add the value of the sign digit of the multiplicand to 
all columnar positions of the partial product, extending through the sign 
position. For the case where both multipUer and multipUcand are negative, 
the multiplication algorithm includes both of these procedures. Specific 
examples iUustrating this method are shown in Example 6.17. 

Example 6.17 

Multiplicand 
Multiplier 

13/16 
11/16 

0.1101 
0.1011 

01101 
01101 

00000 
01101 

00000 

0.10001111 = 143/256 

Multiplicand 
Multiplier 

13/16 
11/16 

1.0011 
0.1011 

111110011 
11110011 
0000000 
110011 
00000 

1.01110001 = - 143/256 

Multiplicand 
Multiplier 

0.1101 
1.0101 

01101 
00000 

01101 
00000 

10011 

13/16 
11/16 

Multiplicand 
Multiplier 

1.0011 
1.0101 

111110011 
00000000 
1110011 
000000 
01101 

13/16 
11/16 

1.01110001 = - 143/256 0.10001111 = 143/256 
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Value of successive 
multiplier bits Operation 

For / ^ 0: 

0 0 The current partial product is shifted one bit to the right. 
0 1 The multiplicand is added to the partial product, and then 

the new partial product is shifted one bit to the right. 
1 0 The two's complement of the multiplicand is added to the 

partial product and then the new partial product is shifted 
one bit to the right. 

1 1 The current partial product is shifted one bit to the right. 

For i = 0: 

0 0 Do nothing. 
0 1 Add the multiplicand to the partial product. 
1 0 Add the two's complement of the multiplicand to the 

partial product. 
1 1 Do nothing. 

The Steps in the multipUcation o f - 13/16 = 1.0011 b y - 11/16 = 1.0101 

•Booth, A. D. [1951] A signed binary multiplication technique, Quart. Journ. 
Mech. and Applied Math, IV, Pt. 2, 236-40. 

We will consider next a multiplication scheme that is independent of 
the signs of the operands. It is described in a paper by A. D. Booth.* 
At first glance, this scheme appears to be far removed from any of the well 
known methods of multiplication. Briefly, successive addends in the par­
tial product are produced in accordance with the values of successive pairs 
of bits in the multipUer. Starting with the least significant bit, each bit in 
the multiplier is compared with the bit lying to the right of it (the bit 
lying to the right of the least significant bit is always considered to be 
zero). Each pair of bits can assume four different configurations. The 
operation performed in buUding up the partial product is determined 
according to which configuration exists at each step. If the bits of the 
multiplier are designated by ÜQMI a2 as . . . an and the bits of the multipli­
cand r by Γο.Γι Γ2 / " a . . . r„, the algorithm for multipUcation may be stated as 
in Table 6.15. 

TABLE 6.15. Rules of multiplication based on values of successive pairs of bits 
in the multiplier: ÖQ-aiag^a · · · ^η· 
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 1 
 1 

 1 1 
 1 1 

 1 1 1 
 1 1 1 

The product 0.10001111 = 143/256 appears on the bottom line. Two 
points should be noted in the procedure for producing the product. First, 
during the addition of addends to the partial products, that part of the 
partial product which is in the shift register is left undisturbed. Second, 
during a shift operation, the value of the sign bit in the accumulator 
remains imchanged. 

6.7.5.2. Decimal Multiplication 

Most stored program digital computers operate in the binary system 
internally. Usually, information is entered and read out in a binary-coded 
decimal form. Input and output conversion programs are used to 
effect the transition from binary-coded decimal to binary and vice versa, 
respectively. In some machines, especially those for business applications, 
it may be desirable for the machine to operate internally in the binary-

are shown in Example 6.18. It is assumed that the product is formed in 
an accumulator, the left half of which only can form sums, and both 
parts of which can shift their contents to the right. 

Example 6.18

Contents of accumulator

Left half Right half

2-r 0 1 0 1
Shifted sum 0 0 1 0

r 1 0 0 1 1
Sum 1 1 0 0 1

Shifted sum 1 1 1 0 0

2-r 0 1 1 0 1
Sum 0 1 0 0 1

Shifted sum 0 0 1 0 0

r 1 0 0 1 1
Sum 1 0 1 1 1

Shifted sum 1 1 0 1 1

2-r 0 0

Sum 0 0 0 0
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coded decimal system. Then data can be entered and read out without 
conversion. Decimal multipliers generally are more complex than binary 
multipUers and there are a great number of schemes on which such mul­
tipliers can be based. However, only a few of them will be described here. 

6.1.5.2.1. MULTIPLICATION BY REPEATED ADDITION. In this 
scheme, the digits of the multiplier are inspected in sequence, and each 
partial product is formed by adding the multiplicand a number of times 
equal to the multiplier digit. A convenient way of controlling the 
process is to shift each digit of the multipUer into a decimal counter. 
If the number in the counter is not 0, the multipUcand is entered into 
an accumulator, and 1 is subtracted from the contents of the counter. 
This process is repeated until the counter contains 0. Then the next more 
significant digit is entered into the counter. Whenever a new multipUer bit 
is placed in the counter, a signal is also produced which causes the next 
partial product to be appropriately shifted when added to the accumulated 
sum. 

One way of lessening the time required to produce the product is to 
use a subtractor as weU as an adder. Then, the partial products caUed for 
by multiplier digits 6 through 9 can be obtained by subtracting the multi­
pUcand a number of times equal to the ten's complement of the multipUer 
digit and then adding 1 to the multipUer digit in the next higher order. 
This scheme reduces the number of operations required, on the average, 
to generate the product. For example, consider the multiplication of some 
number, M, by 28. Instead of adding Μ eight times, and then adding lOM 
twice (a total of ten operations), Μ would be subtracted twice, and lOM 
would be added three times (a total of only five operations). 

Another way to increase the speed of a repeated addition process is to 
generate double the multipUcand. If both 2M and Μ are made available, 
the generation of any multiple of M, from 2 through 9, can be made 
with fewer additions than if only Μ were used to build up the partial 
product. Generating 2M from Af, when Μ is expressed as a straight binary-
coded decimal, is relatively simple. The value of each order in the doubled 
digit and the carry can be obtained by relatively simple logical circuits, 
each of which generates the value of a particular order in 2d from the 
logical sum of aU values of d that produce it. For example, from Table 
6.16, the values of d that produce a 1 in the D 2 4 position of 2d are given 
by the Boolean equation D24 = Di^Di^DiiDn + D14D12D12D11. A doubler 
can thus be formed from simple combinational circuits that produce the 
values of D 2 5 , D 2 4 , D23, D 2 2 . The case of D21 is trivial since it is always 
equal to 0. 
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0000 0000 0000 
0001 0010 0101 
0010 0100 1 0000 
0011 0110 1 0101 
0100 1000 10 0000 
0101 1 0000 10 0101 
0110 1 0010 11 0000 
Ol l i 1 0100 11 0101 
1000 1 0110 100 0000 
1001 1 1000 100 0101 

The generation of multiples other than the second and fifth mtroduces 
compUcations. This is because carries added into any given order may 
affect the value of the carry to be added to the next higher order. Such a 
situation cannot occur with doubUng or quintupUng, for the sum of any 
left and right hand part of 2d or of 5d cannot exceed 9. This is shown m 
Table 6.16. 

If one provides two doublers and a quintupler any multiple may be 
formed as needed with only one addition operation by causing these 
units to be connected in various ways under control of the multipUer digit. 
The output of one doubler is used as an input to the other, thereby generat­
ing the fourth multiple. All multiples from 2 through 9 can be obtained by 
combining the multiplicand B, and the outputs of the doubler, 2B, the 
quadrupler (i.e., the two cascaded doublers), 4ö, and the quintupler, SB, 
as shown in Example 6.19. 

Another multiple that is relatively easy to generate is the fifth. Inspec­
tion of Table 6.16 shows that the value of the least significant bit of d 
can be used to indicate whether the right hand part of 5d is 0 or 5, and 
the other three bits of d correspond to the left hand part of 5d, i.e., to 
the value of the carry. Another way of producing the fifth multiple is to 
first divide d by 2 and then multiply the result by 10. The division by 2 
is accompHshed simply by a shift to the right. If d is odd, there is a carry 
to the next lower order digit. The carry always has the value 5, and is 
added to the lower order after the latter has been divided by 2. Finally, 
the multiplication by 10 is accompUshed by a shift of one digit to the left. 

TABLE 6.16. Second and fifth multiples of the 
straight binary-coded decimal 

d 2d 5d 

^ 1 4 ^ 1 3 ^ 1 2 ^ 1 1 ^ 2 5 ^ 2 4 ^ 2 3 ^ 2 2 ^ 2 1 
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Example 6.19 

Multiple desired Required inputs to adder 
Β Β 

IB _ 
3B IB, Β 
AB _ 
SB _ 
6ß 5B, Β or 4B, 2B 
7B 5B, 2B 
8B 4Β, 4B 
9B 5B. 4B 

Any of the schemes that have been described for generating multiples 
can be combined. The average number of operations per multiplier digit 
shown below is approximate for schemes using subtraction only in that 
any carry beyond the most significant digit is neglected. (Also, in determin­
ing this figure for such schemes the carry to the next higher order may be 
neglected because its effect over all values of a digit cancels out. 

Addition only 4.5 
Addition and subtraction ^ 2.5 
Addition and doubhng 2.5 
Addition and quintuphng 2.5 
Addition, subtraction, and doublmg 1.5 
Addition, subtraction, doublmg and quintupling ^ 1.3 
N-tupUng (simultaneous generation of all multiples) 0.9 

6.1.5.2.2. A S E R I A L - P A R A L L E L M U L T I P L I E R . Serial-parallel bmary 
multipliers are described in Section 6.1.5.1.3. An arrangement for 
handling numbers expressed in a decimal code is considerably more 
comphcated. A particular one is shown in Fig. 6.34. It is assumed 
that the individual bits of each digit in both operands appear in 
parallel. Accordingly, each heavy Ime m Fig. 6.34 actuaUy represents 
four hnes. The digits, Ai, of the muhipher are presented in paraUel, and 
the digits of the multiphcand appear seriaUy. It is assumed, also, that all 
nine multiples of the multiplicand are available from some type of iV-tupler 
arrangement. The proper multiple of the multiplicand, corresponding to 
the value of a muhipher digit, is channeled into a decimal adder via a 
40-input, four-output many-to-one function table controlled by the mul-
tipher digit. The inputs to each table consist of four hnes carrying the bits 
of the muhipher digit, Ai, and 36 lines carrying the nme possible multiples 
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Muitiplicand.B 

Carry Carry 

FIG. 6.34. A serial-parallel decimal multiplier 

of the multiplicand digits. The one-digit delays associated with each adder 
serve two functions. They appropriately shift each partial product before 
it is added to the partial product in the next lower order, and also delay 
the carries generated in the summation of partial products. The digits of 
the product will appear serially at the point shown. The time required for 
generation of the product is the time required for serial transmission of 
the digits of the product. 

6 . 1 . 5 . 2 . 3 . MULTIPLICATION BY HALVING THE MULTIPLIER AND 
DOUBLING THE MULTIPLICAND. A multiplier of this type is shown in 
Fig. 6 . 3 5 . One factor, say the multiplier, is repeatedly halved while the 

U Shift 
register Doubter IGate 

Multiplicand 

Shift 
register Halver Η \FF 

Multiplier Carry out of 
lowest order-" 
of halved factor 

Decimal 
accumulator! 

FIG. 6.35. Decimal multiplication by halving one factor, doubling the other 

other is doubled. This process is continued for a number of cycles until 
the multiplier has been reduced to 0 . Whenever a remainder of 1 is ob­
tained from halving the multiplier, the product of the multiplicand and 
the appropriate power of 2 is entered into the accumulator. This remainder 
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468 

Note that the sequence of the remainder bits forms the binary equivalent 
of the multiplier: 1101. Accordingly, the product is (2^ + 2 2 + 1 ) times 
the multiplicand. 

Halving can be accomplished by shifting each binary-coded group one 
bit to the right. Whenever the least significant bit of a group is equal to 
1, indicating there will be a remainder (or carry to the next lower order) 
after a shift, the number 5 must be added to the next lower order. The 
addition of the carry, 5, to any order cannot cause another carry because 
no code group can have a value greater than 4 after a shift, and before 
addition of the carry. 

6.1.6. D I V I S I O N 

6.1.6.1, Binary Division 

6.1.6.1.1. T R I A L A N D E R R O R OR R E S T O R I N G M E T H O D S . In working 
out any division process, three important items must be taken into account. 
Each of these is described in the paragraphs following: 

First of all there must be a determination of the correct orders of the 
dividend from which the divisor is to be subtracted initially. Because a 
computer does not ascertain relative magnitudes by observation, rules dif­
ferent from those used by humans must be used. One way to facilitate the 
initial subtraction problem is to place restrictions on the relative magni­
tudes of the dividend and divisor. In a fractional computer the restriction 
on the size of the operands is simple: the divisor must be larger than 
the dividend, or else the quotient would be greater than one, and beyond 

can be anticipated, since it will always occur when the least significant 
digit is odd, indicated by the least significant bit of the lowest order 
binary-coded decimal digit being equal to 1. Essentially, the binary-coded 
decimal multiplier is converted to a pure binary number (see Section 6.4.3) 
in which the location of I's is determined by where there are remainders. 

Example 6.20 Multiplication of 36 by 13 

Halved Remainder Doubled Partial 
operand operand products 

13 
6 1 36 36 
3 0 72 
1 1 144 144 
0 1 288 288 
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the capacity of the machine. A simple way to test for this is to hne up 
the binary points and subtract the divisor from the dividend. If the 
remainder is negative, the divisor is greater than the dividend. The initial 
steps of a division process may be modified to meet special situations, 
as for example, in a machine with built-in floating point representation 
of numbers. (See Section 6.3). In this case, an automatic shift, with 
corresponding adjustment of an exponent, can be actuated which will 
cause the mantissa of the dividend to be less than that of the divisor. 

Another important item is the procedure to be followed when sub­
traction of the divisor from the dividend or a remainder produces a nega­
tive result. An obvious way to nulhfy the subtraction is to add the divisor 
back into the remainder. Whenever the subtraction of the divisor from the 
old remainder leaves a new, positive remainder, or when the divisor is 
added back to the old remainder to restore the previous remainder, the 
divisor is shifted one place to the right before being subtracted from the 
new remainder. The number of additions and subtractions required to 
complete a division can be reduced as foUows: Instead of correctmg a 
negative remainder by adding the divisor back, the remainder may be 
shifted one place to the left before adding the divisor. The operation of 
the first method can be expressed as + y - y/2 and that of the second 
as simply + y/2. If, after adding y/2, the remainder is stUl negative, it is 
known that the next quotient bit is 0, and the divisor is shifted another 
position to the right and added. The second procedure, which is equaUy 
appUcable to serial or paraUel machines, may be summarized as follows: 
(a) Test the dividend and each remainder. If it is ^ 0, subtract the 
divisor, otherwise add. Whenever, after an addition or subtraction, the 
remainder is ^ 0, a 1 is recorded in the quotient, otherwise a 0. (b) Shift 
the remainder one place to the left and repeat step (a ) . 

A third procedure which has several variations is similar to the pencil 
and paper method of division. The divisor is compared with appropriate 
orders of the dividend or remainder and a subtraction is executed only 
when the comparison indicates the new remainder wiU be positive. If the 
digits appear with the less significant digits first, a comparator (see 
Section 6.1.4.3) may be used. The final setting of the comparator indi­
cates whether a negative remainder will be produced by the subtraction 
of the divisor from the old remainder. An over-aU system of operation 
can be devised wherein the comparison for the succeeding subtraction 
is performed at the same time that a given subtraction is being executed. 
Also, if the machine has a type of accumulator (Fig. 6.26) wherein the sign 
of the difference is available before the difference itself is formed, the sign 
may be tested and the subtraction aborted if a negative difference is in­
dicated. 
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An example of binary division is given in Example 6.21. Since each 
digit can be only 1 or 0 more than one trial is never required before a 
restoration 

Example 6.21 

X 

y 

7/16 
10/16 

0.1010 

xxxx 
0.1011 

0.0111 0000 
0.1010 

Restore 

0.01110 
0.01010 

0.001000 
0.001010 

Restore 

Quotient digits 

0.0010000 
0.0001010 

0.00001100 
0.00001010 

0.00000010 

The third major item to be considered in a division process is the 
disposition of the remainder after the quotient has been obtained to the 
precision desired. Each of the three procedures described for producing 
a quotient yields a value for the quotient that represents the largest 
multiple of the divisor equal to or less than the dividend. The final re­
mainder is the difference between this largest multiple and the dividend. 
There are occasions when the final remainder may be of use to a pro­
grammer. To obtain the final remainder, it is necessary that the divisor 
be added back into the orders from which it was last subtracted. This is 
easily done if the first method of correcting a negative remainder is used. 
However, in the second method a special operation is required because 
the normal procedure is to shift the remainder left once before adding. 
Also, in some cases the final remainder must be obtained by a subtraction 
instead of an addition. The corrective steps which must be taken at the 
conclusion of the division process cause substantial complications in the 
design. Usually, however, the final remainder is of no interest and, there­
fore, discarded. Even then, it may be obtained when needed by subtracting 

o

o

1

1

1
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the product of the unrounded quotient and the divisor from the dividend. 
The preceding description of the division process considered only 

positive operands. This does not introduce any loss of generality if the 
operands are in signed form. As in multiplication, the signed bits are 
ignored except for the simple comparison required to determine the sign 
to be attached to the result. Each of the division procedures described 
can also be used for operands expressed in a two's complement form. 
For example, the second procedure for correcting a negative remainder 
may be modified in the following way (a) Test the dividend or re­
mainder. If it is zero or has the same sign as the divisor, subtract the 
divisor, otherwise add. Whenever after an addition or subtraction, the 
remainder is found to be zero or have the same sign as the divisor, a 
1 is recorded in the quotient, otherwise a 0. (b) Shift the remainder one 
place to the left, and repeat step (a) . 

A negative quotient appears in complementary form. The binary point 
is after the first recorded bit. CompUcations arise in the determination of 
the least significant quotient digit. A possible round-off procedure is to 
always place a 1 in the least significant place of the quotient. When this 
procedure is used, the two's complement representation of operands is 
satisfactory. If a more accurate round-off procedure is required, it is 
preferable to convert the operands to a signed form before the division 
process. 

6.1.6.1.2. THE NONRESTORING METHOD OF DIVISION. The methods 
of division described so far fall for obvious reasons into the category of 
so-called trial and error, or restoring methods. A diflierent scheme, referred 
to as the nonrestoring method, has the following important advantages: 
First of all, it eliminates the operations of inspecting the remainder and 
restoring it when required. Secondly, it requires no extra correction op­
erations if dividend and/or divisor are negative. 

In a nonrestoring method, - 1 should be used in the quotient if the 
divisor y is added to the remainder, and +1 if >' is subtracted. Since an 
accumulator is to be used to hold the dividend and, subsequently, the 
remainders, it is more convenient to store the quotient digits in a register 
rather than an accumulator. However, a difläculty arises from the fact 
that the quotient register has no way of distinguishing - 1 from + 1 . One 
solution is to place a 0 in the quotient wherever a - 1 should appear, 
and to seek a simple relationship between this pseudo-quotient and the 
true quotient. Such a relationship will now be derived: We begin by 
writing an expression for the new remainder in terms of the old re­
mainder rfc_i, the pseudo-quotient digit p*, and the divisor y. 
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rj, = 2rjc-i + y 

rjc = 2rjc-i-y 

(6-13) 

if PJ, = 0, 

if Pk = 1, 

The factor of 2 appears in the recursion equation (6-13) since the old 
remainder was shifted to the left before the addition or subtraction of y. 
Multiplying Eq. (6-13) by 2 - ^ yields 

2-Vfe = 2-(^-i)rfc_i + [ 2 - ^ - 2-(^-i^Pfc]y. 

Setting k = 1,2 and designating the initial remainder ro by the dividend x: 

2 - V i = ; c + ( 2 - i - 2 V I ) y 

2 - 2 Γ 2 = 2 - V i + ( 2 - 2 - 2 - i ; 7 2 ) y 

= ;c + [ ( 2 - 1 + 2 - 2 ) - ( 2 ^ 1 + 2 - V 2 ) ] y . 

In general 

2 -«Γη = x + (6-14) 

where 

2 - ^ = 0.1 + 0.01 + 0.001+ . . . = 0 . 1 1 1 . . . = 1 - 2 - « (6-15) 

Substituting (6.15) in (6.14), and transposing 

= [ - 1 + 2-« + 22-^'^-l)p,]y + 2 - ' 
l 

Γη. 

Finally 

= [-1 + 2-« + ^ 2 - < ^ - i > P ; T ] + ^ y ^ -

1 

(6-16) 

In Eq. (6.16), the first digit, pi of the pseudo-quotient corresponds to 
the sign digit since for k = I, 2-^^-'^^pj, = 2 V I , i.e., Pi is in the 2 « 
position, which is the sign position. From Eq. (6-16), it is clear that to 
convert the pseudo-quotient to the true quotient it is only necessary to 
add ( 2 - « - 1) to the pseudo-quotient. Since carries beyond the sign posi­
tion are discarded, subtracting 1 is the same as adding 1. Therefore, the 
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X 7/16 

y 10/16 
0.1010 I 0.0111 

0.1110 Pi = 1 
1.0110 

0.0100 

0.1000 P2 = 1 
1.0110 

1.1110 

1.1100 Ps = 0 
0.1010 

0.0110 Γ3 

0.1100 P 4 = 1 
1.0110 

0.0010 

Pseudo-quotient 1.101 
Correction 1.0001 

True quotient 0.1011 

true quotient may be formed by transferring the pseudo-quotient from 
the register into the accumulator and adding units into the sign digit and 
the least significant digit. 

Note that in doubling the remainder in the division process described, 
the sign digit is lost. This introduces no error. The addition or subtraction of 
the divisor is always such as to decrease the absolute value of the re­
mainder. If it is specified to begin with that [;c| < |y[, \2x — y| < |y| 
and, in general (\2r\ - \y\) < |y|. If also, |;c| < 1, (|2r| - |y|) < 1, 
and therefore the result of the operation is always within the capacity of 
the registers. 

The procedure of division just described is summarized by the follow­
ing set of rules: (1) Compare the sign digit of the divisor with that of the 
remainder. (2) If the signs are aUke, place a 1 in the pseudo-quotient, 
shift the remainder one binary place to the left, and add the complement 
of the divisor to the shifted remainder. If the signs are not alike, place 
a 0 in the pseudo-quotient, shift the remainder one binary place to the 
left, and add the divisor to the shifted remainder. (3) After the pseudo-
quotient has been obtained through the 2-i«"i>th binary place, add 
(1 + 2-«) to it to produce the true quotient. See Examples 6.22 and 6.23. 

Example 6,22 
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y y 
2-^ (0.0010) 

= 0.1011 + 

= ΙΙ /16- l · 

0.1010 

2 - M 1 / 8 ) 
5/8 

= 0.6875 + 0.0125 = 0.7000 

Example 6.23 

^ _ 7/16 : 1.0110 I 0.0111 χ = 
y - - 1 0 / 1 6 

0.1110 Pi = 0 
1.0110 

0.0100 

0.1000 P2 = 0 
1.0110 

1.1110 Γ2 

1.1100 Pa = 1 
0.1010 

0.0110 

0.1100 P 4 = 0 
1.0110 

0.0010 

Pseudo-quotient 0.010 
Correction 1.0001 

True quotient 1.0101 

Check 

— - [True quotient] -f 
2-nr 

y y 
2 - 4 (0.0010) 

= 1.0101+ -
1.0110 

= - 0 . 6 8 7 5 - 0 . 0 1 2 5 = - 0 . 7 0 0 0 

The solution can be checked by substituting the result in Eq. (6.16) 

— = [True quotient] + 
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If a machine does not have a buih-in facility for division, division may 
still be accomplished by means of a program based on an iterative formula 
not explicitly involving division (see Section 6.2.2). 

6.L6.2, Decimal Division 

Decimal division presents the same general pioblems as binary division. 
Again, the correct orders of the dividend from which to subtract the 
divisor must be determined, because the equivalent of visual inspection 
is not readily mechanized. A simple automatic procedure, approximate but 
adequate to determine relative magnitudes of divisor and dividend is to 
sense the zeros in all orders higher than the highest order containing 
a nonzero digit. Then, the highest order nonzero digits in each operand 
can be lined up automatically. This procedure may sometimes cause 
the first quotient digit to be zero, but there is no objection to this. In 
floating point machines (see Section 6.3), automatic means are pro­
vided to cause the digits in each number to be shifted so that the hi^iest 
order nonzero digit appears at the left end of the number. 

Another problem is when to stop subtracting the divisor from one 
set of orders of the dividend, and start subtracting it from a less significant 
set of orders. The most straightforward solution is to use the restoring 
method of division wherein the divisor is repeatedly subtracted from one 
set of orders of the dividend until a negative remainder is produced. The 
actual number of operations (subtractions and additions) required to 
produce each digit of the quotient is then two greater than the digit, 
since an extra subtraction and a subsequent compensating addition will 
always be made. An exception occurs in the case when nine subtractions 
of the divisor are perfonped without producing a negative remainder. 
Then, unless an error has been made, it is known that the quotient digit 
must be nine, and the extra two operations can be suppressed. 

Another general problem, that of round off of the quotient, is dis­
cussed in Section 9.4. 

A number of schemes are available for increasing the speed of the 
division process. In one scheme, instead of restoring the remainder after 
it becomes negative, one shifts the divisor D to the right and repeatedly 
adds it to the remainder until it becomes positive. This method is based 
on recognizing that lO'̂ D = 10(10"-i)D and therefore WD-j(W-^)D 
can be replaced by (10 - / ) (lO^-^)D where η is the most significant order 
of the quotient, and / the number of iterations causing a negative remainder 
in the conventional restoring method. In this modified scheme the quo­
tient digit q equals / - I or 10-/: , where k is the number of additions. 
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347 
382 

- 9 6 5 62 
38 2 3 1 

003 82 
3 82 3 1 2 

Quotient: ( /3 - I ) (10-^2) O'l-D = 2 9 1 

Doubling or quintupling schemes may also be used for decimal divi­
sion. When using quintuphng, the first quotient digit is determined by 
subtracting the quintupled divisor from the dividend. Whether this or any 
subsequent subtraction of 5D is foUowed by an addition or subtraction de­
pends on whether that operation changed the remainder's sign. In keeping 

TABLE 6.17. Outline of division procedure utilizing quintupled values 
of the divisor 

Quotient digit Subtractions first Additions first 

0 -5D + D + D + D + D + 5D + D + D + D + D 
1 -5D + D + D-\-D + D + 5D + D + D + D + D 
2 -5D + D + D + D + 5D + D + D + D 
3 -5D + D + D + 5D + D + D 
4 -5D + D + 5D + D 
5 -5D-D + 5D-D 
6 -SD-D-D + 5D-D-D 
7 -SD-D-D-D + 5D-D-D-D 
8 -SD-D-D-D-D + 5D-D-D-D-D 
9 -5D-D-D-D-D + 5D-D-D-D'-D 

with the procedure described in the preceding paragraph, whenever a 
negative remainder results from one of the sequences of operations shown 
in Table 6.17 (the case for digits 0, 5, 6, 7 and 8) it is not restored 
and the next sequence is added to it after a one digit shift to the 
right. On the average there are 3.8 operations per quotient digit. 

If doubling is combined with quintupling, addition, and subtraction, 
as shown in Table 6.18, operations per quotient digit are reduced to 3.4. 

Dividend: 1111 62 ^ h 
Divisor: 382 1 

729 
382 2 
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Quotient digit Subtractions first Additions first 

0 -5D + 2D + 2D 5D -f 2D + 2D 
1 -SD + ID + ID-D 5D + 2D + 2 D - D 
2 - 5D + 2D + 2D - D 5D + 2D + 2D - D 
3 -5D-^2D-D 50 + 2 0 - 0 

4 -5D + 2D-D 50 + 2 0 - 0 

5 - 5D - 2D + D 5 0 - 2 0 + 0 

6 - 5D - 2D + D 5 0 - 2 0 + 0 

7 - 5D - 2D - 2D + D 5 0 - 2 0 - 2 0 + 0 

8 - 5D - 2D - 2D + D 5 0 - 2 0 - 2 0 + 0 

9 - 5D - 2D - 2D 5 0 - 2 0 - 2D 

For the quotient digits 0, 1,3, 5, and 7, the remainder after the indicated 
operations will be negative, and therefore addition should be used first to 
obtain the next quotient digit. 

The number of operations per quotient digit may be reduced to 1.0 
if all nine multiples of the divisor are provided. Then, each multiple 
can be compared with the dividend or remainder in a separate comparison 
circuit, and the quotient digit determined by the largest multiple which 
leaves a positive remainder after subtraction. Each comparison circuit can 
be simpler than a subtractor for only the sign of the diflierence is required. 
After the determination of the quotient digit is made, it is actually sub­
tracted from the remainder. In a serial computer, the comparison process 
for determining the next quotient digit can proceed simultaneously with 
the subtraction of the divisor multiple corresponding to the quotient digit 
just determined. 

6.2. Algebraic and Trigonometric Function Generation 

6.2.1. DERIVATION OF A GENERAL ITERATIVE FORMULA 

To find a root of the equation, f(x) = 0, begin by estimating a value 
JCn. If the point Xn is chosen at random, a point Xn+i closer to the root 
(see Fig. 6.36) may be found by means of the Newton-Raphson iteration 
procedure, which is based on use of the following equation 

Xn^l = - fiXn) cot Θ = Xn- ί{Χη)/ί\Χη). (6-17) 

TABLE 6.18. Outline of division procedure utilizing quintupled and 
doubled values of the divisor 
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FIG. 6.36. Approximation to the root: x^_^^ = " fiXn^cotO 

With an initial estimate of ;c„, successive appUcation of Eq. (6-17) wiU 
yield progressively better approximations to the root. 

Let FIX) = Χ Ρ - Α , then / ' (JC ) = pjĉ -̂̂  and 

X = X^ x = x^ x = x^ 

(6-18) 

Equation (6-18) is used in the sections foUowing as the basis for the 
derivation of specific iterative equations to determine the value of recipro­
cals, square roots, and higher order roots. 

6.2.2. C O M P U T A T I O N O F T H E R E C I P R O C A L 

If in the expression / ( J C ) = JC*' - α (see Section 6.2.1), one substitutes 
ρ = — 1, the result is 

/ ( J C ) = ( l / j c ) - f l . (6-19) 

The root of this equation is 1/a. Therefore, if ρ = — 1 is substituted in 
Eq. (6-18), the following commonly used iterative equation for the re­
ciprocal of a number, a, is obtained 

Xn + l = ""^^.^ '-a""^^ = - ""niaXn - 2 ) = JCN(2 - FLJCN). (6-20) 
Xn 

The normalized difference (JCN-f2 - Xn^i)/Xn-{-i = (1 - aXn+i) is equal 
to (1 - FLJCN)^, the square of this difference at the preceding step. If 
the initial estimate of the reciprocal, i.e., JCO, is good to a precision of 2 " ' , 
three iterations will suffice to give a final result good to 2-^^. Since there 
are two multipUcations per iteration, a reciprocal can be obtained to the 
desired accuracy in six multiplication times, and a quotient in seven. 

A smaU table of 2* entries can be used to provide the initial estimate 
of 1/a. To avoid overflows would be used, see Example 6.24. 

Means for generating the reciprocal no longer has the importance 
within digital computers that it once had, when a buüt-in division opera­
tion was not common in general purpose computers. 
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a 2 - δ / α 
.0001 .1 
.0010 .01 
.0011 .0010101 
.0100 .001 
.0101 .000110011 
.0110 .0001010101 
.0111 .0001001001 
.1000 .0001 
.1001 .0000111000111 
.1010 .000011001100 
.1011 .000010111010001011101 
.1100 .0000101010 
.1101 .0000100111011000 
.1110 .00001001001 
.1111 .0000100010001 

6.2.3. METHODS OF COMPUTING THE SQUARE ROOT 

In this section a number of procedures for obtaining the square root 
of a number will be described. We will consider first a procedure referred 
to as simple iteration, based on the general iterative equation (6-18) 
derived in Section 6.2.1. If in the expression f(x) = — a (see Section 
6.2.1), ρ = 2 is substituted the result is 

fix) = r ^ - a . (6-21) 

The roots of this equation are ;c = ± y/a. Therefore, if ρ = 2 is sub­
stituted in Eq. (6-18), the following iterative equation for the square root 
of a number a is obtained 

Xn^l = V2 (x„ + _ ^ ) . (6-22) 

The initial estimate Xo may be any plus or minus value, except zero. A 
good estimate of jco, for small a's, is a/2. The number of iterations re­
quired is a function of the argument, increasing as the argument decreases. 
Note that a division operation is required for each iteration cycle. Equa­
tion (6-23) requires only one division, regardless of the number of times 
the equation is apphed, but requires multiphcations for each iteration cycle 

Equations (6-22) and (6-23) are both second order iterative equations. 
This means that once a moderately accurate approximation has been 
made, each appUcation of the equation wiU double the niunber of signi-

Example 6.24 
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Series 1 3 5 7 9 11 13 1 5 . . . 

Sum of the series 1 4 9 16 25 36 49 6 4 . . . 

Square root of the sum 1 2 3 4 5 6 7 8 

The actual procedure used to extract a root is essentially a restoring divi­
sion process utilizing artificial subtrahends based on the series of odd num­
bers. The procedure will be described for both the decimal and binary 
system. 

In the decimal system, the square root may be obtained by the follow­
ing procedure: (1) Separate the digits of the radicand into groups of two 
digits each, starting from the decimal point; (2) Diminish the first 

ficant digits in the approximation. Equation (6-23) requires a more 
accurate first guess than Eq. (6-22) and the magnitude of Xo must be 
< (5a) Equations (6-24) and (6-25) are examples of third order 
iterative equations 

^n+i = Vs i3xn+ - - ^ ) (6-24) 
Xn Xn 

Xn^x = (15 - - f - ^ J ^ ) . (6-25) 

Another way of obtaining the square root would be to store a reason­
ably sized table of square roots and to use an interpolative procedure to 
obtain roots for which there were no entries in the table. Such a table 
would be cumbersome. A more desirable approach would consist of 
having a table with just a few entries to provide a good initial estimate, 
JTO, with which to start one of the iterative methods. The error at the 
( A I + l ) th iteration, (error)n4.i, is approximately equal to (%) ((error)«^ 
which converges rapidly for (error)« < 1). 

The procedure for extracting the square root to be described next is 
known as the odd series approximation. It makes use of the fact that the 
square root of the sum of a series of odd numbers: 1, 3, 5, . . . has a value 
that corresponds to the position of the highest term in the series. For 
example, the sum of 1, 3, 5, and 7 is 16 and the square root of 16, 
namely 4, corresponds to the position of 7 in the series 1, 3, 5, 7. The 
nature of the odd series relationship is shown below 
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4 89 00 00 00 
1 

89 
41 
4 Γ 
43 
Τ 
45 
Restore 
5 
4 

4 
Restore 

00 
41 
59 
43 

59 00 
44 21 
14 79 
44 23 
Restore 
14 79 00 
4 42 21 

10 36 79 
4 42 23 
5 94 56 
4 42 25 
1 52 31 
4 42 27 

Restore 

group by 1, 3, . . . successively until a negative remainder is produced; 
(3) Restore the remainder to its last nonnegative value. Put down as the 
first digit of the root, the number of subtractions performed before the 
last nonnegative remainder was reached; (4) Bring down the next group 
of two digits, and form the new subtrahend by increasing the last sub­
trahend used (i.e., the one before that producing a negative remainder) 
by 1, shifting it one place to the right, and adding a 1 in the place to the 
right of it. These operations are continued until a remainder of 0 is 
reached, or to as many significant places as desired. The extraction of 
the square root of 489 is shown as Example 6.25. 

Example 6.25 



354 6. ARITHMETIC OPERATIONS 

yJ9 54 81 
1 

"8" 
3 
5~ 
5 

0 " 
54 
61 
Restore 
54 81 

6 01 
48 80 

6 03 
42 77 

6 05 
36 72 

6 07 
30 65 

6 09 
24 56 

6 11 
18 45 
6 13 

12 32 
6 15 
6 17 
6 17 

In the binary system, the procedure is as foUows: (1) Separate the bits 
of the radicand into groups of two bits each, starting from the binary 
point. (2) Begin the actual extraction operation at the first group of bits 
from the left that does not contain two zeros. Ahgn a 1 with the right-
hand bit of this group and subtract. The remamder wül be nonnegative 

Whenever there is a zero in the root, indicated by the need for a restora­
tion after the first of a new series of subtrahends is subtracted, the next 
subtrahend is formed as foUows: (a) increase the last subtrahend used 
by 1, (b) shift it two places to the right, (c) after it place a 0 and then 
a 1. Example 6.26 shows the use of this procedure for the extraction of 
the square root of 95,481. 

Example 6,26 
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and a 1 is entered in the root for this group. For each double 0 group to 
the left of this group, a 0 is entered in the root. (3) For all succeeding 
groups, the trial factor to be subtracted from the remainder is the expres­
sion (4rn_i + 1), (if fractional arguments and Γη _ ι , the approximate root 
already obtained, are treated as if they were integers). The right hand digit 
of the trial divisor is aligned with the right hand digit of the group for 
which it is used, and subtracted. If the remainder is nonnegative, a 1 is 
entered as the root for that group. If the remainder is negative, the root 
is 0 and the subtraction is restored. See Example 6.27 in which the 
square root of .10101001 is extracted. 

Example 6,27 

V-io 10 10 01 

10 
01 = ( 4 X 1 ) 4 - 1 

1 10 
11 01 = ( 4 X 3 ) H - 1 
Restore 

1 10 
1 10 

01 
01 = (4 X 6) + 1 

Check: .10101001 = 169/256 
.1101 = 13/16 

6.2.4. COMPUTATION OF HIGHER ORDER ROOTS 

To obtain the cube root of a positive number a, one can use any of a 
number of third order equations and corresponding iteration functions 
based on the Newton-Raphson method 

Equation 

x^^a = 0 

; c 3 / 2 _ ^ i / 2 = 0 

JC3/4 - al /4 = 0 

Corresponding iteration function 

g6i(x): Xn^i = l/3(a/Xn^ + 2x) 

gs2(x): Xn+i = l/3(2a'^W + x) 

Since the function g3i(jc) does not involve any square root operation, it 
is more convenient to use in a machine without a built-in square root 
instruction. However, both g32Íx) and gssix) usually converge in fewer 
steps than gziix). 
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sin-ijc = 7 Γ / 2 - V 1 - Λ: F(X) 

where: F(X) = 1.570788 - 0.214125Λ: + 0.084666JC2 - 0.035757Λ:3 
+ 0.008649A:* 

and 0 ^ jc ^ 1 . 

(2) The technique of dividing the interval of interest into η small 
subintervals and using a Taylor series expansion about the center of 
each interval. This requires the storage of the sine and cosine of η argu­
ments. A value ot η = 16 is sufficient for an accuracy of 10~^ and 
facilitates entry into the table. For example, if the angle χ Ues in the /th 
interval and Vi is in the center of the interval, then to the accuracy desired 

* Hammer, P. C. [1955] "Iterative procedures for taking roots based on square 
roots," MATC, 9, 68. 

t Hastings, C , Jr. [1955] Approximations for Digital Computers, Princeton Univ. 
Press. 

Iterative equations for the fifth, seventh, and ninth roots are listed 
next. 

For the fifth root 
Λ : 5 / 4 - α ΐ / 4 = 0 ^ 5 ( Λ : ) : X^+i = [(4ai/VA:i/4) -j- JC] 5 

For the seventh root 

For the ninth root 
GOIX): Xn+i

 =

 [8(aA ) i /8 -l· X] 9* 

6.2.5. GENERATION OF TRIGONOMETRIC FUNCTIONS 

Storing an extensive table of trigonometric functions makes excessive 
requirements on the storage facilities of a computer. On the other hand, 
generating these quantities from a single Taylor series expansion is not 
desirable because the maximum error grows inordinately with the range 
of the interval and, therefore, the number of computations required 
becomes excessive. 

Some simple methods superior to the ordinary Taylor series are avail­
able. They are: 

( 1 ) The use of expansions which have essentially the same accuracy 
over the entire interval, e.g., Chebyshev polynomials, continued fractions, 
or optimal rational approximations. For example, Hastings! has given the 
following series which has an accuracy of 10-^ over the first quadrant: 
sin (π/2)χ = 1.570795Λ: - 0.64592IJC» 4-0.079488JC5 - 0.004362JC^ 

where: - 1 ^ jc ^ 1 
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sin X = sin Vi + cos Vi(x - Vi) — sin Vi 3! 

COS X = COS Vi - sin Vi(x — Vi) - cos Vi -^^—^ U ms 4-2 '^^-^^ 3! 
where Vi refers to the stored values of the argument. 

(3) The sine and cosine of any argument, jc, may be expressed in the 
form sin χ = sin ( ω + δ) and cos χ = cos ( ω 4- δ), and each of these 
expressions may be expanded to yield 

sin ( ω + δ) = sin ω cos δ + cos ω siu δ 

cos ( ω + δ) = COS ω COS δ - siu ω siu δ 

The values of sin ω, cos ω can be obtained from a small stored table, 
and sin δ, cos δ may be obtained by the following series approximations 

sin δ δ | y -

cos δ 1 — — ^ 

Any desired accuracy may be obtained either by increasing the table of 
stored values or by increasing the number of terms in the expression^ for 
sin δ, cos δ. For a table of 16 values of the sine and the cosine, and using 
the two term expansions for sin δ, cos δ, the values of sin x, cos χ may be 
obtained with a precision of 1 0 - \ 

We will consider next some procedures for generating inverse trigo­
nometric functions. The Taylor series expansion for an inverse trigono­
metric function, e.g., sin-^jc = Λ : - f ;cV3! + 3JCV40 + . . . , suffers from 
poor accuracy, especially near χ = 1. An interpolative scheme that is more 
desirable, and which can be used to obtain both the inverse sine and cosine 
is based on use of the following type of equation 

s m - U + €) = s i n - ^ + + ^Wl'-x^y +··· 

If this equation were utilized, values of sin-^jc and V I could be 
stored. Although a higher order expansion is required for the inverse 
trigonometric functions than for the trigonometric functions, the method 
still is useful because only a few simple operations have to be performed 

* Any subroutine involving the generation of the square root by an iterative method 
without a good first approximation provided by a small stored table consumes 
excessive time. Since the square root operation in this expression involves χ (as 
opposed to (x + e ) ) no interpolation or iteration is required. 

(X — Vi)^ — C O S Vi (x — ViV 
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on stored values, thereby reducing round-off errors and the time required 
for computation. 

Another scheme involves use of an interpolation formula of the form 

sin-K^t; + €) = sin-^x^ + ais in-^JCV- i + aisin-^x^-i + . . . 

+ ¿isin-^xt,+i + Z>2sin-%+2. 

In this equation Ou b u and ¿2 are all dependent on €. In this procedure, 
a set of values of sin -^x^, only must be stored. The inaccuracy of a smaU 
table of entries is compensated for by using several entries on either side 
of x^. 

Some of the methods for computing trigonometric and other trans­
cendental functions in a general purpose type of digital computer are 
summarized as: ( 1 ) Computation of the function from its series expan­
sion. ( 2 ) Generation^of the function by means of a polynomial expres­
sion that adequately approximates the desired function to a required 
accuracy over the range required. ( 3 ) Use of a relatively small table of 
stored values and derivation of intermediate values by means of interpola­
tion formulas. ( 4 ) Numerical integration of a set of difference equations 
whose solution represents the desired functions. It is not always readily 
apparent which method is the most desirable. Among the factors that 
must be considered are available storage space, storage access time, the 
time required for each operation in the program, and the relative diflS-
culty in preparing different programs. 

Ó.3. Scaling of Problems 

6 . 3 . 1 . SCALING FOR FIXED-POINT COMPUTATION 

While no binary point actually exists in a computer, one can imagine 
it to be between any two successive bits in a numerical representation. 
The position of the point is determined by the choice of scale factor. The 
determination of scale factors in a problem is referred to as scaling and 
involves the following: ( 1 ) Defining the position of the radix point in 
each of the input numbers based on the bounds of their niagnitude. 
( 2 ) FoUowing the behavior of the point in aU of the computational steps. 
( 3 ) Knowing the position of the point in each of the final results. For 
proper scaling, complete and accurate information about the bounds on 
the magnitude of aU numbers entering the computation should be avail­
able. This is necessary to simultaneously provide for : ( 1 ) EflSciency of 
scaling, i.e., minimization of leading zeros and, consequently, increased 
accuracy. ( 2 ) Accommodation of the largest numbers without overflow 
of any register. For convenience, the symbols for the numbers in a prob-
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η 

- I . 

<-l 
with the following bounds given 

Ml < / 
K I < / = 1, 2 , . . . « 

\Pi\ < U I = 1, 2 , . . . ( , i - 2 ) . 

lern may be written in the following form which explicitly states the posi­
tion of the radix point 

Λ : = Jc. (6-26) 

In Eq. (6-26), χ is the true value, χ termed the "scaled form" of ^ is an /i 
place fraction, and in the scale factor, r^, b is the smallest integral power 
of Γ which makes greater than the maximum value of x. 

A standard convention in fixed-point computation is to consider fixed-
point numbers in a computer as fractions and to express the numbers in 
a problem as fractions multiplied by scale factors. Neither addition nor 
subtraction changes the position of the radk point. However, special 
attention must be given to the position of the radix point in a product or 
quotient Usually, the radix point remains at the extreme left in both 
multiplication and division of fractions. For example, in multiplication, 
two n-bit fractions yield a product which is a 2n-bit fraction, and in 
division, a 2n-bit fractional dividend divided by an n-bit fractional divisor 
yields an n-bit fractional quotient (generally the dividend is an n-bit 
fraction and the 2/i-bit accumulator is used to shift the dividend the 
proper number of places to the right required to make it less than the 
divisor). 

The steps to follow m scaling a problem are: (1) Ascertain the 
bounds on the absolute values of the numbers. (2) Set up the scaling 
relationship between true numbers and scaled fractions by determining 
the required scale factor. (3) By substitution, obtain from the true value 
formula the scaled value formula, and write the program directly from the 
latter. The scale factors which do not cancel specify the required machine 
shift operations. 

To prevent an overflow in a summing process within an accumulator, 
it is not enough to scale the final sum according to its bound, for, in gen­
eral, it must be scaled by the largest bound which applies to any element 
in the sum or partial sum. Pi, generated in the process of summing. Con­
sider the sum 
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The largest bound would be selected from / , and L{ to use as the 
effective bound for scaling both the sum A and the elements a^. Where the 
partial sums are not known, the bound used for selecting the scale factor 
is η \ak\, where η is the number of elements and ajc is the element with 
the greatest magnitude. 

In setting up the order of computation steps, the programmer should 
attempt to determine the bounds on intermediate quantities in the com­
putation. Often a smaller bound than the implied maximum bound may 
be used. For example, if | /4 | < 12 , |B| < 2 0 , the implied maximum 
bound of \AB\ would be 2 4 0 . However, there may be other constraints 
on the system such that \AB\ < k, where k < 2 4 0 . When there are 
alternatives in the order of computation steps, that order should be 
chosen which makes use of known effective bounds to replace implied 
maximum bounds. The scaling of any problem is not necessarily unique, 
and several good approaches may be available. 

6 . 3 . 2 . FLOATING-POINT NOTATION FOR NUMBERS 

In this notation each number is expressed in the form aR^, Thus, for 
any number system of radix R, where R may be any integer greater than 
unity, it is only necessary to specify the numbers a, b. The radbc point is 
usually considered to be to the left of the highest order nonzero bit or 
digit. The coefiicient or fractional part of the number, namely a, is con­
strained within specified Umits by adjustment of the integral exponent b. 
The value of a is within the bounds \/R ^ a < 1, or else it is zero. In 
the binary system, 1 /2 ^ α < 1, or α = 0. In the decimal system 0.1 
^ α < 1, or Ö = 0. When restricted to such an arbitrary range, the 
coeflScient a is referred to as the mantissa, and the integer b as the 
exponent index of the floating binary or decimal number. The exponent 
may be zero or any integer, except that in any machine its magnitude must 
be bounded because of storage limitations. 

The use of floating-point numbers affords a convenient method of 
computing with numbers which vary in magnitude over a relatively wide 
range. Since, after a floating-point operation, a specified number of signifi­
cant digits is retained, and the magnitude of the number indicated by an 
exponent index, assurance is provided that all numbers (i.e., the man­
tissas) are fixed in magnitude within some predetermined scale. Some 
examples follow to show how numbers in floating-point form are manipu­
lated. Consider first, multipUcation and division using numbers in floating 
decimal form 

(flllO*!) (^210*2) = (¿1102)10^1 + *2 

(αι10^ΐ)/(α2ΐ0^2) = (α,/α2)10^ι-^2. 
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1.016 X 10 -7 

6.3.3. REPRESENTATION OF FLOATING-POINT NUMBERS 
WITHIN A COMPUTER 

When using numbers in floating-point form within a computer, it is 
convenient to represent the mantissa and exponent index as a single 
number. However, a difläculty presents itself in that there is a sign associ­
ated with each, and these signs may not be the same. However, if the 
range of the index is arbitrarily limited, the sign of the index can always 
be made positive. For example, if it is desired to limit the range of the 
exponent to — A: ̂  ft < (where, e.g., k = 50), the actual value of the 
exponent used would be (ft + since 0 ^ (ft 4- Λ) < 100, i.e., (6 + Λ) 
is always positive in sign. This bias of the exponent is readily removed in 
the interpretation of results. Figure 6.37 shows how a floatmg decimal 
number might be represented in a computer in which each storage location 
accommodates a sign plus ten digits. As an example, the floating decimal 
number + 0.54870623 x 10"^ would appear as + 0.5487062343. The 
exponent is 43, since (6 + Λ) = ( - 7 + 50). 

If the values of αιο2 and αχ/α^, do not fall within the range 0.1 ^ a^a^ < 1, 
an additional step is required, namely the mantissas of the results, 01^2 
and öi /a2, must be scaled to fall within the specified range, and the ex­
ponent index of the result adjusted to compensate for the scaling opera­
tion. For exan^)le 

Operation Unsealed result Adjusted result 

(0.451 X 103) (0.207 X ΙΟ"») 0.0934 X 10-^ 0.934 X 10"* 
(0.905 X 10*)/(0.231 X 10 3.92 X lO - i» 0.392 X 10"» 

The algebraic addition of numbers in floating-pomt form presents 
more of a problem since the exponent indices of the two numbers must 
be made equal before addition of the mantissas can take place. Therefore, 
the radix points of the two numbers must be aligned in some predeter­
mined scale. This scale may be defined by the exponent index of the larger 
absolute number. Accordingly, the mantissa of the smaller absolute num­
ber is adjusted until its associated exponent index is equal to the ex­
ponent index of the larger. This adjustment is effected by dividing the 
mantissa of the smaller absolute number by ten raised to a power equal 
to the absolute value of the difference of the exponent indices. For example 

Operation Unsealed result Adjusted result 

(0.324 X 10 -8 ) + (0.984 X lO-'^) 0.0324 X 10"^ 0.102 X 10"« 
0.984 X 10 -7 



3 6 2 6 . A R I T H M E T I C O P E R A T I O N S 

Mantissa Index 

FIG. 6.37. Format for representing a number in floating point form 

It is seen, tlien, that the use of floating point notation allows very 
large or very smaU numbers to be stored by means of a relatively small 
number of bits. In fixed-point notation, one has the alternatives of retain­
ing aU the zeros between the significant bits and the radix point or keep­
ing track of the point throughout a lengthy computation. 

6 . 3 . 4 . A C O M P A R I S O N O F F I X E D - A N D F L O A T I N G - P O I N T 

O P E R A T I O N I N A C O M P U T E R 

Let us consider first some of the features of fixed-point operation. To 
code a problem with fixed-point numbers, the coder must know in advance 
the relative magnitude of the results of aU arithmetic operations. This is 
necessary to insure that all numbers stay within range, and that a suffi­
cient number of significant digits is retained. If it is anticipated that the 
result of some operation wiU produce an overflow, the coder will provide 
for shifting the operand(s) producing the result to the right before the 
operation, or after the operation if there are provisions for retaining the 
overflow digit. A left shift is caUed for if it is anticipated that results will 
not contain enough significant digits. The number of shifts necessary must 
be determined by estimating the magnitude of each result. The procedure 
of esthnating the magnitude of operation results and including right and 
left shift commands to keep numbers in scale is part of the scahng problem. 

From the precedmg description it is apparent that the coder makes 
partial use of floating-point operations in order that results remain 
within the scale of the computer. If the analysis of the number and mag­
nitude of shifts necessary is in error, and results go out of scale, it may 
be necessary to recode aU or part of the problem. There are other dis­
advantages to fixed-point operation: ( 1 ) In preparing a general prob­
lem for machine solution, the coder attempts to account for the maximum 
and minimum results possible for all cases. Therefore, in some cases, 
significant digits may be lost. ( 2 ) In many problems it is not possible 
to predetermine the magnitude of the resiflt of aU computations. Here, 
the best course is trial and error running of the problem on the computer. 

If floating-point notation is used for aU numbers involved in arithmetic 
operations, the computer can be progranuned to automatically handle the 
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* The reader is reminded that in order to provide for negative exponents the 
indicated value of the index is biased by + 50, so that the actual index is + 10, 
not 60. 

bookkeeping job of normalizing (scaling) the mantissas and recording 
the exponent indices. 

The principal advantages of floating-point operation are as follows; 
(1) A wider range of numbers may be handled. (2) Coding a problem in 
floating-point form is simpler, for no special attention must be given to 
scale factors during the course of the computation. This signiñcantly 
reduces time needed for coding and checking, and is an important con­
sideration for production computing, where time and energy required for 
scaling in fixed-point coding can be appreciable. (3) It allows the pro­
gramming of specific problems for which the relative magnitudes of opera­
tion results are unknown, as well as the programmmg of general solutions 
to standard problems without consideration of individual cases. (4) It 
may be used in conjunction with fixed-point coding to determine the 
relative magnitude of operation results, thereby obtaining more accurate 
scaling for the fixed-point coding. 

There are, also, certain disadvantages to floating-point operation, 
namely: (1) Fewer significant places are available since digit places that 
might otherwise be used to represent digits in a number must be reserved 
to represent the exponent index of each number. (2) The results of 
arithmetic operations may appear to have more significance than actually 
exists. This danger of falsely interpreting computed results arises because 
the bookkeeping associated with scaling is performed automatically within 
the machine, whereas in fixed-point operation the coder keeps track of the 
scaling involved, and therefore, knows how many significant digits are in 
the results of operations. For example, consider the following operation 
in floating-point notation 

(.2536475860* - .2536475460) X .5400022275 
= .0000000460 X.5400022275 
= .4000000052 X.5400022275 
- .2160008977 

Actually the result does not have eight significant digits as the answer 
would indicate but, as a result of the subtraction, at most one. A loss of 
significance Uke this may be carried into other operations and amplified. 
For most engineering problems, the objection of unknown significance 
is not critical since intuitive and mathematical checks may be used to 
judge the correctness of results. However, it is also true that, because of 
incorrect scaling or the diflSculty of proper scaling, fixed-point opera-
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219 0.8125 
109 1 1.6250 0.1 
54 1 1 1.2500 0.11 
27 o i l 0.5000 0.110 
13 1011 1.0000 0.1101 
6 11011 
3 011011 
1 1011011 
0 11011011 

Converted number: 11011011 Converted number: 0.1101 

tions may result in a loss of significant digits as great or greater than that 
caused by floating-point operations. ( 3 ) A floating-point system intro­
duces certain complexities. MultipUcation and division are more diflScult 
because, in addition to the normal operations on the significant bits, 
additive operations must be performed on the exponents. Also, a test 
must be made on the products and quotients for zeros to the left of the 
most significant bits and appropriate shifts and adjustments of the ex­
ponents performed, or else a gradual loss of significant bits may be intro­
duced. Additive operations too are more diflicult, because of the necessity 
of shifting to match exponents before an operation can take place. Over­
flows become more frequent, requiring a shift operation and a corres­
ponding adjustment in the exponent. ( 4 ) Progranuned floating-point 
operation consumes more time, and built in floating-point operation re­
quires more equipment than fixed-point operation. 

6.4. Binary, Decimal Conversion 

6 . 4 . 1 . D E C I M A L T O B I N A R Y C O N V E R S I O N 

First, two methods of conversion wiU be illustrated using decimal 
notation. In the first method, a decimal integer is converted by repeated 
division by 2 . Each time a remainder occurs, i.e., whenever the number 
being divided is odd, a 1 is entered in the appropriate order of the binary 
number being formed. A decimal fraction is converted by repeated multi­
pUcation by 2 , any carry beyond the decimal point being discarded. Each 
time there is a carry into the units' order, a 1 is entered in the appropriate 
order of the binary number being formed. The process is continued until 
a desired number of significant places has been attained. Two examples 
of this method are shown in Example 6 .28 . 

Example 6,28(a) Example 6,28(b) 

Integer: 219 Fraction: 0.8125 
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Integer: 219 Fraction: 0.8125 

V 
219 
128 1 2 - 1 

0.8125 
0.5 

2β 
91 
64 11 2 - 2 

0.3125 
0.25 

24 
27 
16 1101 2 - 4 

0.0625 
0.0625 

23 
11 
8 11011 

0.0000 

21 
3 
2 
1 
1 
0 

1101101 

20 

3 
2 
1 
1 
0 

11011011 

Converted number: 11011011 Converted number: 0.1101 

This method is not attractive because powers of 2 in the decimal system 
are awkward to handle, and it is not simple to mechanize the determina­
tion of which powers of 2 should be subtracted. 

The next two methods of conversion will be described using binary 
notation. In the first method, the digits in the decimal number are examined 
one at a time, starting with the highest order if the number is an integer. 
The binary equivalent of the highest order digit is recorded in the lowest 
four binary orders to the left of the radix point. This amount is then mul-
tipUed by 1010 (decimal 10) and the binary equivalent of the next 
decimal digit is added to the product. This process is repeated for each 
digit in the decimal number. For fractions, the digits are handled in 
opposite sequence, and the intermediate results are divided by 1010. See 
Example 6.30. 

In the second method, powers of 2, in decimal notation, are subtracted 
from the decimal number in sequence, starting with the largest power of 
2 equal to or less than the given number. Each power of 2 which would 
produce a negative difference is not subtracted. The corresponding bit in 
the binary number is 1 if there is a subtraction, otherwise 0. This process 
is contmued until a remainder of 0, in the case of integers, or a desired 
number of significant places, in the case of fractions, is obtained. The 
binary number consists of I's placed in the positions representing the 
powers of 2 contained in the number, and O's in the remaining places. See 
Example 6.29. 

Example 6,29(a) Example 6.29(b) 
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Example 6.30(a) 

Integer: 219 

Add 
Multiply by 

Add 
Multiply by 

Add 

0010 (2) 
1010. 
0001 (1) 
1010. 
1001 (9) 

0010 
10100 
10101 

11010010 
11011011 

Example 6.30(b) 

Fraction: 0.8125 

Add 0.100000000000 (.5) .100000000000 
Divide by 1010. .000011001101 

Add 0.001100110011 (.2) .01 
Divide by 1010. .000001100110 

Add 0.000110011010 (.1) .001 
Divide by 1010. .000000110011 

Add 0.110011001101 (.8) .1101 

In Example 6.31 use is made of the binary equivalent of each decimal 
order (1 , 10, 100, . . . in the case of integers and .1 , .01, .001, . . . for 
fractions). The binary number is formed by accumulating each of these 
quantities as many times as specified by the value of the digit in each 
order. Neither multiphcation nor division is required but there can be a 
large number of addition operations. 

Example 6.31(a) 

Integer: 219 

Add 1100100 (dec 100) 
Add 1010 (dec 10) 
Add 1 (dec 1) 

twice 
once 
nine times 

11001000 
1010 
1001 

Example 6.31(b) 
Fraction: 0.8125 

Add 0.1 
Add 0.01 
Add 0.001 
Add 0.0001 

eight times 
once 
twice 
five times 

0.110011001101 
0.000000101001 
0.000000001000 
0.000000000010 
0.110100000000 

We will now reconsider the schemes of decimal to binary conversion 
shown in Examples 6.28(b) and 6.30(b) in terms of binary-coded decimal 
notation. We recaU that in Example 6.28(b) the binary-coded decimal is 
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Example 6.32 

.1000 0001 0010 0101 
= 1 0110 0010 0101 0000 
= 1 0010 0101 0000 0000 
= 0 0101 0000 0000 0000 
= 1 0000 0000 0000 0000 

0101 = .0102^304 

Check: .b^b^b^b^ = .1101 = 13/16 = .8125 

In a modification of this method, the digit right of the radix point is 
tested after each multipUcation by 2 to determine if it is equal to or 
greater than 5. If it is, a 1 is placed in the binary number being formed, 
otherwise a 0. The two methods are equivalent since if the digit immedi­
ately to the right of the radix point is 5 or greater, a carry wiU be produced 
after the next multipUcation by 2. The first procedure, that of Usting the 
carries, is preferable since it requires no comparison operation. 

The scheme of Example 6.30(b), using binary-coded decimal nota­
tion, is shown in Example 6.33. Each digit, starting with the least signifi­
cant one, is added to the four most significant orders of a fractional 
accumulator, the result is divided by ten and the process repeated. After 
the most significant digit has been added, the result is divided by 10/16. 
Examination of this method shows that after each division by ten, the 

multiplied successively by 2, but if there is a carry into the unit's order, 
it is not included in the next multipUcation. The successive coeflScients 
that appear in the unit's order, i.e., to the left of the radix point, wiU be 
the bits of the converted number. Why this is so can be seen by con­
sidering the foUowing equations 

Κ ( α ι Χ 1 0 - 1 + 0 2 Χ 1 0 - 2 + χ ι ο - 3 + . _ ) 

= (bi Χ 2 - 1 + ¿ 2 Χ 2 - 2 + ¿ 3 X 2 - 3 + . . . ) 

Then 2(öi Χ 10 - ι + 02 Χ 10-« + Χ 10-» + . . . ) 

= (b^X20)-l·R^ 

and 2 Χ 2(αι Χ 10 - ι + «2 Χ 10-^ + αζΧ 10-» + . . . ) - bi 

= ¿ 1 + ( ¿ 2 Χ 20) + R2 

etc. 
In these equations, the Ri refer to the fractional part of the binary-coded 
number after each multipUcation. The conversion of (.1000) (0001) 
(0010) (0101) = .8125 to binary form is shown in Example 6.32. 
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four most significant binary orders must all have the value 0, so the new 
digit can simply be entered there without the need for an addition operation. 

Example 6.33 

Fraction: .(1000) (0001) (0010) (0101) = .8125 

Add 0.0101 (5 /16) 0.0101 
Divide by 1010. 0.00001000 

Add 0.0010 (2 /16) 0.00101000 
Divide by 1010. 0.00000100 

Add 0.0001 (1 /16) 0.00010100 
Divide by 1010. 0.00000010 

Add 0.1000 (8 /16) 0.10000010 
Divide by 0.1010 0.11010000 

Check: {[( (5 /16 ) -i- 10 + 2 /16) 10 + 1/16] ^ 10 + 8/16} 
- 10/16 = 8 /10 + 1/100 + 2/1000 + 5/10000 = .8125 = 13/16 = .1101 

6.4.2. B I N A R Y T O D E C I M A L C O N V E R S I O N 

The four methods of conversion to be described here are counterparts 
of the schemes in Section 6.4.1. In the first method, conversion of an in­
teger (Example 6.34(a)) is begun by dividing it by ten. The quotient is 
divided by ten and this process is repeated until a zero quotient appears. 
The remainder after each division represents a digit of the decimal number. 
Conversion of a fraction (Example 6.34(b)) is begun by multiplying it 
by ten. The fractional part of the product is multiplied by ten, and this 

Example 634{a) 

Integer: 11011011 = 219 

Divide integer by 1010. 
Divide quotient by 1010. 
Divide quotient by 1010. 

Quotient 
10101 

10 
0 

Remainder 
(1001) 
(0001) 
(0010) 

Example 6.34(b) 

Fraction: .1101 = .8125 

Multiply fraction by 1010. 
Multiply fraction by 1010. 
Multiply fraction by 1010. 
Multiply fraction by 1010. 

(1000).001 
(0001).01 
(0010).1 
(OlOl).O 
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process is continued until Üie fractional part of a product is zero. The re­
moved integral values represent the digits of the decimal number. Since 
lOjc = 2^x + 2x, multipUcation can be avoided, the latter two terms being 
formed by shifting χ right three places and one place, respectively. Also, 
if there is no provision for accepting digits to the left of the radix point, 
10/16 may be used as a multiplier instead of ten, and the bits of the 
product starting with the 2"^ order are treated as the fractional part in Ex­
ample 6.34(b). The four bits right of the radix point after each multi­
pUcation by 10/16 designate the binary coded digits. 

The remaining three methods wiU be outiined briefly. In the counterpart 
of the method used in Example 6.29, binary equivalents of powers of ten 
are subtracted until there is a zero remainder. The same power of ten may 
have to be subtracted several times, depending on the value of the digit. In 
the next method, comparable to that used in Example 6.30(a), each digit 
of the binary number is examined, starting with the highest order. Its 
value (1 or 0) is added to an accumulator and the sum is doubled. This 
process is continued until the value of the least significant bit is added. In 
the method akin to that of Example 6.31, each bit position is examined 
and wherever there is a 1 the power of two it represents is accumulated. In 
Examples 6.29 and 6.31 the process for integers and fractions is the same, 
while in Examples 6.28 and 6.30 multipUcation and division are inter­
changed. The same type of relationship appUes in the schemes just de­
scribed. 

6.4.3. A COMPARISON OF BINARY AND BINARY-CODED 
DECIMAL REPRESENTATION 

The principal advantages of a binary-coded decimal compared to a 
binary representation of numbers for a computing system are: (1) Input-
output equipment that accepts and generates binary-coded decimal num­
bers simpUfies the task of the user in preparing input data and inteφreting 
output data. (2) The interpretation of numbers within the computer is 
faciUtated, thereby aiding in the detection of faults within the computer. 

In pure binary representation, four bits can represent 16 different 
binary numbers. In a four bit binary-coded decimal system, six of these 
are not used. The relative efficiency of the binary-coded decimal number 
system depends on the range of numbers to be accommodated. For regis­
ters of practical length (say from 20 to 40 bits), numbers expressed in 
binary-coded decimal form require about 18% to 25% more bistable 
elements than binary numbers. However, the six unused numbers of a 
four bit binary-coded decimal group can be put to use in a redundancy 
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error checking scheme (see Chapter 9) , since the presence of any of them 
indicates that an error has occurred. 

When binary-coded decimal input and/or output devices are connected 
to a binary computer, so called input-output conversion programs, placed 
in the main store, are used to convert from one representation to the other. 
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7. System Design of GP Computers

7.1. Variants in Organization and Mechanization
In Chapter 2, the basic operational requirements of a stored program

digital computer were presented. However, from that point on the reader
had to accept as a matter of faith that a physical system satisfying these
requirements could actually be constructed. Now that the topics of
Boolean algebra, switching networks, storage systems, and arithmetic
units have been presented, it is appropriate to consider, in some detail,
the various ways in which a digital computer can be organized and
mechanized.

In the early stages of planning a computer, a number of important
decisions must be made upon which the eventual design will largely de­
pend. Four important basic considerations are: (1) number and type of
instructions to be included in the machine's repertory; (2) size and type
of main store; (3) format of words for representing instructions and data;
and (4) nature of the control unit, and how it is affected by the choice
of serial or parallel, and synchronous or asynchronous operation, the
choice of arithmetic unit, the number of addresses per instruction, special
features such as index registers, the type and mode of operation of
input-output equipment, the utilization of microprogramming, and, finally,
the inclusion of program-interrupt control features valuable for effi­
cient operation of a computer subject to concurrent demands. These
items are described in Sections 7.2-7.5, respectively. The arithmetic unit
will be considered only in relation to its influence on the control unit,
since specific variants in its design, namely algorithms, logical designs, and
circuitry for the basic arithmetic operations as well as ways of represent­
ing negative numbers are described in Chapter 6.

7.2. Number and Type of Instructions
In the design of a general purpose type of digital computer, one of

th(; first decisions to be made relates to the choice of arithmetic, logical,
and information transfer operations to be built into the machine, i.e.,
made available to the user as a single instruction. An important con­
sideration here is the expected frequency of use of an operation in prob­
lems to be solved by the computer. This can only be estimated, since all
the types of problems for which the computer will be used are not usually

372
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known in advance. At one end of the design spectrum are machines that 
are relatively simple, inexpensive, slow, and diflBcult to program, and at 
the other end, machines that are complex, expensive, fast, and easily 
programmed. There are a number of intermediate areas, each of which 
is optimum for each of several specific classes of apphcations. 

It is often preferable to generate relatively complex operations or 
functions, e.g., the extraction of roots, and the evaluation of trigonometric 
functions, by the use of subroutines instead of the additional hardware 
requh-ed to directly mechanize these operations. This would be the case 
if, after considering the speed and average frequency of use of these sub­
routines, it is ascertained that their use would not result in any serious im­
pairment of computational work. Prior to the actual design of a computer, 
it is not accurately known what the addition of a particular instruction will 
cost in equipment. The addition of an apparenty simple instruction may 
add appreciably to the complexity and the required number of com­
ponents, while an apparently complex instruction may be added at mod­
erate cost. Why this is so may be explained by first considering the 
nature of an instruction. Each instruction can be considered as a directive 
to the computer's control unit, the efliect of which is to cause a number 
of more or less elementary operations to be performed, e.g., obtaining an 
operand from storage, causing either an arithmetic or logical operation 
to be performed on it, transferring data from one part of the computer to 
another, etc. In Section 7.5.7, and foUowing, it is shown how each in­
struction can be considered to be comprised of a number of commands. 
A machine is capable of executing a specified instruction, if aU the 
elementary operations caUed for by the commands comprising the instruc­
tion are available and can be assembled in proper sequence. Thus, the 
cost of a new instruction depends on how many of the elementary opera­
tions needed to synthesize it are already avaUable within the machine. 

If certain instructions are established, e.g., by a prospective customer, 
as being necessary, the designer's chief concern is to design a computer 
that adequately meets the specified requirements. If the designer has free­
dom of choice in specifying the instructions, as weU as the manner in 
which they are to be executed, he may, in general, produce a design that 
requires less equipment for mechanization. Thus economies can be efliected 
if the instructions chosen are considered as a group. This is just one aspect 
of the economies that can, in general, be reaUzed by considering a com­
puter as a system. 

If possible, it is desirable that no instructions be included which are 
not generally useful and yet add appreciably to physical requirements. The 
term "generaUy useful" must be defined. It is used in the sense of being 
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Reliability ^ 

^"""" '^^^^/nexibiMty ' 

FIG. 7.1. Some representative computer design criteria 

should be emphasized that the preceding remarks apply more to com­
putational work or slow real time control systems, than to high speed 
control systems. In the latter case, the inclusion of special infrequently 
used instructions may make the difference between successful or non-
successful operation. 

The following list of instructions that have been used in existing 
computers provides a good indication of the wide variety possible, but 
also shows that there are only a few basic types: 

Arithmetic instructions 

1. Clear the accumulator and add (m) to it.* 
2. Add (m) to the accumulator. 

• By definition (m) means: Contents of storage location m. 

"generally useful for a specific type or group of applications." Any general 
purpose type of device suffers from the fact that compromises have been 
made in its design in order to be able to classify it as a general purpose 
type of device. The designer is continually confronted with a "Battle of 
the Bulge," and must grapple with all sides of the situation to keep things 
under control. The problem is a complex one, subject to several restraints: 
The number of instructions must not be allowed to grow too large or 
else the equipment will be cumbersome; it must not be too small or else 
the utility and speed of the computer are adversely affected. The design 
should permit as rapid a computation as possible without utilizing an 
excess of parallel equipment or frequencies of operation that promote un­
reliability. The fronts of a design battle are illustrated in Fig. 7.1. It 
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3. Clear the accumulator and add absolute value of (m) to it. 
4. Add absolute value of (m) to the accumulator. 

5. Clear the accumulator and subtract (m) from it. 
6. Subtract (m) from the accumulator. 
7. Subtract absolute value of (m) from the accumulator. 

8. Multiply the contents of the accumulator by (m), retaining the most 
significant half of the product in the accumulator. 

9. Multiply the contents of the accumulator by (m), rounding off the 
most significant half of the product by a specified procedure. 

10. Divide the contents of the accumulator by (m) , forming the quotient 
in the multiplier-quotient register. 

Logical instructions 

11. Shift right by k binary positions. 
12. Shift left by k binary positions. 

13. Replace the address in a specified instruction in the main store with 
the address designated by specified bits in the accumulator. 

14. Form the logical product (bit by bit) of a specified word in the main 
store and the contents of the accumulator. 

15. Complement individual bits of the accumulator corresponding to 
positions in another register holding I's. 

16. Clear individual bits of the accumulator corresponding to positions 
in another register holding I's. 

17. Stop the machine (maintaining or recirculating all information). 

Transfer of control instructions 

18. Transfer control to storage location m. 
19. Transfer control to storage location m if the sign of the accumulator 

is negative (or positive, or zero). 
20. Compare the contents of the accumulator with some other specified 

register. According to whether the contents of the accumulator are 
less than, equal to, or greater than the contents of the other register 
continue in sequence, skip one, or skip two instructions, respectively. 

21. If a breakpoint bit has the value specified, skip the instruction con­
taining it and transfer control to a fixed location in the main store. 

Sense instructions 

22. Take the next instruction in sequence or from a specified address in 
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* For commercial applications such as large inventory control, storage units of a 
different order of magnitude are required. Such machines are not so much com­
puters as they are low access time filing units. 

the main store according to whether a bistable device, Q\ is in a set 
or reset state. 

23. If a bistable device, Q\ is reset, set it and continue in sequence. 
24. If a bistable device, Q\ is set, reset it and take the next instruction 

from a specified address in the main store. 

Input-output instructions 

25. Read a specified number of words, blocks, or cards from an input 
device directly to a specified register in the computer. 

26. Write a specified number of words, or blocks on a specified output 
device from addresses in the main store starting at a specified point. 

27. Advance (or reverse) a specified magnetic tape a specified number 
of blocks without altering their contents. 

28. Rewind a specified magnetic tape to the beginning of a reel. 
29. Print on a specified printer k Unes from the main store, starting at 

a specified address. 
If a computer has a number of auxiliary registers other than those 

comprising the basic arithmetic unit, a number of special instructions 
wiU be required for transferring information between each of these regis­
ters and other registers that may be specified as sources or destinations. 

7.3. The Main Store 

In a stored program computer, the instructions comprising a program 
as weU as constants and intermediate data are stored in a large capacity 
storage system (like those described in Chapter 5) referred to as the 
main store. Three important decisions must be made in regard to this 
store, namely, the type of storage elements to be used, the total word 
capacity, and the manner in which access is gained to the store. The rela­
tive advantages of different types of large capacity storage systems are 
described in Chapter 5. In respect to the total word capacity to be em­
ployed, there is a practical upper limit to the size of the main store* 
because blocks of new data and/or instructions can be introduced from 
auxiliary storage units at adequate speeds. Since most computations wiU 
be highly repetitive in nature, the time required to complete the operations 
specified by one fiUing of the main store may be considerably greater 
than the time required for the filUng itself. In this case, the over-aU speed 
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of the computer would be increased only slightly by use of a larger sized 
main store. This consideration alone would make main stores of 1,000-4,000 
words adequate in most cases. However, more complex applications and 
accommodation of programs that automatically convert a problem-oriented 
language to instructions in machine code may call for 4,000 to 16,000 
words and more. Selection circuitry for gaining access to the main store can 
take a variety of forms depending on the circuit characteristics of the 
storage elements and various schemes for recording in and reading the 
contents of the individual elements. As stated eariier (see Chapter 5) a 
basic characteristic of a storage system is whether there is access to all 
the bits of an instruction or number simultaneously, or whether there is 
access to each bit in sequence, i.e., whether the machine operates in a 
parallel mode or serially. Some large capacity storage systems are better 
suited for parallel operation, while others are better for serial operation. 
For example, acoustic delay Hues are better suited for serial operation 
while a parallel mode is more applicable to cathode-ray tubes and 
magnetic cores. The bits of each word stored in a magnetic drum or disk 
store are usually recorded and read serially, although parallel arrange­
ments can be used, too. The influence of the type of access on other parts 
of the computer will be described in Section 7.5.1. 

7.4. W o r d Format 

The term "word" denotes an assemblage of bits considered as an 
entity in a computer. A word may hold a coded representation of either 
a number or an instruction. In arriving at the number of bits to be used in 
a word, as usual, a number of compromises must be made. Let us first 
consider the items affecting the choice of word length to represent a 
number. If the word length is made adequate for even the largest num­
bers that might be used, much storage space and circuitry will be wasted 
whra problems requiring less accurate solutions are solved. If too short 
a word length is chosen, there exists the possibility of using two or more 
words to store long numbers when necessary, but the multiple precision 
techniques required for operations on such numbers necessitate extra pro­
gram steps, and consequently increase storage space requirements and 
solution time for a given problem. In a stored program computer, it is 
convenient, as well as economical of storage space, to represent an in­
struction by the same word length, or an integral multiple or submultiple 
of the word length, used for a number. The number of bits in an instruc­
tion depends on the following: 

(1) The number of bits used to distinguish one instruction from 
another. Usually a binary code is used to represent the various instruc-
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tions, so if there are η different buih-in instructions, at least log2(n + JC) 
bits are required, where χ is the smallest integer that makes π + JC an 
integral power of two. Sometimes additional bits may be reserved in 
order to accommodate codes for interpretive instructions that may be 
used. An instruction code wherein each instruction is represented by 
a binary number makes the most economical use of storage. Also, since 
it does not restrict the choice of code to represent a particular instruc­
tion, the use of a nmemonic code is faciUtated. In some machines, how­
ever, particular bits are associated with particular classes of instructions. 
For example, one bit position can be used to distinguish between an 
addition or subtraction, another to distinguish between a recording or 
reading operation, etc. The effect of these two types of instruction codes 
on the main store and the control unit are described in Section 7.5. 

(2) The size of the main store. Bits must be allotted in the instruction 
word format for controlling the selection of a particular word in the main 
store. The number of words, n, in storage is usually some integral power 
of two, so that the number of bits allotted for the selection of a particular 
address is simply log2 n. 

(3) So far we have considered machines in which never more than 
one address is referred to in an instruction. Machines of this type are, 
accordingly, referred to as single-address machines. However, machines 
have also been built in which more than one address is referred to in a 
particular instruction. Additional bits must be provided to indicate these 
addresses, thereby increasing the number of bits required in an instruction 
word. The effect of multi-address instructions on the control unit is 
described in Section 7.5.4. 

(4) The number of bits reserved for special control functions, if any, 
e.g., index registers (described in Section 7.5.5) or for the addresses of 
any other auxiUary registers. 

The word lengths that have been chosen for presently operating gen­
eral purpose electronic digital computers intended for scientific and en­
gineering computations vary from 32 to 40 bits. Some studies have indi­
cated that for an "average" scientific problem the optimum word length 
Ues in this range. 

7.5. The Control Unit 
The usual mode of operation of a computer is as follows. After 

the machine is energized, a program for solving a particular problem is 
entered into the main store. The program is entered into the computer 
from an external storage medium such as punched cards, punched paper 
tape, or magnetic tape, which is moved and sensed by a suitable transport 
device and sensing mechanism. Once the machine has been filled and the 
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computer set to an active computing state, the sequence of states through 
which the machine progresses is determined by the stored program, and 
the number, type, and interconnection of its switching and storage ele­
ments. The advance from one internal state to the next is under the 
supervision of that part of the computer referred to as the control unit. 
In the case where the program to be executed requires more storage than 
available in the main store, large segments of the program may be entered 
at the appropriate time from an auxiliary store by the planting of input 
instructions at appropriate points in the master program. 

The introductory description of the operation of an automatic stored 
program computer in Chapter 2 indicates the fundamental requirements 
of the control unit. Briefly, it must provide (1) means for inspecting the 
contents of each instruction word, and generating signals that cause the 
operations therein specified to be executed; and (2) means for causmg 
the instructions located in the main store to be sensed in proper sequence. 
It is convenient, therefore, to divide the time interval for carrying out 
each step of the stored program into two major periods. The operations 
performed during the first period are said to comprise a search and 
acquisition cycle, and the operations performed in the second period com­
prise an execution cycle. To begin computation, means must be provided 
to locate the first instruction to be executed. If instructions are stored in 
sequentially numbered addresses in the main store, it is only necessary, 
after the machine has been switched to an active computing state, to 
always refer to a specific storage location, say that having the address 
00 . . . 000. In machines with single-address instructions, the control unit is 
provided with a counter which is always set to some initial value when 
the machine is switched to an active computing state. Upon execution of 
each instruction, the control counter is advanced, usually by a single incre­
ment, so that it then specifies the address of the next instruction to be 
executed. An exception to this operation occurs for jump instructions, in 
a manner described at the end of the following paragraph. 

Since, once acquired, the information in an instruction word must be 
used to control the execution process, it is necessary that the control 
provide a register for storing the contents of an instruction word. This 
register is referred to by various names in different machines, e.g., control 
register, instruction register. Actually the control register may also be 
considered as a group of separate registers. The ones that hold the opera­
tion code and address code are referred to as the operation and address 
registers, respectively. There may also be other registers for special func­
tions. (For a jump instruction, the contents of the control counter are 
replaced by the contents of the address register). 

If the main store is of the static type, the number in the address 
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register refers to a physical place only. As a matter of convenience, each 
address can be considered to be specified by two coordinate numbers, 
X and y. For example in the coincident current magnetic core store 
(Section 5.3.2) the bits of a word occupy the same XY position in aU 
planes and the planes are operated upon simultaneously. The X and Y 
parts of the address can each be apphed directly to a many-to-one func­
tion table as shown in Fig. 7.2. 
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FIG. 7.2. Word selection in a static store 

If the main store is of the dynamic type (see Fig. 7.3), part of the 
address refers to one of a number of storage areas, e.g., a particular track 
on a magnetic drum, or a particular acoustic tank among a set, and the 
other part of the address refers to the place which that storage location 
occupies along a particular track on the drum or in the delay hne. One 
way of locating a particular word in a specific line or track in a dynamic 
store is by means of a counter whose contents are advanced by 1 after a 
time interval corresponding to that required to read, or record, a word. 
Each time the word, whose place in a line is specified by the Y part of the 
address, is about to emerge from the hne, the number in the index counter 
will be identical with the bits in the time part (Y) of the address register. If 
the output from the latter unit and the counter are apphed to a coincidence 
circuit, a timing signal wiU be produced which can be used to allow a 
writing or reading operation to occur at the proper time. The X output of 
the address register controls selection of a particular hne. An input to 
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FIG. 7.3. Word selection in a delay line store 

the many-to-one table from an order decoder specifies whether a writing 
or reading operation is to take place. Since it is necessary that the delay 
line input or output gates be open only during the time specified by the 
Y code in the address register, the output of the coincidence detector as well 
as the output of the many-to-one table is appUed to the input-output gates. 

We have already indicated that it is a usual convention to separate 
out groups of bits in an instruction word according to the functions to be 
represented or controlled by each group. For example, one group may 
be used to specify the address from which the operand or the next 
instruction is to be obtained. Another group is used to hold the operation 
code. If the machine has index registers, a special group of bits may be 
used to address the registers to be used with the instruction, while another 
group of bits may be reserved to hold numbers to be loaded into or added 
to the contents of an index register. StiU other bits or groups of bits may 
be used for special purposes such as parity checking (see Chapter 9 ) , 
breakpoint designation (see Section 7.6.3.), or for any other purpose 
that may be convenient and desirable for a particular machine. Though 
the number of bits in each group is usually determined by the number 
of bits required to specify any one of the total number of choices by 
means of a weighted binary code, this does not have to be the case. For 
example, a type of operation code may be used wherein particular bits are 
associated with particular classes of instructions. With such a system, the 
outputs of the operation register can be connected dkectly to the appropri-
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ate gates in the machine, without intervening decoding and encoding func­
tion tables. The machine built at the Princeton Institute for Advanced Study 
has 10 bits allotted to specify an operation. Since not aU combinations of 
these are used, more storage capacity is required to hold a program than if a 
binary weighted code with fewer bits were used. However, the word length 
was chosen on the basis of the length of numbers desired, and this was 
so large that more than enough bits were available for single address 
instructions. Whether the scheme would stiU be attractive if the conflict 
between the word length most suited to the storage of numbers and that 
most suited to the storage of instructions were resolved another way is 
debatable. It could be argued that the added expense of additional storage 
capacity would more than offset the degree of elimination of decoding 
and encoding function tables. 

Regardless of the type of code used, the bits used to represent an 
instruction comprise the basic information from which other circuits mtist 
be activated for the execution of the indicated function. Therefore, in addi­
tion to the control counter and control register(s), the control unit must 
contain circuits which generate, from the information in the control 
register, the actual electrical signals for execution of each of the instruc­
tions. The circuits for accomphshing this wiU be referred to collectively 
as the main control circuits. TTiese circuits are used to develop a sequence 
of detailed commands to control the switching of information within the 
arithmetic unit and between the arithmetic unit and other units of the 
computer. A method of control in which the sequence of commands is 
generated by means of a master clock foUowed by timing-pulse distributing 
circuits is referred to as synchronous or clock control. The timing of aU 
operations is controUed or synchronized with the clock, and each opera­
tion requires an integral number of clock intervals. A method of control in 
which a start signal causes a certain action to be taken, and in which the 
successful completion of an action generates a signal to initiate the proper 
foUowing action, is referred to as asynchronous or revertive control. In 
an asynchronous computer there is no fixed time reference, each operation 
being commenced as soon as the preceding one is completed. A further 
description of synchronous and asynchronous control is provided in Sec­
tion 7.5.2. 

To summarize, the control unit must produce as many different se­
quences of gating or switching signals as the number of different arith­
metic, logical, or transfer operations the computer is required to per­
form, and it must be capable of assuming at least as many logical con­
figurations (i.e., binary states) as there are different steps required for 
the execution of aU these instructions. This sets a lower Umit to the 
number of active storage elements required for the control unit. These 
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steps will be referred to as commands in discussions that follow, and it 
will become evident that some commands are commonly required for the 
execution of any instruction, and that of the remainder some are different 
only in a superficial way. The common steps performed during tne ac­
quisition cycle may be grouped under the heading of instruction look-up 
commands. An instruction counter (see Fig. 7.4) supplies the storage 
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FIG. 7.4. Over-all arrangement for a single-address GP computer 

selection circuits with the address of the next instruction and the main 
control circuits provide gating signals that cause an instruction to be 
read from the main store. The execution of an instruction is also per­
formed by means of the main control circuits. 

All instructions may be classified in even more general categories 
than those described in Section 7.2. Three basic categories are as follows. 
(1) Commands which control the transfer of information between parts 
of a system: the control of information transfers, as well as the selection 
of locations in the memory, depends largely on the particular type 
of storage used. (2) Conditional (or sequencing commands): This type 
of instruction makes the location from which the next instruction is ob­
tained dependent upon whether the contents of some register, e.g., the 
accumulator, are less than, equal to, or greater than some number (usually 
taken, for convenience, to be zero). The control unit must arrange, there­
fore, to examine the sign and/or other bits of one or more registers, as 
well as cause any indicated transfers of control. (3) Conmoiands which 
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control the manipulation of information—the arithmetic and logical opera­
tions called for by certain instructions. Though these commands may 
involve the selection of words to be read from or recorded in the main 
store, they are primarily concerned with the interconnections of various 
parts of the arithmetic unit. 

The requirements for simple operations such as addition, subtraction, 
collation, may be very similar, differing perhaps in that part of their con­
trol which guides the operands to the proper destination in the arithmetic 
unit. More complicated instructions such as multiplication and division, 
require more complex control circuits to arrange for a number of different 
operations that may be required (depending on the algebraic algorithms 
employed), e.g., shifts of operand(s) and partial products, examination 
and/or comparison of bits in the operands, recording of the number of 
steps completed so that a signal may be provided indicating the comple­
tion of a multiplication or division, etc. 

The details of a control unit's design depend on so many factors and 
differ so from one machine to another that it is not practical to discuss 
the details of several machines. Instead, the principal functions and opera­
tions common to most general purpose computer control units have 
been described. In the succeeding sections, the effects of five important 
variables on over-all machine operation will be considered. They are: 
serial or parallel operation, synchronous or asynchronous operation, the 
type of arithmetic unit, the use of single or multiple-address instructions, 
and the inclusion of special features such as index registers. 

7.5.1. SERIAL OR PARALLEL OPERATION 

Though it is diflEicult to draw comparisons, because of various possible 
designs for both serial and parallel machines, some important distinctions 
can be made. First of all, because the complete addends are operated 
upon simultaneously in a parallel machine, rather than bit by bit as in a 
serial machine, its arithmetic unit must be larger: a separate register 
element (a flip-flop or bistable counter) as well as a separate adder cir­
cuit, must be provided for each bit (see Sections 6.1.2 and 6.1.3). The 
difference in equipment requirements is greater for machines with a longer 
word length. The control circuits can be simpler in a parallel machine; 
the timing is simpler since a number can be transferred from one section 
of the machine to another, or an addition performed, by the application of 
a single pulse to a set of gates. In a serial machine, a set of timing pulses 
corresponding to individual bit positions must be generated and applied 
to various gates. 

The faster speed of the parallel machine is reflected in the fact that its 
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dominant unit of time is an addition time, i.e., the time interval required 
to add two numbers, while in a serial computer it is a word time, i.e., 
the time required to read or record a word (in both cases, the access time 
is not included). Certain devices may be employed to increase the speed 
of a serial computer. For example, the control unit may be modified so 
that the next instruction to be executed is selected from the main store 
and placed in a stand-by register (often referred to as a preconmiand 
register) concurrently with the actual execution of the current instruction. 
This, as well as other procedures that might be employed to increase the 
speed of a serial machine would have little effect on the speed of a computer 
with a parallel access memory and a parallel arithmetic unit. However, 
a higher degree of paralleUsm can be obtained by using several local in­
formation processors distributed throughout the area occupied by the 
memory, and a central processor to exercise over-all control. Such an ar­
rangement could materially increase the speed of machines in the gigacycle 
range where transit time is a basic hmitation (see Sections 4.3.4 and 4.7). 

TABLE 7 .1 . A comparison of serial and parallel operation 
for certain figures of merit. 

Figure of merit Serial Parallel 

Circuitry 
Amount 
Complexity of control 

Speed of the arithmetic 
unit 

Compatibility 
With main store 

With type of control 

Considerably less 

Compatible with serial 
or parallel storage 

Compatible with syn­
chronous control only 

Simpler 
Faster 

Compatible with parallel 
storage 

Compatible with synchro­
nous or asynchronous 
control 

7.5.2. SYNCHRONOUS OR ASYNCHRONOUS OPERATION 

In a completely synchronous computer, the timing of all operations 
is controlled or synchronized with a clock, and each operation requires 
an integral number of clock intervals. The machine is controlled by a 
clock pulse oscillator whose successive output signals define the smallest 
time interval recognized in a machine, namely a bit period. Other pulses 
defining major and minor periods are derived either from the clock by 
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means of counters that produce an output signal after accumulating certain 
specified clock "counts" (see Sections 3.10 and 6.1.1) or from timing 
tracks (see Section 7.6.3). All switching waveforms rise and fall at times 
defined relative to the clock waveform, and the duration of the rise and 
fall times must be less than a specified time which is dependent on the 
nature of the switching elements (see Chapter 4 ) . 

In an asychronous machine, each operation is initiated upon com­
pletion of the one preceding. Not only is there a wide tolerance on the 
shape and ampUtude of control pulses, but because the timing of a 
particular pulse is unimportant provided it does not occur until the pre­
ceding operation is completed, it need not be accurately phased relative 
to the clock. Although an asynchronous machine can be designed so that 
on the completion of each operation a pulse is emitted which initiates 
the next operation, as a matter of convenience the machine can be driven 
from a clock source to which it is, strictly speaking, synchronized. 

7,52,1. Synchronous Control 

In a synchronous computer there is a clock pulse generator which 
serves as the source for various timing signals. The period between 
successive clock pulses is the smallest interval of time defined in the 
machine. Other time intervals of importance in its operation are defined 
by the intervals between designated states of clock pulse counters. Two 
of the major time periods have already been referred to, namely that 
required to transfer an instruction from the main store to the control 
register(s), and that required to actually execute an instruction. In 
addition to these major periods for instruction acquisition and execution, 
there are other periods specified for the performance of various operations. 
There is also a requirement for the generation of signals that define 
specific points within these time intervals. The circuits that generate 
the various timing signals required are sometimes referred to collectively 
as a timing pattern generator. 

As stated in Section 7.5, the execution of each instruction requires the 
performance of a number of operations in sequence. In a synchronous 
computer, the time for initiation of each minor or major operation is 
specified by a timing signal from the timing pattern generator. With 
synchronous control, no action can take place, i.e., there can be no 
advance from one internal state to the next unless a clock pulse is present. 
The number of clock pulse periods required for an instruction acquisition 
period is fixed, since the same operations are performed in all acquisition 
periods. The number allotted for the execution of each instruction is 
dependent on and determined from the operations of which it is comprised. 
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A typical arrangement for a synchronous control unit is shown in 
Fig. 7.5. All operations required in the execution of an instruction are 
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FIG. 7 . 5 . Synchronous control for a single-address G P computer 

dictated by the order code placed in the operation register during the 
acquisition period immediately preceding. The outputs of the operation 
register are apphed to a many-to-one function table, causing one output 
hne to be energized for each instruction. These output hnes, as well as a 
number of auxihary inputs and the timing signals from the timing pattern 
generator, are apphed to an encoding switching network. One may think of 
the inputs from the many-to-one (decoding) table and the auxihary inputs 
as controlhng the connections made between the inputs from the timing 
pattern generator and the output command lines of the encoding switching 
network. Some typical auxihary inputs are signals indicating: (1) whether 
the conditions of conditional type instructions have been satisfied, (2) 
whether the computer is currently in an acquisition or execution period, 
(3) which step is being performed in the execution of an instruction 
whose execution period consists of several steps. Whenever an instruction 
requires more than one step in its execution, the individual steps are 
indicated by a counter which is caused to advance after the completion 
of each step. When the required number of steps has been completed, 
a signal is produced to initiate a new instruction acquisition period. 

For instructions referring to the main store, the storage selection 
circuits are controUed by the address register. During an acquisition 
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period, they are controlled by the instruction counter. This counter norm­
ally is advanced by one increment during the execution of each instruction, 
so that in the succeeding acquisition period it will cause the selection of 
the instruction in the next sequentially numbered address. If the instruc­
tion just executed called for a transfer of control to some other address, 
that address will have been transferred into the instruction counter from 
the address register. 

7.5.2.2, Asynchronous Control 

In an asynchronous machine, a control cycle normally begins by gener­
ation of a signal at a particular physical location. Branchings will then 
take place according to the order code of the instruction received from 
the main store. However, there is no precise control over the intermediate 
steps of each operation. One may think of the action as free running— 
each action in an operation triggers another action until the particular 
operation is completed. A signal, indicating the completion of a particu­
lar operation, is always generated at a specified location, and is used to 
initiate the next chain in a specified sequence of operations. 

A typical arrangement for an asynchronous control unit is shown in 
Fig. 7.6. When the computer is switched to an active computing state. 
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the timing control circuits initiate an operation by generating a "start" 
pulse. This pulse is applied to a chain of delay units from whose outputs 
the acquisition period timing pulses are obtained. The lines along which 
these timing pulses are directed are the command lines to circuits that 
must be activated to execute the operations required during the instruction 
acquisition period, namely selecting the next instruction from the main 
store and transferring it to the control register (i.e., the address and 
operation registers). The acquisition period is completed by the time the 
start pulse activates the instruction execution circuits. 

The emergence of the pulse at the far end of the acquisition delay 
units signals the beginning of the execution period. The pulse is applied 
to the inputs of a number of AND gates, as shown in Fig. 7.6. There is 
one AND gate for each instruction in the computer's repertory, and the 
pulses will pass only through the one connected to the currently energized 
output line of the many-to-one function table, which in turn is determined 
by the order code in the operation register, i.e., the instruction to be 
executed. After passing any one of the AND gates, the pulse is applied 
to a chain of delays and gates which generate a sequence of signals 
which are directed ¿ong command lines to activate circuits that cause the 
execution of any given instruction. For some instructions, the pulse may 
be recirculated along some closed loop within a particular set of delays 
and gates until a specified condition is met, as signaled by one of the 
auxiUary inputs. For example, in operations such as multiplication, 
division, and shifting, a particular sequence of commands must be re­
peated a number of times. The completion of the required number is 
usually indicated by a counter which activates a command hne. The 
signal on this command Une causes the recirculating loop to be effectively 
broken, and also opens a gate allowing the pulse to pass on. When the 
execution of an instruction has been completed, the pulse returns to the 
timing control circuits so that they can initiate the next operation. 

Before the instruction counter can be triggered to its next state, it 
must receive an indication, i.e., a revertive signal, that its last output 
signal was successful in activating certain specified circuits. If the op­
eration were unsuccessful, the signal to advance the counter would not 
arrive, and the counter and therefore the whole computer would be 
stopped. This feature may be useful in locating failures within a computer. 

7,5.2.5. Comparison of Synchronous and Asynchronous Control 

In a synchronous system, the duration specified for an operational 
period is determined from the maximum time required by the longest 
operation to be performed in that period. This is not the case in an asyn-
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* Henney, F. C , HI [1961] Iterative Arrays of Logical Circuits, M.LT. and John 
Wiley & Sons, New York. 

chronous system. Asynchronous operation of regular networks (i.e., ones 
with exactly one equilibrium state for each possible combination of pri­
mary input values*) yields a speed advantage, in principle, because the 
average time to transmit a signal through a network is the average (rather 
than the maximum) delay per circuit times the number of circuits. With 
either type of control, overall speed is limited by the main store since 
addition (or subtraction), logical and transfer operations can be completed 
in less time than it takes to acquire a word in storage. By making serial 
multiplication and division asynchronous, the average time for execution 
of these operations can be significantly reduced. 

The fact that by far most computers are synchronous machines may be 
ascribed to several factors, including the foUowing. First, there are poten­
tial hazards in asynchronous networks due to variation in response time 
of active elements and in the transmission time of signals. An interlock 
system (see Section 4.3.4) for nonregular networks means additional 
circuitry which, in most cases, increases the delay per circuit to where 
there is no longer a clear advantage over synchronous operation. FinaUy, 
because of an indeterminate time for execution of operations and the 
complexities required, in general, for hazard free operation, asynchronous 
systems are considered more difficuh to design, understand and service. 

Table 7.2 provides a brief resume of certain figures of merit of inter­
est in a comparison of synchronous and asynchronous operation. A princi­
pal consideration in reference to the computing element is the consistency 
of its operating time. For example, the operating time of a relay is a 
function of its exact adjustment, the tolerances of its components, etc. 
Because of a wide variation in operating time, relays are best suited 
for asynchronous control. Vacuum tube, transistor, and magnetic core 
circuits are suitable for either type of control. 

7.5.3. NUMERICAL REPRESENTATION IN THE ARITHMETIC UNIT 

Two major considerations in the design of an arithmetic unit, namely 
serial or paraUel operation, and synchronous or asynchronous control, 
have already been considered (in Sections 7.5.1 and 7.5.2). It was 
pointed out there that in a parallel asynchronous machine, a number 
can be transferred from one register to another upon receipt of a signal 
pulse whose time of occurrence, rise and fall times, and duration are 
aU noncritical. In a serial synchronous machine, the timing of each 
waveform relative to the clock waveform, as weU as hs rise and faU 
times, and duration are aU critical. 
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TABLE 7.2. A comparison of synchronous and asynchronous control
for certain figures of merit
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Figure of merit Synchronous Asynchronous

Compatibility of control Compatible with sync. Compatible with async.
With arithmetic unit or async. arith. unit arithmetic unit

With storage Compatible with serial Compatible with
or parallel storage parallel storage

Speed of operation Determined by estimated Determined by average
speed of slowest speed of all circuits
element

Component tolerance Only limited degradation Speed independent circuits
allowable because of operable after consider-
requirements on wave- able degradation of com-
shapes and pulse ponent characteristics.
coincidence at gates.

Ease of maintenance Simpler organization, A dc coupled machine can
easier to understand. be put in a state of static

equilibrium

Ease of understanding Operation of circuits Hazard-free networks are
is straightforward. generally more complex.

We will now consider the effects of certain choices in numerical
representation upon the complexity of the arithmetic unit and, therefore,
its control, Le., all the circuits required to cause transfers of information
into and out of the arithmetic unit as well as to supply signals that
cause arithmetic and logical operations to proceed at the right time and
in proper sequence. The items which we shall consider are (1) the num­
ber base, (2) means for positioning the radix point, (3) the representa­
tion of negative numbers. In most computers, numbers are represented
internally either in a binary or some type of binary-coded decimal repre­
sentation. In those cases where it is either convenient or necessary to
enter and display data in decimal form, input-output data conversions
would be required for a binary machine (see Sections 6.4.3, 6.4.4).
On the other hand, arithmetic operations are more complex for a binary­
coded decimal machine (see Sections 6.1.3, 6.1.4.2.3, 6.1.5.2, 6.1.6.2).
Various means for representing negative numbers are described in Sec­
tion 6.1.4. A comparison of fixed positioning of the radix point and
floating point operation is provided in Sections 6.3.3. and 6.3.4. In a
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computer with built-in floating-point operation, counters must be pro­
vided to store the exponent associated with each number. The shifts 
required prior to or after arithmetic operations are effected under control 
of these counters, and circuits that sense nonzero digits in a shift register. 
The exponent counter receives an input pulse after each shift. By ac­
cumulating them, it keeps track of the number of shifts. 

The effects on the arithmetic unit and its control of the three major 
choices in numerical representation are summarized, for convenience, in 
Table 7.3. 

TABLE 7.3. Effects of numerical representation on the arithmetic unit 

Choice 

Number base 
Binary-coded decimal 

Binary 

Radix point 
Fixed 

Floating 

Representation of 
negative numbers 
Absolute value and sign 

Two's complement 

One's complement 

Comment 

General familiarity 
decimal input-output 
conversion simpler 

Simpler arithmetic 

Simple arithmetic unit 

Wide range of numbers 

Easy multiplication and 
division. Simpler input-
output data conversion. 

Addition and subtraction 
easy. Derivation of 
complement easy. One 
value of zero 

Derivation of complement 
very easy, facilitating 
conversion to and from 
signed form before and 
after multiplication 
and division 

Internal mechanization more 
complex than for binary 

Requires conversions of in­
put data and output data 
for decimal display 

Limited range of numbers 

Complex arithmetic unit 

Addition and subtraction 
more complex than with 
complements. Two values 
of zero. 

Conversion to signed form 
is complex. Normal mul­
tiplication and division 
methods require correc­
tions, special methods 
(Section 6.1.5.1.6) do 
not. 

Extra end point correction 
in addition and subtrac­
tion. Need to know signs 
prior to conversion for 
multiplication and divi­
sion complicates serial 
machine (since l.s. bit is 
first). Two values of 
zero. 
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* Minimum access programming techniques can also be used with one-address ma­
chines. They depend on an internal addressing arrangement wherein successively 
numbered addresses are separated by a specified number of word lengths. This 
relative inflexibility makes the one-address machine less efficient in minimizing 
access time. See Knuth, D. E. [1961]. 

7.5.4. NUMBER OF ADDRESSES IN AN INSTRUCTION 

The instructions described in Chapter 2 and in Section 7.2 are of a 
class referred to as single-address instructions. This means simply that 
only one address is referred to in an instruction. However, there are a 
number of machines in which reference is made to more than one address 
per instruction. A brief description of different addressing systems that 
have been used follows: 

A one-address system requires three instructions for most arithmetic 
operations: two instructions to bring the operands from storage and one 
instruction to transfer the result back to storage. Instructions are executed 
in sequence according to the contents of an instruction counter. The code 
bits reserved for specifying an address in the main store may be used for 
other purposes in the case of instructions requiring no internal address, 
e.g., shift, test, and input-output instructions. 

In one type of two-address computer (e.g., the IBM 650) there is 
included in each instruction a second address which usually specifies from 
which storage location the next instruction is to be obtained. Consequently, 
the instruction counter (required in the one-address computer) may be 
replaced with a simpler unit, an instruction register. This system facilitates 
minimum access programming* for computers having a nonrandom 
access main store, because the next instruction can, in general, be placed 
in an address that will be accessible to the reading stations, shortly after 
execution of the current instruction. In another type of two-address ma­
chine (e.g., the ERA 1103) both addresses may refer to operands used in 
the execution of an instruction. 

In the usual three-address computer, the three addresses specified in 
each instruction are those from which two operands are to be obtained 
and that to which the result of an operation on the two operands is to be 
transferred. 

In a computer with a four-address instruction (e.g., the SWAC) each 
instruction contains the three addresses of a three-address computer, plus 
an additional address specifying the location from which the next instruc­
tion is to be obtained. 

The control sequence of a machine using single address instructions 
proceeds in two stages: the acquisition of an instruction from the main 
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store and the execution of that instruction. Since the address of the next 
instruction is obtained by adding a constant to the address from which 
the present instruction was obtained, some facility must be provided to 
produce the new address at the proper time. Since the constant is usually 
1, a counter is provided. In the execution of a jump instruction, the con­
tents of the counter are replaced by the contents of the address register. 
The control sequence of a two or more address machine proceeds in two 
or more stages, depending on whether the addresses are dealt with con­
currently or sequentially. As stated earlier, if each instruction contains 
the address of the next instruction, the sequence control counter can be 
replaced by a simpler register. This "next instruction register" may receive 
its information from the instruction register and one or the other may be 
eliminated. 

As noted earlier, if each instruction specifies the address of the next 
instruction to be executed, there is greater programming flexibility. How­
ever, additional storage space may be required for these extra addresses. 
The amount of extra storage space consumed is diflBcult to ascertain 
precisely, since the length of a word is usually dictated by the maximum 
number of significant digits that are to be available for representing a 
number. The space consumed by extra addresses depends also on the 
size of the main store. On the other hand, a program of multiple address 
instructions requires fewer words of storage than an equivalent program 
of single address instructions. Another advantage of a multiple address 
system is that the main store does not have to be consulted as often, and 
therefore, the over-all computer speed is less dependent upon access time 
to the main store. The value of these advantages depends on how efficiently 
the multiple-address system is used. The advantage of the single-address 
system is that it permits a simpler control unit. 

7.5.5. INCLUSION OF SPECIAL CONTROL FEATURES 

An instruction may be converted to a new one by transferring it from 
the main store to the accumulator and then performing some operation 
on it. This procedure, though, is often inconvenient and wasteful of time 
and storage space. Therefore, in some computers a special register or 
group of registers referred to as index registers is provided. The contents 
of these registers can be automatically added to an instruction before it 
is executed (by means of special circuitry in the control unit) at the 
discretion of the programmer. A group of index registers is often referred 
to collectively as a B-box because this designation was used in the com­
puter in which they were first used, namely that built at the University 
of Manchester. In a machine provided with index registers, extra bits 
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must be reserved in each instruction word for their addresses. For ex­
ample, if four bits are assigned for a B-box address, as many as 16 index 
registers may be referenced. In most applications index registers are used 
only to modify the address part of an instruction. Therefore, they usuaUy 
contain no more bits than required for an address in the main store. 

Since the incorporation of index registers into a computer enables an 
instruction to be modified before it is executed, the foUowing distinction 
must be made: An instruction in the form in which it appears on the 
programmer's sheet, on an input tape, or in the internal memory of the 
computer is termed a presumptive instruction. The instruction executed by 
the computer is termed the effective instruction. To faciUtate the use of 
index registers, the control unit of the computer is modified so that the 
presumptive instruction may be automaticaUy converted to the instruction 
to be executed. The additional capabilities incorporated into the control 
unit are as foUows: (1) after an instruction has been selected from the 
main store, but before it is executed, the index register designated by the 
B-box address is inspected; (2) the contents of this index register are 
added to (or subtracted from) the presumptive instruction; (3) while B-
box address bits in the actual instruction may be set to zero (as in the 
University of Manchester machine), the B-box address bits in storage are 
unchanged, however. The necessity of having to sequence these modifica­
tion procedures compUcates the control unit. 

For a machine with index registers, other faciUties must be added 
besides the capabihty for automatic modification of an instruction just 
described. These consist mainly of adding to the machine's instruction 
repertory, instructions relating to the B-box. Some basic instructions 
of this type are as foUows: (1) an instruction for transferring data into 
the index registers; (2) an instruction for copying the contents of an 
index register into the main store; (3) at least one instruction that per­
forms a shnple arithmetic operation on the contents of an index register. 
Such an instruction is useful in permitting index registers to serve as 
auxiUary accumulators, e.g., for counting (from which the term "index 
register"), leaving the accumulator undisturbed during the mam compu­
tation. A typical instruction might be: subtract the contents of storage 
location s from the contents of index register /. However, a diflSculty 
arises in connection with instructions intended to operate on the contents 
of an index register. This is because such an instruction must specify the 
mdex register to be operated upon, yet the bits reserved for an index 
register address are normaUy used to indicate the index register whose 
contents are to be used to modify the instruction. Therefore, an additional 
type of B-box instruction, one which can never be modified by the 
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The greater convenience of counting backwards (facilitating the use of the con­
ditional transfer instruction) is one reason why subtraction may be preferred to 
addition for an arithmetic operation on the contents of an index register. Also, 
addition may be compounded from subtraction, but not vice versa. 

contents of an index register, must be provided. In this type of instruction, 
designated as non-B modifiable, the B-box address specifies the index 
register on which the instruction operates and nothing else. Each of the 
three types of B-box instructions described eariier in this paragraph may 
be of the Β modifiable or non-B modifiable type. 

It is also useful to have a transfer type of B-instruction conditional 
on the contents of a designated index register. The Manchester University 
computer has two instructions of this type, an absolute B-conditional 
transfer instruction and a relative B-conditional transfer instruction. The 
term absolute indicates that control is transferred to a specified address, 
and relative indicates that control is transferred a specified number of 
positions from the original position. An absolute instruction of this type 
might be of the form: (4) take control to the next instruction in order 
if the number in the index register is negative, otherwise transfer control 
to 1 plus the address which appears in the conditional transfer instruction. 
It should be noted that an additional rule is needed to specify which 
index register decides the behavior of the control. In the Manchester 
University computer, the decisive index register is the one last operated 
on, i.e., the index register appearing in the last actual instruction, prior to 
the B-conditional transfer instruction. On occasions when it is required 
to execute a B-conditional transfer instruction conditional on the contents 
of index register i while the last operation was performed on a different 
index register, a dummy instruction may be inserted which formally acts 
on i without having an efliect on the program, i.e., without altering the 
number in index register /, e.g., "copy contents of index register / into 
storage location s where ^ is a spare," or "subtract the contents of s from 
index register / where s contains zero." 

The economy to be reaUzed from the use of a B-box will be demon­
strated by programming a problem first without and then with the use 
of B-box instructions. Example 7.1 shows two such programs, each of 
which is designed to cause the numbers in storage locations 50 through 
99 to be multiplied by the contents of storage location η and the products 
returned to these locations. Note: the instruction codes used in the first 
program are defined in Table 2.1 except for Μ m, which means "produce 
in the accumulator the product of the numbers in the accumulator and 
storage location m." In the second program, F m η is a non-B-modifiable 
form of instruction which fills index register η with the contents of storage 
location m. R m η (also non-B-modifiable) is a combination tally and 
conditional transfer instruction: 1) It subtracts* .00 . . . 01 from the 
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Address Instruction Explanation 

000 cA η Multiplies the contents of storage locations 
001 Μ 099 050 through 099 by the contents of location n. 
002 C 099 

003 cA 002 Converts the instruction C m (in storage loca­
004 S 102 tion 002) to C m - 1. 
005 C 002 

006 cA 001 Address m in Μ m is used as a tally number 
007 S 100 to detect when 50 numbers have been oper­
008 Τ 012 ated on, indicated by (M m - Μ 051) < 0. 

009 A 101 Μ m is replaced by Μ m — 1, produced as 
110 C 001 the net effect of instructions 007 and 009. 

Oil U 000 Stop 
012 Ζ 

100 Μ 051 ) 
101 Μ 050 [ Constants are stored here. 
102 — 001 1 

Program with B-box instructions 

Address Instruction Β Address Explanation 

000 F 100 Ol Fills index register Ol with contents of lo­
cation 100. 

001 cA η 00 
002 Μ 050 Ol 
003 C 050 Ol 
004 R 001 Ol Subtracts 1 from index register 01 and trans­

fers control to location 001 if remainder ^ 0. 

005 Ζ Stop 

100 — 049 The constant, 049, is stored at location 100. 

For convenience in use of conditional transfer instructions, addresses 
are operated on in the order 99, 98, . . . 50 rather than the reverse order. 
It is assumed that index register 00 is cleared before the program is ini­
tiated (or that 00 is a fictitious address whose contents are interpreted 
to be zero). By reducing the number in index register 01, R 001 01 re­
duces the tally number and the address in locations 002 and 003. 

contents of index register n, and 2) if the remainder is ^ 0, transfers 
control to location m, otherwise to the next consecutive location. The other 
instructions are B-modifiable forms of instructions defined earUer. 

Example 7.1 

Program without B-box instructions 
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Uses to which index registers may be put include the following: 
(1) To reduce the amount of storage space required by programs 

containing computer modified commands. For example, when 
computed results have to be stored in sequential locations, the 
same instruction may be used repeatedly, with the address part 
being B-modified each time. Without the use of index registers, 
three separate instructions would be required to add an increment 
to the address part of an instruction during each traversal of 
an iteration loop. With index registers, the number of instructions 
is reduced to one. 

(2) To dispose of or obtain information from stored tables. If the 
value of a function corresponding to a given argument is desired, 
a table may be stored having the value of f(x) stored in location 
X, To obtain'/(.;c) it is then only necessary to plant the argument 
in an appropriate instruction. The B-box may be used to modify 
this instruction. 

(3) In sorting processes. 
(4) To modify instructions permanently stored in those channels 

of a dynamic magnetic store which are not provided with a rec­
ord head, i.e., for altering so-called dead programs. For example, 
such dead programs may be used to provide a permanent input 
routine. They have the advantage of precluding the possibility 
of an accidental writing-over operation. Use of the B-box retains 
this advantage while eliminating the disadvantage of not being 
normally able to modify instructions within a dead program 
during use. 

(5) To plant links in closed subroutines. A closed subroutine is 
preceded by instructions which insert, at the close of the sub­
routine, an instruction returning control to the main program. 
This may be done by storing the link in an index register at 
the beginning of the subroutine, using the same index register to 
modify the instruction which returns control to the main pro­
gram. 

(6) To change the internal addresses of a subroutine, thus enabling 
that routine to be placed in an arbitrary section of the main 
store. We recall that a subroutine contains both external addresses 
(which refer to fixed positions in the memory) and internal 
addresses (which refer to positions within the subroutine itself). 
If a subroutine is written to fit into a section of the memory 
starting at location zero, it may be made to fit into another 
section starting at location η if η is added to all internal addresses. 
If η is stored in an index register at the beginning of a subroutine, 
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and if all instructions having internal addresses are modified 
by the contents of that index register, the subroutine will operate 
properly. 

The following computers, among others, have a B-box type of 
facility 

The Ferranti (University of Manchester) Computer 
The Whirlwind I (adapted) 
The MIDAC (University of Michigan) 
The Electrodata Datatron 
The IBM-704 

Some machines have a repeat counter that controls the number of 
times an instruction is repeated. In these machines a built-in instruction 
is provided for transferring a number from the main store to the repeat 
counter. The number in the counter is diminished by 1 each time the 
instruction is repeated, until the counter reaches 0, whereupon the pro­
cess is ended. For example, the UNIVAC-1103A computer, which is a two-
address machine, has a repeat instruction which states: repeat the next 
instruction η times, augment one address by / and the other by / (where 
the allowed values for /, / are (0, 1), (1 , 0 ) , (1 , 1). A repeat counter 
facilitates such operations as adding a long list of numbers stored at 
sequentially numbered addresses, and transferring large blocks of informa­
tion between the main store and input or output devices. In the latter 
case, the repeat counter is used to hold the number designating how 
many words are to be transferred. As indicated in the preceding discussion 
of index registers, it is often desirable to alter the address part of an 
instruction each time it is repeated. A simple way to provide Üiis feature 
is to convert the control register that holds the address of an instruction 
to a counter. Then, the pulses that are sent to the repeat counter upon 
each execution of an instruction to be repeated may also be sent to this 
counter to change the address by 1. 

7.5.6. INTEGRATION OF INPUT-OUTPUT EQUIPMENT 

Equipment used either for the preparation of data and/or its com­
munication to the computer, or for producing a record of computed 
results is referred to generally as input-output equipment. An important 
distinction in the way this equipment is used is whether its operation is 
on-hne or off-hne. In on-Une operation there is direct control of the 
equipment by the computer. In off-hne operation there is no connection 
between the equipment and the computer: input equipment used off-hne 
records data on an external storage medium for subsequent entry into 
the computer by on-line equipment; output equipment used off-lme pro-
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cesses data recorded on an external storage medium by on-line equipment. 
The control console of a computer is usually provided with special 

keys and switches by means of which signals may be generated for such 
functions as controlHng the internal operation (e.g., starting or stopping 
a computation), revising the contents of a selected storage location, or 
correcting small errors. Depression of a key actuates a mechanical switch, 
either directly or indirectly by energizing a solenoid. This action 
produces binary signals, on one or more wires, which are transmitted 
to the proper functional unit, e.g., one or more control flip-flops, a counter, 
control register, or storage register. Where it is convenient to have a 
typewritten record of data entered via a keyboard an electric typewriter 
may also be provided as an on-hne data entry device. The signals 
generated by depression of a key are transmitted to the computer and 
used concurrently to actuate a typing bar. The use of a Flexowriter allows 
the production of a punched paper tape record as well. 

For the entry of large amounts of data, e.g., complete programs and 
libraries of subroutines, it is more efficient to prepare the data off-line 
by means of data preparation machines, e.g., keyboard controlled paper-
tape punches and card punches. After the data has been prepared it can 
be read into the computer at a rapid rate by means of higher speed 
readers, e.g., paper-tape readers, punched-card readers, or magnetic tape 
readers connected on-line. An additional advantage of off-Une data prepa­
ration is that it permits the location and correction of most errors intro­
duced by the operator prior to the entry of that data into the computer. 
In addition to various error checking procedures that may be used, 
verification may be obtained by means of standard or special equip­
ment designed for this puφOse. In either case, circuitry is provided that 
compares the recorded data keyed in by one operator with that prepared 
independently by another. If there is a disagreement an indication is 
provided, usually by locking of the keyboard, and the erroneous data 
can be removed. Of course, though this procedure greatly reduces the 
probabiUty of an undetected operator error the same error made in 
corresponding characters of both records would go undetected. Such 
errors would then have to be picked up by other means. 

Since a single keyboard can be connected electrically to more than 
one set of actuating devices, one used to produce typewritten records 
or documents such as checks or invoices can be modified to cause the 
recording of data on an input medium simultaneously. 

In addition to its data entry devices, the control console is also 
usually provided with switches and indicators which allow the contents 
of registers in the arithmetic and control units or storage locations in the 
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main store, as well as the status of specified circuits, to be monitored. 
The data recorded by output equipment operating on-line may be in a 
form directly usable, such as the typewritten page produced by an electric 
typewriter, or in a form not directly usable such as data recorded on 
external storage media, e.g., punched-paper tapes, punched cards, or 
magnetic tape. A visual record can be produced from the external storage 
media by means of off-hne electric typewriters activated by punched-paper 
tape and line-at-a-time printers activated by punched cards and magnetic 
tape. The principal reason for the use of ofl[-line output equipment is 
that it allows a greater data output rate. This is because, in general, data 
can be accepted by a recording device at a greater rate than by a 
corresponding printer. The types and number of pieces of peripheral 
equipment used depends, generally, on the characteristics of the computer 
— îts provisions for control of input-output equipment, its speed, the 
capacity and type of main store. The types of output equipment called 
for depend also on the output rates and form required of various classi­
fications of data to be recorded on external storage media and/or printed. 
For example, because recording on magnetic tape is faster than the 
operation of a card punch or a mechanical printer, a magnetic tape unit 
would be used if large quantities of output data were to be recorded in 
a brief period. If punched-card records were also required they could 
be produced off-Une by means of a magnetic tape-to-punched card con­
verter. Printed records could be obtained either from a magnetic tape 
or punched-card controlled printer. An added benefit of producing inter­
mediate records on external storage media is that subsequently they can 
be used as inputs to a computer as well as to a number of specialized 
units of peripheral equipment. 

For appUcations involving long sequences of operations on relatively 
small amounts of input data and producing relatively little output data, 
the input-output data transfer rate is moderate, and a shnple type of 
computer organization may be used in which input-output instructions 
are similar to internal instructions operating on single operands. For 
those applications where the ratio of input-output to internal operations 
is appreciable, (mainly in commercial record keeping and data processing 
applications), it may be necessary to provide higher speed input-output 
equipment or so design the computer's logical structure that it can con­
trol computing operations and certain input-output operations simul­
taneously. One way of accomplishing parallel internal and input-output 
operation is to provide instructions which can cause the transfer of a 
block of data between the main store and an auxiliary store. The latter 
must be provided with separate controls which allow it to accept or trans-
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mit data between itself and external devices without the need for access to 
the main store. Thus, individual data transfers between the main store 
and external devices do not disrupt the main program. 

Whenever two storage media of different rates must be interconnected, 
an intermediate store must be provided, referred to, for obvious reasons, 
as a buffer. An efBcient way to utilize an input buffer is to cause the 
transfer of a block of data from the input medium to the buffer during 
the time the computer is processing the last previously received block 
of input data, and at the completion of this processing, to cause the 
new set of input data in the buffer to be transferred at high speed to the 
computer's main store. An output buffer would be used in a similar way. 

In larger systems it is the usual practice to provide one appropriately 
large storage unit to act as buffer (and control) between the internal 
store and any one of several selectable external storage units of a particu­
lar type. For example, a single buffer may accommodate as many as ten 
magnetic tape units, (as in the UNI VAC-1103 A or IBM-704 com­
puters), each of which is identified by an address code. 

The storage capacity of a buffer depends primarily on the chosen 
unit of information transfer between the internal and external stores, 
the difference in their rates and the time allowed for transfer. The buffer 
must be capable of receiving information at one rate and transmitting it 
at another. This can be accomplished by means of static registers or a 
combination of static registers and a less expensive cyclical type of 
storage. In addition to being responsive to a wide range of input fre­
quencies, static registers can also provide a completely asynchronous 
means of read-in and read-out. 

A common characteristic of the external storage problem is the need 
for a very large volume of storage accessible to the computer, though 
not necessarily at high speeds. Therefore, the size of the external store, 
though varying with the application, is usually several times that of the 
internal store. An insurance company file, for example, may contain 10^^ 
bits. Access times of the order of seconds rather than milU- or micro­
seconds can be tolerated here. The most commonly used external storage 
media are punched cards, punched paper tape, and magnetic tape, disks, 
or drums. Programs held in these external stores must be transferred to the 
internal store before they can be executed. 

As in the computer, an assemblage of bits in an external store is 
usually organized into groups called words. However, the form of a 
word or character stored here need not be the same as in the internal 
store. For example, a word on magnetic tape may be in serial-parallel 
form, a word of 36 bits, say, being arranged on six tracks with six bits 
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per track. In the computer the same word may be stored as 36 serial bits. 
A sequence of words in an external store is called a block. Its size need 
not have any relation to details of internal storage. 

Because of the relatively long access thne to a word in an external 
store, it is inefficient to use an instruction for the transfer of only one 
word. Accordingly, it is the practice to cause the transfer of information 
between the computer's fast access storage and consecutive locations 
on tapes, disks, or drums by an mstruction that refers to a block of 
several words (called a block transfer instruction) rather than by instruc­
tions referring to single words. 

Transfers of information from external to internal stores are most 
easily effected by addressing information in the internal store. During 
the execution of a program, if it is anticipated that the capacity of the 
internal store will be exceeded, a few internal storage locations are 
reserved for instructions which wiU record appropriate blocks of inter­
mediate results on tapes, disks, or drums, and then call in blocks of more 
program steps or data, as required. 

The control of the external store must supervise the tasks of handling 
the medium and causing the indicated locations to be selected. The as­
sociated problems vary with the particular storage medimn. As an example, 
consider a magnetic tape handhng unit. Here, a search operation may be 
initiated by an instruction from the computer which identifies the tape 
handhng unit to be consulted, and gives the address of a particular block 
on the tape. These two numbers (i.e., that of the tape unit, and the block 
address) are stored by a separate tape control unit. This permits other 
instructions to be executed by the computer while the search progresses. 
At some point in the execution of the main program, the computer will 
require the execution of an instruction calling for the desired block of 
information to be read from the tape. Since the instant at which the read 
instruction may occur and that by which the search is completed will 
not, in general, coincide, it is necessary to provide some type of interlock 
in the system which will aUow the read operation to occur only if there 
is an indication that the search for the desired block has been completed. 
The tape control unit provides the foUowing faciUties to accompUsh the 
search: storage for the code identifying a tape unit and the address of a 
block, a means for distmguishmg block address information from other 
information stored on the tape, controls to start the tape drive and 
accelerate the tape smoothly when a block is caUed for (in either a readmg 
or recording operation), comparison circuits to detect when the desired 
block has been reached, controls to stop the tape drive, and other 
misceUaneous controls. 
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7.5.7. MICROPROGRAMMING 

The operations called for by a single machine instruction are effected, 
in general, by a sequence of elementary commands, sometimes referred 
to as micro-operations. The number and sequence of these commands for 
the execution of each instruction are usually wired into the computer. 
Each instruction can be considered as being composed of a microprogram 
of commands, just as a normal computation is composed of a program 
of instructions. The concept of microprogramming is useful in designing 
the control circuits of a computer. Its primary purpose is to situate and 
interconnect the elementary commands in such a way that they are 
readily accessible either for the modiñcation of old instructions or the 
formation of new ones. The use of microprogramming in the design of 
the control unit does not necessarily imply a more eflBcient final logical 
design. What it does provide is conceptual clarity and flexibiUty in respect 
to modification of the instruction repertory. 

The design of a control unit based on the microprogramming tech­
nique will be described for a parallel computer. It is convenient to regard 
the control unit as consisting of a control register unit and a microcontrol 
unit. Both are shown in Fig. 7.7 and will be discussed in turn. The 
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FIG. 7.7. A microprogrammed control unit 

control register unit consists of a group of registers and an adder together 
with a switching system which enables transfers of information between 
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the registers. The names and functions of these registers are shown in
Table 7.4. The incorporation of more registers into the unit would
enable additional facilitIes, e.g., index registers, to be added to the micro­
programs.

TABLE 7.4. Registers in a control register ueit

Register Function

I a The contents of the address register, I a' control the selection of
a location in the main store.

10 The order code buffer register, 10, hoids the code of the instruction
to be executed next by the microcontrol unit.

P The program sequence control register, P, holds the address of
the next instruction to be executed.

C This register serves two functions: (1) it acts as an address counter,
receiving an address from register P and augmenting it by 1,
(2) it acts as an instruction buffer register, receiving first each
instruction selected from the main store.

A number of preparatory commands must be carried out prior to the
execution of any instruction. These instruction acquisition commands
select an instruction or operand from the main store, transfer it to the
control unit, and set up the control unit to repeat the look-up operation
for successive instructions in the program. The numerical code for each
of these commands, as well as a description of the operations performed
by each is given in Table 7.5. At the conclusion of the instruction
acquisition operations, the following conditions exist: (a) the address of
the operand is in register, fa; (b) the order code, defining the entry point
to a microprogram, is in register, MI.

TABLE 7.5. Instruction acquisition commands

Command No. Operation

Transfers address of instruction to be executed from the register P
to the register I a' and also to the register C.

2 Adds 1 to the contents of register C and transfers the result, the
next consecutive address, to the register P.

3 Selects from the main store the instruction whose address is specified
by register I a' and transfers this instruction to register C.

4 Transfers the order code and operand address of the instruction to
be executed from register C to regi~ters 10 and la' respectively.

S Transfers the order code, which defines the entry point to the
microprogram of a given instruction, from register 10 to register MI.
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It is the function of the microcontrol umt (see Fig. 7.7) to actuaUy 
execute the instruction obtained from the main store by the control 
register unit. Application of an "advance" pulse to the gate causes the 
code of the entry point, which may be considered to be an address, to be 
transferred to register M2. When a control pulse is apphed to the many-
to-one function table Γα, one, and only one, output line wiU be activated, 
according to the address in register M2. The activation of any line causes 
gates to produce signals required for a particular command. The code 
specifying a particular instruction must cause a unique sequence of com­
mands to be executed. Therefore, the activation of any output Une of 
Ta can also be used to cause the address of the succeeding command in 
the microprogram to be entered next into register M2 (via register M i ) . 
This can be mechanized by use of a one-to-many table, Γ^, which when 
activated produces a command address on its parallel output Unes, (not, 
in general, unique to a particular input). The progression from one com­
mand of a microprogram to the next is achieved by alternate apphcation 
of the control pulse to Ta and the advance pulse to the gate, the advance 
pulse being apphed just before the control pulse. 

To run a program, it is only necessary that the address of the first 
instruction to be executed be placed in register P, and that the address 
00 . . . 01 be placed in register M o . Then the application of successive 
pulses to the input of table J«, and to the gate, wUl cause the first and 
succeeding mstructions to be executed by a microprogram of elementary 
commands. 

The steps involved in the execution of each instruction wiU now be 
described. We recaU, first, that at the completion of any nUcroprogram, 
control normaUy is advanced to the first in the sequence of commands 
necessary to select a new instruction from the main store and set up 
the control register unit for selection of the next instruction. This sequence 
consists of commands 1 through 5 (described in Table 7.5). However, 
at the conclusion of an unconditional transfer of control instruction and, 
it foUows, the execution of a successful conditional transfer of control 
instruction, command 1 is skipped. The effect of this is twofold. First, 
h causes the instruction at the address specified in the transfer of control 
instruction to be selected from the main store, rather than the instruction 
at the address one greater than that from which the transfer of control 
instruction itself was obtained. Secondly, it places in the next instruction 
register Ρ the address one greater than the address to which control 
was transferred by the transfer of control instruction. The effect of 
skipping command 1 is best iUustrated by an example. In Table 7.6, 
the first column shows the effects of the operations dictated by commands 
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1 through 4 in the instruction acquisition phase of cycle p + 1, following
the execution of a nontransfer of control type of instruction. The second
column indicates the effects of commands 2 through 4 in cycle p + 1
following receipt of a transfer of control instruction in cycle p.

TABLE 7.6

Cycle Command Operations Command Operations

p

2 Augments the address
j in C by one and trans­
fers j + 1 to P.

Receipt of any instruc­
tion except [U m]
eventually transfers
control to (1)

1 Transfers contents of
P, j + 1, to 10' and also
to c.

3

4

9

Transfers the instruction
[U m] from the main
store to C
Transfers instruction in
C, [U m], to 10, 1a
Transfers control to
command 2.

p+l

2

3

4

Augments the address
j + 1 in C by one and
transfers the result
i+2 to P.
The instruction whose
address j + 1 is in 1a
is selected from the
main store and placed
in C.

The operand address
and the order code of
the instruction in C
are placed in 10 and'
la' respectively

2

3

4

Augments the address
mine by one, and
transfers the result
m+ltoP

The instruction whose
address m is in 1a is
selected from the main
store and placed in C

Th~ operand address
and the order code of
the instruction in C are
placed in 1a and 10,

respectively

An explanation of the microprogram for executing each of the instruc­
tions A m, cA m, S m, U m, T m, C m, and Z (described in Table 2.1)
will now be given. Reference to Fig. 7.8, which indicates the sequence
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FIG. 7.8. Flow diagram of microprograms

of control and the operations performed for the execution of each instruc­
tion, will be helpful. The numbers within circles designate commands,
and the numbers in squares, the operations called for by those commands.
Commands 1 through 5 have already been discussed. Commands 11, 13,
15, 16, 14, 12, and 10 designate the entry points to the microprograms
of the instructions A m, cA m, S m, U m, T m, C m, and Z, respectively.
Every command designates not only what micro-operation will be per­
formed next, but also to what command control will be transferred after
completion of the micro-operation. The operation designated by each of
the various operation codes is shown in Table 7.7.

The operations in Table 7.7 indicate use of a relatively simple arith­
metic unit containing only a register R, an accumulator A, and an
adder-subtractor unit. This restriction has been made only to simplify
the description. Also, the switching system in the arithmetic unit may be
designed either to permit a large variety of commands, or it may be
restricted. It would seem preferable to have the more flexible system
for a computer with a large instruction repertory, since then fewer
commands would be required, in general, in a given microprogram. Similar
remarks apply to the degree of flexibility to be provided when designing
the switching system for the control register unit.
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Operation 
code Operation 

20 Transfers the operand, whose address is specified by 7̂ , from the 
main store to the register R in the arithmetic unit 

21 Adds the contents of register R to the contents of the accumulator A 
22 Transfers a word from the location in the main store specified by 

7g to the accumulator A 
23 Subtracts the contents of register R from the contents of the 

accumulator A 
24 Sets the nip-flop F¿ if the sign bit of the accumulator is 1. 
25 Copies the contents of the accumulator A into the location in the 

main store specified by the address in 7̂  

The manner of execution of the microprograms for instructions A m, 
cA m, S m, and C m should be clear from reference to Fig. 7.8. 
Note that in the case of Τ m, control is transferred to the same place, 
(command 2) , if the sign of the accumulator is negative, indicated by 
Ff = 1, as if a U m instruction were being executed. If the sign is 
positive, control is advanced to command 1. The only other instruction 
caUing for some comment is instruction Z. If the flip-flop Fz is in the reset 
state, the only effect of command 10 is to cause control to be transferred 
back to itself. This effectively puts the computer in a blocked or "dynamic 
stop" state. The computer can be taken out of this state by activation 
of a restart switch, which sets the flip-flop Then control will be 
advanced to command 1. 

All micro-operations will not, in general, take the same length of 
time to perform. For example, even in a parallel computer it may not 
be possible to reduce the carry propagation time in an adder to the point 
where an addition requires the same time interval as a transfer. Other 
operations, too, notably transfers between the main store and external 
equipment, may take many times the interval required for an ordinary 
command. Therefore, for longer micro-operations than the normal, 
the sequence of operations in the microprogram must be interrupted. 
One way of doing this for a long command is as follows. Associate a 
flip-flop, Fy, with the command and use the flip-flop output as a con­
ditional input to table Γ 5 . The flip-flop will be set only by the completion 
of the command being executed. As long as it is not set, the output of 
table will be the address of the current command and, consequentiy, 
the contents of register M2 are not altered. Upon completion of the 
command, Fy is set, allowing control to be advanced to the next com-

TABLE 7.7 
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mand in the microprogram. The advantage of this arrangement is that 
it does not require any modification of the circuits supplying input 
signals to table Γα. Note that this type of operation is similar to that 
for recirculating the stop command (see Fig. 7.8). 

The technique described in the preceding paragraphs is best adapted 
to a parallel type of computer. However, a serial computer may be 
designed along the same lines. The pertinent differences are as follows: 
In a parallel computer with an asynchronous arithmetic unit, every 
gate requires only one kind of waveform to operate it and the timing of 
that waveform is not critical. In a serial computer, different gates 
require different waveforms, the same gate may require different wave­
forms at different times, and all these waveforms must be critically 
timed. These complications may be handled by including in the micro-
control unit a third function table, Γ^, for selecting the appropriate 
waveform for each command. The main waveform routed by the 
decoding function table, T«, opens a gate which is fed by a waveform 
selected by table Γ^. This enables a waveform of correct duration to be 
applied to any selected gate in the arithmetic or control sections of the 
computer. 

The early mechanization of the microprogramming technique was 
either by the use of accessible diode matrices, which are easily rewired, 
or plugboards. It is possible, however, to store the micro-instructions 
in a high speed random access storage unit. This allows new instructions 
to be generated even during the execution of a program, e.g., under the 
control of problem parameters. Thus, any given computer may have 
whatever instruction code its user desires, and even this may be changed 
for different programs, or during the course of a program. 

7.5.8. PROGRAM INTERRUPT CONTROL 

Where a machine is used as an on-line data processor, it may be 
desirable to provide a means of interrupting the normal advance of 
control through the stored program in response to signals received from 
external sources. In an early form of mechanization, referred to as 
program interrupt control, the program being executed was mterrupted 
whenever a signal was received from a source of input data indicating 
that it was ready to transmit data for storage in the computer's internal 
store. For computer systems applied to control of industrial processes, 
this concept can be expanded to allow the computer to respond to 
demand signals from different sources on a priority basis. Each source 
of such a signal is assigned a priority number in accordance with its role 
in the over-all program designed for the process being controlled. There 
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is a program in the main store corresponding to each of these priorities. 
Whenever an input signal is received, the program currently being exe­
cuted is interrupted and control transferred to the program called for by 
the new input signal, provided it has a higher priority than the program 
being executed. All input demands are scanned in an orderly manner 
and all demands satisfied sequentially m accordance with their priorities. 

A priority interrupt control feature is particularly useful in industrial 
control applications where it is important that a computer responds auto­
matically and after a minimal delay to various critical situations mdicated 
by ofli-Unut values of variables being monitored or by other indicators 
such as the actuation of a control switch. It is similar on a programmed 
level to the operation of a dc coupled asynchronous system on a circuit 
level in that each operation is initiated by completion of the preceding 
one. In this case one of several programs which can be considered to be 
in parallel will be entered upon completion of a program executed in 
response to a demand of higjier priority. This allows a machme's time to 
be utilized to the fullest and also allows a variety of demands to be satis­
fied without the necessity of assigning in advance time intervals for their 
performance. A wide variety of demands can then be accommodated within 
an over-all program design. Included in the hierarchy of programs may be 
those for the accumulation of signals from a clock, the execution of self-
checking routines, special functions which may be demanded occasionally 
by manually-operated switches to which priorities have been assigned, 
the scanning of analog readings of various measuring devices and their 
conversion to digital form, etc. 

Priority interrupt control is generally useful for eflBcient asynchronous 
use bf a computer. For example, consider the case where a computer 
mcorporated in a control system is idle for periods of varying duration 
throughout the day. In this case, programs for the solution of other prob­
lems can be made available for call-m and solution during these otherwise 
idle times by being assigned priorities lower than those of any of the 
demands imposed by the system being controlled. 

The inclusion of a priority interrupt system does not markedly affect 
the complexity of the control unit. Briefly, it must provide for relatively 
shnple operations of a bookkeeping nature in order to keep track of the 
demand currently receiving attention, and the priorities of the demands 
awaiting satisfaction. The priority interrupt control circuits operate con­
currently and independent of other operations. Their main functions are 
to inspect periodically the status of stations at which demand signals may 
be present and to cause interruption of the program currently being 
executed whenever a higher level demand is detected. Upon detection of 
this higher priority demand, the control imit must cause a transfer of 
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control from one program to another subject to various constramts m-
cluding the following: (1) the mterruption is to be deferred until com­
pletion of the present instruction, and (2) before control is actually 
transferred to the entry of the new program, the return address to the 
next instruction that would have been obeyed (had the interruption not 
occurred) is planted in a specified location so that it may be used on exit 
from the new program to return to the one interrupted. Other special 
operations may also be desirable, depending on the nature of the particular 
computer in which the priority interrupt system is incorporated, and the 
degree of sophistication of the interrupt system. 

7.6. Logical Designs of General Purpose Arithmetic Computers 

Earher in this chapter certain broad principles involved in the design 
of a general purpose arithmetic digital computer were considered. In 
Sections 7.6.2 and 7.6.3, the logical designs of two specific computer 
systems wiU be derived. Since there are a great many variables entering 
into the design of a digital computer, the total number of different 
designs possible is enormous. The criteria for the two particular designs 
described were chosen on the following bases. First of ¿Q, the instruction 
repertory was restricted to the seven basic single-address instructions 
described in Chapter 2. The inclusion of more instructions would not 
have contributed materially to the purpose of instruction, but would 
have added appreciably to the complexity of detail and perhaps even 
obscured fundamental points. To indicate specificaUy the influence of the 
type of main store on over-all computer design, both major types of 
main stores are considered—a paraUel access static store in Section 
7.6.2 and a serial access dynamic store in Section 7.6.3. In both cases, 
the size of the main store chosen was dictated by considerations of 
simphcity. Although the word lengths were chosen to be 16 bits in one 
machine and 32 in the other, the format of munbers and instructions 
in both machines is similar. In the machine with a static main store, 
the arithmetic unit is not described in detail because the machine's 
logical design is such that any of a number of arithmetic units, described 
in Chapter 6, could be used. Although synchronous operation is impUed 
in the description of this machine, it could readily be adapted, in a 
manner to be described, to asynchronous operation. The machine with 
the dynamic main store must be a synchronous machine. In its design, 
advantage is taken of the opportunity to demonstrate certain ways to 
minimize the requirements for active storage units. For example, it is 
shown how the arithmetic and control functions can be achieved by 
means of circulating registers plus a smaU amount of active storage and 
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switching circuitry. Also, extensive use is made of the technique of 
time-sharing which is defined and described m Section 7.6.1. 

7.6.1. TIME-SHARING 

"Time-sharing" refers to a way of organizing the various operations 
to be performed by a machine in such a way that more efficient utilization 
of a storage element, such as a flip-flop, is obtained. It is best described 
by means of an example. Assume that a major operating cycle of a 
system is divided into a number of periods, say n, by time markers, 
to through i«. Assume that a flip-flop must be set by a signal W at time t^ 
and reset by a signal X at time /ί+α, where / < (/ + a) < n. Assume, 
too, that another flip-flop is to be set by a signal Y at time it+j, and 
reset by a signal Ζ at time ti+c, where (/ + a) < (/ + 6) < (/ +c ) 
< n. All of these requirements may be met by two flip-flops P, Q, having 
the following mput equations 

ρ = wti ρ = Xti^a 

q = yii+ft q = Z / i + c . 

If the periods during which each of the flip-flops P, β , is used to control 
other circuits do not overlap, Ρ and β may be replaced by a single ffip-
flop /?, with the following input equations 

r=Wti+ Yt^, f = Xti^a + Z/.+,. 

Note that though a storage element (a ffip-flop) is saved, two lo^cal 
operators (OR gates) have been added. 

There are two distinct ways of employing the time-sharing technique: 
(1) For a system with a given major cycle of operation, an inspection may 
be made of some given estimate of flip-flop requhrements for the purpose 
of detecting whether separate flip-flops are being used for nonoverlapping 
functions as described above. Even if such a situation does not exist, it 
may often be forced by the designer through some mmor changes in the 
operation of parts or all of the system (e.g., trial and error changes in 
various switchmg signals, m order to produce a larger percentage of input 
signals that are nonoverlapping). (2) This is a more fundamental method, 
and affects the basic design of a system. It consists of mcreasing the period 
of operation of the machme, defining new subintervals of time, and speci­
fying that functions which might normally be performed concurrently be 
performed in different subintervals. Therefore, a single ffip-flop may be 
used for several functions during a smgle major period. The extent of the 
time-sharing employed is Umited by the speed requirements of a system. 

Though the term time-sharing has been given to the technique de-
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* Also, it does not take into account the repetitive nature of the signals generated 
by the flip-flops used for control purposes in a computer. There would, of course, 
be little point in transmitting these three messages repeatedly, whereas in a com­
puter it is essential for control information to be maintained and/or generated as 
long as the system is in operation. 

scribed, the reader will readily appreciate that no new concept is involved 
here. The first procedure recognizes that it is wasteful to use two transmis­
sion channels of equal capacity for the transmission of two messages in 
an interval At, if they can both be transmitted over one channel within the 
same interval. The second recognizes that, if a given message can be trans­
mitted over a channel of bandwidth α in a time interval At, then the same 
message can be transmitted over a channel of bandwidth a/n (where 
η > 1) if a time interval nAt is allowed. 

Often, in descriptions of digital computer design techniques, multiplex­
ing is included under the heading of time-sharing. A distinction should be 
made. Consideration of a transmission channel will illustrate the differ­
ence: Time-sharing improves channel utilization by eliminating dead 
times, i.e., by minimizing the time intervals when the channel is not being 
used. Multiplexing, too, provides efficient channel utilization. However, 
instead of serially transmitting different whole messages, it samples cor­
responding bits of each message sequentially. For example, the second 
bit of the first message is not transmitted until the first bits of all the 
messages have been transmitted. At the receiving station, each message 
is reconstructed by diverting onto a separate path all bits of a particular 
message. The entry to each channel may readily be controlled by means 
of a gate with a timing signal input. Example 7.2 illustrates the basic 
difference between time sharing and multiplexing on an information chan­
nel. However, it is incomplete* in that it does not show why or how one 
method may be preferable to the other in the design of a digital computer. 
Examples of time-sharing are given in the design of the general purpose 
computers described in Sections 7.6.2 and 7.6.3. One example of multi­
plexing is provided in a digital differential analyzer, wherein the bits of the 
Y and R registers could be stored alternately, on one channel, at the 
cost of doubling the time required to process a single operational unit 
(see Chapter 8) . 

Example 7.2 

Messages to be transmitted 
One: I love you 
Two: Merry Xmas 
Three: Hello Jack 
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Time sharing 

Muhipiexing 

Η ö[] J o j c k 

Direction of transmission 

I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 1 2 3 I 2 3 I 2 3 I 2 3 

When there is time sharing or multiplexing of storage channels or 
active storage elements, distinct timing signals are associated with each 
term in the Boolean algebraic expressions of the read, record signals, or 
flip-flop input signals. Inspection of these equations, therefore, indicates 
what takes place at any given time. However, to satisfy some criteria of 
mechanization, like reducing the number of gating levels, or equalizing the 
load on certain variables, the original equations may be manipulated to 
yield forms that satisfy these criteria. Since the meaning of a rearranged 
expression may not be as apparent as that of the original, it is useful for 
the sake of clarity to list both in a description of the machine. 

7.6.2. THE LOGICAL DESIGN OF A G P COMPUTER WITH A 
STATIC MAIN STORE 

For convenience, we choose as the instruction repertory for this ma­
chine, the list of instructions described in Table 2.1. For ready reference, 
the instructions and their codes are Usted again 

Code Instruction 
cA m Clear the accumulator, then add (m) to it 

A m Add (m) to the accumulator 
S m Subtract (m) from the accumulator 

C m Copy the contents of the accumulator into the main store 
U m Unconditional transfer 
Τ m Conditional transfer 
Ζ Stop 

Other specifications are as follows: (1) All transfers of information 
within the machine are effected in parallel. (2) The main store is of the 
random access type with a capacity of 1024 words. (3) The length of 
words is 16 bits. (4) All numbers, JC, used in the computer are normaUzed 
to Ue in the range - 1 ^ jc ^ (1 - 2-^*^). Negative numbers will have a 1 
in the sign position and be in a two's complement form. (5) The same 
word length is used both for storage of a number or an instruction. The 
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Order Operand 
2O2-1 2"'^ address 

II II r m ~ n 
16 I 161514 10 I 

( a ) Number format ( b ) Instruction format 

FIG. 7.9. Word format for a number (a) and an instruction (b) 

Position 1 holds the least significant bit, (2-^«), and the sign bit is in 
position 16. The format of a word representing an instruction is shown 
in Fig. 7.9(b). The three-bit group (positions 14, 15, 16) is used to store 
the order codes. The ten-bit group (positions 1 through 10) is reserved 
for the address (from 1 to 1024) in the main store of the operand desig­
nated in aU instructions, with the exception of the Ζ instruction. 

We wiU now consider some general requirements for the control unit. 
It is assumed that, after a program has been placed in the main store, 
and upon activation of the computer, the control unit wiU cause the in­
struction stored in memory location 1 to be located first and subsequently 
wiU obtain instructions from consecutively numbered locations within the 
main store. The only exception to this procedure wiU occur in the event 
that a U m or a successful Τ m instruction is encountered. The other 
major function of the control unit is to initiate and assure completion of 
the sequence of operations necessary to execute the instruction obtained 
from the main store. 

These two principle functions of the control unit, namely, causing 
reference to be made to a specified address in the main store and causing 
the actual execution of instructions so obtained, can be achieved by the 
use of flip-flops and switching networks. SpecificaUy, the control unit wiU 
be comprised of ten flip-flops, Ci through Cio, which we shaU refer to as 
the control register, and four flip-flops, h through I4, which we shaU 
refer to as the instruction register. The C flip-flops wiU serve two functions, 
namely as a storage selection (i.e., address) register (of both instructions 
and operands), and also as a program counter. When acting as an address 
register, the control register selects a word from the proper address in the 
main store by specifying two coordinate numbers, X and Y (see Fig. 7.2). 
The y address is in positions 1 through 5 of an instruction word and the X 
address in positions 6 through 10. When an instruction word is obtained 
from the main store, the Y address is placed in flip-flops Ci through Ce 
and the X address in Ce through Cio. These flip-flops are used as inputs 
to an X and a Y matrix, both of which are many-to-one function tables 

format of a word representing a number is shown in Fig. 7.9(a). 
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(see Chapter 4 ) . Consequently, one output line of both the X and the Ύ 
matrix is activated. Through the use of additional circuits (not shown) 
this selects a corresponding X, Y storage location in each plane for the 
puφose of either recording or reading. Details of a procedure for selecting 
all the bits of a word in parallel from a static store are provided in 
Chapter 5. Since a word in this machine has 16 bits, there are 16 planes 
and 16 output Unes in the memory. When acting as a program counter, 
the control register functions as foUows: The execution of each instruction 
causes its contents to be advanced by 1, so that it then indicates the next 
consecutive address in the main store from which an instruction word is 
to be obtained. The flip-flops / i through Iz receive the order code from 
positions 14 through 16 of an instruction word at the same time that the 
operand address is received by the flip-flops C i . . . Cio. 

To summarize, upon activation of the computer, the control regster 
wUl automaticaUy be set to 1. By design, this wiU cause the operand ad­
dress and order code of the instruction word stored in address Ζ = 0, 
y = 1, of the main store to be placed in the control register and the 
instruction register, respectively. The contents of the control register wiU 
then control the transfer of information to or from the specified address 
depending upon whether a recording or reading operation is specified 
by the order code in the instruction register. At the same time, a specified 
sequence of operations necessary to execute an instruction is generated in 
accordance with the contents of the instruction register. How this is ac-
compUshed wiU be described after considering the nature of certain other 
registers in the machine. 

There are two registers in the arithmetic unit. One register, comprised 
of flip-flops, / i i , y42, . . . /4ie, accepts and temporarily stores the result 
of an arithmetic or logical operation. For example, if two numbers in the 
main store are to be added, the instruction cA would be used to bring 
one of these numbers into the register and then the instruction A(m) 
would cause the second number to be added to the first and the result 
placed in the register. In the execution of the latter operation, the flip-
flops Αχ, /Í2, . . . ^ l e and another group of flip-flops, Äi , . . . ^ le are 
used as the inputs to an adder. The output of the adder is stored in the 
flip-flops Ai, A2, . . . Aie, replacing their previous contents. The flip-flops 
/ i i , i42, . . . ^ l e are referred to as an accumulator because the result of an 
operation stored there may, in turn, be operated upon to form a new 
result and, in general, the results of successive operations may be 
accumulated before the contents are transferred. 

The other register in the arithmetic unit is referred to as the R register. 
It is comprised of flip-flops, Ri, R2, . . . Rie which have already been 
referred to in connection with one of their major functions, namely to 
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Store an operand selected from the main store in a form which can be 
used as an input to a switching circuit such as an adder. Briefly, it holds 
one of the operands when either of the instructions A(m) or S(m) is to 
be executed. As a matter of convenience, the transmission of a word from 
the main store will always be by way of this register. For example, when 
a word is to be transferred from the main store to the accumulator, it will 
first be transferred to the R register and from there to the accumulator. 
The R register is also used in conjunction with the control register as 
follows: One clock period after the R register receives an instruction word 
from the main store, the order code (m RURI^RIQ) and the operand 
address (in / ? i . . . Rio) are transferred to Iihh and C i . . . Cio, re­
spectively. Smiultaneously, the contents of C i . . . Cio (the address from 
which the current instruction was obtained) are transferred to . . . Rio. 
The latter transfer temporarily stores in the R register the address from 
which the current instruction was obtained until the contents of the control 
register have served to initiate a transfer of information to or from the 
main store. At that time, the address fhom which the current instruction 
was obtained can be retransferred from the R register to the control regis­
ter so that the latter, acting as a program counter, can form the address 
of the next instruction to be executed. 

Now that the nature of the control unit and arithmetic unit have been 
outlined, we will consider the specific requirements for the execution of 
the various instructions. Because execution of each instruction usually 
requires the performance of a number of operations, each instruction can 
be considered as a set of elementary commands. Though these commands 
differ in detail, all of them fall into one of two main categories, namely 
those that cause the transfer of information from one part of the computer 
to another, or cause information from two or more sources to be combined. 
Both types of operations can be performed by means of switching net­
works. A description of the machine's instructions in terms of more ele­
mentary commands is given in Table 7.7. 

Before considering further the requirements for execution of particular 
instructions, we will consider what commands are required in the execu­
tion of any instruction. Three of these are: (1) A command which causes 
an instruction word (whose location is specified by the contents of the 
control register) to be transferred from the main store to the R register. 
(2) A command which causes the operand address part of the instruction 
word stored inRi... Rio to be transferred to C i . . . Cio. (3) A command 
which causes the order code part of the instruction word, in Äie^ieÄie, 
to be transferred to Iihh- The first of these three commands causes the 
instruction word specified by the control register to be obtained from the 
main store. The second suppUes the control register with information 
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Instruction Code Conmiands 

cA m (a) Transfer the contents of the selected word to the R register 
(b) Transfer the contents of the R register to the accumulator 

A m (a) Transfer the contents of the selected word to the R register 
(b) Add the contents of the R register to the contents of the 

accumulator 
S m (a) Transfer the contents of the selected word to the R register 

(b) Add the complement of the contents of the R register to the 
accumulator 

C m Transfer the contents of the accumulator to the selected word in 
the main store 

U m Cause the next instruction word to be selected from memory 
location m 

Τ m (a) If the contents of the accumulator are negative, cause the 
next instruction word to be selected from memory location m 

(b) If the contents of the accumulator are not negative, carry out 
the operations necessary to advance to the state at which the 
program counter advances by a count of 1 

Ζ Stop, i.e., idle until the computer is activated again 

necessary for it to cause information to be transferred into or out of the 
indicated storage location. The third supplies the instruction register with 
information which it uses to cause a particular sequence of commands to 
be obeyed, according to the instruction that is to be executed. The first of 
these two commands can be referred to as an instruction look-up com­
mand, and the latter two as set up commands for instruction execution, 
i.e., they set the control and instruction registers of the control unit to 
states which initiate the correct sequence of commands required to exe­
cute a specified instruction. 

Other conMnands used to facilitate operation of the control unit are: 
(4) A command which causes the address in the control register to be 
transferred to the R register at the same time the operand address is 
transferred to the control register. (This command is required so that 
while the control register is being used to select a specified operand address 
in the main store, the address from which the current instruction was 
selected is not lost.) (5) A command which, after an operand address 
has been selected, returns to the control register (from the R register) 
the address of the current instruction being executed.* The control register 

*This command is identical in its action to command (2), and therefore is not 
listed separately in Table 7.8. 

TABLE 7.7 
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Command Action 

(1) Transfer (M^y)* to Äi . . . Rie 
(2) Transfer Ri . . . Rio to Ci . . . Cio 
(3) Transfer to hhh 
(4) Transfer Ci . . . Cio to Ri . . . Rio 
(6) Add one increment to Ci . . . Cio 
(7) Add {R) to (A) 
(8) Transfer (R) to A 
(9) Add (R) to (A) 

(10) Transfer (A) to Μ,^ 

The additional commands required for the execution of specific instruc­
tions wiU now be described. First, note that command (a) of instructions 
A m, cA m, and S m are aU ahke and equivalent to command (1) in 
Table 7.8. In addition, provision must be made for the execution of part 
(b) of each of these three instructions. This caUs for commands (7) , (8) , 
and (9) , shown in Table 7.8. Instruction C m requires command (10), 
also shown in Table 7.8. The nine different commands hsted in Table 7.8 
permit the transfers of information between registers, and the arithmetic 
operations required for the execution of all instructions specified. 

Now we can return to a further description of the operation of the 
instruction register. First, we will comment on why the instruction register 
has four stages which can indicate 16 different states, as shown in Table 
7.9, when only three stages are required to distinguish seven different 
instructions, and each of the seven codes could be used to initiate at the 

^ M^y refers to the storage location specified by the current contents of the χ and y 
selection matrix. 

will then be in a position (except in the case of U m, successful Τ m, 
or Ζ instruction) at the completion of execution of the current instruction, 
to obey command (6) which is described next. (6) A command which 
causes the contents of the control register to be advanced by a count of 1, 
thereby enabhng the next instruction word to be selected from the main 
store. 

For ease of reference, the five different commands just described wiU 
be referred to by command numbers. The numbers and an abbreviated 
statement of the action of each command are shown as the first five entries 
in Table 7.8. 

TABLE 7.8 



7.6. GENERAL PURPOSE COMPUTERS 421 

proper time all elementary commands required for the execution of a 
given instruction. 

TABLE 7.9. Defined states of the instruction register 

h / 3 h h Configure 

0 0 0 0 So 
0 0 0 1 Si 
0 0 1 0 S2 
0 0 1 1 SB 
0 1 0 0 S4 
0 1 0 1 s. 
0 1 1 0 Si 
0 1 1 1 S7 
1 0 0 0 5e 
1 0 0 1 ^9 
1 0 1 0 Sio 
1 0 1 1 Sn 
1 1 0 0 S12 
1 1 0 1 Si, 
1 1 1 0 Su 
1 1 1 1 Si, 

The reasons will be apparent from the following description of how the 16 
states are utilized. First of all, seven of the states, as defined by / i , h, 
and Is are used to indicate which of the seven instructions is about to be 
executed. The remaining nine states are used to indicate intermediate 
points. These intermediate points are simply the points between the 
successive conmiands used in the generation of each instruction. Thus, 
the instruction register acts in a way similar to the microcontrol unit de­
scribed in Section 7.5.7. The code of an instruction placed in / i , h, h 
specifies the initial address of the microprogram of commands to be used 
in the execution of that instruction. Specifically, the instruction code 
placed in Zi, I2, h causes the first command, or conMnands if simultaneous 
operation is possible, to be executed. During the period of execution, the 
mstruction register can be set to an intermediate state which is a function 
only of its preceding state. Similarly each new state of the instruction 
register can be used both to cause particular commands to be executed 
and to set the instruction register to another state. Any state of the 
instruction register causes a unique change in its contents. However, there 
are some intermediate states which could have been produced by any one 
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of several preceding states. Such states, e.g., S12, S^, Sm, are called com­
mon states because the execution of any instruction requires that the 
instruction register pass through these states. 

A schematic indicating successive states assumed by the instruction 
register as well as different commands obeyed in the execution of each 
instruction is shown in Fig. 7.10. The symbols in the circles indicate con-

FiG. 7.10. Flow diagram of instruction execution 

figurations of the instruction register. The numbers in the rectangles desig­
nate which commands are performed during the interval from the con­
figuration above to that below. Only one clock period is required for the 
execution of any or all commands designated in a given box (with the 
exception of commands (7) and (9) , for reasons to be explained). Also, 
the time interval between circles on a line is one clock period whether or 
not there is an intervening box, since the contents of the instruction 
register can be modified at the same time a command is being executed. 
The time required for the execution of each instruction, in terms of 
number of clock periods, is shown in Table 7.10. 
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Instruction Look-up and set-up time Execution time 
(i.e., from 3^2, to 5^, 5^, (i.e., from SQ, 5^, Sj , 

•̂ 2» ^Z* ^4* ^6* 53,54,55, or5eto5i2) 

cA m 3 Clock periods 2 Clock periods 
A m 3 
S m 3 -

C m 3 1 
U m 3 1 
Τ m 3 1 
Ζ 3 

The execution time for the stop instruction is not listed in Table 7.10 
since its execution time does not fall strictly into the definition listed 
above, because all that is required for its execution is that the instruction 
register be in the state So. Of course, when the computer is set to an 
active state manually by means of a switch on the control panel (in a 
manner described in a succeeding paragraph), one clock period is required 
for the transition from So to S12. The execution times for the instructions 
A m and S m have not been specified because the times required to 
form the sum or difference of two numbers of given length depends on 
how we design the adder which is incorporated into the computer. This 
is subject to great variability, as indicated in Chapter 6. The adder may 
be serial and/or synchronous, or it may be serial-parallel and/or asyn­
chronous. The choice hinges primarily on the price in equipment com­
plexity one is willing to pay for increased speed. However, for the pur­
poses of the present discussion, we need not be concerned with the in­
ternal lo^c of the adder. If it is synchronous, the thne required for an 
addition or subtraction will be constant and predictable, and a timing 
signal can be provided to change the instruction register from configura­
tion Si or 5 5 to S12 at the completion of an addition or subtraction, 
respectively. If the adder is asynchronous, a signal may be derived from 
it indicating when the addition or subtraction is complete. This completion 
signal is then used to advance the instruction register. Such signals will 
be designated by the notation Ei in the Boolean equations describing the 
machine's logical structure. 

Now that the general mode of operation of the computer has been con­
sidered, we will describe the input signals to the flip-flops in the instruc­
tion and control registers of the control unit and the accumulator and R 
register of the arithmetic unit. These flip-flops are all specified to be of the 

TABLE 7.10 
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Τ type. The input equations for flip-flops, / i , I2, /.s, h can be derived by 
examination of Fig. 7 .10 which shows all allowable configurations, as well 
as transition paths from one configuration to another, of the instruction 
register. These input equations are listed below in reduced form 

h = Uh + {Ei^m + Ei^m^^ . . . + £ , · + + . . . + £ „ ) + / 3 / 2 / i ^ i 4 

Í2 = hhihh + / 4 / 1 ) + / 3 / 2 / i ( / 4 + Ä) + hhhRlS 

14 = I4G + hhlv 
The input signals to the control register may be derived simply by 

considering when and from what sources it receives input information, 
and when its contents have to be modified according to some prescribed 
rule. The preceding description of commands required by the computer 
shows that for the execution of command (2) , which takes place if any 
of the configurations 5 i 5 , Sj, S 3 , 5*5, or S4Ä exists (see Fig. 7.10) the 
control register must copy the contents of the R register. The other change 
required in the contents of Ci ...Cio occurs when the configuration 5i2 
exists, at which time the contents of the control register should change 
by a count of 1 (achievable by execution of command ( 6 ) ) . Accordingly, 
the input equation to each flip-flop of the control register is of the form 

Ci = {Rid + Rid) ( S i 5 + Si + 5 3 + 5 5 + S4Ä) + C,_iC^2 . . . CiSn 

for / = 1, 2, . . . 10. 

Because we are not specifying the type of adder to be used in this 
machine, the input signals, if any, to the R register when it is functioning 
as part of the adder will not be considered. Exclusive of this the R register 
can receive input information from two sources: the memory and the 
control register, in the execution of commands (1) and (4) , respectively. 
Accordingly, the input equation to each flip-flop of the R register is of the 
form 

ri = [(M.),Ä, + {MM (^14 + .̂ 1 + .^3 + . ^ 5 ) + {CiRi + dRr)Sx^ 

for / = 1, 2, . . . 10 

r, = [{Mc)iRi + {M,),R,] ( S i 4 + Si + 5 3 + S5) 

for; = 11, 12, . . . 16. 
Because we are not specifying the type of adder to be used, we will also 
neglect the input signals to the accumulator when it is functioning as part 
of the adder. Exclusive of this, the accumulator must be provided with 
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means to accept information from the R register (for the performance 
of command ( 8 ) ) . For this function the input equation to each flip-flop 
of the accumulator is of the form 

ai = (RiAi + RiÄ^)Sn 

f o r / = 1,2, . . . 1 6 . 

We will now consider how the computer is started, i.e., set to an active 
computing state, or placed in an inactive or idle state. A single flip-flop, G, 
can be used for this purpose. When it is in the 1 state, the computer is 
defined as being in the active computing state. When the main power is 
switched on, the flip-flop G is first set to the idle state by means of a 
reset switch located on the control panel (a set switch also being pro­
vided) . The computer is always set first to the idle state in order to pre­
vent it from initiating the execution of instructions before a complete pro­
gram has been inserted in the main store and checked, and the control 
circuits set to the desired initial conditions. Inspection of Fig. 7.10 shows 
also that once the computer has been set to state So, as a result of the 
execution of a stop instruction, it will remain in that state until flip-flop G 
is set to 1. (It is assimied that the / register is always set initially to the 
state 5o). The input signals to the flip-flop G (which is of the R-S type) 
are 

g =^ s Activation of the set switch 
g = r Activation of the reset switch 

+ RuRisRieSio Indication that a stop instruction is about 
to be executed, i.e., the / register will 
be put into configuration So at the next 
clock pulse. 

The reason for the signal RiéRisRieSw rather than So (which would be 
incorrect) becomes apparent when it is recalled that for the particular 
type of flip-flop being described, an effective delay of one cycle exists 
between the time it receives an input signal and the earliest time at which 
it can use that information to control a gatmg signal. 

In conclusion, a few brief comments on the filhng and initial setting 
of the computer, and the disposition of computed results. In the Appendix 
on input-output equipment there are descriptions of a number of devices 
that can be used to insert data into a computer. EssentiaUy what the com­
puter must provide for this function are signals to start and stop the input 
device and a buffer register to accept specified amounts of input data and 
from which this data can be transferred either to the arithmetic unit for 
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any required pre-storage transformation or directly to the main store. All 
that is required for initial setting of the machine is a set of clear switches 
on the console which upon activation transmit signals to the reset inputs 
of the appropriate flip-flops: / i , . . . 14, Co, C i , . . . C 9 , Ro, and 
Ao, Ai,,., Ais. The results of computations can be made available in any 
of a number of forms described in the Appendix. Here provisions must be 
made similar to those for input data, namely: signals to start and stop 
the output device and buffer registers between the computer and the 
output device. With both input and output devices, the buffer register(s) 
may be either in the auxiliary device, the computer, or both, depending 
on the nature of each. 

7.6.3. THE LOGICAL DESIGN OF A G P COMPUTER WITH A 
DYNAMIC MAIN STORE 

The instruction repertory of the computer to be described next is prac­
tically the same as that of the machine described in Section 7.6.2. The 
only exception is that the stop instruction, Z , is replaced by a conditional 
stop or break point instruction Z b , which reads: "If switch Si is set, 
stop; otherwise continue." The Si refer to a set of five two-position 
switches on the control panel, of which only one may be set before 
initiating or continuing execution of a program. Each bit of the address 
field used for one coordinate (the track number) of the operand address in 
other instructions is used in a Z b instruction to refer to a particular 
break point switch. During execution of a Z b instruction, the break point 
switches are inspected, and if the one designated in the address has been 
set, the machine is stopped, i.e., put into an idle state. The conditional stop 
instruction faciUtates checking out a new program since it allows stops to 
be programmed at convenient points, while at the same time not requiring 
removal of these stop instructions from the program after check out. 
Deactivation of the break point switches on the control console effectively 
removes the stop instructions from the checked out program. 

Other specifications are as follows: (1) All transfers of information 
within the machine as well as arithmetic operations are performed serially. 
(2) The main store is either a magnetic drum or disk memory with a 
capacity of 1024 words. (3) The length of words is 32 bits. (4) All num­
bers, jc, used in the computer are normalized to lie in the range — 1 ^ 
j c ^ ( l - 2 - 3 i ) . Negative numbers will have a 1 in the sign position and 
be in a two's complement form. (5) The same word length is used both 
for storage of a number or an instruction. 

Other major differences between this machine and the one described 
in Section 7.6.2, outside of the different type of main store, will be de-
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scribed next. First, the main store will be utilized not only for storage 
of instructions, problem parameters, and working storage, but also for 
other purposes. First of aJl, a set of channels will be provided with per­
manently recorded data from which timing signals useful for control pur­
poses will be derived. Also, arithmetic and control registers will be mech­
anized, not by means of flip-flops, but from delay Unes formed by appro­
priate positioning of record and read heads along a channel m the store 
(see Sections 5.1 and 5.2). Thus, this machme makes extensive use of pas­
sive storage elements not only for general storage, but also for information 
processing and control functions usually obtained by means of active 
elements. The other feature of this machine not present in the machine 
with the static main store is an extensive use of time-sharing. However, 
time-sharing could have been used in connection with the static store 
computer as well. It is utiHzed here, m conjunction with the dynamic mam 
store, to emphasize how the requirements for active storage elements can 
be reduced. 

The major functional units of this machme are the main store, the 
timing channels, the circulating arithmetic and control registers, the logic 
switching network, and the arithmetic and control flip-flops. The organi­
zation of these elements into a computer system is shown in Fig. 7.11. 
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FIG 7.Π. Organization of a GP computer with a dynamic main store 
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As a matter of convenience, different storage areas in the machine can be 
classified on the basis of access time. The delay in reading or altering the 
contents of a flip-flop is at most one bit time, and for a circulating register 
one word time. The maximum access time to a location in the main store 
is the period of one revolution, and on the average, half a revolution. 
By the use of such devices as storage-address interlacing, and other mini­
mum access coding techniques (see Section 7.5.4), the average access 
time can be reduced to just a few words. To summarize, these different 
storage areas represent immediate, quick, and slow access storage, re­
spectively. Another class of storage, intermediate between the quick and 
slow access types, may be obtained by adding a number of circulating 
loops, each having a length of only a few words. Such loops, sometimes 
referred to as high speed loops, or revolvers, are useful for the purpose 
of serving as a working storage area. 

The 1024 words of 32 bits each in the dynamic store are arranged in 
32 tracks of 32 words each. Ten bits are adequate to specify the address 
of any of these storage locations, five being used to specify a sector num­
ber and five to specify a track number (see Fig. 7.12). The format of a 
word representing a number is shown in Fig. 7.13(a). The format of a 

Track / 
Sector / Track / 

Drum Disk 

FIG. 7 . 1 2 . Addressing systems in a magnetic drum or disk store 

¿ 3 0 

32 (α) 2 I 

Order code Operand address 

Trackl Sector I 
32 17 14 

( b ) 

FIG. 7 . 1 3 . Word format for a number (a) and an instruction (b) 
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word representing an instruction is shown in Fig. 7.13(b). This arrange­
ment of information in an instruction word is to a certain extent arbitrary, 
but the utiUty of it will be apparent after the description of the computer's 
mode of operation. The positions 1 through 32 indicate the order in 
which information is read from or recorded in the store. These temporal 
positions can also be used to indicate spatial positions in a delay line type 
of store. Position 1 is not used, serving as a buffer zone between adjacent 
words. (This one-bit period provides an interval in which transients that 
may be introduced in initiating a recording operation can decay.) Posi­
tions 2 through 11 are reserved for the 10 bits of the address code. 
Positions 14 through 17 are reserved for the three-bit order code 
which specifies the instruction to be executed. Note that in this case the 
word length is dictated by the precision required for numbers. Less than 
half of the 32 bits are used in a word storing an instruction. For a more 
elaborate machine the unused bits could be used in various ways. For 
example, two complete smgle-address mstructions could be stored in one 
word. Also, unused bits could be used for additional purposes such as 
the address of index registers, and other registers if such facilities were 
incorporated in the design. Some of the unused bits could also be utilized 
for order codes and storage addresses if additional instructions and storage 
facilities were added to the machine. 

Since a recording and reading operation cannot occur simultaneously 
in the main store, a single magnetic head can be used for both purposes. 
Also, since at most a single word in the main store is referred to during 
the acquisition or execution of any instruction, it would be wasteful to 
provide a separate record and read amplifier for each head. Instead, a 
single record and read amplifier are provided for the main store together 
with a selection matrix which causes the appropriate amplifier to be con­
nected to the head on the track containing the specified storage location. 
During the instruction acquisition period, the selection matrix causes the 
read amplifier to be connected to the address specified by tiie control 
register. During the instruction execution period, the selection matrix 
connects either the read or record amplifier to a particular head in 
accordance with the order code and operand address of the instruction 
to be executed. All heads other than the one selected are inactive and 
have no effect on the information circulating in their associated channels. 
Whenever new information is to be recorded, it is not necessary to first 
erase the old because erasure is impUcit in the recording operation, i.e., 
it writes over old information. However, a separate erasure may be 
effected simply by recording all O's in any storage location. 

The basic source of timing signals in the computer is the clock chan­
nel. It has no record head, and a single read head. A imiformly spaced 
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32i3l 30 Il7 Il4 ill |6 ll 
Sector» code 

^ 3 l i l M i l l l i n n i " 

FIG. 7.14. One word length of information on the permanent timing tracks 

In positions 2 through 6 of each word period, pi contains the sector num­
ber of aU the words (as many as there are channels m the mam store) 
in the next sector that wiU pass under the read-record heads, and in 
position 32, pi = 1; in aU other positions pi = 0. The signals generated 
by p2 and ps are the same in every word period. In positions 2 through 11, 
P2 = 1; elsewhere p2 = 0. In positions 7 through 11, 15 through 17, and 
in position 32, ps = 1; elsewhere ps = 0. Different word periods are dis­
tinguished by means of the sector code numbers recorded on channel Pi. 
The information from channels Pi, P2, and ps are used to derive time 
duration signals as shown in Fig. 7.15. Di and D2 define the positions of 

3213130 il7 |I4 ill |6 

p , - Γ-

02 ^ L-

T - ^ 

0 . ^ 

FIG. 7.15. Time duration signals derived from permanent timing tracks 

series of signals, permanently recorded here, are read continuaUy when 
the machine is in operation. The time interval between successive clock 
pulses defines, and is referred to as, a bit period. There are, also, three 
other permanently recorded timing channels, each of which has a single 
read head only. These channels, designated pi, p2, Ps, serve the foUowing 
important functions: (1) They provide signals indicating time intervals 
of interest within a word period, namely that reserved for the order code, 
and the track and sector number of an address in an instruction, and the 
one bit period reserved for the sign bit of a number. (2) They provide 
signals indicating the sector number of words in the main store. Infor­
mation is recorded on the permanent timing tracks as shown in Fig. 7.14. 



7.6. GENERAL PURPOSE COMPUTERS 431 

the sector and track addresses, respectively, D 3 defines the position of the 
order code, and D4 the position of the sign. 

The registers of the arithmetic and control unit are actually short 
delay Unes formed by appropriate placement of record and read heads 
along tracks of the dynamic store. Though these circulating registers (see 
Section 5.1) are physically part of the main store, logically they are parts 
of the arithmetic and control units and function analogously to the way 
they would if they were static registers. There are three circulating regis­
ters, each of a single word length: the control register, the R register, 
and the accumulator. The function of each of these will be described next. 

The control register, C, holds the address of the storage location con­
taining the next instruction to be read and executed. In the one-address 
machine bemg described, 1 is normaUy added to the contents of the 
control register after each instruction is read. This faciUtates obtaining 
instructions sequentiaUy from consecutively numbered storage locations, 
corresponding to the consecutively numbered steps of a written program 
of instructions. After an instruction has been located and read, it must 
be kept available until its operand has been located. The R register serves 
this function. Also, if a multipUcation and/or division instruction were 
added to the instruction repertory, the R register could be used to store 
the multiplicand and make it available for incorporation into the partial 
products as they are formed, and to store and make available the denomi­
nator. The result of each arithmetic or logical operation appears first in 
the accumidator. This result may then either be transferred to the main 
store and/or retained for use in the succeeding operation. If a multipUca­
tion and/or division instruction were added, the accumulator could be 
extended to two word lengths. In multipUcation, it could be used to hold 
the multipUer and the partial products. Since the bits of the multipUer 
can be discarded as the partial product grows, no more than two word 
lengths of storage are essential for the two numbers. In division, the ac­
cumulator could be used to hold the numerator (and subsequently the 
partial remainders), as well as the quotient. Since neither of these exceeds 
one word length, a total of two word lengths for the accumulator would be 
sufläcient here, too. 

As stated earUer, the logical design of a digital computer defines aU 
the permissible states the computer can assume, as weU as the rules gov­
erning the transition from one state to another. In the computer imder 
consideration, the next active state is specified primarily by the state of a 
group of flip-flops, each of which maintains a constant setting throughout 
a bit period. The active state of the computer during any bit period may 
be considered as being defined by the foUowing: (1) the current signals 
from the permanent timing tracks; (2) the current signals from the ck-
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• Also, in some cases, by external inputs. 

culating registers; (3) the current bit read from the main store (though 
such information is not present if recording is in progress); (4) the cur­
rent state of the flip-flops. It is clear that each new active state is deter­
mined in part by the preceding active state, and in part by information 
presented by the main store* (including timing tracks and circulating 
registers). It is the function of the gating circuits that comprise the switch­
ing network to transform this input information and produce the follow­
ing types of signals which will effect a transition to a new state: (1) input 
signals to the flip-flops; (2) signals specifying information to be recorded 
in the circulating registers; (3) a signal to the head selection matrix to 
indicate whether a bit is to be recorded in the main store and if so: (4) 
the signal to be recorded in the main store; (5) signals to control various 
output devices, e.g., an electric typewriter, magnetic tape, etc. 

The flip-flops, which mainly determine an active state of the com­
puter, represent storage to which there is practically immediate access 
either for the purpose of reading its current state or causing that state to 
be altered. The current state of each flip-flop is determined by its preced­
ing state and the current input to it from the logic switching network. 
In this machine flip-flops are used for the following major functions: 
(1) They define various phases of operation in which characteristically 
different operations common to the execution of each instruction are per­
formed. Continuous access to this information is required, since it controls 
the transition from one major operation to the next. The four phases of 
operation through which the computer passes in carrying out an instruc­
tion are defined in Table 7.11. (2) The flip-flops also store the order 
code of the instruction to be executed. This information serves to control 
the process of execution. (3) They indicate the address of the channel 
in the main store to be selected. Whenever information is to be read from, 
or recorded in, the main store, the address of the channel to be selected 
is stored in a group of flip-flops. This information is left undisturbed 
until the operation is completed, since it must be continuously available to 
control the selection of the appropriate head by means of the head selec­
tion matrix. (4) They hold, from one bit period to the next, a carry bit 
generated during any addition operation. (5) They compare two groups 
of bits from different sources, and indicate whether they are identical. 
Such a function is useful in search operations. 

In addition to the functions described, flip-flops are also used for a 
number of specialized control or gating signals that must be generated 
during the course of operation of the computer. During times and phases 
of operations when some of the flip-flop functions already described are 
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1 A search is made for the instruction word 
2 The designated instruction is read into the R register 
3 A search is made for the operand word 
4 The designated operand is read and the instruction executed 

not required, the same flip-flops may be utihzed for these special functions. 
Sometimes, more than the minimum number of flip-flops actually 

required are used to define various states. This can yield certain advan­
tages. For example, the use of a few additional flip-flops makes it possible 
to reduce the complexity of the mput signals to the flip-flops, thereby re­
ducing the number of gating elements required and shnphfying the descrip­
tion of the computer's operation. Also, as shown in Section 3.8.1, the use 
of additional fhp-flops can elunmate the gating elements used for a many-
to-one function table to decode the contents of a smaUer number of 
flip-flops. 

The four phases of operation through which the computer passes in 
carrying out an instruction wiU now be described in more detaü: During 
phase 1, a search is made for the instruction word whose address is in the 
control register. Because of the varying access time to words in the main 
store, phase 1 may last from 1 to 32 word periods. During time interval 
Di of each word period, the sector number part of the address in the 
control register is compared with the sector code number from track pi 
by means of a flip-flop, K. The search, and phase 1, are concluded at the 
end of that word period during which there is complete coincidence. 
During the tune interval £>2 the track number part of the address in 
the control register is stepped into a shift register comprised of five flip-
flops. Γι through Γ 5 . 

Phase 2 has a duration of only one word period, during which two 
principal events occur: (1) The instruction word at the selected address 
(which is the next instruction to be executed) is read into the R register 
This action is effected by means of the flip-flops Τχ through Γδ which con­
trol the head selection network. This network aUows information to be 
read only from the head on that track of the main store whose numerical 
code is contained in Γι through Γ5. (2) In order that control may be 
advanced automaticaUy to the instruction in the succeeding storage loca­
tion after the one just selected has been executed, a 1 is added to the 
address in the control register. 

TABLE 7.11 

Phase Principal operation performed 
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cA m The contents of the address specified are copied into the 
accumulator 

A m, S m The contents of the address specified are added to or 
subtracted from the contents of the accumulator 

C m The contents of the accumulator are transferred to the 
address specified 

U m The address specified in the U m instruction is trans­
ferred to the control register 

Τ m Same as U m if the test is successful 
Zy^ The computer is put into an inactive or idle state 

if the break-point condition is satisfied. 

In Table 7.13 are listed the order codes, held in flip-flops / i , and h 
and also the information that would be recorded in the circulating regis­
ters and the main store during phase 4, for each instruction. Co, AQ, and 
Mo refer to the inputs to the record amplifiers associated with the control 
register C, the accumulator A , and the main store, respectively. During 
phase 4 data is never recorded in the R register. 

During phase 3, a search is made for the operand whose address is 
specified in the instruction word which was read into the R register during 
phase 2. Therefore, the time duration of this phase may vary from 1 to 32 
word periods. During time interval Di of each word period, the sector 
number part of the address in the R register is compared with the sector 
code number from track pi, by means of flip-flop K, The search and 
phase 3 are concluded at the end of that word period during which there 
is complete coincidence. During time interval D2, the track number part 
of the address in the R register is stepped into the shift regster comprised 
of flip-flops Γι through Γ 5 . During time interval D 3 the order code of the 
instruction word in the R register is stepped into the shift register com­
prised of flip-flops / i , / 2 , / a . For instructions Z, U m, Τ m phase 3 is 
only one word period in length since a search does not have to be made 
for a word in the main store. 

During phase 4 each instruction is actually executed. Because of the 
simple nature of the instructions in the computer being described, an 
interval of only one word period is required to execute any of the instruc­
tions. Table 7.12 indicates the operations that are performed for each 
instruction. 

TABLE 7.12 

Instruction Operation performed during phase 4 
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h h Instruction Ao Mo Co 

0 0 1 cA m Μ 
1 1 0 A m Sum: U + M) 
1 1 1 S m Diff: U - A f ) 
1 0 0 C m A A 
0 1 0 U m A Μ 
0 1 1 Τ m A Af, for successful Τ m 
0 0 0 Zb A 

Table 7.14 provides a summary of the functions of the various flip-
flops during each of the four phases of operation. 

Now that an over-all picture of the machine^^s organization and opera­
tion has been presented, the signals that cause the required actions to 
take place will be described by means of Boolean algebraic equations. 
These signals are classified into three main categories: (1) time duration 
signals that are derived from the permanent timing tracks, (2) input 
signals to the flip-flops, (3) input signals to the record ampUfiers. (For 
brevity, not aU logical and arithmetic functions are described. For example, 
logic necessary to initially load the central store is not included; also, the 
clock pulse input to each gate is not shown in these equations). 

The time duration signals are as foUows: 

Signal defining time interval within a word aUotted to the sector number 
part of the address: Di 

DI = PIPI 5 i = ^2 + P3 

Signal defining time interval within a word aUotted to the track number 
part of the address: D2 

Signal defining time interval within a word aUoted to the order code: D 3 

2)3 = P1P2P3 3^=PI+P2 + PZ 

Signal defining time interval within a word aUotted to the sign bit: D 4 

Z)4 = P 1 P 3 ^ 4 = Λ + ^3 

The input signals to the eleven flip-flops (Usted in Table 7.14) wiU 

TABLE 7.13. Data recorded in the dynamic store during phase 4 in accordance 
with the instruction being executed 



T
A

B
L

E
7.

14
.

Su
m

m
ar

y
of

fu
nc

tio
ns

of
fli

p-
flo

ps
du

ri
ng

th
e

fo
ur

ph
as

es
of

op
er

at
io

n

~ w 0
\

Se
ar

ch
es

fo
r

in
st

ru
ct

io
n

A
ct

s
as

ca
rr

y
fli

p-
flo

p
in

th
e

Se
ar

ch
es

fo
r

op
er

an
d

w
ho

se
A

ct
s

as
a

ca
rr

y
(o

r
bo

rr
ow

)
w

ho
se

ad
dr

es
s

is
in

C
op

er
at

io
n

of
ad

di
ng

1
to

ad
dr

es
s

is
in

R
re

gi
st

er
fli

p-
flo

p
in

th
e

ex
ec

ut
io

n
re

gi
st

er
by

co
m

pa
ri

ng
th

e
ad

dr
es

s
in

C
re

gi
st

er
.

by
co

m
pa

ri
ng

su
cc

es
si

ve
of

an
A

m
or

S
m

in
-

su
cc

es
si

ve
bi

ts
fr

om
C

bi
ts

fr
om

R
w

ith
th

e
se

c-
st

ru
ct

io
n.

w
ith

th
e

se
ct

or
co

de
s

in
to

r
co

de
s

in
tr

ac
k

Pl
.

tr
ac

k
Pl

.

R
ec

ei
ve

s
tr

ac
k

nu
m

be
r

of
C

on
tr

ol
s

se
le

ct
io

n
of

ch
an

-
R

ec
ei

ve
s

tr
ac

k
nu

m
be

r
of

C
on

tr
ol

s
se

le
ct

io
n

of
ch

an
-

in
st

ru
ct

io
n

ad
dr

es
s

fr
om

ne
l

w
ho

se
ad

dr
es

s
is

in
C

op
er

an
d

ad
dr

es
s

fr
om

R
ne

l
w

ho
se

ad
dr

es
s

is
in

R
C

re
gi

st
er

.
re

gi
st

er
.

re
gi

st
er

.
re

gi
st

er
.

Fl
ip

-f
lo

p

K T1

}
T 2 T s T

4
T

5

11
!

1 2 Is F
1

~
F

2
~

Ph
as

e
1

1 2
in

di
ca

te
s

w
he

th
er

co
m

­
pu

te
r

is
in

an
ac

tiv
e

or
id

le
st

at
e.

11
'I

s
no

t
us

ed
.

D
ef

in
e

ph
as

es
1

th
ro

ug
h

4
as

fo
llo

w
s

F
I

F
2

Ph
as

e
0

0
1

0
1

2
1

0
3

1
1

4

Ph
as

e
2

Ph
as

e
3

R
ec

ei
ve

s
in

st
ru

ct
io

n
fr

om
R

re
gi

st
er

,

Ph
as

e
4

co
de

C
on

tr
ol

s
ex

ec
ut

io
n

of
in

­
st

ru
ct

io
n

w
ho

se
co

de
it

co
nt

ai
ns

.

~ en ~ en ~ t11 ~ C t11 en C5 Z o ~ o ." n o a:: ." c:: ~ t11 ~ en



7.6. GENERAL PURPOSE COMPUTERS 437 

be described next. As indicated in Table 7.14, the flip-flops, F i , F2, deñne 
the four phases of operation of the computer. The input signals which 
advance them from one phase to the next are (Note: in the remaining 
equations of this section, variables apparently missing have been eliminated 
by algebraic reduction—e.g., in an expression Uke FX + FXY, F is 
eliminated). 

fx = P1F2D, 

h = F i F 2 Z ) 4 

fi = F 1 F 2 Í ? 1)4 Effects transition from phase 3 to 
phase 4, provided search for op­
erand has been completed (indi­
cated by KD^. 

+ FiK D4I2 Effects transition from phase 1 to 
phase 2, provided search for 
instruction has been completed 
(indicated by and com­
puter is not blocked (indicated 
by / 2 ) . 

The flip-flop Κ serves four distinct functions, in accordance with which 
phase of operations is taking place. This accounts for the many terms in 
its input equations: 

k = FiF2Di(PiC + FiQ Indicates a disagreement between 
-f- FiF2Di(PiR +PiR) correspondmg pulses of the sec-

(/i + 12h) tor code track and the sector 
number designated in the control 
register C or the register R dur­
ing search phases 1 or 3 respec­
tively. 

+F1F2CP2 During the addition of 1 to the ad­
dress in C during phase 2, state 
R is interpreted as 1 and state Κ 
is interpreted as 0. At the begm-
ning of phase 2, the state R 
exists, and the flip-flop is set to 
state Κ by the first zero encoun­
tered in the address in C. (Thus, 
Κ acts Uke Β in Section 6.1.1.5). 
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+ FiFiMAD/^IiIili Indicates production of a carry 
pulse during execution of instruc­
tion A(m) in phase 4. 

+ FxFiMÄD/^IiIi, Indicates production of a borrow 
pulse during execution of in­
struction S(m) in phase 4. 

H = D4 Resets the flip-flop Κ at the end of 
each word period. 

+ FxFiMÄIxIih Indicates no carry pulse has been 
produced and resets flip-flop Κ 
during execution of instruction 
A(m) in phase 4. 

-f FiFiÑAIiI^ Indicates no borrow pulse has been 
produced and resets flip-flop Κ 
during execution of instruction 
S(m) m phase 4. 

The flip-flops Γ ι . . . Γ5 are used to hold the address of the track to be 
selected from the main store for a recording or reading operation. During 
phases 1 and 3 they act collectively as a shift register, information being 
stepped into them from the control register or the R register, respectively. 
During phases 2 and 4 they provide a signal to the head selection matrix. 
Smce there are 32 tracks m the mam store, five flip-flops (which have 
25 = 32 distinct configurations) are requked. The input equations for 
these flip-flops are 

tx = FiDiiFxC + FxR) Numbers indicating the tracks to be 
ϊχ = FiDiiFxC -}- FxR) selected during phases 2 and 4 

are stepped into flip-flop Γχ dur­
ing phases 1 and 3 respectively. 
Γι is the entrance to the shift 
register. 

Í2 = Fi^iTi Receives information shifted out of 
Í2 = F2D2TX  flip-flop Γι. 

Í3 = F2D2T2 Receives information shifted out of 
h = F2D2T2  flip-flop Γ 2 . 

U = F2D2T1 Receives information shifted out of 
Ü = F2D2Ti  flip-flop Γ3 . 

ts = F2D2T4 Receives information shifted out of 
is = F2D2T4  flip-flop Γ4 . 
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The flip-flops / ] , 12, and I o are used to receive and hold the order 
code of the instruction which is about to be executed. During phase 3 
they behave as a shift register, information being stepped into them from 
the R register, and during phase 4 their contents are used to control the 
execution of the specified instruction. Since these flip-flops are not re­
quired for the above function during phases 1 and 2, one of them, 
is used for another purpose, namely to put the counter into a blocked or 
idle state upon the completion of phase 4 if any of the following conditions 
exist: (1) An overflow of the accumulator is produced after the execution 
of instructions A(m) or S(m), indicating an improper addition or sub­
traction. (2) The one cycle of operations switch, Oi, is in a set condition. 
This switch enables the computer to be set to an idle state at the end of 
any cycle of operations so that its contents may be inspected. (3) The 
presence of the conditional stop instruction, Zb, and the address upon 
which it is contingent. The input equations for these flip-flops are 

i'l = FiFiD^R Information indicating what type of 
fi = FxFiD^R instruction is to be executed is 

stepped into Ιχ during phase 3. 
Flip-flop / i is the entrance to the 
shift register composed of / i , 
/ 2 , / 3 . 

Í2 = FiFiDiIi Receives information stepped out 
of flip-flop / i . 

+ F i F 2 D 4 ( / i + /2 + h)Oi If the one cycle switch, Oi, has not 
been set and the conditional stop 

+ FXFIDAHTXSX + ... 4- ^5^5)01 instruction, Zb, is not being exe­
cuted, the computer is put into 
an active state at the end of 
phase 4. 

+ F The activate switch, £ , being set 
takes the computer out of an in­
active or idle state. 

¡2 = FiFiD^lx Receives information stepped out of 
flip-flop h, 

+ FxF2D¿0\ + (A + /2 + h) Puts the computer into an inactive 
(TiSi + ... + TsSs)] state at the end of phase 4 be­

cause the one cycle switch, Oi, 
is set, or Zb is being executed. 



440 7. SYSTEM DESIGN OF GP COMPUTERS 

A few words of further explanation are in order for the third expression 
in the input equation / 2 . The four terms in this expression describe various 
conditions which indicate an overflow has occurred. Specifically, in addi­
tion, one knows that an overflow has occurred if the sum of two negative 
numbers produces a positive number, or if the sum of two positive num­
bers produces a negative number. These two conditions are indicated by 
the signals RMAD4 and KMÄD4, respectively. In subtraction, an overflow 
has occurred when the subtraction of a negative from a positive number 
produces a negative number or the subtraction of a positive from a 
negative number produces a positive number, as indicated by RMÄD4 
and KMAD4, respectively. 

Reference to Fig. 7.11 and the description of the machine's organiza­
tion shows that there are only four record amplifiers: one for the 32 
tracks of the central store and one for each of the circulating registers, 
C, R , and A . The input signals to these amplifiers, for recording a " 1 , " 
Afo, Co, /?o, and AQ, respectively. Recording current must be supplied to 
the recording circuit of the central store only when a C m instruction 
is to be executed. Accordingly, the signal used to energize this recording 
circuit is 

W = F 1 F 2 / 1 / 2 . 

The information actually recorded in the central store is the contents of 
the accumulator A (see Table 7.13). Therefore, 

+ F1F2D4 [RMiAhhh computer is put into an inactive 
State because an overflow has 

+ Ähh) + KM{AIiIi occurred on the execution of 
+ i / 1 / 2 / 3 ) ] A m or S m. 

ii = F1F2D1I2 Receives information stepped out of 
flip-flop / 2 . 

/3 = FiF2D^l2 Receives information stepped out of 
flip-flop / 2 . 

+ D4AI1I2I3 If * e number in the accumulator is 
negative (indicated by D4A) the 
instruction Τ m is converted to 
U m. 
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Λ/ο = WA 

The record " 1 " signals for the circulating registers are as follows 

Co = F2P2C Recirculates address in control reg­
ister C, during phases 1 and 3. 

+ F2P2C Recirculates nonaddress informa­
tion in C during phases 2 and 4. 

+ FiPiih + h + h)C Recirculates address in C during 
phases 3 and 4 unless instruction 
U m is about to be executed. 

+ FiFiPiiKC + RC) Sum of the old address m C plus 1, 
formed during phase 2. 

+ FiFihhhR Transfers the contents of the R reg­
ister to the control register C 
during phase 4, thereby effecting 
execution of a U m instruction 
when called for. 

RQ = F2R Recirculates contents of the R reg­
ister during phases 1 and 3. 

-f F 1 / 2 / ? Recirculates contents of the R reg­
ister during phases 3 and 4 unless 
h is true. 

+ F1F2M Receives, during phase 2, contents 
of word selected from the main 
store. 

+ F2I2M Copies, during phases 2 and 4, the 
contents of the word selected 
from the main store if I2 is true. 

AQ = FiA Recirculates contents of accumula­
tor A during phases 1 and 2. 

+ F2A Recirculates contents of A during 
phases 1 and 3. 

+ I1I2A Recirculates contents of A during 
phase 4 if instructions U m or 
Τ m are being executed. 
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+ F.F^hhhM 

+ FxF2hh [K{AM + AM 
+ K{AM + AM)] 

+ hhA 

Recirculates contents of A during 
phase 4 if instruction Zb is being 
executed. 

During phase 4 copies the contents 
of the word selected from the 
main store into the accumulator 
if instruction cA m iS' to be 
executed. 

During phase 4, records the sum or 
difference of the number in the 
accumulator and that in tlie word 
selected from the main store, ac­
cording to whether the instruction 
to be executed is A m or S m 
respectively. 

Recirculates contents of A during 
phase 4 if instruction C m is 
being executed. 

7.7. Concluding Remarks 

In earlier chapters we have considered various systems of circuit 
logic (Chapter 4 ) , a description of how groups of these elements, inter­
connected for the purpose of generating various switching functions, 
could be conveniently described by means of Boolean algebraic statements 
(Chapter 3) , the characteristics and means of access to large capacity 
storage systems (Chapter 5) , and various schemes for interconnecting 
storage and gating elements in order to perform arithmetic and logical 
operations (Chapter 6 ) . 

In this chapter we have shown, first of all, some of the basic criteria 
*o be considered in designing a digital computer. Next we have considered 
some of the problems encountered and various alternatives available in 
the design of the control unit whose function it is to generate the various 
signals required to coordinate the operations of the main store, arithmetic 
unit and input-output unit, and to cause them individually and in unison 
to execute the various operations required. Finally, two examples were 
presented to iUustrate techniques for arriving at the logical structure of a 
digital computer as well as convenient means for describing that structure. 
It is our purpose here to review and amplify some basic points in this 
material. 

A logical starting point in the design of a computer system is a con-
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sideratíon of the kind and number of functions the system must perform. 
This leads to a specification of basic parameters such as word formats 
for instructions and data, the type and size of main store, the instruction 
repertory, a description of the arithmetic unit and its operation times, the 
type of control unit, etc. 

Sometimes "logical design" is used to refer to the process by which one 
derives a minimal set of logical circuitry to perform specified functions. 
Logical design is here defined, in a broader sense, as synonymous with 
computer synthesis. It includes determination of the following: (1) the 
number and function of each building block: flip-flops, inverters, drivers, 
etc. (2) choice of a specific form of detailed logical structure—a state­
ment of the organization of the various functional units, and a description 
of the interconnections of logical and nonlogical elements, taking into 
accoimt limitations of a particular system of circuit logic which may place 
certain restrictions on permissible ways of interconnecting these elements. 

In the computer designs presented in this chapter, three distinct means 
were employed to aid in a description of the logical structure of these 
machines, namely: (1) verbal statements, (2) block diagrams, (3) 
Boolean algebraic equations. Strictly speaking, logical design is an art. 
Though based on a knowledge of certain principles, it is dependent on 
the creative ability of the designer—^his skill, intuition, and ima^a t ion . 
It is legitimate to use any tools which aid the creative process, and 
different designers use one or more to varying degrees according to their 
personal inclination. Also certain descriptions are convenient after a 
machine has been designed while others are more useful as aids in the 
synthesis process. 

Verbal statements are useful, to begin with, in expressing the general 
structure of the machine. From this point on both block diagrams and 
Boolean algebraic statements may be helpful. Block diagrams are useful 
to indicate the paths of information flow between various parts of a 
system. At first, only relatively large functional blocks are delineated and 
as the design progresses, each block may be supplanted by several blocks, 
showing the logical structure in greater detail. 

Different types of block diagrams, with varying degrees of detail may 
be useful in a number of ways. For example: 

(1) To show the gross functions of various functional units. 
(2) To show the arrangement and interconnection of these units for 

information flow. 
(3) To show details of the internal design such as the number and 

locations of logical elements as well as nonlogical elements such as cathode 
or emitter followers, voltage clamps, pulse stretchers, etc. 

(4) To indicate the manner of mating input-output devices to the 
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internal circuits of the computer by showing the details of matching 
devices such as buffer ampUfiers, etc. 

(5) (a) To show where physical wiring leads are to be placed, in­
cluding the critical ones. The block diagram provides a one-to-one cor­
respondence between logic and physical layout. The location of both local 
and remote terminals can be specified by coordinates. 

(b) To show the physical interconnection of racks, registers, 
logic circuits, etc. 

(c) To show, by means of different symbols on Unes, the paths 
of pulse and dc signals. 

(6) As a visual aid to checking for errors and unintentional redundan­
cies in the design. 

(7) As a visual aid in maintenance of the completed machine. 
(8) To faciUtate manufacturing and maintenance, since a block dia­

gram can convey important design data to relatively untrained personnel. 
In the conceptual development of a particular design, many gross 

arrangements may be considered before one is chosen. Block diagrams are 
useful as aids to both a spatial and temporal visualization of the arrange­
ment of elements, aiding in the evaluation of alternate arrangements, and 
making apparent modifications that would improve the design. 

A Boolean algebraic description of a computer can provide many of 
the functions performed by block diagrams. In addition, it is not as diffi­
cult to produce nor as cumbersome to manipulate as a block diagram, and 
offers other advantages because it constitutes a machine language. By 
definition, a machine language is a language which can be used to describe 
the structure of a digital computer, and which is of a form that enables 
it to be entered into and operated upon by any digital computer. A num­
ber of advantages accrue from this capabUity. First, after Boolean alge­
braic descriptions are entered into a computer, a number of useful listings 
can be obtained by sorting this data with respect to certain indices and 
tabulating the result. For example, the foUowing tabulations are useful: 
(1) a tabulation of the inputs to aU active storage elements, (2) a tabula­
tion of aU the loads on each active storage element, (3) a tabulation Ust­
ing aU physical interconnections of elements in the computer. 

The first tabulation, caUed a logic tabulation, can describe inputs to 
aU elements, whether of a logical nature or not, for the Boolean notation 
can be adapted to describe different types of circuits and gating arrange­
ments. A computer can be programmed to inspect the logic tabulation to 
determine if any circuit restrictions have been violated, either in respect 
to nonaUowable interconnections of elements in the permissible chains of 
logical elements and auxiUary circuits, the number of inputs to a gate 
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or the number of levels in a gate, or the number of gates which a flip-
flop can drive. 

The second tabulation is called a usage tabulation. The logic and 
usage tabulations faciUtate maintenance since they indicate all elements 
that can affect a particular element as well as all elements that a particular 
element can effect. Also, from these two tabulations and a suitable pro­
gram, a determination can be made of which elements are closely Unked 
logically, and this can be used to facilitate physical layout specifications. 

The third tabulation, which can be derived from the logic and usage 
tabulations, comprises a wiring tabulation for it hsts all points that should 
be interconnected. It is useful for a number of purposes: ( 1 ) it will tell 
whether any wires have been left unconnected, thus providing a check on 
whether all required input signals have been specified; ( 2 ) it can also be 
updated more rapidly, in the event of changes either in the development 
or production stages, than wiring diagrams; ( 3 ) it is useful both in initially 
wiring a machme and m future maintenance, being easier to use than a 
set of wiring diagrams. If automatic wiring machines are to be used, they 
can be activated from the data in the wiring tabulation. 

The logic, usage, and wiring tabulations describe the sources and des­
tinations of all signals as well as the location of all components (and also 
enable a totalization of specified machine components to be readily ob-
tamed). While this adequately describes a machine, it is no assurance that 
the machine so described will function according to specifications. How­
ever, if the computer being synthesized is described in terms of a machine 
language, information relating to the actual operation of the machine can 
be obtained before construction by means of a simulation program. From 
this program, the logical operation of the computer being synthesized 
can be checked for various specified sets of problems and input data, and 
faults or omissions in the logical design can be detected. Also, simulation 
programs allow modifications or additions to the design to be checked 
readily, not only by the original designers, but by others less intimate 
with the structure of the machine. Finally, simulation aids in developing 
maintenance procedures, for specified faults can be simulated and their 
effect on the operation of the simulated machine observed. However, it 
must be pointed out that the cost incurred in producing these simulation 
programs is appreciable and should be justifiable on economic grounds or 
some other basis. 

Some of the more important criteria to be considered when comparing 
different computer designs are as follows: 

(a) Susceptibility of the computer to undetectable errors (inherent 
in its logical design). 
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(b) Reliability of operation (inherent in the electronic and mechani­
cal design, and indirectly influenced by the logical design). 

(c) Simphcity of design. 
(d) Flexibility, both in respect to present operation and modification 

and expansion of the system. 
(e) Compatibihty of systems components. 
(f) Speed and accuracy of computations, 
(g) Automatic features. 
(h) Convenience and flexibihty of receiving input data from various 

sources. 
(i) Facilities for presentation of output data. 
(j) Provisions to retain intermediate resuhs in case of power failure. 
(k) Ease of servicing. 
(1) Ease of training personnel. 
(m) Economics of production. 
The extensive use of time sharing, multiplexing, logical microprogram­

ming and other schemes enable appreciable savings to be realized in the 
number of physical components in a system. However, this savings is 
achieved not without certain disadvantages. For one thing this type of 
design results in an almost complete loss of identity of functional units. 
This lack of a simple one to one correspondence between physical units 
and functions makes it difficuh for any but highly skihed personnel to 
thoroughly understand the structure of a machine, and therefore makes 
maintenance more difficult. However, this disadvantage may be aUeviated 
if the machine is built of reliable components and plug-in subassembhes 
which can readily be replaced. 

Also, in developing schemes for equipment minimization it is important 
to consider not only the computer itself, but also the number, types, and 
mode of operation of input-output equipment that is to be utihzed. Often, 
schemes that appear attractive for a machine with very limited input-
output facilities lead to comphcations when additional terminal equip­
ment is added. This is because a highly integrated system with little 
redundancy and flexibihty does not have sufficient slack to aUow additions 
to be squeezed in. As a result, modification of such systems may require 
unscrambling of many of the items originaUy integrated in the interior 
computer design. 

In the last analysis, a particular design arrived at must be capable of 
justification on economic grounds. The choice wiU depend on whether 
one is interested mainly in solving differential equations, a computer 
capable of solving a wide variety of problems, in a computer for an auto­
matic control system, or for other engineering, business or industrial 
apphcations. In aU these cases, the particular information processing sys-
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tern chosen must be justified either because it saves money, saves time, 
provides solutions not otherwise obtainable, enables a better product to 
be produced, increases operational efficiency, permits exploitation of new 
ideas, is more reUable than other methods, etc. 
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8. The Digital Differential Analyzer 

8.1. Introduction 

So far our attention has been directed mainly toward the general 
purpose type of digital computer. Utilization of such machines requires 
that an initial statement of a problem be reduced to a sequence of ele­
mentary arithmetic and logical steps, often involving numerical approxi­
mation algorithms. These steps are then reduced to a sequence of instruc­
tions (in machine code) selected from the computer's instruction repertory. 

One of the most important and commonly encountered mathematical 
problems in the physical sciences and engineering is that of solving dif­
ferential equations. An ordinary differential equation is, briefly, a mathe­
matical representation of how an incremental change in one variable of 
a system affects the values of other variables in the system, and defines 
the way in which the system can change from one state to another. The 
equation, then, can be used to predict the effects of applying disturbing 
forces (referred to as forcing functions) to the system, provided the sys­
tem's initial state, expressed by so-called boundary conditions, is known. 
These boundary conditions permit the evaluation of arbitrary constants 
that enter when integrations are performed. As many boundary conditions 
must be stated as there are arbitrary constants (in an ordinary differential 
equation) or arbitrary functions (in a partial differential equation). 

The idea of building a machine in which the movement of functionally 
related parts would simulate the operation of defined, logical processes 
of the mind is usually credited to Leibnitz. Generally speaking, two systems 
are considered analogous if their elements have similar physical and/or 
abstract attributes, and the elements are similarly interrelated in each. 

Differential analyzers are analog machines. They are based on the 
observation that, in general, a physical system can be represented by a 
group of elements interconnected so that disturbances of one or more 
elements are coupled to other elements. This is the basis for derivation of 
differential equations in the first place. The differential equation specifies 
the variables of interest in a system and the manner in which they are 
interrelated. It follows that if one has a set of idealized elements, analogous 
in behavior to the elements of a system to be investigated, one can use the 
differential equation of the system to indicate how these elements must be 

448 
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interconnected. Assume then, that an "idealized" physical element is 
available which has the following properties. (1) It is capable of assum­
ing a range of distinguishable states, and can indicate its state at all 
times. (2) It is capable of transmitting indications of changes in its states 
to other elements. Assume, further, that this element can accept incre­
ments of one variable, dx, as an independent variable input, and that of 
another variable as the dependent variable y, and that it can produce 
at its output an incremental change, dz = ky dx, where y represents the 
sum of increments accumulated from some initial time, to, and /: is a 
constant. A device having these properties is referred to as an integrator. 
A commonly used functional schematic of an integrator is shown in Fig. 
8.1. The first practical working differential analyzer used mechanical 

- \ — 
} ^cfz 

dy 

FIG. 8.1. Functional schematic of an integrator 

wheel and disk integrators of the type shown in Fig. 8.2. Its mode of 

C 
dt 

FIG. 8.2. Schematic of a mechanical integrator 

Operation is, briefly, as follows. The disk D is driven at a rate dx/dt, 
corresponding to the rate of change of an independent variable x. The 
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angular position of this disk represents the instantaneous value of JC. The 
disk is geared by friction to a smaller disk. As a result, the smaller disk 
is forced to turn at some rate, say dz/dt. The ratio of the angular veloci­
ties of the two shafts is proportional to the distance y from the point of 
contact of the two disks to the center of the larger disk. Changes in the 
dependent variable y are effected by rotation of the lead screw. Any 
particular design wiU involve a constant, k, which is dependent on the 
relative sizes of the two disks. It is apparent then that dz/dt = ky dx/dt. 
If the dy/dt shaft is extemaUy geared to the larger disk, so that the rela­
tion is independent of time, the foUowing equations may be used to repre­
sent the action of the integrator 

dz = kydx (8- la) 

or 

ζ = kfydx (8-lb) 

Assume, also, that another element is avaUable which can accept two 
or more variables in incremental form and produce an output equal to 
their algebraic sum. Such a device, suitable for use with mechanical in­
tegrators, is a differential gear assembly. It also aUows the integration 
of the algebraic sum of a group of dependent variables to be obtained 
for its output can be used as the dy input of an integrator. 

In principle, a machine composed of only integrators and adders is 
adequate to obtain the solution of differential equations. This is because: 

(1) The action of these elements can be used to represent the action 
of each term in an equation. This action is in the form of shaft rotations, 
voltages, or pulse streams in the mechanical analog, electronic analog, 
and electronic digital differential analyzers, respectively. 

(2) The individual elements can be interconnected so that the group­
ing of terms and the equahty among the terms demanded by the equation 
are satisfied. 

Inspection of a differential equation shows that there is always present 
an interdependence between values of derivatives and functions. This 
interdependence is satisfied by interconnecting integrators, as described 
in Sections 8.2 and 8.5.2. A characteristic of these interconnections is 
that there is always present at least one feedback path. It is the feedback 
connection which mechanizes the equal sign in the equation, for it imposes 
the constraint which forces the machine to operate so that the two sides of 
the equation are equalized. A standard procedure in setting up a problem 
is to anticipate that a feedback connection wiU be made. The feedback 
connection activates not only the element to which it is directly connected, 
but aU others dependent on the activation of that element. 
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Examination of the ordinary differential equation 

" ' dx 
(8-2) 

ihows that the feedback connection required always exists in at least one 
form. This follows since all terms on the right hand side can be developed 
from the independent variables and the nth derivative. Therefore, by 
supplying the independent variable, and anticipating an input providing 
the nth derivative, the right hand side of the equation can be produced, 
and this output fed back to supply the anticipated input carrying the nth 
derivative. 

An alternate procedure is to use the highest-order derivative on the 
right hand side of the equation as the anticipated variable. From it and 
the dependent variable, all the remaining terms on the right can be 
derived. Once formed, the variable d^y/dx"" is integrated as many times 
as necessary to reach the order of the anticipated variable, where the 
feedback connection is made. 

The conditions for solving an ordinary differential equation by means 
of a differential analyzer are outlined in the appendix to this chapter. 

One may ask why an integrator is used as a basic element of a differen­
tial analyzer. It is obvious that an integrator can be used to generate lower-
order derivatives from higher-order ones, in accordance with the relation 

^ = ^ . ( S - 3 , 

However, an apparently equally useful relation, and one which would 
imply the use of a differentiator is 

d^y d 
dX^ " dx 

(8-4) 

Theoretically, the solution of differential equations could be mechanized 
with either of these devices. However, the integrator wins out on the 
basis of a very practical consideration. Differentiation requires essentially 
the subtraction of quantities of nearly equal magnitude. This implies that 
a differentiator would require a much greater precision for a given accu­
racy, since the subtraction of nearly equal quantities wipes out significant 
digits. The physical realization of such a device is, therefore, not as simple 
or practical. 

Sir William Thomson [1876] was the first to suggest that mechanical 
integrators could be connected together in closed loops and constrained 
to produce solutions of differential equations. The first machine based 
on integrating devices was built at M.I.T. in 1925. It used a photo-
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electric integraph (an integrating graph follower), and watt-hour meters 
as integrators. Its accuracy was only of the order of 1 part in 100. In 
1930, Vannevar Bush developed at M.I.T. an all mechanical differential 
analyzer which utilized wheel and disk mechanical integrators. This ma­
chine could achieve an accuracy of 1 part in 1000, an accuracy of 1 
part in 3000 being considered good for a mechanical integrator. In later 
machines where the mechanical integrator was placed in a servo loop, 
accuracies of 1 part in 30,000 could be obtained for the integrators with 
over-all accuracies ranging from below 1 part in 10,000 to 1 part in 
25,000, depending on the nature of the problem. 

Electronic analog differential analyzers, developed at a later date, 
use the integrating characteristic of a capacitor in conjunction with opera­
tional amplifiers to produce linearity. The advantage of the electronic 
analog machine over the mechanical is greater speed and compactness. 
The accuracy of the electronic analog devices is also Umited, and involves 
long-term drift problems that are overcome only with highly engineered 
critical circuits. Also, unless special devices are employed the variable 
of integration must be time, and this places a restriction on the type of 
problems that can be solved. 

The digital differential analyzer (DDA) is unique in that it provides 
certain desirable features of both analog differential analyzers and digital 
computation. The most important of these features are 

(1) It can provide greater accuracy than is obtainable with an analog 
computer. Analog equipment is only as accurate as its components. In a 
mechanical analog differential analyzer, there is a Umit to the accuracy 
of machined parts, and the accuracy decreases as wear continues. In the 
electronic analog type, there is a similar limit imposed by the stabiUty as 
well as the precision of electronic components. In a digital computer, the 
components must be only capable of resolving two values, represented 
by two easily distinguishable voltages. Consequently, the digital differential 
analyzer is capable of yielding more accurate solutions as weU as sim­
plifying problems of maintenance. 

(2) It inherently has greater logical capacity than analog machines. 
(3) It provides greater flexibiUty than analog machines, because of 

its logical capacity, and also because changes can be effected by reprogram-
ing rather than equipment modification. 

(4) It is more compact than analog machines (for systems beyond a 
certain minimum complexity). 

(5) In an electronic analog integrator, the variable of integration must 
be time. The integrator in the digital differential analyzer can receive the 
output of any other integrator directly as its independent variable input. 
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This facihtates muhiplication, division, and the solution of nonlinear equa­
tions without the use of special devices. 

(6) It provides exact repeatability of problem solutions (not being 
subject to the variable drift of an analog computer). 

(7) In a digital differential analyzer, differential equations may be 
solved without reducing them first to difference equations as required in 
an integral transfer (GP) type of digital computer. 

(8) For the solution of certain types of problems, it can be mechanized 
with fewer components than required by an integral transfer type of 
digital computer. 

Because an integrator can be used for a number of purposes, the 
number of integrators in a machine is not a reUable index of the maxi­
mum order of equation that can be solved. Specifically, in solving a dif­
ferential equation, the value of a variable of interest is obtained by a 
process which includes integration of certain variables and generation of 
auxiliary functions usually of an algebraic or trigonometric nature. Inte­
grators may also be used in the generation of these auxiUary functions, 
e.g., to generate the product of two variables. These auxiliary uses may, 
in some cases, consume more integrators than the reduction of derivatives. 
Thus, while only integrators and adders are essential to a differential ana­
lyzer (see Appendix, p. 516), as a matter of convenience, or economy, 
however, both mechanical and electronic differential analyzers have includ­
ed other units. Mechanical differential analyzers may contain the following 
additional elements: gear boxes for multiplying a variable by a constant; 
resolvers for directly performing vector resolutions; multipliers for pro­
ducing the product of two variables; input tables or function units which, 
given a variable, x, as an input constrain a second variable, to rotate 
as J = iix), where /(JC) is an arbitrary given function with only a finite 
number of finite discontinuities. Electronic analog differential analyzers 
may also contain special units for multiplication by a constant, multiplica­
tion of two variables, vector resolution, and function generation. 

Digital differential analyzers may also be provided with units to fac­
ilitate execution of frequently encountered computing functions, e.g., out­
put multipliers (Section 8.5.7.), decision units (Section 8.6), digital servos 
(Section 8.7) and more complex operational units for special purpose ma­
chines (Section 8.9). For machines to be used in computing laboratories, 
graph foUowers and plotters have also been developed to facilitate the 
insertion of empirical data, and to enable outputs to be displayed in 
graphical form. In certain types of control system applications (see 
Section 8.9), multiplication is called for more often than integration. 
This led to the development of an incremental multipUer, based on the 
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logical principles of the digital integrator. By the inclusion of appropriate 
control circuitry it then becomes possible merely by a simple program­
ming procedure to cause the "multiplier" to provide the functions of both 
an integrator and a servo, simultaneously (see Fig. 8.27). 

The differential analyzer came into being as a result of the deficiencies 
of classical methods of solving differential equations, especially nonlinear 
equations. The development of this machine to its present forms has been 
largely due to the following advantages which it offers, compared to 
analytic solutions, in the solution of problems in engineering: (1) The 
ease of changing parameters in a synthesis problem; this facilitates the 
investigation of many alternate configurations. (2) The completeness of 
solution; information can be generated which describes the states of a 
system at any specified number of points between an initial state and an 
arbitrary later time. 

There is no single analytic method which provides the solution of 
differential equations in general. The differential analyzer provides a basic 
method applicable to the solution of all ordinary differential equations. 
Though it was invented to solve differential equations, it can also be used 
to solve arithmetic or algebraic equations. This can be done by causing it 
to solve the differential equations having the desired arithmetic or alge­
braic equations as solutions. 

8.2. Generation of Functions in α Differential Analyzer 

We will illustrate here how a number of commonly encountered func­
tions may be generated by appropriate integrator interconnections. As 
indicated in the preceding section, the procedure consists of determining 
the differential equation(s) whose solution is the required function. An 
integrator hook-up that satisfies the differential equation relations will 
then generate the function. Often, there is available more than one inte­
grator hook-up for generating a function. (See pages 476-480, and 511). 

Integrator hook-ups for the generation of a number of commonly 
encountered functions are grouped together in Fig. 8.3 for convenience 
of reference. Most of these are self explanatory. However, some require 
simple mathematical preliminaries, or a few words of explanation. A 
statement of the functions generated in each of the entries in Fig. 8.3, 
as well as pertinent notes where necessary, are listed below. 

(a) Generation of e^^, given d(kA), where k may be positive or 
negative. 

(b) Generation of sin ^ , cos ^ , given dA 
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( 0 ) 

'dA 

( c ) 

tan >4 

i/(tan>ij) 

(e) 

o ' / = - { l / , 4 ^ ) c M 

( g ) 

dA 

sin ^ 

cos /4 ^ 

( b ) 

'dA 
( d ) 

i / ( log^>1) 

dA 

( f ) 

ί/=Ι/(/1+Α·) 

d{\oqgKA*k)'\ 

uA/KA*k)/ \d\\/KA*k)\ 

( h ) 

a!4 

1 /4 1/2 5 
-1/2/1 

( i ) ( J ) 

FIG. 8.3. Generation of functions by means of integrators. 
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FIG. 8.3. Generation of functions by means of integrators. 
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Θ 

azk sin (kA) 

0\kcos{/cA) 1 
J 

(s) 

CSC >4 / 

ctn A 

¿/(ctn>1) ¿/(ctn>1) 
CSC >ί ^ 

( q ) 

dA 

dA 

dA 

"Θ 
A d d e r - a J 

du 

dA 

dA 

.-Α· 

dA dA 

\ > / * 
'dieriA) 

x2/F 
( r ) 

¿/=g^ cos Β 

θ 

i^'e^ sin β 

v-e^ sin ^ 

¿/=^'^ cos Β 

dr 

dB 

dv 

dA 

dv 
A d d e r n ds 

dB 
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dB 
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dB 
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dA 
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-ΊΒ 
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FIG. 8.3. Generation of functions by means of integrators. 
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\/r 

\/r 

Β 

dr 

d(\/r) 

d(\oqr)^(dr)/r 

Adr/r 

Bdr/r 
dB (Ädder i 

dB 

Β 'BdB 
dB 

A dB 

( ν ) 

FIG. 8.3. Generation of functions by means of integrators 

Let / i = sin A, Í2 = cos A 

äfi ^ df2 
- / T - = c o s ^ , J . = — sin ^ dA dA 

= - s i n ^ , ^ = - c o s ^ 

Therefore, an arrangement that satisfies the equation d^f/dA^ 
= - f will generate both the sine and cosine. 

(c) Generation of A^, given dA 

d(A^) = 2A dA. 

(d) Generation of A^, given dA 

d(A^) = SA^dA. 

(e) Generation of tan A, given dA 

1 + tan2 A = sec2 A 

d ( t a n ^ ) = stc^ A dA. 
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For A = 0, the integrand register holding (1 + tan" A) is actually 
set to its maximum possible value (1 — 2 - ° ) . 

(f) Generation of l/A, logeA, given dA 

dil/A) = -(i/A)d(log,A) 

d(logeA) = (í/A)dA. 

(g) Generation of l/A, \/A^, given dA 

Let / = l/A 

di = - {l/A^) dA 

= -fdA. 

Scaling difficulties are worse for this hook-up than that in (f), 
since the quantity in an integrand presents a greater scaling 
problem than l/A. 

(h) Generation of 1/{A + k), and loge(/i + k), given k, da 

Let « = 1/{A +k) 

du = - (A + k)-'dA 

= -u'dA. 

The arrangement in (i) generates 

du - uudA = d[l/(A+k)] 

The quantity u dA is also generated in the process 

udA = dA/(A+k) = d\loge(A+k)] 

(i) Generation of ..4^, given dA 

il/2A^) dA = d(A^) 

(l/A^)d(A^) = dA/2A 

— (l/A^)dA/2A = d(A-^). 

(j) Generation of given dA 

(1//ÍVÍ) d(l /^V4) = d(l/2A) 

- (1/2A) • 2 • diA'A) = dil/AVi) 

H/AVi) dA = 2d(A^). 

(k) Generation of A", given dA 

Let A" = exp(Ä;loge.4) 
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d(A^) = txpiklogeA) diklogeA), 

Note that the two-integrator arrangement for generating d(logeA) 
is the same as in (f). 

(I) Generation of 4- ^ i ) ' ' where η may be integral or not, given 
ki, n, dA. 

The quantity (̂ 4 - f is a general expression for an integral or 
nonintegral power of a function. 

Let V = k2loge(A + ki) = \oge(A+kx)^2 

dv = k2dA/(A+ki) 

vn/k2 = nloge(A + ki) = loge(A + ki)^ 

exp (vn/k2) = (A+ k^Y. 

Therefore, {AkiY may be generated by generating exp (vn /*2). 
If ndv/k2 is given, only one integrator is required to generate 
exp(vn/Ä:2). 

Note that the two-integrator arrangement for generating dv/k2 is 
the same as the hook-up in (f). 

(m) Generation of AB, given dA, dB 

d(AB) = AdB + BdA. 

(n) Generation of A/B, given dA, dB 

d(A/B) = A d{\/B) + (1 /B) dA. 

The first two integrators are used to generate d{\/B) from dB. 

(o) Generation of sinh A, cosh A, given dA, dB 

Let h = sinh A, = cosh A. 

^ = cosh A, = sinh ^ 
dA dA 

-ξ^ = sinh A, = cosh A. dA^ dA 
Therefore, an arrangement that satisfies the equation d^f/dA^ = / 
will generate both the hyperbolic sine and cosine. 

(p) Generation of tan A, sec A, given dA. (For - π/Ι < A(rad) 
< rr/2) 
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d(t3nA) = (stc Ay dA 

d(sccA) = (SQCA)(i2inA) dA. 

(q) Generation of cot A, esc A, given dA. (For 0 < y4(rad) < π) 

d ( c t n ^ ) = - ( c s c ^ ) 2 d ^ 

d ( c s c ^ ) = - (esc A)(ein A) dA, 

(r) Generation of probability (or error) function, erf A, given dA 
2 

By definition erf ^ = — 7 = | exp ( - A^^ dA 

d ( e r f ^ ) = - 4 = e x p ( - . 4 2 ) ¿ ^ , 

(s) Generation of a\ sin kA, cos kA, given dA 

Let /i = uxuVikA, U = CI2 cos fci4 

= aik cos kA, = - sin kA 
dA dA 

This arrangement is identical to the one in Fig. 8.3(b) except 
for the use of two constant multipliers. 

(t) Generation of the complex exponential, + given dA, dB 

Let Μ + /v = + = e^^ 

= cos Β + /e^ sin 

d(w + iv) = - sin Β dB -\- cos Β d/i - f /e^ cos fi dfi 
- f / sin fi dA 

du - - sin Β dB cos Β dA = - ν dfi + w d>i 

dv = cos fi dfi + sin fi d/i = udB -hv dA 

The arrangement shown in Fig. 8.3 (t) does not produce the 
absolute value of the vector quantity + but only the value 
of the "real" and "imaginary" components, u and v, respectively. 

(u) Generation of the complex sine and cosine, sin(^ H-ifi), cos 
(A +ÍB), given dA, dB 

Let r -\- is = sin {A + iB) = sin A cos iB + cos A sin /fi 
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= sin A cosh Β + / cos A sinh Β 

d(r + is) = sin A sinh Β dB + cosh Β cos A dA 
- f / (cos A cosh Β dB - sinh Β sin ) 

Let u + iv = cos {A + /ß) = cos A cos /ß — sin A sin 

= cos A cosh 5 — / sin /4 sinh Β 

d(u + /ν) = cos A sinh Β dB - cosh ß sin ^ 
- /(sin cosh Β dB + sinh 5 cos  ̂ ) 

dr = sin A sinh 5 ¿ 5 + cosh Β eos A dA = -vdB + udA 

ds = eos A cosh Β dB - sinh β sin ^ = udB -\-v dA 

du = cos ^ sinh Β dB - cosh Β sin d/4 = s dB - r dA 

dv = sin ^ cosh Β dB - sinh Β cos A dA = - r dB — s dA. 

The arrangement shown in Fig. 8.3 (u) does not produce the 
absolute value of the vector quantities sin {A + /B), cos {A iB), 
but only the value of the "real" and "imaginary" components, 
r, u, and s, v, respectively. 

(v) Transformation from polar coordinates (r, 0) to rectangular 
coordinates (A, B). 

A-hiB = re^ = r (cos θ + / sin Θ) 

A = r cos 0 

dA = cos θ dr - r sin 0 d0 

= ( ^ d r ) / r - B d 0 

Β = Γ sin 0 

dB = sin 0 dr + r cos 0 d0 

= (Bdr)/r +Ade. 

8.3. Digital Integrators 

The operations performed by a digital integrator are analogous to 
those performed by a mechanical integrator. An integrator may be con­
sidered as a device which receives two input rates and transmits one 
output rate, where the input and output rates for an ideal integrator (see 
Appendix of this chapter) are related as follows 
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Throughout this chapter an integrator's input hnes wiU be referred to 
as dx and dy hnes and its output hne as the dz hne; in schematics of inte­
grator hook-ups, variables on these Unes are shown as differentials, (as in 
Figs. 8.1 and 8.3). This aUows an idealized statement of functions gener­
ated by particular integrator hook-ups without distinction between analog 
and digital integrators. However, for the case of digital integrators, quan­
tities on these Unes wiU be designated by the increments AJC, Ay, and Δζ, 
respectively. The central store for the Δζ outputs wiU be referred to as the 
Δζ store or, sometimes, as the Ζ hne (when a delay hne store is used). 

A block diagram of a basic digital integrator is shown in Fig. 8.4. 

_______ 
R π 

r/?+)'AdderVÍ'^/?í-°'h 

i [ 

"Tstart 
¡ pulse I 

I i 1 pulse I 

I L - C i — J I 

1̂  [Registei]*'|CounterJ^ 

dx 

dy 

Fio. 8.4. Block diagram of a digital integrator 

The digital integrator shown here consists of two accumulators, R and y , 
together with associated adders and control circuitry. The block labeled 
"Σ dy register" receives from the "Σ dy counter" (a counter that can dis­
tinguish between and accumulate positive and negative increments), the 
algebraic sum of inputs appearing in sequence on an integrator's dy lines. 
(The number of dy lines is variable and is usually between 1 and 7) . 
At a specified signal, the start pulse, the accumulated number in the Σ dy 
register is shifted out and added to the contents of the Y accumulator, 
thus forming the new value of y. The number in the Y accumulator is 
added to or subtracted from the contents of the R accumulator according 
to whether ^x is positive or negative. The control flip-flops determine 
when the ( y + Σ dy) and {R + Y) additions start and stop (in accord­
ance with a start pulse code usually placed in the Y accumulator 
in a position that is read just prior to the appearance of the least signifi­
cant bh) . 
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It is apparent that Y is added to at a rate Ax/¿¡it. Eventually, the R 
accumulator will overflow, and this rate of overflow is taken as the output 
rate Δζ/Δί. The Δζ output signals are sent to a central store, where the 
current Az outputs of all the integrators in the computer are held. The 
Δ.̂  and Δ>̂  inputs to the various integrators are obtained either from this 
central store or from external devices. The constant of proportionahty 
between Δζ/Δί and Ax/At for a digital integrator is determined by the 
numerical capacity of the accumulators. The maximum length of the 
accumulators is fixed in accordance with specified accuracy requirements. 

It must be emphasized that the particular integrator unit illustrated 
is not the only one possible, but merely embodies the basic concepts of a 
digital integrator. Many variations within this basic design are possible. 
For example, (1) any of several number systems may be used in the Y 
accumulator, (2) an adder could be placed in the dx input Une, (3) the 
capacity of the Σ dy register can be varied, subject to the anticipated 
requirements of the range of problems to be solved, and may even be 
eliminated by utilizing servo adders (see Section 8.7) to perform the 
summation of rates. A principal variant in the basic incremental computer 
design is the restriction placed on the allowable values of the increments 
produced and transmitted. In a machine with so called ternary transfer 
characteristics, each operational unit may produce any of three outputs: 
0, + 1, - 1. In a machine with binary transfer, only two increment values 
are defined: + 1, - 1. At any step, Δζ is defined to be + 1 if the R register, 
overflows, and - 1 if it does not. The advantage of the binary transfer 
system is that it reduces the size of the Δζ store by one half (since one 
binary storage element can represent either of two values, while two are 
required to represent three values) and also reduces the logical circuitry 
required. This economy is offset by a loss in precision and increased diffi­
culty in comprehension of the machine's numerical operations. The 
pecuUarities of the increment sequences and the means for producing 
them in the binary transfer system will now be compared to the more 
natural operation of the ternary system. In the latter, the average rate of 
change of a variable may be determined simply by summing the incre­
ments produced and dividing by the number of steps. For example, for 
the sequence + 1, 0, 0, - 1, ~ 1 the answer is - 2 / 6 = - 1 / 3 . A zero 
output rate would be 0, 0, 0, . . . 0. In a binary transfer system, because 
of the lack of zero increments, special means must be provided to generate 
an average zero rate. This may readily be done by alternately generating 
positive and negative increments, in a machine where 0 represents — 1 
and 1 represents + 1, simply by adding 1 to Δζ every other step. The 
digital integrator described in Section 8.3.2. is designed for a machine 
with a binary transfer system and uses the number system for y shown 
in Fig. 8.18. With this system, the addition of zero (y = 1.000 . . . 0) 
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causes an overflow of the R register every other step. Thus, the various 
positive and negative output rates are comprised of the supeφosition of 
the "true" output rate on the zero-rate sequence. Returning to the loss of 
precision in the binary transfer system, referred to earUer in this para­
graph, it is now apparent that in this system the least significant bit of the 
number in the Y accumulator actually has no significance. This is obvious 
if we consider the case where the dy input is a zero-rate sequence. Here, 
the value of the bit in the least significant position is determined only by 
whether it is inspected on an odd or even step of the iteration process. 
The loss of precision and the oscillation, too, are objectionable. In closing, 
it should be pointed out that the restriction on the size of increments to 
a single unit can cause considerable difficulty when the computer is used 
in applications where it is necessary to generate large magnitude changes 
within a short period. For this reason, variable increment computers 
have been designed which are capable of generating increments having 
any of several selectable values. The larger increments are used whenever 
it is necessary to generate a large change in a variable after a minimum 
number of steps, for example—in estabUshing new initial conditions (see 
Merz [1959] and Braun [I960]). 

The particular integrator shown in Fig. 8.4 approximates integration 
by a simple rectangular summation operation, described in Section 8.3.2. 
The nature of this integration process is shown in Fig. 8.5. From the 
figure it is evident that the approximation can be improved by de­
creasing the size of increments in χ and y , and that for a continuous 

FIG. 8.5. Approximation to the integral by rectangular summation 

monotonic curve the error of integration is < (yn — yo)^Jc, A trapezoidal 
approximation to the integral is more precise and may be achieved by 
suitable modification of the scheme shown in Fig. 8.5. In a trapezoidal 
type of integration scheme, the area under a curve is approximated by 
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summing the areas of a series of trapezoids (see Fig. 8.6). 

The fundamental area of integration is (yt)i(^x)i, where (yt)i is an 

FIG. 8.6. Approximation to the integral by trapezoidal sununation 

estimate of the average value of y in the interval (AJC)Í. Theoretically, 
the integrator must take this into account. This may be done by utilizing 
for the rectangular scheme. The ratio of the error terms in the two 
methods is of the order of Ax. 

In general, some of the successive Ax inputs to an integrator through­
out a number of integration cycles will be zero. For trapezoidal integration, 
the error of approximation to the integral is less for the trapezoidal than 
an additional register as part of the integrator. This register, Yu accumu­
lates the quantity 

(yt)i = yn + V i ( A y ) . (8-6) 
β = η + 1 

where yn is the value assumed by yi when the last non^ro dx input, 
(Ax)n+u was received and X S = n + i (Ay), is the sum of all the dy inputs 
entering the integrator after y« is set into the Yt register. When a nonzero 
dx input occurs, the quantity in the Yt registe (yOi is either added to, or 
subtracted from, the contents of the R register, in accordance with the 
sign of the dx input. Thus, the value of y integrated is the average value 
of y in the region between the nonzero dx inputs rather than the value 
at either end-point. When an integrator's operation is described by Eq. 
(8-6), it is said to be operating in the interpolative mode, this name 
referring to the fact that Üie value of y used over an integration interval 
is obtained by interpolating between the values of y at the end-points. 
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8.3.1. EXAMPLE OF OPERATION OF A DIGITAL INTEGRATOR 

The following example illustrates the operation of a digital integrator, 
utihzing a rectangular integration formula. It is assumed that the dz out­
put of an integrator (with a sign reversal) is used as the dy input to the 
same integrator. In this case 

dz = — zdx 

or 
dy = —ydx. 

(8-7a) 

(8-7b) 

The solution of Eq. (8-7) is y = e-^. Since, for ;c = 0, = 1, the 
initial value in the Y accumulator must be 1*. Table 8.1 shows the 
approximate values of generated by an integrator using a rectangular 
integration formula. (To simphfy the description, it is assumed that the Y 
accumulator has a precision of only 1 part in 16.) Figure 8.7 shows the 

12 16 20 24 28 32 

2^ 

FIG. 8.7. Generation of e - ^ by a digital integrator 

function y = e-", and also the values as generated by the integrator. It is 
apparent that the error in the generated function is essentially less than 
the height of one increment. When accumulators of greater capacity are 
used, this increment becomes of less significance. In other words, the 
accuracy of the digital integrator can be extended indefinitely, theoretically. 

8.3.2. RouND-oFF ERROR IN A DIGITAL INTEGRATOR 

The R register, whose capacity is iV = 2*̂ , accumulates a sequence 
riiy n2, . . . Hfc where | | < N/2, In an integrator employing rectangular 
summation, Δζ is the scaled down sum of the elemental areas yi Δ Λ (see 

* There is an initial error of magnitude since the largest number the Y accumula­
tor can hold is 1 - 2-*» and in this case, Λ = 4. 
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TABLE 8 . 1 . 

R dy 

0 1 . 0 0 1 5 0 

1 0 . 9 7 1 5 1 5 

2 0 . 9 4 1 5 3 0 

3 0 . 9 1 1 5 1 3 - 1 
4 0 . 8 8 1 4 2 7 

5 0 . 8 6 1 4 9 - 1 
6 0 . 8 3 1 3 2 2 
7 0 . 8 0 1 3 3 - 1 
8 0 . 7 8 1 2 1 5 
9 0 . 7 5 1 2 2 7 

1 0 0 . 7 3 1 2 7 - 1 
1 1 0 . 7 1 1 1 1 8 
1 2 0 . 6 9 1 1 2 9 
1 3 0 . 6 7 1 1 8 - 1 
1 4 0 . 6 5 1 0 1 8 
1 5 0 . 6 3 1 0 2 8 
1 6 0 . 6 1 1 0 6 - 1 
1 7 0 . 5 9 9 1 5 
1 8 0 . 5 7 9 2 4 
1 9 0 . 5 5 9 1 - 1 
2 0 0 . 5 4 8 9 
2 1 0 . 5 2 8 1 7 
2 2 0 . 5 0 8 2 5 
2 3 0 . 4 9 8 1 - 1 
2 4 0 . 4 7 7 8 
2 5 0 . 4 6 7 1 5 
2 6 0 . 4 4 7 2 2 
2 7 0 . 4 3 7 2 9 
2 8 0 . 4 2 7 4 - 1 
2 9 0 . 4 0 6 1 0 
3 0 0 . 3 9 6 1 6 
3 1 0 . 3 8 6 2 2 
3 2 0 . 3 7 6 2 8 

Fig. 8.5). In a machine with a binary transfer system Δζ is considered 
positive in a period when register R overflows and zero otherwise. During 
the /th processing of an integrator, [rii -f (N/2) ]* is added to register R, 
leaving in it some quantity TÍ . If register R were of unlimited capacity, the 
number r« which it would contain during the /th processing would be 

* The particular type of integrator being described here is one in a system with 
binary communication between integrators (see page 464). This accounts for the 

term Ν/I. 

25x e-aJ 24y
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r« = Γ ο + ^ (Πι + N/2). 
i = 1 

= r„ + + I n.. 

(8-8) 

(8-9) 
y = 1 

Letting [ Y stand for "integral part of," i.e., the sum of the overflows pro­
duced during / iterations 

The Δζ contribution during the /th step, namely [riu/NYi - [ru/NYi-i 
is either 0 or + 1, and a convenient general expression for Δζ is 

ΔΖ = 2 I 
Summing the unit increments, AZi 

Tu Tu 

i L Ν J i - Π ) 

Σ--{Σ[̂ -];-Σ[̂ ]:_.}-Σ'«-' 
i = 1 1 

fc - 1 

Since O ^ ( Γ η ) Ο = Γο < iV, [TJNYQ - 0. Also, substituting the right hand 
side of Eq. (8-10) into Eq. (8-14) yields 

Substituting the value of (r„)fc given by Eq. (8-8) 

(8-15) 

(8-16) 

(8-17) 
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I = 1 

2 

j = 1 

where e = (2/N)(ro - is the round-off error. To determine its upper 
bound, consider its absolute value \e\ 

Since |ro - rjc\ < N, \e\ < 2. If initially the contents of register R are set 
equal to N/2 

Since 0 ^ r, < \N/2 - ^ N/2 , and 

k i ^ 1. 

8.3.3. CHOICE OF INTEGRATION FORMULAS 

In a binary transfer machine, the numbers rii which are added to the R 
register are given by rii = yi AJC{ where AJC = i t 1. During the /th iteration, 
the quantity added to register R is (yt άχι + N/2). If Δ;τ = - f 1, the con­
tents of Y are added to register JR, but if AJC = - 1, the A^'s complement 
of y is added to register R, i.e., 

r, = Γ ί _ ι + (yt-f N /2 ) if AJC* = - f 1 (8-22) 

r, = r i _ i 4 - N - ( y i + iV/2) if AJC* = - 1 

= ( - y t + iV/2). (8-23) 

Equations (8-22) and (8-23) may be written in the generalized form 

η = n.i+N/2-hyAXi (8-24) 

If in Eq. (8-19) rij is replaced by y i AJCÍ 

2)AZ. =-L·^y,^, + e. (8-25) 
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Let us consider the nature of YI, the number to be added to register JR. 
If the initial value of Y is YO, and if during the /th cycle, there IZ an incre­
ment, ^YU as well as a unit increment, A;Ci, then the following general ex­
pression may be written 

Í - 1 

yi (8-26) 
Í = 1 

where the term F(^Xi)^yi indicates that yi (the current value of y) may 
be a function of the increment in x, as well as the increment in y . 

Four simple possible choices for Fi^xO are 

Case 1: 
F(AJCi) = 0 (8-27a) 

Case 2: 
F(AXi) = 1 (8-27b) 

Case 3: 
F(^Xi) = 1 if ΔΛΤί = -t- 1 ) 

\ i.e., F (A^, ) ( 1 + Δ ^ Ο 
= 0 if ΔΛ:< = - 1 ) (8-27C) 

Case 4: 
F(AXi) ^ % (8-27d) 

If the value of F(/^i) for each of these cases is substituted into Eq. 
(8-26), the following exp 

Case 1: 
i -

yi = yo -f 

Case 2: 

y< yo + 
j = 

Case 3: 

i -
yi = yo + 

essions for y» are obtained 

^YJ -f-

(8-28a) 

(8-28b) 

Ay) + Í4(l -f AjCi) Ay< (8-28c) 
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Case 4: 
i - 1 

y. = yo+ 2) Δ /̂ + ^ Δ̂ *· (8-28d) 
i = 1 

For case 1, the value of y i is that at the end of the (/ - l ) th iteration 
cycle (which may be referred to as "old y " ) . For case 2, the value of y^ 
is that at the end of the /th iteration cycle ("new y " ) . For case 3, yi is 
equal to "new y " for + Ax and "old y " for - AJC. Case 4 provides for 
linear interpolation. 

8.4. Structure of α Digital Differential Analyzer 

There are several levels of abstraction and organization on which to 
functionally describe a digital computer. For example, we may consider 
such a machine as a "black box" containing a set of switching elements and 
bistable-state storage elements. Its functional organization can be com­
pletely specified by stating how its elements are interconnected. To specify 
its functional state requires, in addition, a description of the current state 
of its storage elements. 

The mechanics of solving a mathematical problem, or processing data, 
in general, consists of translating given initial information by prescribed 
rules to a more useful form. The computer in a sense does not create 
any new information, i.e., information not inherent in the original data. 
It may be considered both a computational operator, performing arithmetic 
and logical transformations, and also a communication system, since it 
accepts input data and transmits selected output information. The funda­
mental process of coding, by which information is translated by specified 
rules from one form to another, enters into both areas. In a computer, 
any of innumerable coding schemes may be used to convert input data to 
a form more appropriate for the machine's structure; also to convert 
results to a form called for by the end use. In any communication system, 
coding may be used to improve the probabihty of correct detection of 
information after transmission over a noisy channel, while within a 
computer special codes may be used to detect and correct errors generated 
either in arithmetic operations or data transfers (see Section 9.2). 

In preceding descriptions, integrators were spoken of as distinct 
physical entities. However, though it is convenient to consider the integrator 
as an operational entity, in many digital differential analyzers, namely those 
with completely serial organization, an integrator does not exist as a 
distinct physical entity, as in mechanical and electronic analog differential 
analyzers. Nevertheless, even in this case, one can think of the machine 
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as having several units comparable in function to mechanical or electronic 
integrators. These units are capable of being interconnected as far as 
information transfer is concerned in such fashion that they will solve any 
problem that can be solved on a differential analyzer. The digital differen­
tial analyzer acts as a pulse coded analog of any physical system under 
investigation and is similarly constrained in its behavior. The rates of 
mechanical shaft rotations in a mechanical analog computer are repre­
sented in the digital differential analyzer by the repetition rates of electrical 
pulses, and angular or linear displacements by the contents of storage 
registers which accumulate these pulse inputs. 

In a completely serial digital differential analyzer, all R and Y accumu­
lators are mechanized as circulating registers. Specifically, the various 
integrands can be stored as magnetizable cells on the surface of a dynamic 
magnetic store. Each bit of each integrand is operated upon serially as it is 
read from the store. The circuits controlled by the variable of integration, 
which cause the transfer of data to the R accumulator, are time-shared 
among all the integrators. All of the arithmetic and control operations to 
be performed on an integrator are effected by signals from different parts 
of a gating network which, in turn, receive their signals from the control 
and read channel flip-flops. Only one arithmetic unit is required, for 
after each binary place of an integrator is operated upon, the result of 
that operation is sent to the store, leaving the computation and control 
circuits free to operate on new information being read from the store. 
The manner in which information is processed in a serial digital differen­
tial analyzer is presented in Fig. 8.8 and the discussion following. 

The computation and control center, shown in Fig. 8.8, processes all 
information within the machine, and effectively achieves the only arith­
metic functions required in a digital differential analyzer, namely, addi­
tion and subtraction. It receives signals from the storage synchronizing 
flip-flops, and also from the arithmetic and control flip-flops. From these, 
new signals are generated which are either recorded in the store or used 
to set arithmetic and control flip-flops. Of the many possible combina­
tions of input signals, only those which represent the operational steps 
required in a differential analyzer are permanently wired into the gating 
network. As a result, it is not necessary to instruct the machine in the 
details of how to solve a problem, but only to insert the initial conditions 
into its store. A general purpose (GP) type of digital computer has a 
central arithmetic unit that must be used in solving a variety of problems. 
Therefore, to solve a specific problem, a program of instructions as well 
as initial numerical values, must be entered into its main store. 

In a machine of this type, flip-flops are employed for several pur­
poses: (1) to provide distinct time signals, (2) to facilitate the synchro-
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FIG. 8.8. Information flow through a completely serial digital differential analyzer 
(external inputs and outputs not shown) 

nization of information from the memory with the computer's clock, (3) 
to control the arithmetic and logical operations performed in the com­
puter, and (4) to provide time delays for carries in the adders. 

In a completely serial machine, only one digit of one integrator is up­
dated at a time in the computation and control center, and so it is necessary 
to provide a means for storing the other bits of that integrator, and the 
bits of all the other integrators. Each integrator is operated upon in 
sequence and in a cyclical manner: integrator / - f 1 is always processed 
following integrator /. When this type of operation is used, the fixed delay 
or recirculation type of memory is practical for a digital differential analy­
zer. Completely serial DDA's have used magnetic drums or disks for the 
main store because of the combination of economy and reliability they 
afliord. However, when the integrator registers are organized serially on a 
drum or disk, the iteration rate, i.e., the frequency of processing of each 
integrator, is limited by the rotational frequency (usually somewhere be­
tween 80 to 160 rev/sec). Also, there may be diflaculties in addressing inte­
grators, as brought out at the end of this section. When these limitations 
cannot be tolerated, DDA's can be mechanized with static stores and vary­
ing degrees of parallel operation (see Section 8.11). 
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Because the access thne (i.e., the time required to obtain a specified 
word from storage) is variable in a dynamic magnetic store, depending 
on the word's position relative to a reading head at the time the word is 
called for, there is a distinct disadvantage in its use as the main store 
of a GP computer. However, the organization and control of the program 
in a DDA is such that a dynamic type of store can be used in what 
amounts to a zero access time mode of operation. This type of organization 
leads to a simple and elegant machine that consists mainly of passive stor­
age elements (magnetizable cells) and in which the number of actual com­
puting elements can be kept to a minimum. Actually, all that is required 
besides the storage registers are some relatively simple adders, counters, 
and some form of control. Because of the serial type of operation used, 
the adders can be relatively simple. 

The signals read from the store are not of a suitable amplitude or 
shape to be processed directly by the gating network. Consequently, these 
signals are amphfied and restored to rectangular pulses before entering the 
network. Each read channel consists of voltage amplification and shaping 
circuits and a flip-flop that synchronizes data read from the store with 
the clock. Each record channel has voltage ampUfication circuits, foUowed 
by a power ampUfier which drives a magnetic recording head. 

During each bit period of the time interval when the contents of a 
particular integrator (or similar type of operational unit that may be in a 
DDA, e.g., decision unit, multiplier, etc., described later in this chapter) are 
read out of the long delay lines, the last recorded output of some opera­
tional unit can be read out of the Ζ Une. This Une, we recaU, is a short fixed 
delay store which holds the last recorded output of each operational unit. 
Information in the Ζ Une is recirculated at aU times except when new 
information generated by an operational unit replaces the preceding value. 

If the number of operational units in the computer is equal to or less 
than the number of bits defining the length of an operational unit, a single 
addressing channel is suflScient to hold each marker required to indicate 
the pulse time when the output of a particular operational unit is available 
from the Ζ Une. The information in the address channels is used as 
foUows: When initially filUng the computer, I's are placed in those posi­
tions in the address channel which correspond to pulse times at which 
inputs to be routed to a particular operational unit are available from the 
Ζ Une. This information is used to control coincidence gates which wiU 
admit information from the Ζ Une at the specified time. The address 
channel achieves the same function as the physical wiring of a plugboard 
used to connect operational units in an analog differential analyzer. 

A convenient way of utiUzing the address channel is to read from it 
during each time interval the marker bits that wiU cause the pick up of 
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other data in a serial D D A 

A major difficulty arises in a completely serial DDA when there are 
more operational units than bits per register, because the marker system 
for Δζ selection requires a marker position for each Δζ. When several ad­
dress lines are required, each can be associated with one of several read 
heads so stationed along the Δζ hne that they scan aU Az's in one word 
time. (For high-density recording the close head spacing required may not 
be reaUzable, so several Δζ lines may be used). The possibihty of simul­
taneous inputs from the Δζ stations complicates matters too. (Also, the 
reader may reflect on the additional encoding and decoding required to 
channel a designated Δζ to the proper input or combination of inputs of an 
operational unit). For further comments on this problem see Sections 8.10 
and 8.11. 

8.5. Preparation of Problems for α Digital Differential Analyzer 

8.5.1. I N T R O D U C T I O N 

A digital differential analyzer can be used to solve an ordinary dif­
ferential equation of any order or degree, hnear or nonlinear, or a simul­
taneous set of such equations. It can also be used to solve integral equa­
tions, transcendental algebraic equations, and simultaneous sets of such 
equations. Actually, any problem which has a solution that is also the 
solution of a set of nonsingular differential equations can be solved on a 
digital differential analyzer provided that the machine has a suflBcient 
number of components of two types, adders and integrators. A principal 
advantage of the DDA over the general purpose arithmetic computer as 
an engineering computing aid is its more direct, simple, and intuitive 
approach. With a DDA, differential equations need not be reduced to 

the dz's required as inputs to the operational unit that wiU be processed 
during the succeeding time interval. This is shown in Fig. 8.9. 



8.5. PREPARATION OF PROBLEMS 477 

8.5.2. MAPPING 

Mapping consists of specifying how the operational units in a machine 
should be interconnected so that the variable or variables of interest are 
generated within the system. The value of these variables as a function 
of the independent variable represents the solution to the problem being 
investigated. The desired interconnections between operational units is 
usually expressed by means of marker code bits inserted in that part of 
the store reserved for this purpose (see Section 8.4). The actual inter­
connection is performed by logical decoding networks in the computer's 
control circuitry. During computation, information is transmitted between 
integrators in the form of incremental changes in variables. The source of 
the dx input may be the output of any integrator as well as the computer's 
internal clock, the empirical data received from external sources like 
paper tapes, magnetic tapes, etc. The dy input may also come from any 
of these sources. Also, a d;c or a dy input may consist of the sum of out­
puts from several sources. Though adders can be provided to sum both 
dx and dy inputs, for reasons of design simphcity and practical considera­
tions, dx inputs are limited usually to one or two, while several dy inputs 
are permitted. It can be shown that any ordinary differential equation 
can be so mapped that more than one input on a dx input hne is never 
needed. On those occasions where it is convenient to use the sum of two 
variables as a dx input to a particular integrator, the summation may be 
performed prior to transmission to the integrator by means of a servo 
adder (see Section 8.7). 

To estabUsh the interconnections required to generate the solution 
of a given problem, a procedure like the following may be used: (1) If 
necessary, reduce the problem to a set of differential equations. (2) Isolate 
the highest derivative of each dependent variable by putting it on the left 

difference equations before computation can be initiated. Instead, pro­
gramming a problem involves only three steps: mapping, scaUng, and 
coding. Mapping, which consists of specifying how the operational units 
are to be interconnected, and scaling are discussed in the paragraphs 
following. Coding will not be discussed because it is routine and consists 
of detailed procedures which differ appreciably from one machine to 
another. 

Any continuous function required in the solution of a problem can 
be generated within a DDA by suitably interconnecting a set of integrators 
to solve an auxiliary differential equation whose solution is the required 
function. Provision can also be made for inserting empirical or discon­
tinuous data into a DDA. 
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side of the differential equation and all other terms on the right.* 
(3) Assume the highest derivative is known, and by integrating it, generate 
all lower derivatives required in the problem. (4) Combine the variables 
on the right side of the equation as indicated and use this sum as the 
source of the assumed highest derivative. This procedure is illustrated in 
Fig. 8.10 where the equation 

a(Px/df + bdx/dt + ex = 0 (8-29) 

is solved by double integration of the expression 

(Px/dfi = - (b/a) dx/dt - (c/a)x. 

FIG. 8.10. A mapping for solution of the equation: 
a d^x/dt^ + b dx/dt 4- cjc = 0 

In Section 8.3, a trapezoidal and a rectangular integration formula 
were considered, and in Section 8.3.3, certain variants were described. 
We will continue next with some comments on how the choice of a rec­
tangular formula or an interpolative or extrapolative form of the trape­
zoidal formula is influenced by the assignment of integrator numbers, 
when integrators are processed sequentially in a common arithmetic unit. 

* This may not always be possible, as, for example, in the case of certain trans­
cendental types of equations, where the highest order derivative might appear 
alone on one side of the equation, and also be the argument of some function on 
the opposite side. Nevertheless, if the equation does have a solution, the machine 
can be programmed to find it. 
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where yn-i is the value that was held in the Y register when the last non­
zero dx input, (Ajc)n+i, was received. 

The following rules may be used in assigning integrator numbers and 
modes: (1) The dx input to each integrator should be the machine inde­
pendent variable, Δί, or the output of a smaUer numbered integrator. 
(2) Whenever possible, the dy input should be Δί or the output of a 
smaller numbered integrator. Integrators so programmed should be as­
signed the interpolative mode. (3) When the dy input is the integrator's 
own output or the output of a higher numbered integrator, the extra­
polative mode should be used. (4) For multiple dy inputs, aU of the 
inputs should come either from sources as in rule 2 or, as in rule 3, i.e., 
unmixed, and the respective mode of integration should be used. (5) The 
inputs to an adder should come from smaUer numbered integrators. 
(6) Use of a digital servo (see Section 8.7) may require violation of 

(This assumes that a machine provides a programmer with the choice 
of integration formula to be used in each integrator—which is not always 
the case.) 

The assignment of integrator numbers determines the order in which 
each integrator will operate in an iteration period of the computer. Each 
iteration begins with operations on integrator number 1, followed by 
operations on higher numbered integrators in ascending order. The assign­
ment of the modes of integration is determined by the flow of information 
indicated by the mapping, taking into account the order in which the 
integrators are operated upon. 

The interpolative mode gives greater accuracy only when the dy inputs 
are integrator outputs that have occurred in the same integration period. 
The solution of most problems requires the frequent use of integrator 
hook-ups in which some of the dy inputs are integrator outputs that have 
occurred in the preceding integration period. Therefore, when trapezoidal 
integration is to be performed and the dx input is (Ajc)t, the y value to be 
integrated must be predicted by an extrapolation of the (Ay)i_i input. 
The simplest extrapolation is a Unear one, and an integrator performing 
such an extrapolation is said to operate in the extrapolative mode. An 
integrator operating in this mode functions as one in the interpolative 
mode, except that the quantity accumulated in the Yt register during the /th 
period is 

i - 1 

(yOi = yn-i + ^ 2) ^t^y^i-^ (8-30) 



480 8. THE DIGITAL DIFFERENTIAL ANALYZER 

some of the preceding rules, but the amount of violation should be kept 
to a minimum. ( 7 ) For multiplication of two variables, both integrators 
should receive their inputs from smaller numbered integrators. 

8.5.3. SCALING 

Any computing machine has a limitation in the magnitude of the 
numbers it can handle. A desk calculator, for example, has an accumulator 
register of fixed size. An electronic analog computer operates over some 
limited voltage range. A mechanical analog machine has physicaUy Umited 
motions. A primary purpose of scaling (see Section 6.3, also) in any com­
puter is to assure that intermediate results stay within specified ranges 
during the running of a problem. In a digital machine, this means the 
capacity of the registers must not be exceeded. It is also important to 
prevent crowding of results into a smaU segment of the numerical range of 
the registers (usually centered about zero) with an accompanying loss of 
significant digits, and in a DDA we must prevent the output of any oper­
ational unit from being systematically hmited to insignificant changes. 

The problem of scaling a DDA is similar to that of scahng an analog 
differential analyzer. Control of the scale may be achieved in a number 
of ways: by providing a facility that aUows a choice of the number of sig­
nificant digits employed in any given integrator, the use of constant multi­
pliers, and digital servos with gain (see Section 8 . 7 ) , etc. 

A logical first step in scahng a problem is to estimate the maximum 
values each of the variables is likely to attain during the course of a com­
putation. The more accurate this estimate, the better the solution. If the 
estimate is too low, integrators wiU overflow, and the problem will have 
to be rescaled. If the estimate is too high, more significant places will be 
used than required and hence it wiU take longer than necessary to obtain 
a solution. Of course, it is desirable to have all scales as great as possible 
for maximum accuracy. 

8.5.4. SCALING RELATIONSHIPS WITHIN AN INTEGRATOR 

Although a scale factor can be any number within a machine's range, 
restricting scale factors to integral powers of the machine's radix allows 
the product of scale factors, or a scale factor and a problem value, to be 
obtained by summing exponents. For a binary machine, the characteristic 
equation of an integrator is Δζ = y Ax/l''^ for an integrand register of 
rii bits. Since each machine variable is a product of a problem variable 
and a scale factor, a similar relation holds between the scale factors 

= · · (8-31) 
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and + ni = 5^ + S^,. (8-32) 

Let the estimated maximum value of the integrand be < 2*̂ *, 
where rrii is the smallest integer satisfying the relation. Therefore, the 
capacity of the integrand must be · 2̂ "*. Accordingly, the second rela­
tion that must be satisfied is 

(Sy + nii) ^ Hi ^ Ν (8-33) 

where is the maximum number of bits per accumulator (a characteristic 
of a particular machine design). 

Equation (8-32) may be written 
S^-S,= n,- Sy. (8-34) 

Equation (8-33) may be written 
mi < (rii-Sy). (8-35) 

It follows from Eqs. (8-34) and (8-35) that 
( S , - 5 , ) ^ m,. (8-36) 

All the variables contributing to a particular input must be at the 
same scale. For example, all the dy inputs to a particular integrator must 
have the same scale. When considering the interconnections between 
integrators, it is also apparent that if a dz output is used as an input to 
another integrator, then, in general, the two must be of equal scale. 
However, the same variable may be treated as having a different scale at 
input and output, for special purposes. 

8.5.5. S C A L I N G R E L A T I O N S H I P S F O R A S E T O F I N T E G R A T O R S 

We niay distinguish between two sets of criteria to be satisfied in 
scaling. The first consists of satisfying the relations in Eqs. (8-32), 
(8-33), and (8-36), for all integrators, and thereby obtaining relative 
magnitudes for all the scales (principally from Eq. (8-36). The second 
consists of estabHshing a definite value for one of the scales. This will 
depend principally on the accuracy and computing speed desired. Among 
other factors that may influence the choice is the fact that some variable 
may require a certain minimum scale for a required accuracy. The accuracy 
with which maximum values of the integrands are estimated and the 
efficiency of scaling are primary factors in determining how effectively the 
machine's precision and computing time are utilized. 

Part of the difficulty in scaling results from the fact that the scaUng 
relations involve inequalities, as shown in Eqs. (8-33) and (8-36). In 
general, there are a number of sets of scaling factors that will satisfy a 
particular hook-up of integrators. A trial and error approach to satis-
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faction of the constraints on scaling imposed by the machine and the nature 
of a problem can be very tedious for problems involving large numbers of 
integrators. However, an optimal set of scales can be produced systemati­
cally by a method in which these constraints are organized in a matrix form 
(see Gill [1959]). Once the scaling has been performed, the scaling re­
lations can be used to determine the initial value of each integrand. 

There are two possible criteria for fixing the scaling, and sometimes it 
is impossible to satisfy both. On the one hand, one may require that a 
particular variable have a specified precision, thereby fixing its scale and 
estabHshing all others. On the other hand, one can fix the time of com­
putation which, in general, fixes the scale of the independent variable. 
This points out a distinguishing feature of the DDA, namely the option 
it offers of a direct trade-off between precision and solution time, one 
being proportional to the other. For example, in increasing the pre­
cision from one part in 2^^ to one part in 2^\ the computing time required 
would be doubled. The result of scaling a problem is a determination of 
the register lengths for every integrator in the machine. Therefore, once a 
problem has been correctly scaled, the computation may be stepped up in 
accuracy or in speed by readjustment of all integrator lengths by the 
same amount (within the capacity of the registers). 

The steps involved in scaling a problem can be summarized as fol­
lows: (1) Estimate the value of m (see Eq. 8-33) for each integrand. 
(2) From Eq. (8-36) estabhsh a set of inequaUties for all integrators, 
involving scale differences. (3) Upon some basis, i.e., the accuracy 
requirement of a particular variable, establish the numerical value of a 
particular scale. This plus the information in item (2) should allow all 
scales to be determined. (4) Equation (8-32) now permits the integrand 
length in bits, η», to be determined for each integrator. (5) As a check, 
we see whether Eq. (8-32) can be satisfied for each integrator. It may 
be that it is not satisfied for all integrators, as a result of the fact that the 
relations formed in accordance with Eq. (8-36) are inequalities rather 
than identities. In this case, from one to all of the scale factors may have 
to be changed. If possible, the scale on the independent variable should 
not be changed, since the time required for the solution of a problem 
depends on the scale (and range of interest) of the independent variable. 
(6) Determine the proper scaled initial value of each integrand. 

8.5.6. N O R M A L I Z A T I O N 

Normalization insures that several of the critical integrands will be 
full at their maximum values. Since the output rates of these normalized 
integrators will be increased each pulse will represent a smaller value of 
the original variable, and so the accuracy is improved. In practice, the 
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y A ) ~ max X max V 1̂  max / maxl-^l^max« 

(8-40) 

Equation (8-37) may now be written in normalized form 

dy\ = ^ i^cUax dYn + B|;c|2^ax d^n + C|^|«n,ax y η dXn + D^l^max Xn dXn^ 

(8-41) 

The higihest order integrand is now automatically full at its maximum 
value. At least one of the other integrands in the problem may be adjusted 
to opthnum or full by suitable choice of \x\max' The problem will not 
necessarily be run to the maximum value assigned to the independent 
variable. 

Normalization provides clarity and convenience in the scaling process. 
In some problems it may be applied differently to different sections of 
the problem, and usually enables constants and maximum values to be 
adjusted so that scaling can be improved further. 

8.5.7. OUTPUT MULTIPLIERS 

Assume that the variable appearing in a y accumulator has a known 
upper bound. If the absolute value of this upper bound is given by |a|, 

scales of the final output variables usually determine the necessary scale 
of the over-all problem and thus the running time. Normalization permits 
a shorter running time with no decrease in accuracy by permitting a 
decrease in the ratio of the input to output scales. 

A simple procedure for normaUzing equations is as follows. Consider 
the differential equation 

dy = Ady^Bdy+-Cydx^ Dx dx. (8-37) 

NormaUzed values of y" and χ are 

^ y I max l-^lmax 

where the denominators in (8-38) represent maximum absolute values in 
the original units, and yn and Xn refer to normalized units for which the 
maximum value will be unity. 

We will derive next the equivalent normalized form of Eq. (8-37). 
The appropriate normalization for the lower derivatives is obtained from 
Eq. (8-38) by performing the indicated integrations 

— (8-39) 

file:///x/max'
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where 0 < α < 1, then the output rate of the integrator wiU not be 
over a times the maximum rate. This causes a decrease in the efficiency 
of operation of the integrator. Increasing the output rate could result 
in better scaling. This can be done, within the limitations of the over-aU 
scaling constraints, by restricting the capacity of the R register. In the Ben-
dix D-12 digital differential analyzer, circuitry is provided which gives the 
user the option of muhiplying the output of chosen integrators by 1, 2, or 
5, for the cases in which the bounds on Y are 1.0, 0.5, and 0.2, respectively. 
For these cases the bounds and initial values of R are as shown below 

Initial value ofR Output multiplier 

X 1 

X 2 

X 5 

Bounds on R 

0 ^ r< < 1.0 

0 ^r^< 0.5 

0 < < 0.2 

To = 0.5 

To = 0.25 

= 0.1 

8.6. Decision Units in α Digital Differential Analyzer 

It has been shown (in Section 8.3) how digital integrators may be 
utihzed to generate approximations (to any precision desired) of analytic 
functions. With a shght modification, one or both accumulators of a 
digital integrator may be utilized to generate nonanalytic functions. An 
operational unit used this way is sometimes referred to as a decision 
integrator. However, a term like decision unit is better suited, since inte­
gration is not actually performed. The output of a decision unit may be 
utihzed to generate nonanalytic functions to be used to represent Ihniters, 
hysteresis, backlash, static friction, absolute values, inert zones, etc. It 
may also be utihzed to act as an automatic switching control at some 
point or points in the course of a computation. 

Two types of decision units wiU be considered. Figure 8.11 shows a 

gnUn 
-dy. 

Yj sgn // Ij Decision V 

FIG. 8 . 1 1 . Decision unit (type 1 ) 
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Decision —^Output 

FIG. 8.12. Decision unit (type 2 ) 

lator. Successive incremental inputs of the dependent variable are received 
by the Y accumulator, and in any iteration period, say the /th, the incre­
mental output (Δζ)ί, is determined by the incremental input of the inde­
pendent variable, (Δχ)ί, and the quantity, yi, currently in the Y accumula­
tor. The two flip-flops shown receive and indicate the three possible 
values of dx, namely + 1, 0 , and - 1. The output (Az)i is a function 
of yi, in accordance with the following scheme 

(1) If yi > h (Δζ). = 0 

(2) If y. ^ - h (Δζ). = 0 

(3) If yi = 0, (Δz)i = 0 

(4) If 0 < yi < 1, (Δζ). = (Δ^). 

(5) If - 1 < yi < 0, (Δζ). = - (Δχ).. 

Note that rules ( 1 ) and ( 2 ) enable the decision unit to be used as a 
limiter. 

8 . 6 . 1 . E X A M P L E S O F U S E O F A D E C I S I O N U N I T 

We will consider first some examples of how nonUnear functions may 
be generated by the use of decision units: In Fig. 8 . 1 3 , a decision unit is 
used to generate the absolute value of a function, u. Since, in any iteration 
period the same increment is used both as a dx and a dy input, the 
decision unit emits the absolute value of increments in u as its output, in 
accordance with rules ( 4 ) and ( 5 ) of the preceding paragraph. 

schematic of a decision unit which will arbitrarily be classed as type 1. 
This type of decision unit is identical to a digital integrator with one 
exception, namely, it has the capabihty of picking up as a dx input not 
only the normal incremental outputs of operational units or input devices, 
but also the signum function of the number in a y accumulator. If each 
integrator is provided with this additional capability, it can be used either 
as an integrator or decision unit. A more general type of decision unit, 
referred to as type 2 , is shown in Fig. 8 . 1 2 ; it does not use an R accumu-
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L.J L . J L.J L . J L.J L . J 

1 υ 1 

-du 
'du 

FIG. 8 . 1 3 . 

In Fig. 8.14 two decision units are used to generate the sawtooth 

Θ 

l . J l . J 

1 Β 1 

Θ 

l . J l . J 

1 Β 1 

Γ - Ί Γ - Τ 

k . ^ L . J 

1 , 1 

Γ - Ί Γ - Τ 

k . ^ L . J 

1 , 1 

Γ - Ί Γ - Τ 

k . ^ L . J 

1 , 1 

dB = sgn >i 

FIG. 8 . 1 4 . 

functions, A and B, also in accordance with rules (4) and (5) . In Fig. 
8.15 a decision unit is used to generate a chpped sine wave by use of 

1 1 

. dFm 
-d(b sine) 
'd(b sine) 

^(θ·) = / ^ 5 ί η β for ^ sin O < ¿7 
^(·θ·)=<7 ^οτύ sine ^ σ 

( l -c7+/>sin-e) 

FIG. 8 . 1 5 . 
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rule (1) , The quantity 1 - a is entered initially into the Y accumulator 
so that y becomes equal to 1 when b sin θ becomes equal to α. 

Next we will describe examples of how decision units may be used for 
automatic switching operations. First, consider the case where it is 
desired to stop all or part of a computation when a variable, F, passes 
through zero, or exceeds specified limits. The decision unit acts as a 
switch, in that its output is used to stop computation when F = 0, or 
F > A. A mapping to achieve this is illustrated in Fig. 8.16. For F < 0, 

Decision .dt 
•dF 

— V - , 

dt 

A-=1/2 

= 0 forF<0 

FIG. 8 . 1 6 . Decision unit (type 2 ) controlled by a variable F 

the output of h = since the output of the decision unit is - Δ ί . 
Since the output of h = Δ ί / 2 , the output of Ic will be ( - Δ ί / 2 4- Δ ί / 2 ) = 0. 
(This is because Ic is programmed to operate as a servo adder, there­
fore producing an output rate equal to the sum of its dy input rates; 
the internal operation of servo adders is described in Section 8.7). 
For F > 0, the output of = Δ ί / 2 . Therefore, the output of Ic will be 
equal to Δ ί . If the output of Ic is used as the independent variable 
in certain parts or all of a problem, computation involving these 
parts will cease when F passes through zero. Next, consider the case 
where it is desired to stop certain parts of a computation and begin 
another (i.e., drop or add terms in an equation) when a variable, F, 
passes through zero, or exceeds certain Umits; or when some variable F2 
becomes, say, greater than some other variable Fi. A mapping for the first 
case is shown in Fig. 8.17. From the figure one sees that the switching 
can be automatically achieved during the course of the computation if dt 
is used to generate functions to be used in all parts of the compu­
tation, and dt — di to generate the functions to be used only during the 
time when F < 0. 
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Decision,. , 
L . J k . J 

= 1/2 x " 

•dF 

Servo 

Servo 

dt/Z 
dt 

^dz^dt/Z for F>0 
= 'df/2 for F<0 

^df=df for F>0 
= 0 for F<0 

Ádt'dñ^O iorF>0 
dfiorF<0 

FIG. 8.17. Further example of use of decision units 

8.7. Digital Servos 

Though a separate accumulator or the Y accumulator of an integrator 
can accept two or more incremental inputs and accumulate their sum, it 
cannot generate a rate equal to the sum of the input rates. The addition 
of rates and the generation of values of imphcit functions by function 
inversion may be performed by using an integrator programmed to function 
as a digital servo. 

We wiU consider first how a digital servo can produce an incremen­
tal output equal to the sum of two inputs. An integrator may be pro­
grammed either as shown in Figure 8.19 (a) , referred to as a "hard" 
or undamped servo, or as shown in Figure 8.19 (b) , referred to as a 
"soft" or damped servo. The "hard servo" wiU be described first. Since 
its operation is governed by the number system used, the description wiU 
be related specifically to the number system usuaUy employed in a 
DDA with binary communication. This number system, shown in Fig. 
8.18, is described as circular because when an increment is added to the 
representation of the maximum positive number, 1 - 2"'*, the result is the 
representation of the maximum negative number, — 1, and conversely, 
subtracting a single increment from - 1 produces 1 - 2"**. Ordinarily, 
the occurrence of overflows (at the two overload points) is avoided by 
accurately estimating the maximum value of each integrand in the scaling 
of a problem. Also, if an overflow of the Y register occurs, the machine 
is caused to stop. However, if one programs the machine to ignore the 
occurrence of an overflow, and utUizes the sensitivity of the circular 
number system at the overload points, an integrator can be used as a digital 
servo. 

Assume that an integrand contains the representation of 1 — 2"'* and 
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Binary number 
Decimal 

equivalent 

Sign 
position 2 - 1 2 - 2 2 - 3 

1. 1 1 1 % 
1. 1 1 0 % 
1. 1 0 1 % 
1. 1 0 0 % 
1. 0 1 1 % 
1. 0 1 0 % 
1. 0 0 1 % 
1. 0 0 0 ZERO 
0. 1 1 1 
0 . 1 1 0 
0 . 1 0 1 -% 
0 . 1 0 0 -% 
0. 0 1 1 -% 
0. 0 1 0 
0 . 0 0 1 
0 . 0 0 0 - 1 

+0.5 

Zero Overload 
τ Τ point 

-0.5 

FIG. 8 . 1 8 . Digital integrator's circular number system that facilitates servo operation 

that the independent variable is time. Under these conditions, the inte­
grator will produce a 1 at its output during each iteration period. The 
sequence of I's thus generated represents the machine's maximum positive 
output rate. If a single bit is added in the least significant bit, the value of 
the integrand will change from 1 — 2""'* to — 1 and the integrator will 
then generate a sequence of zeros, the maximum negative rate. As another 
example, assume the Y register is initially set to the value - 1, aud the 
diflierence of two quantities (a - b) representing some error signal is 
accumulated in the register. If the value of the error is a small positive 
quantity, e, the quantity stored in the register will be — 1 + e. The 
machine interprets this as being close to the maximum negative number, 
and the integrator output will be close to the maximum negative output 
rate. On the other hand, if the error is negative, the integrand value will 
he Í — e which the machine interprets as being close to the largest positive 
number, and the integrator output is close to the maximum positive 
output rate. Thus, we see that a suitable initial setting of the contents of 
the Y register will cause the dz output to be the same as the signum 
function of y , and, by a small change in the integrand, the output of an 
integrator can be caused to vary from the largest positive to the largest 
negative rate, or vice versa. The initial setting is equal to i> - 6"** or 
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Servo 

±Max 

Τ — Θ Τ — 
^ da /j< da 

'db - db 

FIG. 8.19. (a) Servo adder, (b) Damped servo adder 

be obtained. The dx input to the integrator is designated as dt (t is time) 
because it consists of a sequence of I's occurring at the iteration frequency 
of the machine (which is also the maximum output rate that can be gen­
erated). Each occurrence of the dt input causes the contents of the Y 
register to be added to R, We will assume that initially the inputs have 
no effect on the integrand. (For a single input, in a system with binary 
communication, this would mean a sequence of alternate I's and O's; for the 
sum of two inputs to be zero in all iteration periods, their signs must 
always be opposite.) If the initial value of the integrand is 1-2-**, 
the dz output during the first iteration period will be positive. When 
fed back during the next iteration period it changes the integrand from 
1 — 2-** to — 1. As a result, the next output of the integrator will be 
a negative increment which feeds back converting the value of the inte­
grand to 1 - 2-»». The value of the integrand will, therefore, oscillate 
between - 1 and 1 - 2-»», and the output of the integrator will be a zero 
rate. Now, assume that the da input and the db input each increase by a 
single increment. This will cause the contents of the integrand to change 
from 1 — 2 - " to — I t o — 1 + 2~**. The negative integrand results in a 
negative dz output. When fed back during the next iteration period, it 
changes the integrand from — 1 + 2~'*to— 1 (assuming a net input of zero 
from da and db during this period). Under the same input conditions, the 
integrand is changed from — 1 to 1 — 2"** at the end of the next period. 
Thus, the feedback signals bring the integrand back to its initial condi­
tion, and a net output of two negative increments is produced, representing 
the sum of the da and db inputs during this period. Since the servo can-

0.000 . . . 0, which represents in a complementary number system with a 
radix b the maximum positive and negative values, respectively. 

We will illustrate now how to generate a dz output equal to the sum 
of two dy inputs, da and db. Assume these inputs are fed into a Y 
accumulator. Normally, under these conditions, the quantity α + ft would 
be accumulated. If, however, an initial value of 1 - 2"** is set into the Y 
accumulator and the dz output of the integrator is fed back into its own 
integrand, as shown in Fig. 8.19(a), a considerably different result will 
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not produce more than one output per iteration period, the correspondence 
of the sum of its outputs to the sum of the da and db inputs, over η itera­
tion periods, depends on whether the sum is greater than n. 

The output of the servo adder shown in Fig. 8.19(a) consists of 
bunched groups of pulses. The damped servo adder shown in Fig. 8.19(b) 
generates a steadier output rate at the cost of a delay between the input 
and output. Since the damped integrator servo causes an exponential decay 
of the error introduced, it may be used to smooth irregular inputs. This 
action is evident if we consider the schematic of Fig. 8.19(b) and assume 
the inputs on lines da, db to be temporarily zero. Then disregarding the 
input hnes da, db, the schematic describes the familiar arrangement for 
generating e-*, and, therefore, the value of the integrand (representing 
the current error) will decay exponentiaUy. Since the output of the 
damped integrator servo is a function of the error rather Üian on-off 
(depending on the sign of the error) it may be used as a variable gain 
device in a servo loop. When a servo error exceeding a few pulses is 
allowable, the damped integrator servo should be used to decrease oscil­
lations occurring in the servo system. 

As mentioned previously, a digital servo can generate only a single 
output in an iteration period. The servo is said to be overloaded if the 
algebraic sum of incremental inputs received in any interval is greater than 
the maximum absolute value of outputs the servo can produce in that in­
terval, namely the sum of a sequence of ah positive or all negative incre­
ments occurring at the iteration rate of the computer. The net effect of an 
overload is a delay between the time by which a number of inputs are 
received and the time when the sum of the servo's outputs equals this num­
ber. The extent of the delay depends on the degree of overload and its 
duration. 

If, for a particular problem, the sum of the outputs of the sources 
supplying a servo are greater than the fuU rate, the rate of the independent 
variable must be decreased, while the dt rate is left undisturbed. Then, 
the input rates to the servo will correspondingly decrease, allowing it 
to keep up. To facilitate changing the rate of the independent variable in 
aU parts of the problem, the incremental sequence, dt can be used as the 
input to a constant muhipher. The output of this constant muhipher is 
then taken to be the independent variable, and its rate can be changed 
simply by changing the value of the constant in the multiplier. 

It is at times useful to have a servo unit for the purpose of changing 
the scale factor of a variable in order to facihtate scaling a problem. Such 
a servo unit is often referred to as a servo with gain. An example is iUus-
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Servo e \ _ 

k<\ 

Γ3Γ 
^dy 

^dz^dy/k 

FIG. 8.20. Servo with gain 

sum of the dy inputs, where k is an arbitrary constant less than one. It 
is clear from the figure that the servo unit will continue to generate 
outputs until {kz-y) becomes equal to zero, at which time dz - {kz — y^ 
dt will become equal to zero. For this to occur, the sum of the dz outputs 
must be equal to 1 /k times the sum of the dy inputs. 

Digital servos are useful not only as adders to generate a pulse rate 
equal to the sum of two or more rates, but for performing such operations 
as function inversion and the solution of equations. Use of the basic digital 
servo for these more complex operations requires the inclusion of other 
elements into the feedback loop between the output of the servo and the 
input to its own integrand. As a first example, consider the generation 
of y as a function of χ where y is defined imphcitly as a function of χ by 
P{x> y) - 0. Figure 8.21 shows the general operation of a servo in which 

dx 
dy 

Servo 
F{xVy 

-dt 

F(x,y) 
Generator ^ dF(x,y) 

or 
F(x,y)dx 

FIG. 8.21. Use of a digital servo for function inversion 

dF(x, y)/dy must be nonzero and the output sign of the servo must be 
the opposite of the sign of dF(x, y)/dx. Under these conditions, and if 
there is not excessive delay in the feedback network, when incremental 
changes in y cause F(x, y) ^ 0, the servo will generate incremental 
changes in χ until F(x, y) = 0. The block labeled F(x, y) generator, refers 
to one or more operational units that generate F(x, y) from dy and the 
output of the servo, which is assumed to be dx. The functions may be 

trated in Fig. 8.20. The sum of the dz outputs is equal to l/k times the 
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either algebraic or differential equations. The independent variable is 
shown as y, but considerable judgement will be required to determine 
which variable should be considered independent, and what sign should be 
used in the servo. The method may be extended to simultaneous equations 
in three or more variables. The decision as to choice of independent vari­
able, sign of servo, form of schematic, etc. will be correspondingly involved, 
and one must also have an initial idea of the general form of the answer. 
Also, it is assumed that correct initial conditions are known. 

A number of inverse functions, Uke the square root, inverse trigo­
nometric quantities, a quotient, etc., may be generated more economicaUy 
if digital servos are utiUzed in addition to conventional integrators. The 
next example demonstrates this point. Assume the foUowing equation is 
to be solved for θ 

a = b cos θ (8-42) 

where a and b are variables. Figure 8.22 shows an arrangement for 

c o s e 

C/B 
asm Β 1 

Θ 

5 
Θ 

c o s e -

(σ-ócosB)^ 

dcosB 

—db 

da 

- c o s - e db 

FIG. 8.22. Generation of ( c o s - i ) utilizing a digital servo 

generating 0. This is another example of the weU known boot strap 
method: The output of the servo unit, assumed to be dO, is then used to 
generate b cos Θ, which is fed back as one of the dy inputs to the servo 
unit. At some point {a - b cos Θ) becomes equal to zero, at which point 
the output of the digital servo becomes equal to zero. For this to have 



The generation of dO by means of Eq. (8-46) requires generation of
several auxiliary functions (squares, square roots, quotients). As a result
much more computing capacity is required than if a digital servo were
utilized.

Figures 8.23(a), (b), (c), and (d) illustrate mappings which utilize
digital servos to generate functions involving a division operation. In each
of these examples, the inputs to the servo adders are like functions of
opposite sign which are derived from different points in the system. The
output of the servo, assumed to be the function required, is used in
generating one or both of the servo's inputs.

Both "hard" and "soft" servo action can be obtained regardless of
whether binary or ternary increments are used. Also, use of an integrator
is not essential, for servo action can be obtained from a single accumulator
by driving it to zero by means of a negative correction when it holds a
positive value and vice versa. The accumulator is initially set to zero and
during each iteration period it may receive one or more incremental inputs.
These are accumulated and, during each iteration period, the output of
the accumulator is a single increment whose sign is determined by the
current contents of the accumulator. This type of operation can be pro­
grammed in a specific machine only if there is provision for it in the
design of the machine. If decision units of the type shown in Fig. 8.12 are
provided in the machine, they, too, may be programmed to operate as
servos. The output of such a unit will be either positive or negative in
accordance with the sign bit as long as the contents are nonzero, and
zero when the contents of the accumulator have been driven to zero.
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occurred, the servo must, in fact, have generated the correct value of 8,
which now can be read as the value in the Y accumulator of integrator, I j •

To illustrate the economies effected by this procedure, consider how th~
above problem can be solved without the use of servos..Equation (8-42)
may be written

cos 8 alb

8 cos-1 alb.

Taking derivatives on both sides of Eq. (8-44)

- d (a/b)

(8-43 )

(8-44 )

8.8. Error Analysis for an Incremental Multiplier
When feedback loops are present in an integrator network, its analysis

becomes cumbersome because of the presence of remainders in the R
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FIG. 8.23. Generation of (a) d(l/A), (b) (dA)IB, (c) AlB, (d) A/B

registers. However, analysis is not too difficult for simple nonfeedback net­
works, e.g., the multiplication network shown in Fig. 8.24. Assume that dA

d8

A
dA

d(AB)
dA

B
d8

FIG. 8.24.
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and dB are each restricted to unit increments, and that the scales of the dz
outputs are the same (so that the dz outputs may be added directly), After k
iterations, the value of the summed dz outputs is (Eq. (8-25))

(8-47)

t - 1

If in Eq. (8-26) one replaces (Yo + Z dYj) by its equivalent yj-h

J = 1

'k

one can obtain the following expression for ZYjlUj
• = t

kZ (Yj-l + F(dX)j dYj) dXj
(= 1

(8-43)

The increment to the product A o Bo, which will be designated as ~P, is
the sum of contributions from both integrators (see Fig. 8-24).

(8-49)

(8-50)

~ {itl (Bj- 1 + F(dAd dBj ) M j

+ jtl (Aj - l+ F(dBj ) dAj)dBj} + el + e2

~ {jtl (B
j-ldAi + Ai - ldB j

)

+ itl (F (dA.) + F(dB.» dA. dB; } + el + e2 (8-51)

From the equalities

Ai = Ai- 1 + ~Ai

Bi = Bi - 1 + ~Bi (8-52)
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i = 1 

= (AjcBj, - ^ o ^ o ) + ^ ( ^ ( Δ / í i ) + F(AB,) - 1) Δ ^ ί Δ Β , 
» = 1 

+ ^1 + ^2 (8-56) 

The round off errors βχ and 62 are unavoidable but we are interested in 
considering what choices for F(Δ;Ci) wiU reduce the term Σ(F (Δ^^) + 
F(ABi) — 1)Δ/4{ΔΒί, which may be considered as the error Ε in the 
computation of a product, to zero in the general case. Corresponding to 
the four choices for F(ΔJCi) described in Section 8.3.3, namely 1) F(AXi) 

= 0, 2) F(AXi) = 1, 3) F(Δ;Ci) = % + % (AXi) and 4) F(Δ;Ci) = ^ 
are the following expressions for Ε 

k 

Case 1: Ε = - ^ AAÍ^BÍ ^ 0 
< = 1 

Case 2: Ε = ^ Δ ^ ί Δ ^ ί 0. 
i = 1 

Case 2 corresponds to a rectangular integration scheme using the new 
value of y, i.e., yi. Two such integrators, interconnected as shown in Fig. 
8.24, would generate 

L{AB) = \Bi_i-l· (AB)i](AA)i + M i _ i + ( Δ / 1 ) ί ] ( Δ Β ) ί 

= Bi^i(AA)i + Ai.i(AB)i + 2 ( Δ ^ ) ί (Δ5)ί .(8-57) 

it follows that 

AiBi = Ai_iBi_i+ Bi-i^Ai + Ai-i ABÍ + AAÍ^BÍ (8-53) 

Rearranging Eq. (8-53) yields 

Bi^iáAi + ^ i - i A ß i = AiBi - Ai^iBi^i - AAÍABÍ (8-54) 

Substituting the right hand side of Eq. (8-54) into (8-51) 

Δ Ρ = 2̂  (AiBi - / l i - i B i - i - AAiABi) 

+ ^ (F(AAi) + F(áBi)) ^iABi | + + 62 (8-55) 

file:///Bi_i-l�
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From Fig. 8.25 it is readily seen that the error produced results from 
counting the area (AA)i(AB)i twice. 

BM 

Case 3: 

FIG. 8 . 2 5 . 

£ = % X Δ / ί ί 2 Aß t + Vi Χ Δ Β . 2 A/4i 

Since AAi^ = ABÍ^ = 1 

£ = Vi Σ A ß i + % Σ Δ ^ ί ^ O 

Case 4: £ = 0. 

Case 4 corresponds to a trapezoidal integration scheme. Two such integra­
tors interconnected as shown in Fig. 8.24 would generate 

MAB) = + 1/2 Δ^ΟΔΒί (8-58) 

+ (Bi_i + V2 äBi)LA^ 

= Ai^i ABi + 5t_i AAi + AAi ΔΒ*. 

The successive dy inputs are accumulated as before. However, during an 
iteration period in which the dx input differs from zero, say the /th, the 
quantity added to or subtracted from the contents of the R register is the 
current contents of the Y register plus (Ay)i/2. At the end of the /th 
period, the Y register holds yi = yi_i -f (Ay)i, but the quantity added to, 
or subtracted from, the R register is y{_i + (Ay)i/2 when (Ax)i 0. 

There is another case for which £ = 0, namely, if F(AXi) — 0 (case 1) 
is chosen for one integrator and £ ( A j c , ) = 1 (case 2) is chosen for the 
other. 

8.9. More Complex Operational Units 

An important application of digital computers is the automatic gen­
eration of navigational data in vehicles traversing great distances under 
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conditions which make accurate determination of position, velocity, etc., 
at the rate required, difficuh or impossible by other means. A computer 
can provide a high-speed link between measuring instruments and controls 
which enable it to change its position in accordance with current require­
ments. The computer receives its inputs from such sources as radars, gyro 
compasses, air speed indicators, roll and pitch indicators, barometric and 
radar altimeters, etc. It transforms this data to produce outputs in the 
form of control signals to the auto-pilot, automatic tracking signals to the 
radars, display signals, etc. Derived quantities include present position in 
terms of latitude and longitude, distance to destination, etc. 

Essentially, the navigation problem consists of resolving a vehicle's 
motion, as sensed by its instruments, along the axes of some chosen co­
ordinate system. The computational problem is, therefore, basicaUy that 
of solving trigonometric and algebraic equations, plus the integration of 
certain variables. The mathematical operations that will enter into the 
computation may be classified as follows: (1) addition, subtraction, mul­
tiphcation, and division; (2) generation of trigonometric functions (which 
may be restricted to generation of sines, cosines), and inverse trigo­
nometric functions; (3) integration; (4) simple function generation: 
exponentials, absolute values, etc.; (5) analog-digital conversion, and 
digital-analog conversion. 

The computations necessary to derive the desired output quantities 
may be performed either by an integral transfer (GP) computer or an 
incremental computer. Both types have been buih for this function. How­
ever, the nature of the problem particularly lends itself to an incremental 
technique, since the variables involved are, in general, continuous and 
have limited rates of change. 

Because of the high relative frequency with which the operation of 
multiphcation is performed in this apphcation, it is important that an 
efficient and accurate method of performing multiplication be provided. 
The method of performing multiplication depicted in Fig. 8.3 (m) takes 
two integrators and a total of four registers (two R and two Y registers) to 
generate the incremental change in the product of two munbers. An 
obvious way to increase the speed of multiphcation by a factor of two 
would be to use two sets of integrators in parallel. This would require 
additional R line and an additional Y line. Other approaches may be more 
desirable. One alternative is to use a three hne structure as shown 
in Fig. 8.26. This configuration may be arrived at by recognition of the 
fact that the use of two remainder registers in the generation of a product 
(or sum of squares) is redundant. 

By providing for storage of the output of one of tiie Y registers (i.e.. 
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Ί 

• dx^ -- dB 

dy^^dA 
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dy^-dB 
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FIG. 8,26. Block diagram of a three-line structure programmed as a multiplier. 

the value of the sign bit) as well as for that of the R register overflow, 
and by incorporating additional switching circuitry into the design, the 
three register unit may be programmed to provide (in addition to a 
product or sum of squares) both the integration of a variable and a servo 
operation, as shown in Fig. 8.27. Specifically, registers Ya and R can be 

dz-ydx 
Γ" 

5 -dx 

'dy 

S g n / 2 
>2 

-dF 
- S g n / 2 

FIG. 8.27. Block diagram of a three-line structure programmed as an 
integrator and servo register. 

organized to form a conventional integrator, and register YO can be used 
as a servo register. The servo register may be used to store the value of 
an input or output quantity in an analog-to-digital or digital-to-analog con­
version loop, as well as operate in a servo computational loop. 

A useful operation which is utilized frequently in a class of naviga­
tional problems is that of rotation of a vector (see Fig. 8.28). This opera­
tion may be written as 

A' = A cos θ Β sin θ 

B' = Β cos θ - A sin θ 
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Β 

5 ' 

or 

A 

FIG. 8.28. Rotation of a vector 

dA = A d(cos β) + cos β + Ö d(sin Θ) + sin θ dB 

dB' = Β d(cos θ) cos θ dB-A d(sm θ) - sin θ dA. 

If only the two-line integrator structure were used, four integrators would 
be required to generate the terms in each component of the vector. With 
the five-line structure depicted in Fig. 8.29 all four terms, plus an output 
rate equal to the sum of these four rates may be generated in one word 
time. The increased capacity of the three and five line structure is paid for 
by having to provide for more registers and associated circuitry in parallel. 
However, the efficiency is greater than that of the two-line structure 
because of the eUmination of redundant remainder registers (see Fig. 8.29). 

Γ 

dz - d(A cos θ -h Β sin Θ) 

5 

2 

- dA 
-d cos Θ 
-d cos Θ 
-d A 

-dB 
-d sin θ 

-d sin Θ 
•dB 

FIG. 8.29. Block diagram of a five-line operational unit. 

If, in addition to providing for storage of the output of one of the Y 
registers (as in the three-Une structure), some of the registers in the 
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8.10. Limiting Communication in α Special Purpose D D A 

For a machine designed to solve only a particular problem (e.g., a 
computer designed to operate in a specific control system as opposed to 
one designed to compute solutions to a variety of problems), a saving 
in equipment may be effected by restricting the communication between 
operational units. Since no operational unit receives inputs from more 
than a few, say five or six, of the other operational units, it is not neces­
sary for each unit to be able to scan the outputs of all other units. How­
ever, the problem of assigning operational units for the solution of a 
large number of equations in such a way as to permit each operational 
unit to receive all its required inputs can be a cumbersome, trial and error 
task. Of course, the more limited the access to the Δζ store, the prob-
abihty of a particular desired input being available to an operational unit 
(assuming all inputs to be equally likely), and the more formidable the 
task of mapping (see Section 8.5.2). 

In general, it may not be possible to assign operational units so that 
the inputs required by each are available from the Ζ fine during the scan­
ning time Ti, If this is the case, one solution is to use so-called repeater 
or relay stations as follows: Assume that after several "juggUngs" of 
operational unit assignments, there is stUl some unit, /, which must 
receive an input from unit m, but that the output of unit m is not avail­
able from the Ζ Une during the time interval Γ^_ι when unit / can receive 
its inputs. If there is some operational unit, r, which can receive an input 
from unit m, and whose output, in turn, can be picked up by unit /, then 
unit r (programmed as a constant multipUer with k = \) can be used as 
a repeater link. Preferably, unit r should be where it can pick up the most 
recent output of unit m, and its most recent output should be available to 
unit /. Whenever it is considered economical to limit communication in a 
special purpose computer, both the specific mathematical formulation of 
the problem and programming requirements must be taken into con­
sideration. 

five-line structure are made capable of operating either as an integrand 
register or a remainder register, and the required multiple incremental 
storage is provided for each operational unit, it becomes possible to pro­
gram a single operational unit to operate also as follows: (1) to generate 
both a multiplication and an integration, (2) to integrate two functions and 
perform a servo operation, etc. 
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8.11. Applicability of the D D A 

Various departures have been taken from the mechanization of a DDA 
depicted in Fig. 8.8 for the purposes of improving computing flexibihty, 
ease of programming and computing speed. Some variants in operational 
unit structure for special purpose machines were described in Section 8.9. 
Use of a static store for the Az's can alleviate addressing problems, de­
scribed in the preceding section and on page 476. Some recent designs, with 
plugboard programming and higher iteration rates, will be mentioned 
briefly. The CORSAIR computer (Owen et al [I960]) has an iteration 
rate of 500/sec, obtained by use of a ferrite core store for Y, R and Δζ in 
conjunction with a single time-shared arithmetic unit. In the TRICE com­
puter (Mitchell and Ruhman [1958]) an iteration rate of 100,000/sec is 
produced by use of separate active-element registers and an arithmetic unit 
for each integrator. In the SPEDAC-310 (Bradley and Genna [1962]) an 
iteration rate of 1,000,000/sec is achieved by use of separate active-element 
registers and a serial-parallel arithmetic unit for each integrator. 

In control appUcations a computer must be able to analyze and gener­
ate data fast enough to keep up with changes in the physical environment 
which it is monitoring and aiding to control. A computer's maximum fre­
quency of sine wave generation (in cycles/sec) is a convenient, though 
approximate, guide to the highest frequency of change in a computed 
function that can be accommodated for a second order system. 

For a DDA, this upper frequency may be computed from the expres­
sion RI/2τΓ where R is the resolution and / the iterations/sec. (To compen­
sate for round-off and truncation error, the number of bit positions used in 
the integrators may be greater than called for by the resolution.) For accu­
racies of . 01% and . 1 % the upper frequencies are .0016 and .016, respec­
tively, for a serial DDA with / = 1(F; .016 and .16 for a serial-paraUel 
DDA with / = 103; 1 5 9 ^nd 159 for a parallel DDA with / = 10«. 

For a GP machme of the IBM 7090 class, the upper frequency of sine 
wave generation for an accuracy of either . 01% or . 1 % is about .1 to .3. 
These ñgures are based on generating sin θ for aU values of θ defined by 
the increments ΔΟ in the DDA. They are approximate since the multipli­
cation time varies with the number of I's in the multipUer and various op­
tions in programming details. The lower figures are for a three term 
Chebyshev polynomial approximation to sin θ (see Section 6.2.5 and 
Hastings [1955]); the higher figure is based on computing increments to 
the sine and cosine, as in a DDA. For any significant problem the figures 
for a GP machine would be considerably less since the arithmetic unit 
would be available for the sine computation only a fraction of the total 
computational cycle. 
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For a high precision analog computer the upper frequency is about 3 
at .01 % accuracy and in the neighborhood of 100 for .1 % accuracy. These 
figures are only approximate guides because the upper frequency varies 
with the nature of the over-all problem. 

On pages 452-453, 476 and 499 certain capabilities of the DDA are 
described. At this point let us consider briefly the outlook for machines 
of this type. First of all, applicability of the DDA does not depend on 
whether integration appears explicitly in a problem. The distinguishing 
characteristic of this type of machine is that it operates in an incremental 
manner, with limits in the size of these increments. Serial and serial-
parallel DDA's are economical to use in the control of systems where the 
variables change only in a limited and continuous manner, e.g., in airborne 
navigation and flight control, weapons control, missile guidance, the con­
trol of certain industrial plant processes. Outside of specialized military 
applications, the use of incremental machines has thus far been limited— 
for good reasons. In computing installations, much work does not require 
solutions over a continuum, but for a small set of values of the input 
variables; also, business accounting as well as other types of data pro­
cessing problems for which a DDA is not well suited (see Braun [I960]) 
must usually be handled. For problems calling for continuous solutions, 
but not high accuracy, an inexpensive electrical analog computer is usually 
more economical. In the area of real time simulation of high performance 
systems, incremental machines competitive with the best analog computers 
for high speed, high accuracy integration were not available until recently. 
Now, a DDA with an iteration rate of 10^/sec is even adequate for faster 
than real time (high speed) computation, so it can be used for making 
predictions sufliciently in advance to allow corrective action. 

8.12. Sources of Error 
In any computing machine, errors may arise from two distinct sources 

—those inherent in the nature of the machine and those pecuUar to a 
particular problem. It is not always possible to isolate the source. Sources 
of error in a digital differential analyzer which are inherent in the nature 
of the machine are as follows: (1) round-off error (common to all com­
puting machines; (2) truncation error; (3) the logical characteristics 
of computing algorithms used; (4) phase effect errors; (5) lags pro­
duced by feedback connections and serial processing of operational 
units. The relative importance of each type of error depends on the 
characteristics of individual machines, and special facilities, if any, that 
have been incorporated into its design to minimize the effects of certain 
errors. For example, a particular design may give the user the option of 
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using one of several integration formulas (see Section 8.3.3) according 
to which he judges best for the solution of a specific problem. 

For a general discussion of round-off error (common to aU computing 
operations because of the finite length of numbers carried) refer to 
Section 9.4. In an incremental computer there is a round-off error due 
to the fixed length of the Y register, and because the remainder in the R 
register is neglected in reading the current value of z. The magnitude of 
round-off error assumes greater importance in problems where two 
variables (w, v) are nearly equal and their difference is important to the 
problem. In these cases, the equations should be expressed in terms of 
u and U'V rather than in terms of u and ν separately. (In servo system 
problems this may require solution of the open loop rather than the closed 
loop.) Truncation error arises because higher order terms, as expressed 
in a power series representation of y, are neglected in the integration 
formula. For example, the rectangular integration formula assumes y is 
constant during each increment of the independent variable, while the 
trapezoidal takes into account only the first-order difference. 

Phase error and its relation to the computing algorithm, certain types 
of error resulting from the serial nature of the computer, and errors 
produced in the generation of certain functions wiU be treated later in 
this section. First, we wiU describe briefly certain errors which result 
from the nature of the problem and the particular way it is programmed. 

Sometimes an idealized model of a physical system may result in a 
mathematical description which, in its deviation from a true physical sit­
uation, introduces troublesome anomalies. Examples of situations that can­
not occur physically are representation of an acceleration by a step func­
tion, or a force by an impulse function. In the case of static systems 
discontinuities can arise, so generation of a solution may require intro­
duction of certain devices and/or approximations. It is usually helpful to 
have information beforehand concerning the form of the solution and the 
nature of the variables involved in the problem. Also, since the form of 
equations can often be changed to better suit the characteristics of the 
DDA, it is important that the user of the computer be as familiar with 
the functional characteristics of the particular machine he is using as he 
is with the nature of the problem he is trying to solve. 

The mathematics of a problem may be set up in different forms, 
arising from changes of variable and parametric methods. For example, 
dependent and independent variables may be interchanged by means of 
the relation 

udv = d(uv) — V du. 

There is, in general, more than one mapping of an equation or set of 
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that the dx and dy inputs of the integrator are the outputs of other op­
erational units in the hook-up used to generate a problem solution, and 
that the dz output of this integrator feeds into the network. (Other in­
puts and outputs of the network are not shown.) The prime mover of the 
network is the independent variable input dt. 

If the scale of dt is increased, the scale of dx and dy and also the 
length of the integrand register will be increased. If the length of the 
integrand register cannot be decreased, (and it is assumed that the scales 
of the integrators are such that the error contribution of each is the same) 

equations that will generate a solution. One will not always be able to 
predict whether one mapping has a significant advantage over another. A 
good choice depends on the user's familiarity with the nature of the prob­
lem, his mathematical intuition, his analysis of the mapping to detect 
sources of difficulty, and his ability to employ corrective measures to com­
pensate for errors peculiar to the mapping or logical structure of a com­
puter. There are cases where it is obvious that a particular mapping will 
give trouble. For example, a mapping in which an integrand appears 
containing 1/x cannot be used in the region where χ is small or zero, 
since the integrand becomes infinite at JC = 0. In such a case an alternate 
map may often be found which utiUzes a digital servo, and which can be 
used in the region where χ is small. 

In a complex problem, a careful arrangement of the order of the 
integrators can be effective in reducing errors to much less than would be 
the case if the integrators were arranged at random (see Section 8.5.2). 

A change in scale of the independent variable necessitates changing 
the lengths of all variable integrands and affects the scaling relation­
ships between the computer and external devices. Increasing the scale 
factor of the independent variable (which decreases the size of the step 
in the integration formula) makes a more accurate solution possible. Not 
only is there a reduction in the integration step but also a reduction of 
round-off error in all variable integrands, and a lesser effect from errors 
introduced into the least significant digit position. 

Consideration of Fig. 8.30 will be helpful in assessing the effect of 
increment size on the output of an individual integrator. It is assumed 
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little can be gained by other scaling adjustments. If only the scale of dy 
or dx were increased, when both inputs contribute a comparable error, 
there would be no appreciable effect. Since an integrand register should 
become as full as possible without producing an overflow, its length should 
be decreased if possible (implying that, before the change, the position in 
this register to the right of the binary point, at least, would always have 
been zero). Although the length of the integrand register indicates the 
degree of resolution to which a variable is accumulated, the computed 
function may not be this accurate because various sources of error may 
significantly degrade it. Nevertheless, precision can be used as a measure 
of relative accuracy since increasing it will increase the accuracy; also, 
where the contribution of error sources other than round-off and trunca­
tion error is negligible, the precision serves as a guide to the accuracy. 

By efficient scaHng (including such devices as dividing a solution into 
several parts, each with efficient scaling in a specified interval where one 
or more variables varies over a wide range), normalization and combining 
of constants, one can diminish the relative effect of errors. Devices which 
increase the rate of an incremental output improve the accuracy of the 
corresponding variable, though this is not generally true when servos are 
used. To prevent overloading of servo adders, without reducing overall 
accuracy, the rates of their inputs should be reduced, if possible, without 
reducing the scale of the independent variable. 

There is a type of error pecuUar to incremental computers, known as 
"phase" error, which results from the relationship between the dx and dy 
increment sequences. It may best be illustrated by specific examples. 
Assume that in a computer with binary transfer the function y is constant 
and Ax/At = 0. Since a zero-rate sequence in this type of machine con­
sists of alternate positive and negative increments, y will be alternately 
augmented and diminished by a single increment even though, theoretically, 
it should stay constant. It at each step Ax and Ay are in phase (i.e., of 
the same sign), the following series of quantities will be added to the R 
register: (y + Ay) Ax, — y Ax, (y + Ay) Ax, — yAx, . . . If ΔΛ: and Ay are 
out of phase the sign of each term in the series will be changed. The net 
result is a spurious introduction of AyAx (or - AyAx) every two steps of 
the iteration, resulting eventually in a spurious dz output. The magnitude 
of Ay may be one or more increments depending on whether it is gen­
erated by one or more integrators. For the special case of both ΔΛ: = 0 
and Ay - 0, phase error may be eliminated by the following correction 
scheme: If AXi^i is positive and AXi is negative, add - y i _ i rather than 
— y i to the R accumulator. This scheme also tends to reduce phase error 
when Ay 0. In another scheme, algorithm yt = y i _ i + ( A y i _ i + Ayi)/1 
is used so when the current and preceding inputs are opposite in sign, the 
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value of y is left unchanged. The first of these schemes allows the genera­
tion of sin t, cos t without variation in the limits between which these 
functions oscillate. However, if the second scheme is used as well, phase 
error is introduced. Although various logical and programming devices 
may be used to reduce phase error, none has been found to be the most 
effective for all situations. Analysis of phase error is difficult because 
it requires knowledge of the behavior of the dx and dy inputs at all times. 

In a machine with binary communication (see Section 8.3) if the R 
registers are left empty at the start of a problem negative increments 
are generated initially by all integrators and this bias may significantly 
affect the final result. A simple procedure that helps to compensate for 
this effect is to fill some average value into the R register. A more 
precise approach is to set R to an exact value. This value may be de­
termined by recalling that the value of each integrand represents an 
accumulation of dz outputs from one or more integrators. If only one dz 
is involved, the initial condition of the integrand can be computed to 
more places than accommodated by the Y register, and the less significant 
bits placed in the R register whose overflow feeds it. 

In a serially-organized DDA a start-up error is also produced because 
of a lag in the production of outputs by higher numbered integrators. In 
other words, any integrator with an input from a higher numbered integra­
tor initially cannot pick up that output but receives from the Δ ζ store 
instead a value which may not be valid (see Section 8.5.2). Thus, each 
integrand may have an effective initial value which will differ from 
the value called out in the coding of the problem. However, one may be 
able to compensate for this effect by running the problem for several iter­
ation periods, and noting the value of the integrands at the end of each 
period. An effective initial value can be derived from a smooth curve 
fitted to these points. This information can be used to estimate the amount 
by which the initial value placed in an integrand register should be biased 
with respect to the integrand value on the coding sheet. The starting error 
can also be materially affected by the assignment of numbers to each of 
the operational units employed. Starting errors as well as phase errors 
assume greater importance when the dz output of an integrator drives 
other integrators which in turn may influence the first integrator's dy 
input. In this case, particular combinations of sign conditions can force 
the error farther in the same direction, producing a so called biased 
round-off error. Starting and round-off errors in the variable integrands 
are often of major importance in the overall error picture. 

Often, errors may be produced which are pecuUar to the functions 
being generated. For example, auxiliary functions well behaved throughout 
the interval of interest can be generated with greater accuracy than func-
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tions witii discontinuities or excessive rates of change in one or more 
regions. Another type of situation that can resuh in a sizeable error 
is where there is a product of two variables, and the variables have an 
inverse relationship to one another with the ratio of maximum to minimmn 
values being large. A shnilar situation holds for the quotient of two 
variables which vary in a direct relation. In each case special corrective 
measures may be caUed for. 

Functions of particular importance in navigation and guidance prob­
lems are the sine and cosine. We wiU consider next the nature of errors 
pecuUar to generation of the sine. With the integrator hook-up of Fig. 8.3 
(b) and a rectangular integration formula, the output of one integrator is 

(Δ sin E)r « cos Ö 

However, the precise expression for Δ sin d is 

Δ sm ^ = sm ((9 + ΔΟ) - sin θ 

= sin θ (cos AO - I) -\- cos θ sm ΔΟ 

Replacing cos Αθ and sin Δ^ in the expression above by their series ex­
pansions 

A sin θ = sin θ(1 - (Αθ)%1 + (Δ(9)ί4! - . . . - 1) 

+ cos θ (Αθ - (Δ0)%! + (Αθ)%\ - . . .) 

= c o s Ö Δ ^ - s i n ö ( Δ Ö ) % - c o s ö ( Δ Ö ) % + . . . 

Thus, to Üie second order the error in (Δ sin θ)τ is 

e = - (Υ2)(Αθ)^$ιηθ 

Since this error grows regardless of the sign of Δ^ it is cumulative, ap­
pearing as an apparent rotation of the vector and a growth in its ampli­
tude. In problems where the range of θ is not too great, the error may be 
tolerable. In apphcations like the navigational problem described in Sec­
tion 8.9, the drift in sin θ (and cos Θ) over a long period can render the 
computation invahd. The growth in amplitude of the vector may be re­
moved in part by use of a trapezoidal integration formula, which yields 

(Δ sin E)T = [cos(E -h ΑΘ) -h cos θ]Αθ/2 

= c o s ö Δ Ö - s i n ö ( Δ ^ ) % - c o s ö ( Δ Ö ) % + . . . 
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The initial statement of a differential equation may be in either a 
derivative or differential form, though the derivative form is prevalent. 
Any of a number of algebraic manipulations may be made to transform 
equations to a form more convenient for solution and/or interpretation— 
e.g., replacement of the original set of variables by a new set, defined in 
terms of the original ones, transformation of coordinates, etc. We will 
consider an important difference between derivative and differential expres­
sions of a differential equation. For example, assume we have the equation 

y<n^ = f(yn-V, /η-2^, . . . γ<1\ y, χ) (8-59) 

where y^^^ is equal to the nth derivative of the function y with respect to x, 
and / is a particular function of the variables in the parentheses. If we 
take the differential of both sides of Eq. (8-59) 

d / n . = dfi/'^-^', . . . , y, X) 

Since yí'»̂  = (d^y/ájc«), it follows that 

Sy^^'dx = ŷ ^̂ -î  

If we assume several inputs whose sum equals dy^"^ are fed into an inte­
grand register, and the independent variable is dx, the output for an ideal 
integrator would be ŷ**̂  dx. If there is a bias β between given and effective 
initial values, the output is (ŷ **̂  + ß)dx. Accumulation of these incre­
ments yields y^"-^^ + ßx. Thus instead of the true (n - l ) s t derivative 
we obtain a quantity which drifts from this value Unearly with x. 

Returning to Eq. (8-59), multiplying both sides by dx yields 

y^'dx = f{y<n-i\yn-2>^ ^ ^ ^ ,y^\y,x)dx = dy*"-^' 

If the terms whose sum equals dy^^-^^ are fed into an integrand register, ac­
cumulating them yields y ^ - ' ^ \ This indicates that use of the lower order 
derivative will not introduce the drift present in the higher order case. 
(The preceding comparison assumes that mappings of the two forms 
are comparable in the errors produced in other parts of the network). 
The differentiation method is less favorable because of other reasons, 
too: (1) In practice the lower order derivative is a velocity, whereas 
the higher order derivative is an acceleration. In a given period the latter 
can traverse a greater interval of its overall range. As a result, the scaling 
problem tends to be more difficult, (2) The mapping is complicated in 
cases where nonlinear terms must be differentiated. Finally, even where 
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the higher order derivative is required as part of the solution, the differen­
tiation method may be avoided by use of servo differentiation. 

In general, digital servos should not be used to generate algebraic 
functions that can be obtained directly. (This does not apply in on-hne 
applications where a servo is used as a null seeking device that is part of a 
self-correcting system.) Limiting devices, for example an absolute value 
generator, must be carefully adjusted. Since the operation of a servo 
depends on feedback of errors to its input, a loop with appreciable at­
tenuation in the feedback path results in poor control. Also, a servo adder, 
at best, introduces a one cycle phase leg. 

In concluding this discussion on sources of error we point out that 
although schematics such as shown in Fig. 8.10 can be useful, they also 
can be responsible for the introduction of errors, e.g. by the inadvertent 
connection or failure to connect a pair of lines or by a functional nota­
tion becoming associated with the wrong line. The experienced programmer 
can save thne and effort by replacing the schematics with a set of inte­
grator input-output equations. 

The characteristic equation of an integrator (dz = ky dx) may be 
stated in the form 

d[f (integrand)] = [integrand] [d(independent variable)] 

where the integrand y is the sum of the dependent variable inputs dyi. 
The Usting of input-output equations is started by assuming that incre­
ments of the terms whose sum equals the highest order derivative have been 
formed. These increments are accumulated in an integrand register for the 
purpose of generating the next lower order derivative, thus (see page 478) 

dx/dt = {d^x/dt^)dt 

= [- (b/a)dx/dt- (c/a)x]dt 

Since the term - (b/a) dx/dt appears in the differential equation, a con­
stant multiplier is used to produce the output — {b/a) dx/dt 

- {b/a) · dx/dt = - {b/a)dx/dt 

Another integrator is requked to generate dx from dx/dt 

dx = {dx/dt)dt 

Another constant multiplier converts dx to - {c/a)dx 
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- (c/a) · djc = ~ (c/a)dx 

The list of equations is complete since aU terms originally assumed to 
exist have actually been generated. Each equation specifies the type of 
operational unit required for its mechanization. 

8.13. Checking Results of Computations 

Any of various verification procedures may be employed to aid in 
estabhshing a degree of confidence in the correctness of solutions. We 
will consider spot checks, which are generally useful in computational 
work, and two types of checks suitable for use with a DDA, namely run­
ning a problem with different scale factors, and running a problem in 
reverse. 

In one type of spot check, solutions are compared with values already 
known for specific values of the independent variable. In physical prob­
lems these points are so chosen that values are readily obtained from 
physical considerations. In function generation these points are where 
the values of one or more factors is readily known (e.g., where f(x) = 
0 or 1). In a type of spot check known as a substitution check certain 
sets of computed values are inserted into the original equations. An in­
dication of error is provided by the degree to which an equation does not 
balance. To keep a running check of the discrepancy, one can employ an 
acciunulator in which the terms on one side of an equation are subtracted 
from those on the other. 

If a problem is run with different scale factors and certain digit 
positions in the solution are invariable, increased confidence may be 
placed in the accuracy of these positions. If this approach is to be prac­
tical, the additional runs should not greatly increase the time for a solution. 
This would not be the case if the problem were run first with a smaU scale 
factor and then with successively higher ones. An alternate approach is 
to rerun the problem with smaller scale factors; if each solution (Si)j 
obtained for points / on run j is considered as the sum of a true solution 
Si and an error Ei, then on the first run 

(5i)i = Si+(Ei)i (8-60) 

and on the second run 

(5i)2 = S i + (£ i )2 (8-61) 

If the scale factors on the second run are 1/n times those on the first 
run, then we may reasonably estimate that 
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(5i)2 « 5, + n(Ei)i (8-62) 

From Equations (8-60) and (8-62) a general expression for estimating the 
error on the first run is 

(£i) i - ( 5 i ) 2 - ( 5 i ) i / ( n - l ) (8-63) 

To lessen the probability of obtaining too low an estimate for the error 
on the first run because of a chance agreement of (5i)i and (Si)2 at a 
selected point, (£i) i should be evaluated for several values of / at widely 
separated points. If the error is too large, the original scale factor can be 
increased and a new estimate obtained. 

This method also allows an estimate of the true solution to be made 
from two inaccurate solutions, in the event that a rerun with higher scale 
factors is not practical because of computing time requirements and the 
limited length of registers. Solving Equations (8-60) and (8-62) for Si 

Si ^ [n(5i)i - (Si)2]/(n - 1) (8-64) 

In principle one can, by changing the sign of the independent variable, 
retrace a computation. At the end of this process, the deviation from 
the correct initial conditions indicates over-all error in the computation. 
(The retracing process is precise for a linear difference equation with 
constant coeflScients only if the coeñicients of the highest and lowest order 
terms are +1 or - 1 . ) Also, sometimes the initial state cannot be re­
covered; e.g., after a damped oscillation has decayed completely. 

8.14. Simulating the D D A with α G P Machine 

The differential analyzer approach to the solution of a problem is 
direct, simple, and intuitive. A way in which this approach can be used 
with a GP arithmetic computer will be illustrated by a specific example. 
Consider the familiar second order differential equation 

y" + y = 0, where y" = 

This equation is solved on a differential analyzer by specifying that two 
integrators be interconnected as shown in Fig. 8.3(b). The two integrators 
form a closed loop system, and when the driving function is apphed, the 
system will oscillate in a manner defined by the given differential equation, 
since the integrator system is an analog of a physical system described by 
the equation. An analog differential analyzer produces a mechanical dis-
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or Chebyshev polynomials (see Section 6.2.5). 
In a differential analyzer, integration is a basic operation, whereas 

multipUcation (other than by a constant) is not and must normaUy be 
constructed from integration operations. In an mtegral transfer machine, 
multipUcation and addition are basic operations (though multipUcation 

placement when driven; a digital differential analyzer produces trains of 
pulses representing numerical increments. 

Each of the elements of a continuous differential analyzer can be 
simulated in a digital computer, of either the incremental (DDA) or 
integral transfer (GP) type. The digital differential analyzer has a fixed 
program that simulates the operation of integration, and only the inter­
connection of "integrators" and scaling has to be derived for an individual 
problem. Simulation of a differential analyzer can also be performed by a 
GP machine. However, in this case one must write a complete program 
to simulate the operation of integrators, in addition to specifying inter­
connections and scaHng. 

Common analytic functions (polynomial, trigonometric, logarithmic, 
etc.) are usually generated in a differential analyzer by interconnecting 
units in a system so that the system satisfies a differential equation whose 
solution is known to be the desired function (as shown in Fig. 8.3). These 
functions can be generated in a GP machine by the use of difference equa­
tions. For example, to generate the function e^'^ for the equidistant discrete 
values of the argument χ = nh (where h is the constant interval and η an 
integer), one can utilize the difference equation 

which states the exponential function can be generated by simply multi­
plying the (n — l) th value by a constant to obtain the nth value. Sin χ 
or cos X can be generated by the following trigonometric identities 

cos nh = 2(cos Ä)cos (η - 1)A - cos (n - 2)h 

sin nh = 2(cos A)sin (n- l)h- sin (n - 2)A. 

These functions may also be generated by power series 
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is usually constructed automatically from repeated addition operations) 
and integration must be constructed from multiplication and additions. 

The integral of a function f{x) between the limits a, b can be found 
by dividing the interval into η equal subintervals, approximating the func­
tion by some mean value fi in each subinterval, multiplying each U by the 
width of the subinterval and adding up the areas of all the rectangles. The 
computation is simpler when fewer intervals are taken, but the accuracy 
suffers. For a high speed digital computer it is not impractical to take 
large values of n. When η is large, rectangular integration gives a suflBciently 
good approximation, thereby permitting the use of this simple process. A 
real difficulty lies in the fact that as η becomes large, the number of 
products to be summed becomes great. Since each product is rounded ofli, 
the error grows as η grows. 

The characteristic equation of an integrator (see Section 8.1) may 
be written 

w = k j udv. 
An integrator can be simulated by assigning one register to store the 

output w, and a second register to store the input «. Once each cycle, 
the change in v, Δ ν (corresponding to the constant change h used in the 
preceding discussion), is determined. The product « Δ ν is then added to 
the contents of the register containing w. Thus, identifying the various 
values of each variable with a subscript to denote the iteration period in 
which that value occurred (i.e., Vi is the value of ν at the end of the /th 
period, vo being the initial value), the integration is performed by using 
the formula 

Wi = + Mi(Vi - V i _ i ) 

or by a similar formula 

Wi = - f « i _ i ( V i - V i _ i ) 

To illustrate the diflferential analyzer approach to the solution of a 
differential equation, we will consider the equation 

/ ' = - y . 

Solution of this equation requires two integrations 

y = srdx 

y = iy dx. 
The computation cycle is begun by performing the integration y' = / y" dx, 
making use of the rectangular integration formula 
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and the original differential equation 

The integration y = ¡ y dx \s obtained by use of the rectangular integra­
tion formula 

yi = y t - i + AyV 

The program shown in Table 8.2 will produce the solution from = 0 
to jc = «Λ. 

To summarize, this differential analyzer approach generates functions 
by the use of difference equations and performs integration by summing 
the areas of rectangles. It permits rapid writing of very short iterative 
programs for the solution of differential equations, and is intuitive, simple 
and easy to apply. Its primary value is in the preliminary investigations 
of ranges of values. 

Appendix: Conditions for Generating Functions of One or More 
Variables, and for Solving Ordinary Differential Equa­
tions by Means of α Differential Analyzer 

A general theory of the differential analyzer has been formulated to 
describe the conditions necessary for the solution of viirious types of 
problems on an "idealized" machine. Actual machines differ from the 
ideal in such physical hmitations as time lags in the transmission of data 
within the system and the finite length of numbers that can be repre­
sented. An outhne of the theory wiU be presented here. (For the complete 
treatise, see Shannon [1941], [1942.]) 

The assumptions underlying the theory are as foUows: (1) AU or­
dinary differential equations to be considered have unique solutions. 
(2) Formal processes of integration, differentiation, etc., are vahd in the 
region of interest. (3) For total differential equations, it is not necessary 
that the equations be integrable but it is assumed that a solution exists 
along any curve in the region of interest. (4) There is avaUable an 
unhmited number of idealized integrators and adders. The characteristics 
of an integrator are: Given two input variables du and dv, an output vari­
able is constrained to be = {u-\- a)dv, where a, the initial setting of 
the integrand, is an arbitrary constant for aU variations of u and v. (In 
any integrator, the maximum value of |w + is hmited, but by changing 
scale factors it can be made as great as desired so that except for poles 
of u the integration can be performed.) The characteristics of an adder 



APPENDIX 

TABLE 8.2. Program for solution of the equation / ' = —y. 
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Address Instruction B-code Explanation 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

F k + 3 

A k + 4 

S k + 1 

Μ k 

A k + 2 

C k + 2 

Μ k 

A k + 1 

C k + 1 

R 002 

01 Places iteration index in index register 01 

Clears accumulator 

Places - y ^ ^ i = / ' i - i in accumulator 

Forms hy'\_j^ 

Form + hy\_^ = y\ 

Replaces y\_^ (in storage location k + 2) 
by y< 

Forms hy'^ 

Forms yi_i + hy\ = y^ 

Replaces >'^_i (in storage location k + 1) by 

01 Subtract 1 from index register 01 and transfer 
control to location 002 if remainder is !> 0. 

1 2 Next instruction 

k 

k + 1 

k-h2 

k + 3 

k-f 4 

yo* y i 

y o* y i 

Iteration Index 
( n - 1 ) 2 - 8 0 

Zero 

Constants and intermedíate results are stored 
here 

are: Given two input variables du and dv, an output variable is constrained 
to be dw = dw + dv for all variations of u and v. (5) A system of ordinary 
differential equations with independent variable χ and dependent variables 
yu y2 . . .y« can be solved if, and only if, a set of connections can be found 
using the above elements and satisfying the source of drive assiunption, 
such that when there is an increment in the independent variable JC, incre­
ments in the dependent variables are constrained to vary in accordance 
with the equations for arbitrary given initial conditions. (6) A system of 
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i. i = 0 

where yo = 1, yi is the independent variable, and y2 . . . yn are dependent 
variables, among which are the dependent variables of the original system. 

A function of a single variable y = j{x) can be generated if there is 
an interconnection such that when there is an increment in the independent 
variable dx there is a dependent variable that is constrained to vary by an 
amount dy. It follows from Theorem 1 that if /(JC) can be generated 
there must exist a set of equations (1) such that if y i = x, then y2 = fix). 
A function of η variables F{xi , . . Xn) can be generated if there is a set of 
interconnections such that for independent increments in Xi . , . Xn, a de­
pendent variable will be constrained to generate an increment dF. 

Theorem 2 . A function of one variable can be generated if, and only 
if, the function is not hypertranscendental. 

Theorem i . If a function of one variable y = f(x) can be generated, 

then its derivative ζ = f(x), its integral w = ( f(x)dx, and its in-
^ a 

verse χ = / ~ ^ ( y ) can be generated. 
Theorem 4. If two functions / and g can both be generated, then the 

functional product y = / [g(jc)] can be generated. 
Theorem 5 relates to the approximation of functions which cannot be 

generated exactly. 
Theorem 5. Any function f(x) which is continuous in a closed interval 

a ^ X ^ b, can be generated in this interval to within any prescribed 
allowable error € > 0 using only a finite number of integrators. 

The next five theorems relate to functions of more than one variable. 
Theorem 6. A function of m variables y m + i = / ( y / · · · y m ) can be gen­

erated if, and only if, it satisfies a set of total differential equations of 
the form 

total differential equations can be solved if a set of connections can be 
found such that when there is an increment in a set of independent variable 
inputs JCi . . . Xn, increments in the dependent variables are considered to 
vary in accordance with the equations for arbitrary given initial conditions. 

We will list next five theorems pertaining to functions of a single vari­
able. The first is referred to as the fundamental solvability condition: 

Theorem 7. A necessary and sufficient condition for a system of or­
dinary differential equations to be solved using only integrators and adders 
is that they can be written in the form 
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dyjc = ^ üijjcytdyj = (m + 1), (m + 2) . . . 

i. i = 0 

where yo = 1 and the a's are real constants. 
Theorem 7. If two functions of several variables, f(xi . . . Xn) and 

g ( y i . . . Jm) can both be generated, then it is possible to generate any func­
tional product, for example φ(χ2, ^3 · · · n̂> yu ^2 . · · ^m) = í(g* ^2, 

Theorem S. Given any function of η variables /(xi . . . J^n), continuous 
in all variables in a closed region of η - space ajc ^ Xk ^ k = 1,2 
. . . a function F(xi , . . Xn) can be generated using only a finite number 
of integrators and adders such that within the region ajc ^ Xk ^ bk> 
\f — F\ < € where e is an arbitrarily small prescribed positive number. 

Theorem 9. If a function of η variables f(xi . . . Xn) can be gen­
erated, its partial derivative with respect to any one variable, say ^i, can 
be generated. 

Theorem 10. If a function of η variables y = f(xi . . . Xn) can be 
generated, its inverse with respect to any one variable Xi = F(y, X2 * * -
Xn) can be generated. 

Finally, we fist a general theorem which relates to systems of equations. 
Theorem 11. The most general system of ordinary differential 

equations: 

fk(x; yu y'l . . . yi* ;̂ y2, y ' 2 . . . y 2 ' ^ . . . y», . . . yrT) = 0 
where A: = 1, 2, . . . n, and which is of the /nth order in η dependent vari­
ables can be solved on a differential analyzer using only a finite number of 
integrators and adders providing the functions are combinations of non-
hypertranscendental functions of the variables. 
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9. The Detection and Correction of Errors 

9.1. Introduction 

This chapter deals with topics related to the vaUdity of results pro­
duced by a digital computer. This includes techniques for anticipating, 
detecting, and locating the source of equipment failures; special codes 
for minimizing the effect of errors, and for detecting and/or self-correcting 
errors; mathematical techniques for checking results and minimizing errors 
due to the computation process itself. Techniques for improving the 
reUabihty of electronic circuits will not be discussed here. For a theoretical 
discussion of reUabiUty in electronic circuits, the reader is referred to the 
references listed in the bibliography of this chapter. 

The validity of results produced by a digital computer depends on 
many things including the adequacy of the mathematical formulation and 
numerical approximation procedure, the absence of mistakes in the pro­
gramming and coding of the problem and its entry into the computer, 
and the correct operation of the computer during the time interval required 
for solution of the problem. Let us consider briefly the general question 
of reliabihty of the computer itself. A commonly used deñnition of reU­
abihty is as foUows: the probability (expressed in percentage) that a 
system will perform its function without error for a specified length of 
thne while in a specified environment. For example, if, whenever a 
machine is used, it operates without failure for the specified duration 
and in the specified environment, it is considered 100% reUable. 

A useful device for indicating a machine's reliabUity is a histogram 
such as the one shown in Fig. 9.1, in which are charted the frequencies of 

Frequency 

Time interval of error-free operation 

FIG. 9 .1. History of error-free operating intervals 

different error-free periods of operation, accumulated from an operating 
log which Usts how long the computer functions properly each time it is 

521 
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turned on. From this data one can also estimate the mean time to failure. 
Of course, the degree of confidence that can be placed in the reUability 
figure increases, theoretically, with the number of samples. In practice, 
this measure will also be influenced by the effects of aging (good or bad) 
and other factors such as improved maintenance techniques, replacement 
of parts, etc. A high mean time to failure figure is of importance in a 
laboratory computer, since it implies the computer will be available for 
useful work a large percentage of the time. For other applications, e.g., 
a computer used in a high-speed real-time control system, such as in a 
supersonic aircraft, a value for the minimum error free period of operation 
greater than the period of a mission is of more importance. Finally, it 
should be emphasized that any machine must be designed for operation in 
a particular environment and that a reliabiHty figure for a particular 
machine must be based on operating experience in the environment 
specified. 

Once a fault or error has occurred somewhere in the computer, it is, 
of course, desirable to detect the source of error in a minimal time. The 
fault-correcting time can be reduced by the use of techniques and devices 
designed to aid in disclosing the location of faults. (Regardless of these 
devices, the fault-correcting time will also be a function of the skill and 
ability of the operation and maintenance personnel.) 

Before describing the checks most commonly used for detecting mal­
functions of the computing equipment and tracing them to their source, 
let us consider the ways in which such malfunctions may be brought 
about, i.e., the ways in which components of the machine may fail. Some 
basic types of failures are shown schematically in Fig. 9.2. This is a 

Parameter 
value 

Satisfactory 

Marginal 
Unsatisfactory 

Sudden 

\ 

Gradual Intermittent 

\ Λ f—VJ^ 

\ V 

0 0 0 

FIG. 9.2. Different types of failure 

• Time 

quahtative picture. The time scale will vary with the physical nature of 
the component and in fact will vary even with components of the same 
type. Unsatisfactory performance resulting from gradual deterioration or 
aging of a component is more common than a sudden complete failure. 
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The latter type of failure may occur when a component which has not 
been adequately underrated is subjected to a greater than normal load, 
i.e., when a component has been rated with respect to average rather 
than peak requirements. Intermittent failures may occur any time after 
the performance characteristics of a component have reached the marginal 
zone—^whether that zone was entered suddenly or gradually. 

The different types of failures described imply different degrees of 
difficulty in detection of faulty operation and location of the defective 
component. An error caused by a complete failure of a component is 
relatively easy to find. 

9.2. Detecting and Locating Sources of Error 

There are a number of possible sources of error in the results produced 
by a digital computer. These errors may be introduced by the particular 
mathematical formulation of the problem being solved, by the finite 
numerical processes employed, by mistakes in programming, and by 
malfunctioning of the computing equipment. We will consider in the 
succeeding sections the different means that may be employed to detect 
and locate the source of these failures. 

When an error is caused by a complete failure of a component it is 
relatively easy to trace the source. Test programs (described in Section 
9.2.3), which require the functioning of all components in the computer 
or in a suspected part of it are useful in detecting this source of error. 

Tracing the source of an intermittent error is more diflScult. To aid in 
such a trace it is desirable to provide some means for stopping the com­
puter on the very step where the erior occurs. This is because study of 
the contents of the various registers at this time sometimes permits the 
source of the error to be deduced. An advantage of error detection cir­
cuits, compared to programmed checks, is that they detect an error 
immediately upon occurrence. Test programs are helpful here, too, 
although not when the marginal component fails only rarely (see Section 
9.2.3 for a discussion of how the frequency of failure may be increased 
by a marginal checking procedure). Actually, the best way to trace mar­
ginal components is by a preventive maintenance procedure. 

Some intermittent errors cannot be traced by any simple procedure. 
Instead success depends on the ingenuity and experience of the trouble-
shooter. Examples of elusive sources of error are: (1) Defective con­
nections in wiring, e.g., cold solder joints. (2) Components operating 
marginally, but to which marginal checking procedures cannot be appUed 
because of their location in a circuit. (3) Places where the failure may be 
self heaUng for a relatively long time before partial failure occurs again. 
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Another significant source of errors arises from mistakes in wiring intro­
duced either when the computer was built or modified, or during a trouble­
shooting operation. 

Checking to assure that the results of computations are correct has 
long been considered important. For a high-speed computer where enor­
mous amounts of computation are performed without interruption there 
is an even greater need for checks. This follows because in large com­
puting systems numerous components are subject to failure, and even a 
single failure may often completely vitiate the solution. It is desirable 
that a computer check itself during the course of a computation for the 
following principal reasons: ( 1 ) There are too many operations involved 
to permit a check of this type by a human operator. ( 2 ) Human checking 
would not be in keeping with the initial purpose of the computer—i.e., 
to reheve humans of routine computation. ( 3 ) The check should proceed 
in step with the computation in order that errors may be detected as they 
occur, thus preventing the loss of correct results obtained before the 
occurrence of an error. Special considerations in the checking of a com­
puter functioning as part of a control system are discussed in Section 9 . 2 . 2 . 

There are a number of automatic checking methods available. They 
fall into two main categories, namely built-in checks, and programmed 
checks. These will be discussed in Sections 9.2.1 and 9 . 2 . 2 , followed by 
a description of programs for testing and diagnosis in Section 9 . 2 . 3 , and 
preventive maintenance in 9 . 2 . 4 . It should be emphasized here that there 
is no substitute for basically reUable circuitry, since most practical error 
detection and correction schemes are effective only against single tran­
sient malfunctions resulting not from a faulty component but from a 
random disturbance. 

9 . 2 . 1 . BUILT-IN CHECKS 

9 . 2 . 7 . / . Information Storage and Transfer Checks 

This type of check is used to determine whether an error has been 
introduced in the process of writing information into or reading it from 
the store, or in the transfer of information between various sections of 
the computer. Any of various techniques may be employed for such 
checks. For example, there is incorporated in the MIT Whirlwind com­
puter a special checking register which is used whenever the execution 
of an instruction requires the transfer of information from one set of 
registers to another. This register receives information from the source 
register and, also, via a different path, from the receiving register. Any 
discrepancy indicates an error has occurred. Another scheme consists of 
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simply storing each quantity in duplicate and comparing corresponding 
positions of each pair. Note that both these schemes depend on the 
introduction of some type of redundancy—in the first case a redundant 
operation, in the second redundant storage as well. Neither of them fur­
nishes the information required to correct an error, although the latter 
scheme, which can detect a single error in any or all pairs of data words, 
can be extended one step further to the extreme of storing each quantity in 
triplicate and deciding on the correct value of any bit position on a 
majority principle. 

We will now proceed to describe some schemes for error detection 
and correction based upon the use of special codes and coding techniques. 
When one or more bit positions in a coded group is changed as the result 
of a malfunction in the computer, a new value may be produced which is 
also meaningful, i.e., one of a set of admissible values. If this is the case, 
inspection of the new value is not sufficient to estabUsh that an error has 
occurred. This implies that the capability for error detection depends on 
there being a greater number of possible values than admissible values. 
For example, in a four-bit binary-coded decimal group, the decimal 
values 0 through 9 are admissible, but the values 10 through 15 are not. 
Therefore, the occurrence of any of the values 10 through 15 is an indi­
cation that an error has occurred. However, with this system there is not 
complete assurance that an error, even in a single bit position, can be 
detected. This is because an error in an admissible value may produce 
another admissible value, e.g., the accidental changing of 6 to 7 (110 to 
111). For assurance that an error in a single bit position can always be 
detected, the defined set of admissible values must be such that a change 
of an admissible value in any bit position produces a nonadmissible value. 
A code capable of detecting an error in any bit position of a decimal 
representation requires at least five bits. One such code represents the 
digits by the ten representations of five bits in which two of the bits have 
the value 1. Error detection is accomplished by inspection of the number 
of Ts present. A major drawback of this code is that it is not weU suited 
for arithmetic manipulations. 

A way of introducing nonadmissible values for error detection which 
does not preclude the use of the straight binary code or any other desired 
code, is by the inclusion of a parity bit with the group of bits to be 
checked. The value assigned to this bit is such that in a so-caUed even 
parity checking system the total number of I's in the data and parity bit 
is even and in the odd parity checking system it is odd. The net effect 
is that η + 1 bits are used to represent 2̂ ^ admissible values and 2^ non-
admissible values. The parity bit is stored and transmitted with the group 
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Pr 

0 0 1 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 0 0 0 
0 1 0 0 0 

Pc 1 0 1 1 

If only one check fails, and it is assumed that only one error has 
occurred, then it may be assumed that the error is in the parity bit itself. 
By the addition of another parity bit, Pcr, to check the oddness or even­
ness of the number of I's in the column parity bits, double errors may be 
detected. Also, the foUowing characteristics will be exhibited for single 
failures in any of the parity check bits: (1) An error in a Pr bit causes 
the check in only that row to fail. (2) An error in Pcr causes a check 
failure in the bottom row only. (3) An error in a Pc bit causes the new 
check bit Pcr to faU as weU as the corresponding column check to faU. If 
a response is obtained other than the three just hsted or that produced 
by a single failure in one of the numbers checked, two or more errors 
must have occurred. 

For a parity check to be capable of multiple error detection or the 
detection and correction of a single error, more than one parity bit 
is required. In other words, each admissible value must differ from every 
other in more than two positions. For example, the detection and correc­
tion of a single error in a group of bits requires that each admissible value 
differs in at least three bit positions from every other admissible value. 

of bits being checked. A subsequent discrepancy between the oddness 
(or evenness) of I's in the number itself and the value of the parity bit 
indicates that one error or an odd number of errors has occurred. 

The type of parity check just described may be considered as a single 
row or column check. In another type of parity check, referred to as an 
array check, several rows and columns of data are checked as a set, a 
parity bit being assigned to each row and column. The location of a single 
error is indicated by the intersection of the row and column corresponding 
to the row and column parity bits for which there is a discrepancy. In 
the array check, shown in Table 9.1, ρ stands for the parity bit, chosen 
to be 1 whenever the number of I's in the collection being checked is even. 

TABLE 9 . 1 . Parity checking for an array of numbers 
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Pi 

Fz 
^4 

1 2 3 4 6 7 8 12 
1 2 3 5 6 9 10 13 
1 2 4 5 7 9 11 14 
1 3 4 5 8 10 11 15 

The actual checking of the m - f A: bit positions takes place as follows. 
Since the value of the parity bit plus the bits it checks is defined to be 
always even (or odd), a check is made of the sum of the parity bits and 
the digits it checks to see whether this condition is satisfied. If so, the 

This is apparent if we consider the case where two admissible values differ 
in only two bit positions, e.g., 100 and 111. If the third bit of the first 
number is erroneously changed to 1 and the second bit of the second 
number is changed to 0, the same value 101 is produced. It is obviously 
impossible to correct such an error by inspection of the number 101 since 
it could have resulted from a single error in either 100 or 111. 

Correction of a single error in addition to detection of a double error 
requires that each admissible value differs in at least four bit positions 
from every other admissible value. It is generally true that error detecting 
and correcting codes have the property of being able to trade correcting 
for detecting ability. For example, the double error detecting and single 
error correcting code can be used instead as a triple error detecting, non-
correcting code. 

The single-error correcting scheme that will be described next is essen­
tially a special form of parity checking. It consists of producing a group 
of check bits in such a way that the value of this group of check bits, con­
sidered as a single check number, indicates which bit position, if any, is 
in error. Several parity bits are associated with the data bits, the number 
of parity bits being determined by the number of bits in the data. If m is 
the number of data bits, then the number of parity bits, k, must be such 
that the number of possible values of the k bits (i.e., 2^) is adequate to 
indicate any of the m - f A: bit positions in which an error can occur and, 
also, the occurrence of no error. In other words, 2* ^ m + Λ + 1. The 
set of bits which each parity bit checks is so chosen that a different value 
of the k check bits occurs for an error in any of the m -h A: bits and for the 
case of no error. It is even possible to so select the group of bits checked 
by each parity bit that if an error occurs in any bit position, the value of 
the k check bits indicates directly the number of that position. 

Assume that the m data bits are numbered from 1 through m and 
the k check bits are numbered from m + 1 through m -\- k. Then for 
the case of m = 11, A: = 4, for example, the check bits Fi could be defined 
as the sum (modulo 2) of the value of the indicated bit positions 



528 9. THE DETECTION AND CORRECTION OF ERRORS 

TABLE 9 . 2 . Values of a checking function F4F3F2F1 corresponding to a single error 
or no error in the 1 5 positions checked 

Position of Error ^4 ^3 F2 ^ 1 

None 0 0 0 0 

1 1 1 1 1 

2 0 1 1 1 

3 1 0 1 1 
4 1 1 0 1 
5 1 1 1 0 

6 0 0 1 1 
7 0 1 0 1 
8 1 0 0 1 
9 0 1 1 0 

1 0 1 0 1 0 

1 1 1 1 0 0 
1 2 0 0 0 1 
1 3 0 0 1 0 
1 4 0 1 0 0 
1 5 1 0 0 0 

Simply by rearranging the positions in which the data and parity bits 
are placed, it is possible to derive a checking function that automatically 
produces the number of the position in error, rather than an arbitrary 
number (which must be referenced to a particular position) as in the pre­
ceding example. This occurs if the parity bits are placed in positions 
1, 2, 4, . . . 2^ and each Fi is defined as the sum (modulo 2) of the 
values of the indicated bit positions 

corresponding check bit is assigned the value 0, otherwise 1. The bit 
positions entering into each parity check are so chosen that when a single 
error occurs, it will show up in one or more bits of the checking function. 
A one-to-one correspondence is thus estabhshed between the sources of an 
error (in either a data or parity bit) and the values of the checking func­
tion. Table 9.2 shows the value of the checking function for the cases of 
an error in any of positions 1 through 15 and for the case of no error. 
Note that a single error among the Fi indicates a parity bit in error, and 
that either two, three, or four failures among the Fi indicates a data bit 
in error. 



For example, if there is an error in position 13, F4F3F2F1 = 1101; if an 
error occurs in position 7, F4F3F2F1 = O l l i ; if there is no error, 
F4F3F2F1 = 0000. 

Table 9.3 shows the number of data bits (m ^ 2^ - k - 1) that can 
be accommodated by a given number of check bits, and also the number 
of bits checked by each parity bit, pi. 

TABLE 9.3 

Data bits, m Check bits, k Bits checked per p^ 

1 2 1 
2-4 3 3 
5-11 4 7 

12-26 5 15 
27-57 6 31 
58-120 7 63 

We will now consider some hardware requirements of the parity 
checking schemes that have been described. Those for operating on what 
may be considered a single row or column of data can be mechanized 
for systems in which the bits appear either serially or in parallel. In a 
parallel system each parity bit can be formed by means of a combinational 
circuit whose inputs are the values of the bit positions being checked by 
the parity bit. In a serial system, the values of the bit positions being 
checked are entered sequentially into the input of a trigger (single-input) 
flip-flop. Either arrangement can indicate whether the number of I's 
entered is even or odd. In the row and column checking scheme, if the 
bits in each row appear in parallel, and the bits in each column serially, 
it is necessary to store some indication of the row in which a parity check 
failed, so that when the column parity bit check fails the proper word can 
be referenced and the value of the bit position in error complemented. 

In the error correction scheme utilizing a check number, each parity 
bit can be generated by the means already described: speciñcally, by a 
single input flip-flop if the data is in serial form, by a combinational cir­
cuit (with the number of terms indicated in column 3 of Table 9.3) if the 
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F1 1 3 5 7 9 11 13 15
F2 2 3 6 7 10 11 14 15
Fg 4 5 6 7 12 13 14 15
F4 8 9 10 11 12 13 14 15



530 9. THE DETECTION AND CORRECTION OF ERRORS 

data is in parallel form. For each check bit, a single input flip-flop 
may be used for data in serial form and a combinational circuit (with one 
more term than for p,) if the data is in parallel form. These circuits allow 
the detection of an error and its location. Automatic correction of the 
error (which is accomplished by complementing the value of the bit in 
the position designated by the checking number) requires the use of some 
temporary storage and delay elements. In the example described, if the 
bits appear serially as the successive states of a flip-flop, ß \ then the 
correction can be eff'ected by means of a delay line (or shift register) and 
ten flip-flops as follows. Data read from is used to set each of four 
flip-flops F*, F'̂ , F2, F^ in accordance with the rules for forming the check 
bits F 4 , F 3 , F2, Fl. At the end of the word period, the check number is 
transferred from F\ F», F^, F^ to four other flip-flops F l^ F̂ »̂  F^ ,̂ F^ . 
0^ also drives a delay line whose length is such that as one word is 
being read from the bits of the preceding word are read from a flip-
flop driven from the output of the delay line. As each bit is read 
from ß2, the contents of F^^ F^ ,̂ F^ ,̂ F^̂  are diminished by 1, so when 
they hold the value 0001, the bit read from is the one that is to be 
corrected. The output of is shifted into a flip-flop, β·^, except when the 
contents of F^^ F^^, F^^, F^^ equal 0001, at which time the complement 
of β2 is shifted to β^. Thus, bits of a word with one error appearing at β \ 
win appear in correct form at the output of one word-time later. It 
should be stated at this point that because of the added cost they introduce, 
error detection and correction circuits are used sparingly. 

The error detection and correction schemes described are aU based 
on defining a set of admissible values and a corresponding set of inadmis­
sible values. It foUows that more bit positions are used than would normally 
be required to represent the data. A measure of the redundancy is the 
ratio of the additional bits used to the minimum number required to repre­
sent the data. For example, in the case where m = 26, Λ = 5, the re­
dundancy is 0.19. In order to conserve storage elements, it is desirable 
to have an error detection and correction scheme that does not introduce 
too much redundancy. For a description of various error detection and 
correction schemes, see the papers hsted in the bibliography. 

9.2.7.2. Arithmetic Checks 

In normal operation, a scale factor assigned by the programmer is 
associated with each number in the machine, and remains constant during 
the course of a problem. This scale factor is chosen so that every number 
used or generated during the course of a problem can be represented 
within the finite register length of the computer. Often it is quite diflftcult 
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Sum 62838 Sum of addend residues 9 
Residue 0 Residue 0 

The multipUcation check is based on the fact that the residue of the 
product of two numbers should be equal to the residue of the product of 
the factor residues. For example 

* It is not necessary to divide a number by the modulus to obtain its residue, since 
the residue of the sum of the digits in a number is equal to the residue of the 
number itself. 

to estimate accurate bounds on some of the partial results of a complicated 
problem. Therefore, one of the most important and commonly used built-
in checking features is one that indicates whether a number has been pro­
duced that exceeds register capacity. This is usually accomplished by a 
circuit that detects an overflow of the accumulator (in either a positive 
or negative sense). This also sets the computer to an idle state, thereby 
allowing corrections to be made before the effects of the overflow can be 
propagated. In a control computer provided with automatic error correc­
tion routines, the overflow would not stop the machine but instead cause 
transfer of control to the correction routine. 

Machines having a built-in divide instruction should have a built-in 
check to test whether the quotient will be less than 1. The check consists 
of ascertaining if the divisor is less than the dividend, in which event the 
quotient register would overflow. Checking circuits for adders and other 
arithmetic devices are not diflicult if appropriate codes are chosen. How­
ever, it is difficult to devise practical checking circuits for all of a com­
puter, the control circuits in particular being difficuh to check thoroughly. 

Another type of check that can be incorporated into the arithmetic 
circuits is based on a procedure often used to check manually-performed 
arithmetic. When used with the decimal system, this check is referred to 
as checking by casting out 9's. In this check, the result of each of the four 
basic arithmetic operations is checked by the use of the residue (modulo 
nine) of the operands. In the addition check, the residue of each addend is 
obtained* and the residue of the sum of these residues is compared with 
the residue of the sum of the addends. If the residue of the sum agrees 
with the residue of the sum of the addend residues, the sum is assumed to 
be correct. For example 

Addends Residue of addends 
15941 2 
46897 7 
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Factors Residue of factors 
12 3 
7 7 

Product 84 Product of factor residues 21 
Residue 3 3 

The division check consists of comparing the residue of the remainder 
with the difference formed by subtracting the product of the residues of 
divisor and quotient from the residue of the dividend. For example, if 
the dividend is 23 and the divisor 12, then 

r̂emainder — /̂ divldpnd ~" (í̂ dlvieor ^ /̂ quotient) 
2 = 5 - (3 X 1) 

where R is the residue. 
An analagous system of checking may be applied to binary numbers 

by considering such numbers as octal numbers (merely by considering 
groups of three bits each) and using a casting out 7's system. An obvious 
deficiency of any residue checking procedure is that it will not detect an 
error whose magnitude is an integral multiple of the number being cast out. 

Circuits for residue checks would perform the following operations: 
(1) production of the residues from the operands, (2) operations of an 
arithmetic nature on these residues, (3) generation of the residues of these 
results, and (4) comparison of the residue of the results produced by 
operating on the operands with the residue of the result produced by op­
erating on the residues. 

Another built-in checking device, intended for use in a control com­
puter, does not actually check an arithmetic operation but is designed to 
prevent a program from getting out of sequence. It consists of generating 
periodically a timing pulse which causes control to be transferred to a 
specified point in the program, the program being divided into sections 
each of which can be executed in less time than the period of the timing 
pulses. These timing pulses are also useful in applications where the com­
putation must be synchronized with real tune, faciUtating the use of 
predictive and extrapolative formulas. 

The use of built-in checking equipment adds considerably to the cost 
and complexity of a computing system. For this reason, and because more 
reUable components are becoming available, the use of built-in checks 
(including dupUcation of circuits) if used at all, is usually confined to a 
particular crucial part of the system. The emphasis is now being placed on 
improving the reUabiUty of individual circuits, and the use of programming 
to detect errors due to malfunctions. These programs may be either ones 
that are written specifically for diagnostic purposes, or programmed 
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mathematical checks incorporated in a main program. For example, the 
residue checks described could be incorporated as part of a running pro­
gram (at the expense of problem running time). In conclusion, it should 
be stated that each of the built-in or programmed error detection and 
correction procedures described has its deficiencies and that much work 
remains to be done in this area. 

9.2.2. PROGRAMMED ERROR DETECTION AND CORRECTION 

The over-all rehabihty of operation can be improved by supplementing 
reUable circuitry, including check circuits, with carefully designed error 
detection and correction programs. These programs not only can be 
employed where the extra cost of checking circuitry is prohibitive but 
also provide a greater variety of checks. The basic procedures are few: 
recomputation by the same, an inverse, or diflierent process and com­
parison of the results, tests to see whether the results satisfy certain 
mathematical or physical criteria in the solution of problems involving 
physical systems, a check based on estimates of behavior of certain vari­
ables, and various special checks that may be possible with a particular 
process or machine. 

In the various schemes for detection of errors by programmed checks, 
there is a basic diflierence between those designed for use with laboratory 
computers and those designed for use with computers that comprise part 
of a control system. In the former case, the programmed checks used in 
conjunction with various computational routines serve simply to detect an 
error, whereupon the computer is stopped. At this point, and at the 
discretion of the user, the problem may be rerun either completely or 
from the last point in the computation where the computer was known 
to be operating correctly, or recourse made to some fault locating tech­
nique like a diagnostic program (Section 9.2.3). In many applications a 
control computer cannot be stopped, and there is insuflScient time avail­
able to repeat more than a small part of the computation upon detection 
of a malfunction. Thus, it would be desirable for the detection process, 
which can consume only a small percentage of computing time, to auto­
matically actuate a process that corrects the error in a very short period. 

The selection of programmed error detection and correction means 
to be employed must be based on several factors, including the probability 
of each type of malfunction and its detection and correction by a par­
ticular technique, the probable damage produced by diflierent malfunctions, 
and the cost of additional storage and increased computing speed require­
ments. For utilization of many of the analytic checks, the programmer 
must estabUsh tolerances on aUowable discrepancies, and the degree of 
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confidence to be placed in a particular type of check. He must also decide 
upon the frequency with which various checks are to be applied, striking 
a compromise between machine running time consumed in checking opera­
tions and the relative ease with which an error may be traced to its source. 

A point worth mentioning here is that even though many numerical 
approximation procedures tend to erase small errors which may acci­
dentally be introduced, the nature of the convergence process requires 
careful analysis, for large errors may lead to convergence on another 
branch, producing a result which may or may not seem plausible. 

9.2.2.7. Analytic Checks 

One of the more obvious ways to check the result of a computation is 
by recomputation, the check being based on the assumption that if the 
two answers agree, the result is correct. However, this method has certain 
Umitations. First of aU, any error made in programming or coding wiU 
be common to both computations and therefore wiU not be detected. 
Also, this type of check is effective only against transient failures rather 
than steady state ones. If the machine fails systematically, there is an 
appreciable probability of the same error being made on the second run 
as on the first. This probability of identical systematic errors may be 
almost eliminated by running the problem on two computers. If only 
one computer is available, the time between successive runs should be as 
long as practicable, assuming that systematic failures of large computers 
WÜ1 not persist over periods of one to two days. For increased confidence 
in the results of a recomputation check, the second computation should 
be made using a different mathematical method or program than that 
used in the first computation. Because of its Umitations, this type of check 
should only be used as a preliminary one, in conjunction with other checks. 

In a control application there may be certain computed quantities that 
are critical in the sense that an error in them would have a damaging 
effect on the system. Therefore, even though multiple computation (and 
storage of critical parameters) and inference of the correct answer on a 
majority basis may not be feasible for a whole computation, it may be 
warranted in the computation of these critical quantities. Such a routine 
wiU also detect and correct certain multiple errors in one quantity (since 
the value of each bit is inferred on a majority basis). 

A type of check easily made where appUcable is the use of known 
relationships between functions. For example, one can compute the 
value of a trigonometric function from some type of series expansion of 
the argument and then check this value by computing it again in terms 
of another function. SpecificaUy, one could compute sin χ from the relation 
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sinx ^ X - x^/sl + χ^/ζΐ - ... and then check it by means of the relation­
ship sin^x = 1/(1 + ctn^jc) after computing the value of ctn x. Another 
scheme is to use the same equation but to arrive at a particular value 
from two directions. For example, in the integration of a differential equa­
tion, one uses the given initial conditions and computes successive values 
from that point. Then a set of computed values is used to define new 
initial conations and the process is reversed, values obtained in this way 
being compared with those obtained earlier. Also, the nature of a par­
ticular computation may often allow a useful functional check peculiar 
to it to be employed. A major hmitation of functional checking as a 
general procedure is that no functional relationships are known for many 
of the functions which arise during the solution of a problem. 

A test frequently employed, and which is a special type of functional 
relationship test, makes use of inverse operations. For example, if the 
addition of two quantities is called for, after the sum has been formed 
one of the quantities is subtracted from the sum and this difference 
compared with the value of the corresponding addend. This procedure 
wih detect errors due to either transient or steady state and intermittent 
malfunctions of the machine (Fig. 9.1), but the lengthier program means 
increased computing time and storage requirements, and more time for 
preparation. A variation of this procedure, less costly in respect to the 
parameters mentioned, is one wherein the inverse operation of a group of 
operations rather than of an individual operation is performed. For ex­
ample, after solution of a set of linear algebraic equations, or differential 
equations, the answers would be checked by substitution back into the 
original equations. An advantage of the group check is that it checks not 
only the arithmetic unk, but also various information transfers, in addi­
tion to parts of the program. However, an important disadvantage is that 
the source of error is more difficult to locate because of the variable num­
ber of steps that may take place after the malfunction. Therefore, careful 
consideration must be given to the number of operations to be covered 
by a single check. In using inverse checks for either individual or groups 
of operations, a tolerance should be provided on the differences that may 
occur between a direct and inverse operation not due to any machine 
malfunction but because of truncation and round-off errors normaUy 
introduced (see Section 9.4). 

A diflierencing test is one used to determine whether the computed 
function is smooth in the sense that it has no discontinuous derivatives of 
low order. The test consists of determining the values of higher order 
differences of the function. Since the number of values available for 
inspection decreases by one with each higher order of difference, the 
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number of computed values of the function limits the order of difference 
that may be taken. Also, since round-off and truncation errors become 
more significant as the order of difference increases, a practical limit is 
set to the order of difference that can be considered significant. Though a 
difference check is sometimes useful in conjunction with the computation 
of the values of a function at equidistant intervals of its argument, it 
also has serious limitations. First of all, the check is not valid for those 
functions for which the differences do not decrease as their order increases, 
i.e., where the differences are inherently too large or too variable. It is 
not at all effective in detecting systematic errors that influence all com­
puted values equally. For this reason an accompanying spot check of 
certain computed values is desirable. There is a possibiUty that even though 
all differences of a certain order are small an error has occurred. The 
values computed may even be completely incorrect, in that they represent 
a wrong function. Also, one cannot be sure that because the value of a 
certain order difference is greater than a certain magnitude that an error 
has occurred. Finally, smoothness checks cannot be relied upon for func­
tions of more than one variable. Wherever the results of the test are 
questionable, the usual procedure is to assume an error has occurred and 
to attempt to verify this by a different type of check. 

A similar reasonableness type of check which may be useful in the 
detection and correction of errors in real time control systems is to com­
pare the value of a quantity computed directly from physical data with the 
value found by extrapolating from previous values, and if the computed 
value falls outside these bounds to use the extrapolated value. Using the 
known error bounds and physical bounds in the system, gross errors 
may be detected. Either direct Lagrangian extrapolation (if physical 
quantities are varying rapidly), or smoothed extrapolation (if physical 
and computational noise is the predominant type of error expected) may 
be used. For explicit descriptions of this procedure, including a description 
of how the extrapolated value itself may be checked by extrapolating a 
second time using a different formula and comparing results, and the 
effect on the extrapolation at the π + 1st step if the extrapolated rather 
than the computed value at the nth step is used, see Ralston [1957]. 

The proper choice of scaling (Section 6.7.1) is important not only 
to the accuracy of the over-all computation, but also can be used to limit 
the magnitude of error produced by a malfunction. For example, assume 
that with one value of scaUng, a variable, y, varies over the range 
0.000001 (1/64) to 0.000100 (1 /16) . An error occurring in the most 
significant bit position could produce an error of 8 y^ax- If the variable 
is scaled differently, so that it varies over the range 0.001000 to 0.100000 
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say, an error in a single bit position could not produce an error greater 
in magnitude than one half the maximum value. 

92.2.2. Sequencing Checks 

We will consider now a check devised to aid in preventing the acci­
dental transfer of control to a storage location other than intended as a 
result of an error in computing the address. The method is based upon 
setting aside η storage locations, where η is the smallest power of 2 that 
exceeds 2x, and χ is the maximum number of locations to which control 
might be transferred from a given point in the program. There is the 
further restriction that the first address in the sequence be a multiple 
of 2n so that the higher order bits need not enter the computation. 
The X addresses are chosen from the set of η addresses so that they satisfy 
an even (or odd) parity check. A single error in computing any of the χ 
entry addresses will produce one of the n/2 incorrect addresses. In each of 
these, the same instruction is stored, one which causes a transfer of 
control to a correction routine which recomputes the entry address. 

A simple method for detecting erroneous entry to a table of constants 
is as follows: First of all the entries are separated into two groups, each 
entry in a group being of the same sign. Again a consecutive set of 
addresses is selected and its members assigned as the addresses of one 
group or the other according to whether they satisfy an odd or even 
parity check. The sign bit of an entry extracted from the table is tested 
and if found to be incorrect, a transfer of control is made to a correction 
routine which causes the address of the table entry to be recomputed. 

To insure that a computational block is entered at the beginning, one 
set of instructions can be added at the beginning and another at the end 
of the block to check on whether those at the beginning were performed. 
If not, there is an automatic transfer of control to a correction routine. 
For example, a simple procedure is to place at the beginning of the block 
instructions that cause the contents of a specified storage location to be 
copied into another location, and at the end of the block to place instruc­
tions that transfer the contents of both locations into the accumulator, 
subtracting one from the other. Control is transferred to a correction 
routine if the diflierence is not zero. 

9.2.2.3. Data Transfer Checks 

Simple parity checks can also be programmed. Indication of failure 
could be used either to stop the computer or, in a critical control appli­
cation, to transfer control to the entry of a correction routine, selected 
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from several in accordance with the contents of the program counter 
(indicating in what part of the program a failure occurred). For example, 
if the check fails on data read from the store, correction could be attempted 
by reading again, with a limit being set on the number of times this is 
done since continued failure indicates other than a transient error. 

Another type of check, often used as a standard part of a machine's 
operation, is the memory sum check used to check a block of instructions 
and data entered into a machine's central store from an input storage 
medium. The check consists of reading from the store the contents of all 
storage locations into which the block of data was entered, producing the 
sum of these entries (ignoring overflows to the left of the radix point), 
and comparing it with a previously determined value. 

9.2.3. PROGRAMS FOR TESTING AND DIAGNOSIS 

We will consider here the use of a number of special types of programs; 
namely, test, diagnostic, and tracing programs, which are useful in 
detecting computer malfunctions. 

A test program causes various elements in a computer to function so 
that their responses may be tested for error. Specially designed test pro­
grams may be used to provide immediate indication of the approximate 
location of a fault. Final location and correction is then easy normally 
for failures of a definite nature, e.g., complete tube failures, nonoperating 
relays, open-circuited diodes, etc. A simple spot-check test program may 
be performed during maintenance time or even programmed for inclusion 
in the run of any given problem. A general test program may, for example, 
consist of all possible operations of which a computer is capable, fisted 
sequentially. At the end of each step the computer compares the results 
against known answers. Upon detection of an error, the computer stops, 
indicating at what stage in the program something failed, and the 
approximate location of the fault. More specific test programs can then 
be used to check thoroughly the suspected parts. The source of trouble 
is finally located by checking the operation of individual circuits with the 
aid of an oscilloscope. Test programs are especially useful where the 
error is of an intermittent nature. However, not all parts of a machine may 
be tested by this method, e.g., the main control of the machine, where all 
fundamental wave forms are generated, must be tested by normal elec­
tronic techniques. However, a fault here means the computer will not 
obey the simplest instruction, thereby making the source of the fault 
relatively easy to locate. 

A diagnostic type of program differs from a test program in that it 
is usually employed to locate the soiu-ce of an error once it is known to 
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exist, whereas a test program is used to determine whether some part or 
aU of the computer is functioning properly. The features of any specific 
diagnostic program depend on the engineering design of the computer 
for which it is intended, although certain requirements are essential to 
most. For a diagnostic program to work, the instructions must be executed 
properly. This imphes certain parts of the computer must be in working 
condition. As a result, diagnostic programs are not generally useful to 
detect fauhs such as those in certain important control circuits, or in the 
power supply. These usuaUy require test instruments for diagnosis. Also, 
it is not generaUy feasible to have one inclusive diagnostic program for 
a computer. Instead, a set of specialized programs, aimed at diagnosing 
the operation of parts of the computer are employed. In cases where the 
approximate location of the fault is known, the appropriate diagnostic 
routine may be selected to aid in quickly narrowing the possibilities. 
Where the location of the source is not known at aU, the diagnostic pro­
grams are stiU of value, but the entire computer must be examined in 
some systematic manner. 

In starting a problem, one or two special automaticaUy-computed pUot 
problems may be used as test cases. If there are differences between ex­
pected results and these test cases, the program may readily be "traced" 
to detect the area of the program where trouble occurs by means of a 
tracing program. Once these test cases have been checked out, they may 
be stored on some input medium (punched cards, magnetic tape, etc.) 
together with the trace routines and thus be avaUable for future testing 
of machine rehabihty for that problem. A trace routine is an interpretive 
type of program designed to assist the programmer in locating errors in a 
program. In this case, the interpretation causes instructions in addition 
to those in the main program to be executed. For example, a trace 
routine may cause each instruction or specified intermediate instructions 
to be printed upon execution. This record may be used for many purposes: 
to teU whether jump instructions were obeyed as expected, to indicate 
whether desired items of data entered into the computations at specified 
points, to provide a record of the contents of arithmetic registers at the 
end of a program step so results can be checked. Since the use of a 
trace routine increases the time required to execute the main program, the 
extent of its use is hmited accordingly. 

For intermittent errors which do not repeat during the course of a 
trace routine, tracing is unprofitable, and it becomes necessary to continue 
computation at the last point where results are known to be correct. To 
commence computation at such a point, a so-caUed roU back procedure 
must be programmed. Such a program stores aU information necessary 
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to resume the computation in the particular addresses used in the standard 
program for a problem. The items of this information may be available 
in the input-output medium used at the beginning or middle of the com­
putation or in computed results already printed. The programmer must 
foresee where a roll back will start (which may be arbitrarily selected) 
and then plan his standard program so as to compute and print or store 
on an input-output medium each item of such information. Once the 
necessary items are available, a standard roll back program is prepared 
on an input medium, which will assign the information to standard 
addresses in the problem program. This roll back program includes all 
data and instruction codes necessary to provide a configuration of storage 
standard to the problem program, such that a standard set of instructions 
can then be fed into the computer to continue the computation in a 
normal manner. 

9 . 2 . 4 . PREVENTFVE MAINTENANCE 

The simplest type of preventive maintenance procedure consists of 
methodically checking, by means of test instruments, the operation of the 
various circuits within a computer. This type of checking procedure con­
sumes a large amount of time, and therefore is usually limited to a check 
of the fundamental waveforms only. A common procedure for this type of 
checking is to inspect a number of sections each day so that in a specified 
period, of the order of several days, all important waveforms will have 
been checked. 

Another type of preventive maintenance procedure frequently used is 
referred to as marginal checking. It requires the inclusion of special fea­
tures in the original design of the machine which enable a displacement 
of circuit operating conditions, by a variable amount from the normal, to 
be applied to various circuits within a machine. The difference in voltage 
between a specified nominal value and that at which the circuit fails is 
defined as an operating margin. A marked tendency of a lessening in this 
margin in a particular section of a computer is an indication that one or 
more components are deteriorating toward a point which would cause 
failure. Intermittent faults, caused by slow deterioration of components, 
can result in a circuit faihng to operate correctly on certain pulse patterns. 
Variations of circuit conditions from the normal by means of a marginal 
check can cause a marginal circuit fault to be converted to one which is 
well defined and, therefore, more readily identifiable. This permits some 
warning to be obtained of the imminence of marginal conditions before 
they can cause errors in operation. Though circuits with incipient faults 
can be made to fail, others will operate satisfactorily. This type of check-
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ing facility may be designed to be applied to the entire computer at once 
or to selected groups of circuits, as well as to individual circuits. A 
voltage variation scheme is used to vary supply voltages in any of various 
isolated sections of the computer to a point where steady failures occur. 
These voltages are varied slowly while the computer is executing some of 
its test programs. When a fault occurs, its origin may be traced as de­
scribed m Section 9.2.3. 

9.3. Error Minimizing Codes 

We will present here an example of how selection of a particular code 
can influence the probability of error in interpretation of Üie data repre­
sented by the code. To illustrate the point we will consider a type of 
encoder widely used to produce a digital representation of a shaft position. 
In one of its forms, one or more so-called code disks are mounted on the 
shaft. There are several concentric bands on the disk, each corresponding 
to a particular bit position of the binary representation of the shaft posi­
tion. The innermost band, which represents the most signiñcant bit posi­
tion, is divided into two segments and each band is divided into twice as 
many segments as the one radially inward from it. Each segment in a 
band is different in respect to a particular physical parameter than the 
segments next to it, e.g., electrically conducting or nonconductmg, if 
the segments are to be sensed electrically, transparent or opaque if they 
are to be sensed optically. One property represents a 1 and the other a 0. 
The resolution of measurement can be no better than the width of the 
segments in the band for the least significant bit. The binary coded repre­
sentation of the displacement of the shaft from a reference Une is obtained 
by sensing the type of segment in each band on a radial line along which 
a set of sensors is located. 

If the bands are sensed seriaUy, an error can result from the motion 
of the disk from one defined position to the next during the sampUng 
period. Thus, the number sensed will consist of the first few bits of the 
number present at the beginning of the process while the other bits are 
obtained from the succeeding number. This type of error may be avoided 
by making the sampUng time less than the minimum time required for 
traversal of the disk from one defined position to the next. However, the 
source of error in which we are primarily interested here is common to 
both serial and parallel sampUng methods. It presents itself when, at the 
time of sensing a particular band, the boundary of two segments is 
presented to a sensor. The sensor may then produce a signal corresponding 
to the value of the segment lying either to the left or the right of the 
boundary. The signal produced wiU depend on the sensor's sensitivity. 
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Decimal Binary 
Reflected 

binary Decimal Binary 
Reflected 

binary 

0 0000 0000 16 10000 11000 
1 0001 0001 17 10001 11001 
2 0010 0011 18 10010 11011 
3 0011 0010 19 10011 11010 
4 0100 0110 20 10100 11110 
5 0101 Ol l i 21 10101 11111 
6 0110 0101 22 10110 11101 
7 O l l i 0100 23 10111 11100 
8 1000 1100 24 11000 10100 
9 1001 1101 25 11001 10101 

10 1010 1111 26 11010 10111 
11 1011 1110 27 11011 10110 
12 1100 1010 28 11100 10010 
13 1101 1011 29 11101 10011 
14 1110 1001 30 11110 10001 
15 U l i 1000 31 11111 10000 

the precision of delineation of the segments, and the degree of aUgnment 
of the sensors and disk. In any event, if the two positions defined on 
either side of the boundary differ in several bit positions, an error may be 
produced in each of these positions, resulting in a value different from 
either of the positions by a large magnitude. 

Large errors of this type may be avoided by use of codes known as 
Gray or cychc codes which have the characteristic that any two coded 
representations defined to differ in value by only a single increment differ 
in the value of only one bit position. Thus, there can never be ambiguity 
in more than one bit position, so the error cannot be greater than a single 
increment. A difficulty with the use of a Gray code is that normal arith­
metic operations cannot be performed on numbers expressed in this form, 
and conversion to a normal binary code of a number in serial form is 
somewhat complicated. However, the translation is simpler for a particular 
type of Gray code known as the reflected binary code (shown in Table 
9.4). Inspection of Table 9.4 shows that the four right-hand bits of the 
representations of 16 through 31 are the same as that of 0 through 15 
only in reflected order. Also, inspection of any two adjacent columns 
shows that the pairs of bits traverse the following sequence of values: 
00, 01, 11, 10, 10, 11, 01, 00 (in which the last four values are in re­
flected order compared to the first four). Other cyclic codes may be 
obtained from Table 9.4 by interchanging any two colunms. 

TABLE 9.4. A comparison of the binary and reflected binary codes 
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Rn = Bn 
Ri = Bi^iBi + Bi^iBi i ^ n. 

(9-1) 

We wiU now consider how a number in the reflected binary code can be 
converted to a number in the normal binary code. At first glance it 
appears that the value of Bi depends on the values of Äi+i , . . . / ? « . 
TTie conversion process may be simphfied, however, if it is performed in a 
serial manner wherein Bn is generated first. In this process the value of fl< 
depends only on the values of ß i+ i and SpecificaUy 

Bn = Rn 
Bi = Bi^iRi + Bi^iRi. 

(9-2) 

Thus, the conversion can be performed by a single flip-ñop, fl, whose stat^ 
at any time t depends on its own value at time t — 1 and the value of Ri 
at time t. 

ActuaUy, it is not absolutely necessary to convert from reflected 
binary to a normal binary code in order to perform arithmetic. A method 
for operating on numbers expressed in a modified reflected binary code 
is described in a paper by H. M. Lucal (see bibUography). The modifica­
tion consists of adding an even parity check bit to ¿ e reflected code 
representation. A principal advantage of the modified code is that it can 
be used for error detection in arithmetic operations as weU as in data 
transmission. A disadvantage is that the adder-subtractor circuitry re­
quired is somewhat more than twice that required for a conventional 
binary adder. 

It should be pointed out, in passing, that nonambiguous reading is 
possible without the use of a Gray code by means of a technique which 
employs two sensors for each band except the one for the least significant 
bit position. See Susskmd [1958]. 

9.4. Round-Off Errors 

There are two sources of error that commonly occur in any numerical 
approximation procedure whether performed manuaUy or by machine. 
These are due to the finite length of the numbers carried through the 
computation (round-off error) and the finite number of terms used in 

Observation of Table 9.4 shows that the value of any bit, in the 
reflected code is a function of the corresponding and next more significant 
orders of the normal binary code. The foUowing Boolean algebraic equa­
tions expressing the relationship are derivable from Table 9.4 and may 
also be checked by reference to the table. 
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certain operations (truncation error), e.g., computing the vafue of a 
function from the first few terms in an infinite series, or representation 
of an integral by a finite sum of terms (see Section 8.3 and Fig. 8.5). 
Specific techniques for reducing truncation error are outside the scope 
of this book and the reader is referred to texts on numerical analysis. 
However, in passing, we may mention that once a particular computing 
procedure has been selected, the error in the result can be limited to an 
acceptable size by adjusting the values of its parameters. The procedure 
is somewhat circular in that, if alternate procedures are available, error 
estimates can be made for each and selection made on this basis. 

It is important to distingush between the absolute round-off error (de­
termined by the number of places carried to the right of the radix point) 
and the relative round-ofli error which is the ratio of the absolute round­
off error to the number itself and, therefore, a function of the number of 
significant bits retained. One of the most insidious sources of error in a 
computation is the large magnitude of relative error produced when the 
result of an algebraic addition is a number with fewer significant bits 
than either of the operands. 

A round-off error m a machine can arise either when a number is 
initially entered and terminated at an intermediate point in order to be 
accommodated within the machine, or terminated after an arithmetic 
operation, e.g., after addition (subtraction) when the sum (difference) 
has to be shifted one place to the right to avoid an overflow, after multi­
plication of two n-bit fractional numbers, producing a 2n-bit product, 
or a division resulting in a nonterminating quotient. Though round-off 
errors cannot be avoided completely, means can be utiUzed to keep them 
as small as possible. 

If it is desired to carry more bits than the length of a single register 
will allow, and to reduce the round-ofli error in arithmetic operations Uke 
multipUcation, division, square rooting, etc., recourse may be had to the 
use of multiple precision techniques, which wiU be described for double-
precision addition and multipUcation. As a matter of convenience, the 
less and more significant halves, / and m, respectively, of each double-
precision number are stored in two consecutive storage locations. To add 
two double-precision numbers, mi -f h and m2 + h and h are added 
first and the sum stored in a specified location. This is foUowed by addition 
of mi and m2 and the carry (if any) produced in the addition of h and 
In double-precision multiplication, the partial products /ι/Π2, mih, and 
mim2 are produced, the forming of hk being omitted because of its insig­
nificance, and the double-precision product formed by addition (according 
to the rules described) of the partial products. These examples show the 
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(xy) = xy = x,y, (9-7) 

where the bars refer to mean values. However, if χ and y are closely cor­
related, e.g., if JC = y, there is a bias of the order of r-^« (/· being the 
radix). If the quotient x/y is considered in terms of xy~^, it is apparent that 
if y is an unbiased estimate of y ,̂ y~^ is not an unbiased estimate of 
yrK In fact, (T7y) - 1/y) « y ^ ( y " ^ ^ . 

Of the round-off procedures described in Section 9.4.1, the two prin-
pical classes are as follows: In one, aU digits beyond the η — 1st are 
ignored and the n t h digit is always set equal to r /2 . In the other, r /2 is 
added to the η + 1st digit and the first η digits of the sum retained. When 
appUed to nonterminating numbers ( · 01^2 . . . on · . ·) the round-off error 
has the foUowing characteristics (using our earUer assumption about the 
nature of discarded digits). In the former case, the error is over the in­
terval — r-'* to r-**, yielding a mean of zero and a standard deviation of 
( l /V3) r - ' » . With the other procedure, the interval is - r - ' * » + i ' to r - ' ' » + l ^ 
also yielding a mean of zero, but a standard deviation of ( l /V12) r - ' » . Be­
cause a 2n bit product does not satisfy the condition of being a nonterm-

greatly increased cost in extra storage and increased computing time of 
multiprecision arithmetic. 

In producing /i-digit approximations to the products and quotients of 
two A2-digit numbers, a round-off procedure should not introduce bias and 
the standard deviation (used as a measure of the dispersion of the error) 
should be minimal. In general, an n-digit number χ entered into a machine 
aheady represents a true value Xt which has been rounded off: 

Xt = 0 1 0 2 . . . on . . .) (9-3) 

X = (' M 2 . . . ftn) (9-4) 

where the difference - depends on how χ is formed from Xt. The 
product and quotient of two n-digit numbers is: 

Xy = ( · Ci . . . CnCn+l · · · C 2 « ) (9-5) 

x/y = ( d i . . . d n . . . D 2 N . . . ) (9-6) 

(although the length of registers in a computer Umits x/y, as weU as x y , 
t o 2 η positions. Before considering how to round off xy and x/y to n-digit 
numbers, it is pertinent to inquire whether they are unbiased approxima­
tions of Xtyt and Xt/yt, respectively. If the digits to be discarded are con­
sidered random variables with equally likely values (any two digits being 
treated as statisticaUy independent), then 
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inating number, the mean error may have a bias of the order of r-^»». 
Although the preceding discussion has shown biases may enter in 

various ways, they are small enough (of the order of Γ"^*») to be con­
sidered neghgible. 

9.4.1. MECHANIZATION OF ROUND-OFF PROCEDURES 

In this section we will consider first a number of roxmd-off procedures 
for use with the binary system. This will be followed by a description of 
similar systems for use with the decimal system. The binary round-off 
procedures follow: 

(1) The procedure described here is the most straightforward of all. 
It consists of adding a 1 in the highest order which is to be dropped. 
This is equivalent to adding 1 in the least significant bit to be retained if 
the bit in the highest order to be dropped is 1, for only then will a carry 
be propagated. However, if the 2's complement notation for negative 
numbers is used, round-off will occur in a direction opposite to that 
desired. This may be avoided by converting the number to its true 
representation before rounding. If the I's complement notation for 
negative numbers is used, the desired rounding may be produced by 
subtracting 1 from the highest order to be discarded. The additional 
equipment required may be excessive especially for division, because the 
quotient may otherwise be formed in a register having no adding or carry 
propagating facility. The bias for this method is essentially zero, the 

variance is 1/12(22»»), ^nd the standard deviation 1/VT2(2'*) = 0.29 
times the last digit. 

(2) This procedure, though simpler, retains the desirable characteris­
tic of producing an unbiased resuh, i.e., the result has an equal probabiUty 
of lying above or below the exact result. The procedure is to make the 
lowest order bit retained a 1 irrespective of the value of less significant 
bits. This method may produce an error twice as great as method (1) , 
but is easily incoφorated into a computer, and the average error over a 
large number of round-offs is usually sufficiently smaU. A minor dis­
advantage of this method is that zero is never produced after a round-off 
operation. The bias for this procedure is also essentially 0, the variance 

is 1/3 (22»»), and the standard deviation is 1 /V3l2'») = 0.58 times the 
last digit. 

This method has certain advantages in a mechanized process. In mul­
tipUcation, it can be used even though the n + 1st place has been lost 
because of a right shift. This method is useful in nonrestoring division 
(see Section 6.1.6.1.2) because even though the quotient is formed in a 
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register without carry propagation capabihty, it aUows the approximate 
quotient to be formed as soon as its first n - 1 digits are known. Referring 
back to the nonrestoring division process, it is seen that the quantity 2-** 
(in the correction term [1 + 2-«]) corresponds to this round-off pro­
cedure. One may further justify using this scheme in division while using 
the one with a smaller dispersion for multiphcation on the grounds that, 
generally speaking, division is a less frequent operation. 

(3) In this procedure, a 1 is added to the lowest order bit retained 
when that bit is a 1, and nothing is done when it is 0. Consequently, it 
is possible to obtain a zero resuh. This method has the feature of not 
having to temporarily retain any bits that wiU be dropped subsequently, 
but requires an accumulator with carry propagating facilities. 

(4) In this procedure a 0 or a 1 is added at random into the lowest 
order bit to be retained. This method has the feature of not having to 
temporarily retain any bits that wiU be subsequently dropped, but, besides 
requiring that the number to be rounded be placed in a unit with carry 
propagating facihties, it also requires a random number generator. An 
important objection to this method is that it is practically impossible to 
repeat computations exactly for checking purposes. 

A number of round-oft procedures for the decimal system, similar to 
the ones for the binary system are described below in corresponding order. 

(1) This procedure consists of adding a 1 to the lowest order digit 
retained if the value of the highest order di^t discarded is 5 or greater. 
The bias for this method is essentially zero, as for the corresponding 
round-off scheme with binary numbers, and the standard deviation is 

( 1 / v 12)10-»» = .29)10-»»). If it is inconvenient to sense the highest 
order digit to be discarded, an alternate, equivalent method may be used. 
The number to be rounded off is placed into an accumulator and a 5 is 
added to the highest order to be dropped or, what is equivalent, the highest 
order digit to be discarded is multiplied by 2. Either way a carry is pro­
duced that adds 1 to the least significant digit to be retained, if the most 
significant digit to be discarded is 5 or greater. 

(2) The lowest retained digit is made equal to 5 regardless of other 
considerations. This procedure satisfies the requirement that the rounded 
number has equal probabihty of being greater or smaller than the exact 
value, i.e., the error averaged over a large number of round-off operations 
approaches zero. The bias for this method too is essentially zero and the 
standard deviation is ( l /V3)10- '» = .58(10-**). 

(3) A 1 is added to the lowest order digit retained if that digit is even, 
and 0 if it is odd. This is equivalent to making the last bit always equal 
to 1 for a decimal in the conventional binary code. A minor disadvantage 
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9 .4 .2 . SEQUENCING ARITHMETIC OPERATIONS FOR MINIMUM 

ROUND-OFF ERROR 

In a sequence of arithmetic operations involving addition, multiplica­
tion, and division one particular ordering may be preferable to another 
because the cumulative effect of round-off errors is less. That particular 
ordering will be considered superior which provides the least maximum 
error. In the discussion to follow (based on the treatment and notation of 
Von Neumann and Goldstine [ 1 9 5 7 ] ) our assumptions are as follows: 1 ) 

the digital numbers a, b, c . . , have η places to the right of the radix point, 
which is fixed, and may have either a positive or negative sign; 2 ) the 
rounded-off product (of η places), the so-called pseudo-product, will be 
denoted by α x ft to distinguish it from the unrounded (true) product ab; 
the pseudo-quotient will be denoted by α ^ 6 to distinguish it from the true 
quotient a/b. No pseudo operations are involved in addition and sub­
traction. 

First of all, it is apparent that the commutative law of multiplication 
applies to pseudo-multiplication as well: 

of this procedure is that 0 is never produced after a rounding operation. 
This disadvantage may be avoided by the following modification: a 1 is 
added to the lowest order digit retained when it is odd instead of even. 
However, it now becomes necessary to provide for the propagation of the 
carry which will occur when the lowest order bit is 9 . 

( 4 ) A 0 or a 1 is added in a random manner into the lowest order 
retained regardless of other considerations. The average error here too 
approaches zero for a large number of operations. 

Table 9 .5 summarizes the procedures described. 

TABLE 9.5. Listing of corresponding binary and decimal round-off procedures

Binary Decimal

1. Add 1 to Br if B(j = 1

2. Always set Br = 1
3. Add 1 to Br if Br = 1

la. Add 1 to Dr if D(j ~ 5
lb. Add 5 to D(j
2. Always set Dr = 5
3a. Add 1 to Dr if Dr is even
3b. Add 1 to Dr if Dr is odd

4. Add 1 to Br at random 4. Add 1 to Dr at random

Bd, D d : most significant bit (digit) to be discarded
Br, Dr: least significant bit (digit) to be retained
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axb = bxa (9-8) 

However, the distributive and associative laws of multiplication are re­
placed in pseudo-multiphcation by inequalities involving the round-off 
error r - V 2 (where r, the radix, may be 2, 3, . . . ) . These are shown 
as Equations (9-12) and (9-15), respectively. Consider first the two 
basic inequaUties: 

\(axb) -ab\ ^ (9-9) 

| ( α -^6 ) -a/b\ ^ r - V 2 (9-10) 

Using Eq. (9-9), it is apparent that 

\(a + b) xc - (ac-l·bc)\ ^ 3 ( r - V 2 ) (9-11) 

Since the left hand side of the inequality must be an integer multiple of r~**, 
Eq. (9-11) reduces to 

\(a-hb) Xc - (ac + bc)\ ^ (9-12) 

Eq. (9-12) confirms our intuition about the best way to generate ac + be 
with the least upper bound for the round-ofli error. Since \(ax c) - ac\ 
< r - V 2 and \(b X c) - bc\ ^ r - V 2 : 

\(axc)-ac\ + 1(6 X c) - bc\ ^ r-^ (9-13) 

(Also, adding a and b before multipUcation produces the result with one 
less multiplication.) 

The efliect of round-ofli error on the associative law of multiplication 
wiU be considered next. To obtain an upper bound of the diflierence 
\ax (b X c) - abc\, we begin by adding a(b x c) and - a(b X c) to it 
and regrouping terms: 

\ax (bxc) - a(b X c) 4- a[(b X c) - bc]\ 
^ \axibxc)-a(bxc)\ + \a\\{bxc)-bc\ 
^ r - V 2 + | a | r -V2 (9-14) 

Since \a\ < 1, Eq. (9-14) reduces to 

\ax (bxc) -abc\ < r-^ (9-15) 

Two relationships wiU now be derived to show the efliect on the total 
round-ofli error of the order in which a multiplication and division are 
performed. We start by considering the expression \(a-^b) X b - a\. 
Adding (a-^ b)b and - (a-^ b)b, and regrouping terms: 

\(a^b) xb - (a-^b)b\ + \[(a-^b) - a/b]b\ 

^ r - V 2 + \b\ r - V 2 (9-16) 
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For \b\ < I, the quantity on the right side of Eq. (9-16) is less than r - " 
and, since the quantity on the left side must be an integer multiple of r-", 
it reduces to zero. (Also, for \b\ = I, the quantity \(a x b) b - a\ must 
be zero.) Therefore: 

\(a^b)xb-a\ = 0 (9-17) 

In the next expression to be considered, namely \(a x b) b - a\, the 
order of multiplication and division are reversed. Adding (aX b)/b and 
— (a X b)/b, and regrouping terms: 

\(axb)-^b- (ax b)/b\ + \[{a + 6) - ab]/b\ 

^ r - V 2 + |& | -^ r -V2 (9-18) 

Since < 1, 

\(axb) -^b-a\ ^ \b\-' r-»» (9-19) 

The maximum error as shown by Eq. (9-19) compares unfavorably with 
that of Eq. (9-17) and even with Eq. (9-16), especially for \b\ « 1. Thus, 
it is advantageous to first divide and then multiply. 

Let us now return to the subject of double-precision arithmetic intro­
duced in Section 9.4 to consider how it may be effectively used to reduce 
round-off error. For an example, consider the generation of a sum of 
products: 

m 

i=l 
If each 2n place product is rounded off to η places before addition to 
the partial sum: 

m m m 

l^aA- ^a^Xbi] = \^(aA- a^xbd] ^ r - V 2 (9-20) 
i=l t=l i=l 

On the other hand, if instead, each 2n place product is retained intact 
and only the final sum is rounded-off 

m m 

Ι ^ α , ί » , - "2^*αφ,\ < r - V 2 (9-21) 

m 

where ^ * denotes the 2n place sum after round-off. The maxi-
i=l 

mum error shown in Eq, (9-21) is actually less than the probabilistic 
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(mean) error, using single precision arithmetic, namely: .29m^/2r-". 
We conclude this section by considering the effect of round-off error 

on scaling procedures (described in Section 6.3). First of all, we note 
that adjustment of a result by multiplication by an integer ( ± 2 , ± 3 , . . .) 
is not a pseudo-operation since it is equivalent to repeated additions or 
subtractions. However, division by an integer is a pseudo-operation. To 
eliminate a cumulative effect in successive divisions by a scale factor, 
the associative law should hold, namely: 

(a -f- j ) m = a-^ sm (9-22) 

Eq. (9-22) will hold provided only those values are used for s which are 
powers of a fixed integer r ( = 2, 3, . . . . ) , and by defining ö ̂  5 not as 
the result of a single division of a by s, but of a ρ times iterated division 
of a by r: 

a^r^ = ( i (a-^r) -^r) ) r ρ times 

The smaller r, the more precise the adjustments of scale based on it. 
Since Γ = 2, 3, . . . this suggests the use of r = 2. Also, matters are 
simphfied if r is set equal to the base of the number system employed. 
Use of the binary system satisfies both considerations, and this is an 
important argument in favor of its use in electronic computers. 
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Appendix: Input-Output Equipment 

There are many devices which may be used to enter data into a 
digital computer and to display or record the results of its computations. 
Small amounts of data may be entered by means of a keyboard and 
switches, and often by an electric typewriter, on a control console. The 
console, which may be situated either at the computer site or remotely, 
also usually contains indicator lights and other simple indicators which 
allow the operator to monitor certain basic items of information within the 
system. The control console is used primarily for monitoring and testing 
purposes since too much time would be consumed in entering all data 
into a computer manually. Higher speed data entry devices include elec­
tromechanical or photoelectric readers of punched paper tape, punched-
card readers, magnetic-tape readers, automatic graph followers, etc. Data 
generated by the computer may also be recorded, printed, or displayed 
in a number of ways. Records such as punched cards, punched paper tape 
and magnetic tape are of a form that is not only suitable for retention 
and availability for future automatic processing by a computer, but can 
also be used to produce printed records by means of off-line equipment. 
Printed records can be produced either a character at a time (by means 
of a typewriter), a Une at a time (by means of medium and high speed 
mechanical printers) and a page at a time (by means of electronic print­
ers). Visual displays differ widely in the way characters are formed and 
iUuminated. Graphical records may be produced by various types of 
automatic plotting devices. 

When incorporated into a control system, a computer is also provided 
with input-output equipment capable of converting data from measuring 
instruments, in analog form, into digital signals, and converting the out­
put of the computer into analog signals acceptable by the controllers and 
actuators of the system being controUed. For a survey of analog-digital 
conversion equipment, the reader is referred to Susskind [1957] and other 
entries in the bibUography of this appendix. 

For commercial applications such as the automatic processing of bank 
checks and other documents, speciaUy formed characters are printed on 
the document. These may be inspected visuaUy and can be read auto­
maticaUy by specially designed reading heads that scan the characters and 
produce unique signals for each. The use of a special magnetic ink rather 
than printer's ink is used in order to lessen errors in the interpretation 
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process resulting from markings or obliterations of the printed characters 
in handling. For a general description of the automatic character recogni­
tion problem, see Chow [1957]. 

A . l . External Storage Media for Inpuh-Output Functions 

Where the medium of storage is readily separable from the sensing 
and transport mechanism, it is utilizable not only in conjunction with input 
and output devices, but also for external storage of unlimited capacity. 
Media that fall in this category are punched cards, punched paper tape, 
and magnetic tape. Moderate speed punches and mechanical readers for 
paper tape run about $1000, and photoelectric readers up to about $4000. 
Card punches and readers for tie-in to a computer vary in price by tens of 
thousands of dollars, depending on their complement of switching and stor­
age circuits (though card preparation equipment is much less, e.g., a key 
punch is about $2000). High performance magnetic tape units designed 
for use with high speed data processors are about $20,()00. These figures 
are only approximate, for prices of the newer units are changing, and 
there are many items such as the amount of buffer storage and special 
control circuitry that may or may not be included with some of these 
items that greatly affect the price. 

A. 1.1. PUNCHED PAPER TAPE 

Punched paper tape used as a data input or output medium for a 
digital computer conmionly has 5, 6, 7, or 8 positions across the tape 
where circular holes may be punched, as well as a small sprocket hole for 
aiding the transport of the tape. A single row of bit positions across the 
tape is referred to as a character, and the individual bit positions compris­
ing a character are designated as channels or levels. All bit positions in a 
row are punched or sensed simultaneously. Six levels are adequate for the 
coding of alphanumeric characters (either upper or lower case). Addi­
tional levels are used either when more than 64 characters are to be coded 
or more than 32 characters and a parity check bit are to be provided (see 
Chapter 9 ) . Tape width varies slightly, from 11/16 in. for 5-level tape 
to 1 in. for 8-level tape. Holes are usually spaced 10 to the inch along 
the length of the tape. 

A paper tape punch may be activated either from a keyboard or by 
control and data signals from a computer. Paper tapes produced by an 
operator for input to a computer are normally prepared off-line in order 
to allow the correctness of the data on the tape to be verified before entry 
into the computer, and to allow the data to be read in at a faster rate 
than an operator can type. When it is desirable, for any number of reasons. 
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to record output data from a computer on paper tape, the tape punch can 
be controhed by signals from the computer. Punched paper tapes may 
also be produced in conjunction with the preparation of data in other 
forms. For example, the keyboard used to produce a typewritten record 
on a typewriter or accounting machine may at the same time activate a 
paper tape punch. Though typewriter keyboards are primarily designed for 
the entry of alphanumeric data, they can also be used for the entry of 
binary data. This is accomplished by first dividing the binary numbers to be 
entered into groups of 5, 6, or 7 bits, according to the tape format used, 
and selecting a particular character to represent each binary coded group. 
Binary data may then be entered by depressing a corresponding sequence 
of keys, if switches are so chosen and placed that depression of each key 
causes a corresponding set of binary signals to be generated. (See Section 
A.2.1.) 

Paper tape punches operate at speeds of from 10 to 300 characters/sec, 
with the majority operating at about 60 characters/sec. Two basic opera­
tions in a paper tape punch are the punching and the tape feed operation. 
Synchronization of the internal elements of the punch is obtained by 
built-in mechanical and electromechanical means. These internal inter­
locks assure that operations are performed in proper sequence with an 
adequate time interval between, e.g., the tape should not be advanced 
before the punch pins have been completely withdrawn from it, and the 
tape advance sufiiciently completed before the tape is punched. Also, 
the input data must be so synchronized with the punch that the electro­
magnets that activate the punching mechanism are energized during the 
appropriate part of the punching cycle. Timing signals for this purpose 
are commonly obtained from some type of electrical pick-up placed on the 
drive-shaft. 

A block diagram indicating the timing control for a paper tape punch 

Data ( from computer) 

i i 
Buffer register 

Clear 

Gates 
Open 

Delay 

Input register 

Punching 
mechanism 

Ready 
Clear 

Punch 

control Operate 

Punch 

control 

Punch command 
(from computer) 

Advance 
^ | G a t ^ Tape feed 

mechanism 

FIG. A. l . Block diagram of paper tape punch timing control 
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is shown in Fig. A.l . The punch control refers collectively to the internal 
source of timing signals. The tape feed mechanism is activated by a 
timing signal from the punch control, provided there is a punch com­
mand signal from the computer indicating that a new character is to be 
punched. The presence of a ready signal on the line shown indicates that 
it is the appropriate time in the cycle for the punching mechanism to be 
energized. This signal opens the gates shown, allowing the transfer of 
data from the buffer register to the input register, after which the ready 
signal is removed. Simultaneously, the operate signal causes activation of 
those punch plungers specified by the code in the input register. After 
the plungers are withdrawn a new advance signal is generated. There is 
buffering of the input data because of timing uncertainties between the 
times of its input and use by the punch. Inclusion of the buffering shown 
not only leaves the computer free for other operations between data inser­
tions but allows the punch to operate near its maximum rate. 

Punched paper tape readers are classified as mechanical or photo­
electric, depending on the means used for sensing the presence of holes. 
The reading speed for mechanical readers varies from 20 to 60 charac­
ters/sec, and for photoelectric readers from 150 to 2000 characters/sec. 
Two basic operations performed by the reader are sensing and tape 
advancement. Synchronization of the internal elements of the reader is 
accompUshed by its mechanical design. The tape feed mechanism advances 
the tape past a reading station where each character is sensed. The discrete 
times at which data may be read are distinguished from the times in 
between by an indexing mechanism which generates a signal when the 
row of hole positions is opposite the sensing mechanism. The indexing 
mechanism is associated with the small sprocket holes which may be 
sensed by means similar to that for sensing the data hole positions. The 
tape may be advanced either a character at a time or continuously. In 
discrete operation, when a signal from the reader indicates it is permissible 
to read from the tape, the data fines are sensed and the input gates to a 
buflier or static storage register in the computer are opened. At the same 
time, an advance signal is sent to the tape feed mechanism, to advance the 
next character to the reading station. Continuous operation allows higher 
reading speeds. In this case, pulses generated by the reader each time 
a character is sensed synchronize the computer to the reader. The dura­
tion of the reading process is controlled by start and stop signals from 
the computer. 

A. 1.2. PUNCHED CARDS 

Punched cards differing in size and format were developed initially 
for use with different accounting machines. Only two of these cards have 
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been used to a great extent in digital computer systems. Both are a standard 
sized stiff paper card (314 in. x lYs in. X 0.007 in.). The most widely 
used one, the IBM card, provides 12 row and 80 columnar positions where 
rectangular holes may be punched. The Remington Rand card provides 
12 row and 45 columnar positions where circular holes may be punched. 

Operating rates for card punches are in the range of 100-200 cards 
per minute. The operation of a card punch may be described in terms of 
its principal functional units, namely an input station (card hopper), a 
card feed and transport mechanism, an indexing mechanism, a punching 
mechanism, and an output station (card stacker). Synchronization of 
these elements is obtained by built-in mechanical and electro-mechanical 
means referred to collectively as the punch control. The events that take 
place in order to punch a single card are somewhat as follows: When a 
signal appears on the interlock Une of the card indexing mechanism, indi­
cating the punch is ready for a new cycle, the card feed mechanism is 
activated. This causes a single card to be extracted from the bottom of the 
stack in the hopper and advanced to the punching mechanism. When 
the card reaches it, a "card ready" signal appears which deñnes the period 
during which the punching operations for the whole card are completed. 
When the proper position on the card is reached, the appropriate punch 
plungers are actuated. The plunger drive signals are obtained from the 
output Unes of a buffer register which holds the data to be punched in 
the first row or column, depending on the type of punch. Upon extraction 
of the plungers, the indexing mechanism generates a signal that aUows 
the next row (or column) of data to be entered into the buffer register. 
After the last row has been punched, the "card ready" signal is removed. 
Completion of a full cycle causes the reappearance of a signal on the 
interlock Une and the start of a new cycle. 

A card reader may sense either a row or column or the entire card 
simultaneously. Reading rates for card readers are in the range of 100^ 
1000 cards/min, the higher speed units having been specially developed 
for use with high speed computers. The functional units of the reader 
are simUar to those of the punch. However, instead of a punching mech­
anism, there is a reading station where the presence or absence of holes 
in particular positions may be sensed either electromechanically by sets 
of brushes or photoelectrically. In either case, as many data output Unes 
are provided as hole positions to be read simultaneously. When a card 
reaches the reading station, a "card ready" signal is generated by the 
sensing mechanism and when the card is properly positioned for sensing, 
a signal is generated by the indexing mechanism which can be used to 
gate signals from the data output Unes to their destination. The indexing 
mechanism also generates an interlock signal which indicates that a card-
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reading cycle has been completed and that a new card may be read. 
When a card reader is used as an on-hne input device to a digital 

computer, the computer must provide whatever signals are necessary to 
sequence the reader through its cycle of operation. To cause a new card 
to be read, it must generate a signal to actuate the card feed mechanism. 
This signal is generated only after it has been determined, by inspection 
of the interlock line, that the reading cycle for the last card has been com­
pleted. A signal indicating the presence of a card at the reading station is 
generated by the sensing mechanism. During the time the rows (or col­
umns) are read, the indexing mechanism causes a serial train of indexing 
signals to be generated, each of which indicates a time at which there 
are signals on the data output lines, i.e., the output lines of the sensing 
stations. The computer must also be provided with lo^cal circuitry to 
detect the failure of a card to arrive at the read station, indicated by 
absence of a card present signal, and to cause the indexing signals to be 
ignored. This action can be used to signal to the operator that either no 
cards remain in the hopper or the card reader is not operating properly. 

A buffer is useful in conjunction with a card punch or reader for two 
main purposes. First, it is needed to compensate for the difference in 
data rates between these units and the computer. Secondly, it can be used 
to translate from computer code and format to one of a number of possible 
card codes and formats. 

Punched cards are widely used because of the convenience or flexi­
bihty of the card itself, and, also, of the variety of equipment that has 
been developed for processing cards. The distinguishing feature of a card 
is that it provides a unit record readily separable from data on other 
cards. It also offers flexibihty in that various codes may be used on a 
card to represent alphabetic characters, special symbols, or binary data. 
These features plus the variety of machines available for punching, verifi­
cation, and duphcation of cards facihtates the initial recording of data. To 
reduce the time required for data preparation, several key punches may 
be employed simultaneously, and the cards collected before entry of the 
data into the computer. The unit record feature may be used to advantage 
by pimching one instruction to a card and using an assembly program to 
assemble them in the right order. If errors are detected or changes required, 
it is relatively simple for cards to be replaced or added, after which the 
corrected program is assembled. 

There are a number of auxihary card processing units which incor­
porate a punch or reader or both in conjunction with printing, sorting, 
duphcating, and hmited computing devices. For example, a visual record 
of data on a punched card can be provided either by a unit called an 
interpreter, which reads a card and prints the corresponding data on the 
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same or different cards, or by a special key punch that prints data on a 
card concurrently with the punching operation. 

To take advantage of the conveniences of preparation of data on cards 
while allowing data to be entered into a computer at the higher data trans­
fer rates of magnetic tape reading, punched card to magnetic tape con­
verters have been developed as an auxiliary unit of off-line equipment. 

For detailed descriptions of punched card equipment, the reader is 
referred to Cemach [1951] and to various reference manuals of the IBM 
Corporation. 

A. 1.3. MAGNETIC TAPE 

Magnetic tape for computer applications usually has either a cellulose 
acetate or polyester (Mylar) base. The magnetic coating consists of about 
80% iron oxide (FcsOa or FcaOé or a mixture) in an acetate or vinyl 
binder. Tape widths vary from V4 to 1 in. Acetate tapes used have a base 
thickness of 1.5 mils while polyester base tapes of only 1.0 mil thickness 
can be used because of their greater tensile and yield strength. The co­
efficient of expansion with both humidity and temperature is also less for 
the polyester base tape. Another type of magnetic tape that has been 
used in computer applications has a magnetic coating consisting of a 
nickel-cobalt alloy which is plated onto a nonmagnetic metallic base 
having a highly polished conductive surface. However, it has not found 
as wide appUcation, being used principally in the Remington Rand Uni-
servo tape unit. A major problem associated with magnetic tape is that 
of dropouts of recorded data resulting from tape imperfections. For this 
reason the quality of tape for computer usage must be much better than 
that for recording sound. A common size for reels is a diameter of lOVi 
in. Tape lengths usually vary between 2400 and 3600 ft. 

It is common practice for words to be stored on magnetic tape in a 
serial-paraUel fashion. For example, if a word in a binary machine has 36 
bit positions, and 6 channels are available on the tape for data storage, 
the word would be stored in 6 paraUel groups of 6 bits each. Other chan­
nels would also be provided for clock pulses, parity check bits, a n d block 
marker signals (defined later in this section). 

In general, the considerations that enter into the design of record and 
read heads for use with magnetic tape are the same as those for heads to 
be used with magnetic drum or disk memories, (see Chapter 5 ) . One dif­
ference is that the heads are, as a rule, grouped together in a stack which 
may contain from 15 to 30 heads/in. This provides a convenient mounting 
arrangement while aUowing a reasonable transverse packing density, i.e., 
number of channels per unit width of tape. The head stacks must be made 
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with great precision for misalignment of the individual heads with respect 
to the tape can cause various problems. For example, if the read heads 
were not adequately aligned along the channels with the record heads, the 
full recorded signal would not be picked up and the output voltage would 
vary accordingly. If the tape is placed on another unit whose heads are 
not similarly aligned both within the stack and relative to a reference line 
external to the stack, there would be incomplete erasure of old data, 
which could result in the reading of unwanted data. In addition to the 
Hmitations on recording density imposed by the characteristics of the head 
and the recording medium, an additional Umit is imposed by the precision 
with which the heads and tape can be aligned. For good longitudinal 
recording density, there must be precise ahgnment of track gap-center 
lines within the head stack. In high quality stacks, the gap scatter is held 
to a tolerance of 0.0001 in. The maximum longitudinal density obtainable 
is related to the amount of twist of the tape relative to the heads, for 
if the bits are packed too close, the head at one side of the tape may be 
picking up a bit from one row and that at the other side from another 
row. One way of reducing the effect of skew is to pack a given number 
of channels into a narrower section of tape. However, this also produces 
an alignment problem, for a smaller amount of tape slippage sidewise will 
now result in each head reading, erroneously, the contents of the adjacent 
channel. As a result of the tape riding in contact with the heads, the 
head laminations may be ground by the abrasive action of pigmented 
tapes, resulting in widening of the head gap. Also, as oxide particles 
accumulate on the head surface, the tape is lifted from the head gap, 
causing an appreciable signal loss. One manufacturer has alleviated this 
problem by providing recesses between the heads of a stack, in which 
loose oxide particles can collect between periodic head cleanings. Metal 
tapes are less abrasive and can be lubricated to reduce wear, but present 
other problems. 

It is common practice to provide self-checking of the data on the tape. 
During recording, a parity bit is generated for each row and recorded in 
a channel provided for that purpose. In reading, the value of the parity bit 
is computed again and checked with the recorded value. Because a simple 
parity check like this detects only an odd number of errors in each row 
and tape drop-out errors are likely to be correlated, a longitudinal check 
is also provided in the form of a parity bit for each column of a block 
of data. The longitudinal parity bits are sometimes referred to as a check 
sum of the block of data. The use of both transverse and longitudinal 
parity bits allows a single error in a block to be corrected, since the bit in 
error will be the one at the intersection of the row and column where the 
parity bits indicate an error. 
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In utilizing magnetic tape in a computer system, it is necessary to be 
able to start and stop the tape at the command of the computer. Since 
the tape drive mechanism cannot stop the tape or accelerate it to full 
speed in a time short compared with the pulse repetition rate of recorded 
information, a certain amount of lead space, referred to as a gap, must 
be allowed between the blocks of recorded information. The length of the 
gap is the amount of tape moved from the issuance of a stop command 
until the tape is again moving at fuH speed after the issuance of a sub­
sequent record or read command. Because of mechanical limitations, the 
deceleration and acceleration times are subject to shght variation. There­
fore, after the issuance of a record command, a delay must be introduced 
before recording takes place adequate to insure that even under the worst 
conditions likely to be encountered the tape wiU have been accelerated to 
fuh speed by the end of the delay time. This provides assurance that when­
ever any record is consulted, data is read or recorded only when the tape 
is moving at the correct speed. 

Because it is not only diflScult to control exactly the start and stop 
times, but also to achieve constant tape speed, it is not practical to locate 
individual words by means of an indexing scheme based on counting 
pulses from an external clock source. A convenient way of locating a 
word is by its relative position in a block of data recorded by a single 
command. Each block can be located by a specific address or identifying 
tag stored within it. The length of blocks may be fixed or variable, depend­
ing on the associated tape control equipment. The extent of each block is 
defined by a block marker signal recorded at the beginning and end of 
each block. During subsequent reading operations these markers initiate 
reading and stopping of the tape. 

It is desirable to record a large number of words per block for two 
important reasons. First, because the tape is normaUy at rest between 
recording and reading operations, each access to a block consumes a start 
and stop time during which no information is read or recorded. Therefore, 
the more data per block the lower the average access time to a unit of 
information. (For eflicient operation, it is also desirable that a block of 
data transferred to the computer keeps it busy for a period large compared 
to the access time. This is the case, for example, when an iterative sub­
routine stored on the tape is caUed in.) Also, since the gaps between 
blocks contain no data, the longer a block the greater the ratio of used to 
unused space on the tape. It is apparent that a smaU start and stop time 
are desirable both to reduce access time and tape wastage. (The stop 
time is more wasteful of tape than the start time because the stop com­
mand that precedes and initiates mechanical action is given while the tape 
is running at full speed.) 
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Measures that may be employed to improve the start and stop times 
of various tape transports will be described briefly. We begin by consider­
ing first the basic elements of a tape transport, namely a drive unit that 
starts or stops the tape, moves it and controls its speed, and a tape reel 
assembly that supplies and takes up tape as required. The inertia of the 
loaded reels and their drive motors is considerably more difficult to 
overcome than the inertia of a small length of tape. Thus, to provide 
quick starts and stops, it is essential to maintain a slack loop of tape 
which can be accelerated faster than the reels. The speeds of the reel 
drive motors can be controlled by sensing the current amount of slack 
tape. Two principal types of slack loop systems are now commonly used. 
They differ both in the way the slack is maintained and its amount sensed. 
In one arrangement, the tape is formed into several zig-zag loops by means 
of guide rollers mounted on two movable arms. (See Fig. A.2.) The tape 

Supply ree 

Take-up reel 

FIG. A . 2 . Magnetic tape transport with slack tape formed by zig-zag loops 
and movable arms 

passing from the supply reel is formed into several loops on one arm, 
passes over a centrally located drive unit, is formed into loops on a 
second arm and finally wound on the take-up reel. When sudden changes 
in tape speed occur which tend to vary the tape tension, the arms move to 
either let out or take up slack, as required. This arm movement is sensed 
by a servo system that regulates the supply of tape by controlling the 
speed of the reel motors. In another widely used arrangement for main­
taining slack, the tape is drawn into two columns by reduced air pressure 
(see Fig. A.3). Whether the slack supply is greater or less than a specified 



564 APPENDIX: INPUT-OUTPUT EQUIPMENT 

Supply reel Take-up reel 

Head 
assembly! 

Tape 
level 

sensors 

Reduced 
pressure 

areas 

FIG. A . 3 . Magnetic tape transport with slack tape formed by air pressure 

amount is sensed by pressure sensitive switches. The outputs of these 
switches are used as inputs to a servo system that controls the speed of 
the reel motors. Some speed characteristics of certain commercially avail­
able tape transports are hsted in Table A. l . 

TABLE A . l . 

Normal Starting Stopping 
tape speed time time 

Model (in/sec) (msec) (msec) 

A m p e x — F R - 3 0 0 1 5 0 1.5 1.5 
I B M — 7 2 7 7 5 3 . 5 4.5 
Potter—906 5 0 - 1 0 0 3 1.5 
R C A — 5 0 1 1 0 0 2 2 
Sperry Rand—Uniservo 1 0 0 6 . 5 6 . 5 

Of the three external storage media described, magnetic tape is the 
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* An added feature desirable in data recording and reduction is that, for moderate 
recorded pulse densities, data may be recorded or played back at any of several 

tape speeds with a speed ratio of 10:1 between one system and another being 
readily obtainable. 

most versatile. It provides the highest storage density and also the highest 
data transfer rate for both recording and reading. Also, both reading and 
recording functions are readily incorporated within a single unit. Finally, 
it is the only one of the three that provides the feature of erasibility.* 

Because of its high data transfer rates, the use of magnetic tape for 
input-output operations reduces the ratio of time spent by the computer 
during these operations to time spent in other operations. For example, 
with other output recording media or high speed mechanical printers, the 
maximum data output rate is about 2000 characters/sec compared to a 
range of about 6000-60,000 characters/sec for present magnetic tape 
units. Several of its features make magnetic tape suitable as an external 
storage medium for the storage of libraries of programs (subroutines, com­
pilers, etc.) and large files of data for temporary or permanent storage 
(where these terms may encompass a range of the order of minutes to 
years). The feature of erasibility is essential to its use as an auxiliary store 
in conjunction with either a medium speed internal store Uke a magnetic 
drum or disk, or a high speed store like a magnetic core array. Some 
pertinent points in comparing the use of a magnetic tape unit against a 
drum or disk for an auxiUary store are as follows: the tape ofliers a 
greater amount of storage (over 30 miUion bits for a 2400-ft reel, assum­
ing a nominal recording density of 200 bits/in., 6 channels, and 10% 
tape wastage because of gaps) while the disk and drum are simpler mech­
anisms, and provide higher Unear speeds and a shorter access time to a 
selected location. 

Even though starting and stopping the tape is time-consuming, the 
relatively smaU access time per word obtainable when data transfer opera­
tions are limited to transfers of large blocks of data increases its useful­
ness as an auxiliary store. There are different ways for the computer to 
gain access to desired locations. For example, a program may be written 
so that blocks of information recorded on the tape can be counted. If 
tables of functions are stored, the arguments and values can be stored in 
alternate blocks. Then, through programming, the computer can examine, 
by a comparison operation, all arguments till it comes to the right one, 
at which time it senses the next value of the function. There are also ways 
to partially compensate for the relatively long time required by tape opera­
tions. For example, the control circuits of a computer may be so designed 
that the computer proceeds to other operations during the period between 
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initiation of a command involving a tape unit and actual execution of the 
command. This type of operation calls for some independent control cir­
cuits for the tape unit as well as the inclusion of certain logical interlocks 
to prevent any undesirable interaction. Tape wastage may be reduced, 
too, by use of particular arrangements of data and programming devices, 
e.g., by back spacing at the end of a block in preparation for the next. 

Though devices are available for entering data onto a magnetic tape 
directly from a keyboard, this procedure is seldom used, principally be­
cause the recording density thus obtainable is much less than that obtain­
able by other methods. Both paper tape to magnetic tape and punched 
card to magnetic tape converters have been built that read data from the 
specified medium and transcribe it in a continuous manner onto magnetic 
tape. Because of the speed differences in processing these media, buffer 
storage must be included in these converters. The need for the paper tape 
to magnetic tape converter also arises because data transmitted over long 
distances by teletype is available on punched paper tape (teletype tape). 
The need for punched card to magnetic tape converters arises because 
of the large amounts of data presently recorded on punched cards and 
the convenience of recording certain sources of data in this form. There 
is also a converter which punches cards in punched-card code from the 
code read from teletype tape. 

There is available commercially a Computer Language Translator 
(produced by the Electronic Engineering Co. of California) that provides 
at high speed an efficient translation of data from any one of a number 
of input media (magnetic tape, punched paper tape, punched cards, an 
analog to digital converter) to the form required by one of a number of 
output units (magnetic tape, punched paper tape, punched cards, printers, 
digital plotters, or a digital to analog converter). In addition to format 
and media conversion, various types of code conversion can also be 
provided. 

A.2. Printers 

A.2.1. CHARACTER AT A TIME PRINTERS 

The simplest type of printing device usually employed in conjunction 
with a digital computer is an electric typewriter. The speed of these ma­
chines may vary from 6 to 20 characters per second, with an average 
figure of about 12 for most. As indicated in Chapter 7, an electric type­
writer is often used as an on-Une input-output device to handle limited 
amounts of data. A standard electric typewriter may be modified for use 
as an input device by the addition of switches so placed that movement 
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of the key lever (produced by depression of a key) not only moves a type 
bar, but also triggers the corresponding switch. Output signals from the 
switches may then be used as inputs to a computer. The typewriter may 
be modified for use as an output device by so locating a set of push rods, 
each controlled by an electromagnet, that energizing any magnet causes 
the push rod to activate a corresponding type bar in the same manner 
as if a key on the typewriter had been depressed. A disadvantage of this 
type of arrangement is that as many signal lines must be provided as there 
are different characters to be printed. To reduce this requirement, there is 
incorporated in some electric typewriters a mechanical decoder which, 
for each value of a binary-coded input signal, is so actuated (by the 
energizing of selected coils) that a particular type bar is depressed. The 
control signals required are those used to indicate that a printing operation 
is to be started, or that the typewriter is ready to accept another character, 
or to produce a carriage return and Hne advance operation. The latter 
control signal may be obtained: (a) automatically, when the carriage 
reaches a certain position, (b) by the inclusion of circuits which count 
the number of characters (and spaces) on a line and produce a signal 
when this count exceeds some specified number, (c) by having the com­
puter generate, at appropriate places in the output data, a binary code 
group that causes a carriage return and line advance operation. 

A . 2 . 2 . LINE AT A TIME PRINTERS 

The term "line at a time" is used to distinguish printers which print 
a row of characters at a time from typewriters which produce only a 
single character at a time. There may be from about 2 5 to 1 2 0 character 
positions (columns) per row. A buffer store holds the complete line of 
characters which are to be printed at a time. 

In the mechanical Hne at a time printers commonly used with punched 
card equipment, either type bars or print wheels are used. In the former 
case, there is a separate type bar (with a complete set of printing dies) 
for each column, and character selection is performed by positioning 
each bar verticaUy so that the desired character is opposite the paper. In 
the other type of printer, a separate print wheel is provided for each 
column and selection is performed by rotating the wheels tiU aU the desired 
characters are opposite the paper. The speeds of these machines vary from 
about 1 0 0 Unes/min for the type bar printer to about 1 5 0 Hnes/min for 
the type wheel printer. Format control may be provided either by plug­
boards or punched paper tape format control programs incorporated 
within the printer, or by means of a format control program in a com­
puter that controls the printer. 
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A.2.3. HIGH SPEED (ON THE FLY) PRINTERS 

The speed of the accounting machine type of line at a time printers 
is limited by the time required to accelerate the type bars or wheels. 
A high speed mechanical printer developed subsequently overcomes this 
hmitation by the device of continuously keeping the print wheels rotating. 
A separate hammer for each wheel strikes the paper against the ribbon 
and wheel as the desired character passes underneath. Each character on 
a wheel is located by its relative position from a fixed reference point. 

In a printer of this type manufactured by the Potter Instrument Com­
pany, there is only one print wheel, and it rotates in a horizontal rather 
than vertical plane, passing by as many hammers as there are columns 
per row. Though the mechanical arrangement is different, the operating 
principle is similar to that of the multiwheel printer. An important dif­
ference is that in this case the time at which a particular character arrives 
in front of a hammer depends not only on the fixed reference point but 
also on the columnar position of the particular hammer. 

Printers of this type, which are usually operated off-line from mag­
netic tape inputs, are capable of printing from 300 to 900 hnes of alpha-
muneric data per minute. 

A.2.4. HIGH SPEED MATRIX PRINTERS 

In matrix printers the characters are formed not by type font but 
according to the selection of a pattern of dots in a rectangular array, 
usuaUy with five columnar and seven row positions. The actual printing 
operation takes place by means of smaU wires that transfer ink to the 
paper by striking it. These printers are intrinsically capable of greater 
speed than the type-bar or print-wheel printers because the character 
forming elements do not have to be moved into position, and the wires 
are of low mass. These units may be operated off-line from magnetic tape 
or punched card inputs and printing speeds of from 500 to 1000 hnes per 
minute are obtainable. 

In one type of arrangement, as many 35-wire matrices are provided 
as there are columns of data to be generated. This allows a complete row 
of data to be printed simultaneously. In another type of arrangement, only 
a single row of five wires is provided for each character column, these 
wires being actuated seven times (as the paper is advanced) to form a 
single row of characters. 

At present, the quahty of matrix printing is somewhat inferior to 
conventional printing, but for comparable printing speeds the registration 
is better than for on the fly printers. 
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A . 3 . Character-Generating Cathode-Ray Tubes with Light 
Sensitive Recorders 

Three basic methods have been used for the generation of characters 
(numeric or alphanumeric) on the face of cathode-ray tubes. In the 
Lissajous method, each character is drawn by the simultaneous application 
of specified voltage waveforms to the horizontal and vertical deflection 
plates. In the raster scan method, control of the intensity of the cathode-
ray beam during each sweep enables characters to be produced in matrix 
form. Both of these methods are unsatisfactory in regard to the quaUty 
of the characters, the resolution obtainable, and the complexity of cir­
cuitry and programming required to generate the pieces that combine to 
produce a single character. 

A great improvement was provided by the development of special 
cathode-ray tubes that form any of a set of specified characters by means 
of a stenciled mask incorporated within the tube and placed in the path 
of the beam from the electron gun. Two of the most widely used character 
generating cathode-ray tubes are the Charactron, produced by the Strom-
berg-Carlson division of General Dynamics, and the Typotron (see Fig. 
A.4) produced by Hughes Aircraft Company. Both can generate characters 
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FIG. A . 4 . Simplified schematic of the Typotron (courtesy of Hughes Aircraft Co.) 

at the rate of about 20,0(X) characters/sec. In each, a metal stencil 
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containing a full set (64) of characters to be used is built into the tube. 
To display any particular character the diffused cathode beam is first 
deflected, by voltages applied to electrostatic deflection plates, to the 
appropriate position on the stencil. The resulting image is focused with a 
magnetic lens and directed to a desired position on a long persistence 
screen by a second deflection system. Since one of the characters cut in 
the stencil may be a round hole, it is also possible to use these tubes as 
conventional cathode-ray tubes, and to generate data in graphical form. 
An added capability of the Typotron is provided by an electron flood gun 
mounted in the vicinity of the deflection plates that position the shaped 
beam on the screen. The low velocity electrons from this gun serve to 
regenerate, by means of secondary emission, the characters formed on 
the screen by the high velocity shaped beam. Thus, information on the 
screen can be held indefinitely or erased by disabhng the holding function. 

Although picture tubes may be viewed directly, such operation does 
not take advantage of the high potential data output rate of the tube 
because of the limit imposed by the rate at which the human observer can 
absorb or record the data. For this reason, when character-generating 
tubes are used for the generation of large quantities of data at high output 
rates (either on-hne, or off-hne with a magnetic tape input) means are 
provided for automatically recording the data displayed on the tube face. 
The most obvious method is to record each set of output data on suc­
cessive frames of photographic film. One electronic printer, produced by 
the Stromberg-Carlson division of General Dynamics, projects the charac­
ters from the tube face onto 35-mm microfilm, and can record at rates 
up to 15,000 characters/sec. Hard copy can then be produced either by 
conventional film printing or by a high speed automatic film processor. 
Another printer produced by the same company uses the Charactron in 
conjunction with a Xerox printer (produced by Haloid Xerox, Inc.). In 
the Xerography process, a latent image produced on a specially prepared 
surface is developed by a dry developing process. The characters from 
the tube face are projected onto a section of the surface of a drum coated 
with a photoconductive material such as selenium. The surface is always 
charged just before exposure to Ught, and the effect of the exposure is to 
cause those areas exposed to lose their charge. Then the drum surface is 
brought in contact with a fine powder developer (electrically charged 
opposite to the initial charge on the drum surface) which carries a black 
thermoplastic toner which adheres to the areas of the surface where the 
light has discharged the selenium. The printing is produced by placing 
in contact with the drum a roll of paper with a charge of the same sign as 
the initial charge on the drum. This causes transfer to the paper of a 
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toner image which is fixed by heating and melting in a fuser. Both of the 
electronic printers described can be operated either on-hne, or off-hne 
with a magnetic tape input. Off-line operation permits better use to be 
made of computer time especiaUy when each frame contains less than the 
maximum amount of data. 

A.4. Display Devices for Small Quantities of Slowly Changing 
or Static Information 

Methods for displaying individual characters (letters, numbers, or 
special symbols) can be classified according to the basic methods used for 
storage, selection, and display of the character. 

A . 4 . 1 . MOVING INDICATOR DISPLAYS 

In the moving indicator methods, a particular character is selected and 
displayed by moving a drum or belt on which characters are imprinted 
until the character to be displayed is positioned behind a window. 

A . 4 . 2 . LAMP SWITCHING DISPLAYS 

One of the earUest tJφes of lamp switching displays provided as many 
characters and associated lamps for illumination as there were choices 
of characters. For example, to display any of the numerals 0 through 9 , 
a separate character, lamp, and viewing window were provided for each 
of the 1 0 numerals, and selection performed by energizing a particular 
lamp. In a more compact arrangement, a sin¿e, ground-glass viewing 
screen is provided on which one of a set of characters is projected. Selec­
tion is obtained, as before, by energizing the lamp that iUuminates the 
character to be displayed. In another scheme, no individual characters 
are provided but instead a group of window segments each with its own 
source of iUumination. In this arrangement, a particular character is 
selected and formed by iUuminating, by means of filamentary or neon 
lamps, a particular pattern of segments. In a similar scheme, instead of 
window segments and lamps, a group of segments of a fluorescent material 
is provided, and a fluorescent character is displayed by activation of 
selected segments. 

A . 4 . 3 . THE EDGE-LIT ETCHED PLASTIC DISPLAY 

This is a type of lamp-activated display which is widely used for the 
display of decimal digits. Each assembly has in a stack as many thin 
transparent plastic wafers as there are symbols to be displayed, a different 
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symbol being frost etched into each wafer. A separate filamentary lamp 
is provided to edge light each wafer. A particular symbol is made visible 
by activation of its associated lamp. Light transmitted through the plastic 
is diffused by the etched symbol which thereby becomes visible. (Symbols 
not selected can also be seen, though faintly.) 

A.4.4. NEON TUBE DISPLAYS 

In the simplest type of neon tube used for digital display purposes, an 
indication of two voltage levels is provided by whether a glow discharge is 
produced in the tube or not. These tubes are useful where it is only neces­
sary to give a binary indication of the voltage states of bistable elements. 

A number of specialized neon display tubes have been developed to 
provide direct displays of decimal digits, letters of the alphabet, or other 
symbols. Such tubes hold a number of character-shaped wire elements in 
an atmosphere of neon. Any particular element is displayed by applying 
a negative voltage to it with respect to the other elements in excess of the 
breakdown voltage. This causes the element to act as a cathode and 
produces a glow discharge about it corresponding to its outline. (Symbols 
not selected can also be seen, though faintly.) 

Another type of neon tube used for display is a combination counting 
and display device. Upon the application of each trigger pulse to a single 
input terminal, a glowing gaseous discharge spot is advanced from one 
element to another in a ring. There are usually 10 elements in the ring, 
and the tube is provided with a suitable mask which causes the glowing 
spot to illuminate a different decimal digit at each position. By means of 
appropriate circuitry, as many of these decade counters can be connected 
in cascade as desired. 
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r u n s , 5 1 2 - 5 1 3 
s p o t c h e c k , 5 1 2 
s u b s t i t u t i o n c h e c k , 5 1 2 
s u m c h e c k o f a m e m o r y , 5 3 8 

C h e c k i n g ( a u t o m a t i c m e t h o d s ) , 5 2 4 - 5 4 0 
( see a l s o : E r r o r d e t e c t i o n a n d c o r r e c ­

t i o n ) 
b u i l t - i n c h e c k s , 5 2 4 - 5 3 3 

a r i t h m e t i c c h e c k s , 5 3 0 - 5 3 3 
s t o r a g e a n d t r a n s f e r c h e c k s , 5 2 4 - 5 3 0 

p r o g r a m m e d c h e c k s , 5 3 3 - 5 3 8 
a n a l y t i c c h e c k s , 5 3 4 - 5 3 7 
d a t a t r a n s f e r c h e c k s , 5 3 7 - 5 3 8 
d i a g n o s t i c p r o g r a m s , 5 3 8 - 5 3 9 
r o l l - b a c k p r o g r a m s , 5 3 9 - 5 4 0 
s e q u e n c i n g c h e c k s , 5 3 7 
tes t p r o g r a m s , 5 3 8 
t r a c e p r o g r a m s , 5 3 9 

C h e c k i n g f u n c t i o n 
i n a n e r r o r c o r r e c t i o n s c h e m e , 5 2 8 

C i r c u i t d e s c r i p t i o n s o f s w i t c h i n g a n d 
s t o r a g e e l e m e n t s 

i n t r o d u c t i o n t o , 1 0 0 - 1 0 1 
C i r c u i t l o g i c 

g e n e r a l r e m a r k s , 1 0 1 , 1 0 2 
m a g n e t i c c o r e s y s t e m s , 1 5 2 - 1 6 6 

c o m p u t i n g e l e m e n t s f o r g i g a c y c l e 
o p e r a t i o n , 1 7 1 - 1 7 3 

g a t i n g c i r c u i t s , 1 5 8 - 1 6 0 
g e n e r a l r e m a r k s , 1 5 2 - 1 5 5 
m u l t i - i n p u t c o r e g a t e , t r a n s i s t o r flip-

flop s y s t e m s , 1 6 0 - 1 6 2 
s u p e r c o n d u c t i v e s w i t c h i n g e l e m e n t s , 

1 6 6 - 1 7 1 
t r a n s f e r l o o p s f o r c o u p l i n g o f m a g ­

n e t i c c i r c u i t s , 1 5 5 - 1 5 8 
N O R c i r c u i t s , 1 3 7 
S B T N O R a n d S h e f f e r s t r o k e l o g i c , 

139 
t r a n s i s t o r s y s t e m s , 1 2 7 - 1 5 2 

j u n c t i o n t r a n s i s t o r c i r c u i t s , 1 3 3 - 1 5 2 
D C T L ( d i r e c t c o u p l e d t r a n s i s t o r 

l o g i c ) c i r c u i t s , 1 3 9 , 143 
e m i t t e r f o l l o w e r s , 1 3 5 , 1 3 6 
g a t i n g c i r c u i t s , e x a m p l e s o f , 1 3 6 , 

137 
g e n e r a l r e m a r k s , 1 3 3 , 1 3 4 
i n v e r t e r s , 1 3 4 - 1 3 5 
N O R l o g i c c i r c u i t s , 1 3 7 , 1 3 8 
T R L ( t r a n s i s t o r - r e s i s t o r l o g i c ) 

c i r c u i t s , 1 3 8 
p o i n t - c o n t a c t t r a n s i s t o r c i r c u i t s , 1 2 7 -

133 
s e m i c o n d u c t o r d i o d e , p o i n t c o n ­

t a c t t r a n s i s t o r s y s t e m o f c i r c u i t 
l o g i c , 133 

s i n g l e t r a n s i s t o r flip-flops, 1 2 8 - 1 3 0 
t w o - t r a n s i s t o r flip-flops, 1 3 0 - 1 3 2 

v a c u u m t u b e s y s t e m s , 1 1 6 - 1 2 7 
A C s y s t e m , 1 2 0 - 1 2 3 
d i o d e g a t e , flip-flop s y s t e m , 1 1 9 
g e n e r a l r e m a r k s , 1 1 6 - 1 1 9 
p e n t o d e g a t e s y s t e m , 1 1 9 - 1 2 0 
s y n c h r o n o u s D C s y s t e m , 1 2 3 - 1 2 7 

C i r c u i t s , a u x i l i a r y , 1 8 6 , 1 8 8 
C i r c u l a r n u m b e r s y s t e m 

i n a D D A , 4 8 9 
C i r c u l a t i n g l o o p s , i n a d e l a y l i n e s t o r e , 

4 2 8 
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Circulating registers 

arithmetic and control functions in a 
GP computer, 431 

in mechanization of integrators for a 
serial DDA, 473 

Clipping 
by a decision unit in a DDA, 486-487 

Clock channel (see timing channels), 
429-430 

Clock pulse generation 
in synchronous control of a GP com­

puter, 386 
Clock pulse generators (see Timing 

signals), 95, 96 
multiphase clocks, 95 

in AC system of circuit logic, 122 
Codes 

error minimizing, 541-543 
for error detection and correction, 

525-530 
basic codes for error detection, 525 

Coding 
nature of, 34 

Coefficient of a number in floating-point 
notation, 360 

Coercive force, 217 
Coercivity (temperature coefficient of) 

for ferrite cores, 229 
Coincident current magnetic core mem­

ory, 218-223 
core storage cycle, 222-223 
disturb signals, 221-222 
drive system for, 223-226 
schematic of a coincident current 

array, 218 
selection of a word at a time, 220 
selection ratios, 219 

Coincidence gates 
in a DDA, 475 

Coincident current selection 
disadvantages of, 219-220 

Collection networks (see Switching 
matrix) 178-180 

Column check (see Parity checking), 526 
Combinational circuits 

AND (Boolean multiplication), 40, 42 
NOT (complementation or negation), 

40 
OR (inclusive or), 39, 42 

reduction of the level or number of 
elements by use of storage, 113, 
114 

Commands 
acquisition (look-up), 418-419 
definition of, 383 
elementary, 404 
execution, 418-419 
instruction look-up, 383 
preparatory, 405 

Common states 
of an instruction register, 422 

Communication 
limiting in a special purpose DDA, 

502 
Commutative law of multiplication, 549 
Comparators 

carryless determination of equality by 
a circuit with 1 and 0 carry prop­
agation chains, 297 

logical equations of, 315-316 
use in division, 341 

Complementary current switches, 148, 
150 

Complementary numbers, 310-315 
nine's complement, 313-315 
one's complement, 311-312 
self complementing codes, 314 
two's complement, 310-311 

Computation 
by a stored program computer 

example of, 23, 24 
important characteristics of, 27 

of higher order roots, 355-356 
of trigonometric functions, 356-358 

Computational checks, 512-513 
Computer design 

comparison criteria, 445-447 
general remarks on representative de­

sign criteria, 374 
Computer synthesis problem 

general remarks on subdivision of, 96, 
97 

Computers 
mechanical, 9 

Computing aids 
evolution of, 9-11 

Conditional stop instruction 
(see Break-point instruction), 375, 426 
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C o n d i t i o n a l t r a n s f e r i n s t r u c t i o n s 
e f f e c t o n d e s i g n o f c o n t r o l u n i t , 3 8 3 
e x a m p l e s o f , 3 7 5 

C o n d i t i o n s 
f o r g e n e r a t i n g f u n c t i o n s a n d s o l v i n g 

o r d i n a r y d i f f e r e n t i a l e q u a t i o n s b y 
m e a n s o f a d i f f e r e n t i a l a n a l y z e r , 
5 1 6 - 5 1 9 

C o n s t a n t o f p r o p o r t i o n a l i t y i n a d i g i t a l 
i n t e g r a t o r , 4 6 4 

C o n s t a n t f r e q u e n c y r e c o r d i n g 
i n a m a g n e t i c d i s k s t o r e , 2 1 6 

C o n t r o l 
c i r c u i t s ( m a i n ) , 3 8 2 
c o m p u t e r ( p r o g r a m m e d e r r o r d e t e c ­

t i o n a n d c o r r e c t i o n i n ) , 5 3 3 
c o n s o l e ( o f a c o m p u t e r ) , 4 0 0 - 4 0 1 
c o u n t e r ( i n a G P c o m p u t e r ) , 3 7 9 
r e g i s t e r ( i n a s i m p l e G P c o m p u t e r ) , 

4 1 6 - 4 1 7 
r e g i s t e r ( i n a G P c o m p u t e r ) , 3 7 9 - 3 8 2 
r e g i s t e r ( i n m u l t i - a d d r e s s c o m p u t e r s ) , 

3 9 3 - 3 9 4 
C o n t r o l r e g i s t e r ( see C o n t r o l , r e g i s t e r , 

3 7 9 - 3 8 2 , a l s o 3 9 3 - 3 9 4 , 4 1 6 - 4 1 7 , 
4 1 9 - 4 2 1 ) 

C o n t r o l u n i t , 3 7 8 - 4 1 2 
c r i t e r i a a f f e c t i n g m i n i m u m n u m b e r o f 

a c t i v e s t o r a g e e l e m e n t s r e q u i r e d , 
3 8 2 - 3 8 3 

e f f e c t o f 
i n c l u s i o n o f s p e c i a l c o n t r o l f e a t u r e s , 

3 9 4 - 3 9 9 
i n t e g r a t i o n o f i n p u t - o u t p u t e q u i p ­

m e n t , 3 9 9 - 4 0 3 
m i c r o p r o g r a m m i n g , 4 0 4 - 4 1 0 
n u m b e r o f a d d r e s s e s i n a n i n s t r u c ­

t i o n , 3 9 3 - 3 9 4 
n u m e r i c a l r e p r e s e n t a t i o n i n t h e 

a r i t h m e t i c u n i t , 3 9 0 - 3 9 2 
p r o g r a m - i n t e r r u p t c o n t r o l , 4 1 0 - 4 1 2 
s e r i a l o r p a r a l l e l o p e r a t i o n , 3 8 4 - 3 8 5 
s y n c h r o n o u s o r a s y n c h r o n o u s o p e r a ­

t i o n , 3 8 5 - 3 9 0 
f o r a m a g n e t i c t a p e s t o r e , 4 0 3 
i n t r o d u c t o r y r e m a r k s , 3 7 8 - 3 8 4 
m i c r o c o n t r o l u n i t , 4 0 6 
m o d i f i c a t i o n s o f f o r u s e o f i n d e x 

r e g i s t e r s , 3 9 5 

o f a s e r i a l D D A , 4 7 3 
s c h e m a t i c o f a m i c r o p r o g r a m m e d u n i t , 

4 0 4 
C o n v e r s i o n , b e t w e e n 

b i n a r y a n d d e c i m a l c o d e s ( see B i n a r y , 
d e c i m a l c o n v e r s i o n ) , 3 6 4 - 3 7 1 

d y n a m i c a n d s t a t i c s t o r a g e , 1 7 8 - 1 8 0 
r e f l e c t e d a n d n o r m a l b i n a r y c o d e s , 5 4 3 
s e r i a l a n d p a r a l l e l r e p r e s e n t a t i o n , 1 7 8 -

1 8 6 
C o n v e r s i o n , f o r m a t 

o n m a g n e t i c t a p e , 5 6 6 , 5 6 7 
C o n v e r t e r s 

p a p e r t a p e t o m a g n e t i c t a p e , 5 6 6 , 5 6 7 
p u n c h e d c a r d t o m a g n e t i c t a p e , 5 6 0 , 

5 6 1 , 5 6 6 , 5 6 7 
C o r r e c t i o n , a u t o m a t i c 

o f a s i n g l e e r r o r , 5 2 7 - 5 3 0 
C O R S A I R c o m p u t e r , 5 0 3 
C o u n t e r 

b i s t a b l e c i r c u i t s , 2 6 8 - 2 7 3 
c a s c a d i n g c i r c u i t s t o f o r m a m u l t i ­

s t a g e c o u n t e r , 2 6 8 
c o u n t - u p a n d c o u n t - d o w n l o g i c , 8 4 
d y n a m i c b i n a r y c o u n t e r s , 2 7 1 
m u l t i - b i t d e l a y l i n e c o u n t e r , 2 7 1 - 2 7 3 
m u l t i - s t a g e c o u n t e r s , 2 6 9 - 2 7 0 

w i t h a n t i c i p a t o r y c a r r y , 2 6 9 - 2 7 0 
r e p e a t , 3 9 9 
Σαγ ( i n a D D A ) , 4 6 3 

C o u n t i n g , 2 6 6 - 2 7 3 
i n a s e r i a l b i n a r y a d d e r , 2 7 5 - 2 7 8 
w i t h se t - r ese t flip-flops, 2 6 6 - 2 6 8 

C r i t i c a l m a g n e t i c field 
c u r v e s f o r s u p e r c o n d u c t o r s , 1 6 7 
i n s u p e r c o n d u c t i v e t h i n film s t o r e , 2 3 6 

C r i t i c a l t e m p e r a t u r e , f o r a s u p e r c o n ­
d u c t o r , 1 6 6 

C r y o t r o n , 1 6 7 - 1 7 1 
c r o s s e d - f i l m c r y o t r o n , 1 6 8 - 1 7 0 
w i r e - w o u n d , 1 6 8 , 1 7 0 

C u r i e t e m p e r a t u r e ( o f b a r i u m t i t a n a t e ) , 
2 5 3 

C u r r e n t s h a r i n g i n a s e q u e n t i a l n e t w o r k , 
111 

C y c l e t i m e , f a c t o r s a f f e c t i n g i n a r a n d o m 
access m e m o r y , 2 2 3 

C y c l i c c o d e s , 5 4 2 - 5 4 3 
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Data entry devices, 400 
Data preparation, off line 

advantages of, 400 
Data preparation machines, 400 
DDA (see Digital differential analyzer), 

19, 20, 448-520 
Decimal 

addition, 297-307 
parallel decimal adders, 302 
serial decimal adders, 297-302 

division, 347-349 
multiplication, 335-340 

a serial-parallel multiplier, 338-339 
by halving the multiplier and dou­

bling the multiplicand, 339-340 
by repeated addition, 336-338 

parallel adders, 302 
parallel accumulators with automatic 

carry propagation, 302-307 
serial adders, 297-302 

Decimal, binary coded representation of 
(see Binary coded decimals) 

Decimal, binary conversion, 364-371 
(see Binary, decimal conversion) 

Decimal to binary conversion, 364-368 
examples using binary-coded decimal 

notation, 366-368 
examples using binary notation, 365-

366 
examples using decimal notation, 364-

365 
Decision unit (in a D D A ) , 484-488 

as a digital servo, 494 
examples of use, 485-488 

automatic switching, 487-488 
nonanalytic function generation, 

485-487 
general uses, 484 
type 1, 484-485 
type 2, 485 

Decoder (see Switching matrix) 
Delay, in signal transmission, 125 
Delay line storage, dynamic, 243-251 

acoustic delay lines, 244-248 
fuzed quartz delay lines, 247-248 
mercury delay lines, 246-247 

electrical delay lines, 244 
general remarks, 243-244 
magnetostrictive delay lines, 248-251 

Delta noise, in a 
coincident current core memory, 222 
superconductive memory, 237 
thin film memory, 235 

Difference equations 
to generate analytic functions in a GP 

machine, 514 
Differencing test, 535-536 
Differential amplifier, 148 
Differential analyzer 

conditions for generating functions 
and solving ordinary differential 
equations, 516-519 

digital, 448-520 
electronic analog, 452 

auxiliary elements, 453 
function generation, 454-462 
idealized elements, 448-449 
mechanical, 449-450, 451-452 

Differential equations 
advantages of machine solution, 454 
general remarks, 448 
mapping of, in a DDA, 477 
solution of, by integrators and adders, 

450-452 
Differential gear, in a mechanical dif­

ferential analyzer, 450 
Digital diflferential analyzer ( D D A ) , 

448-520 
addressing channels, 475 
analysis of an integrator network for 

multiplication, 494-498 
Appendix: conditions for generating 

functions and solving ordinary 
differential equations, 516-519 

applicability of the DDA, 502-504 
arithmetic and control operations in a 

serial DDA, 473 
Bendix D-12, 484 
central store in a serial DDA, 475 
checking results of computations, 512-

513 
compared to a GP machine, 473, 475 
CORSAIR, 503 
decision units, 484-488 
digital integrators, 462-472 
digital servos, 488-494 
distinguishing features, 452-453 
functional structure of, 472-476 
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g e n e r a l c a p a b i l i t i e s , 4 5 2 - 4 5 3 , 4 7 6 -
4 7 7 , 4 9 9 

g e n e r a l d e s c r i p t i o n o f uses , 1 9 , 2 0 
g e n e r a t i o n o f f u n c t i o n s , 4 5 4 - 4 6 2 
i n f o r m a t i o n flow i n a s e r i a l D D A , 

4 7 3 - 4 7 7 
i n t e r c o n n e c t i o n o f e l e m e n t s 

b y a n a d d r e s s i n g c h a n n e l , 4 7 5 - 4 7 6 , 
4 7 7 

b y a p l u g b o a r d , 5 0 3 
i n t r o d u c t o r y r e m a r k s , 4 4 8 - 4 5 4 
l i m i t i n g c o m m u n i c a t i o n i n a s p e c i a l 

p u r p o s e D D A , 5 0 2 
m a p p i n g , 4 7 7 - 4 8 0 
m e c h a n i z a t i o n o f i n t e g r a t o r s i n a 

s e r i a l D D A , 4 7 2 - 4 7 3 
m o r e c o m p l e x ( m u l t i - r e g i s t e r ) o p e r a ­

t i o n a l u n i t s , 4 9 8 - 5 0 2 
n o r m a l i z a t i o n o f e q u a t i o n s , 4 8 2 - 4 8 3 
o p e r a t i o n o f a s e r i a l D D A , 4 7 4 
o r g a n i z a t i o n a l b l o c k d i a g r a m , 4 7 4 
o u t p u t m u l t i p l i e r s , 4 8 3 - 4 8 4 
p r e p a r a t i o n o f p r o b l e m s f o r s o l u t i o n , 

4 7 6 - 4 8 4 
s c a l i n g , 4 8 0 - 4 8 2 
s i m u l a t i n g a D D A w i t h a G P m a c h i n e , 

5 1 3 - 5 1 7 
s o u r c e s o f e r r o r , 5 0 4 - 5 1 2 
S P E D A C , 5 0 3 
t r a d e - o f f b e t w e e n p r e c i s i o n a n d s o l u ­

t i o n t i m e , 4 8 2 
T R I C E , 5 0 3 
v a r i a b l e i n c r e m e n t m a c h i n e s , 4 6 5 

D i g i t a l i n t e g r a t o r s , 4 6 2 - 4 7 2 
b a s i c d e s i g n , 4 6 3 
v a r i a t i o n s , 4 6 4 

D i g i t a l s e r v o ( see S e r v o , d i g i t a l ) , 4 8 8 -
4 9 4 

D i o d e 
m i c r o w a v e d i o d e , 1 7 2 
t a b l e o f n u m b e r r e q u i r e d f o r d i f ­

f e r e n t f o r m s o f a t r a n s l a t i o n a l 
n e t w o r k , 1 7 7 

t u n n e l d i o d e 
as a s w i t c h i n g e l e m e n t , 1 7 2 - 1 7 3 
i n a m e m o r y , 2 3 8 - 2 3 9 

D i o d e b r e a k d o w n 
s i l i c o n j u n c t i o n d i o d e s 

i n D C T L c i r c u i t s , 1 4 0 

i n NOR c i r c u i t s , 1 3 7 , 138 
u s e d t o p r e v e n t s a t u r a t i o n i n a c i r c u i t , 

1 4 0 , 141 
v o l t a g e - c u r r e n t , c h a r a c t e r i s t i c s o f , 141 

D i o d e c a p a c i t o r s t o r a g e , 2 5 1 - 2 5 3 
s c h e m a t i c o f s t o r a g e a r r a y , t r a n s f o r m e r 

AND g a t e s e l e c t i o n m a t r i x , 2 5 2 
D i o d e r e c o v e r y t i m e , 111 
D i s k s 

f o r s h a f t p o s i t i o n e n c o d i n g , 5 4 1 - 5 4 2 
m a g n e t i c ( s e e M a g n e t i c d i s k s t o r e ) 

D i s p l a y d e v i c e s ( f o r i n d i v i d u a l c h a r a c ­
t e r s ) , 5 7 1 - 5 7 2 

e t c h e d p l a s t i c , 5 7 1 - 5 7 2 
l a m p s w i t c h i n g , 5 7 1 
m o v i n g i n d i c a t o r s , 5 7 1 
n e o n t u b e , 5 7 2 

D i s t r i b u t i o n a n d c o l l e c t i o n n e t w o r k s 
( see S w i t c h i n g m a t r i x ) , 1 7 8 - 1 8 0 

D i s t r i b u t i v e l a w ( m u l t i p l i c a t i o n ) 
e f f e c t o f r o u n d - o f f e r r o r , 5 4 9 

D i s t u r b s i g n a l s 
i n c o i n c i d e n t c u r r e n t m a g n e t i c c o r e 

m e m o r i e s , 2 2 1 - 2 2 2 
D i s t u r b e d s ta tes ( s e e , a l s o . D i s t u r b s i g ­

n a l s a n d p a r t i a l s e l e c t i o n ) i n a 
m a g n e t i c c o r e , 2 2 1 - 2 2 2 

D i v i s i o n 
a u t o m a t i c t es t o f w h e t h e r q u o t i e n t 

e x c e e d s o n e , 5 3 1 
b i n a r y , 3 4 0 - 3 4 7 
d e c i m a l , 3 4 7 - 3 4 9 
o f n u m b e r s i n floating-point n o t a t i o n , 

3 6 0 - 3 6 1 
D o m a i n 

i n a f e r r o m a g n e t i c m a t e r i a l , 2 2 6 
r o t a t i o n , 2 2 6 , 2 2 7 , 2 3 4 

D o t n o t a t i o n , f o r m a g n e t i c c o r e g a t e s , 1 5 4 
D o u b l e p r e c i s i o n 

a r i t h m e t i c , 5 5 0 - 5 5 1 
n u m b e r s , 5 4 4 - 5 4 5 

D r i v e s y s t e m s f o r m a g n e t i c c o r e m e m ­
o r i e s , 2 2 3 - 2 2 6 

D y n a m i c d e l a y l i n e s t o r a g e ( see D e l a y 
l i n e s t o r a g e , d y n a m i c ) , 2 4 3 - 2 5 1 

D y n a m i c m a g n e t i c s t o r a g e ( s e e M a g n e t i c 
s u r f a c e s t o r a g e , 1 9 9 - 2 1 6 a n d M a g ­
n e t i c d r u m a n d d i s k s t o r e , 2 1 1 - 2 1 5 , 
4 7 3 , 4 7 4 ) , 1 9 7 , 1 9 8 
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Dynamic storage 
general description of, 197 
magnetic disk, 214-216 
magnetic drum, 211-213 
synchronous and asynchronous types 

and selection schemes, 197-198 
two principal types, 197 

dz generation 
in a DDA with binary transfer, 464 
in a DDA with ternary transfer, 464 

dz store (in a D D A ) , 464 

Effective instruction, 395 
Electronic digital computers 

primary basis of utility, 22, 23 
Electron storage (in an n-p-n transistor), 

134 
Emitter follower junction transistor cir­

cuits, 135, 136 
Encoder (see Switching matrix) 
Encoder, shaft position, 541-542 

ambiguity in reading, 541-542 
nonambiguous reading, 543 

End around borrow 
in operation on nine's complement, 313 
in operation on one's complement, 312 

ENIAC computer, 10 
Equality, test for (see Comparators) 
Equations (see Boolean algebraic equa­

tions. Flip-flop input equations. 
Logical design, Timing signals) 

Erasability, 195 
Error 

in rectangular integrations, 465 
sequencing operations to reduce round­

off error, 548-551 
sources of (in a D D A ) , 470, 504-512 

affect of assignment of numbers to 
integrators, 506 

general remarks, 504 
in digital servos, 511 
in generation of a higher order 

derivative, 510-511 
in generation of specific functions, 

508-509 
in mathematical statement of prob­

lem and way it is programmed, 
505-506 

in schematic representation of map­
ping, 511-512 

phase error, 507-508 
round-off error, 470, 505 
scaling of the problem, 506-507 
start-up error, 508 
truncation error, 505 

truncation, 544 
Error, detection and correction, 521-551 

error minimizing codes, 541-543 
general remarks, 521-523 
round-off errors, 543-550 
techniques for detecting and locating 

sources, 523-541 
built-in checks, 524-533 
data transfer checks, 537-538 
diagnostic programs, 538-539 
differencing (smoothness) test, 535-

536 
extrapolation checks, 536 
functional relationships, 534-535 
inverse checks, 535 
multiple computation, 534 
multiple error detection, 526-527 
programmed checks, 533-540 
residue checks, 531-532 
roll-back programs, 539-540 
sequence checks (built-in), 532 
single error correction scheme, 527-

530 
single error detection, 526 
sources of error, 523 
test programs, 538 
trace programs, 539 

Excess-three code 
description, 299-300 
parallel decimal adder, 302 
serial decimal adder, 300-302 

Execution cycle, in a GP computer, 379 
Exponent index (of a floating-point 

number) 
definition of, 360 
representation in a computer, 361-362 

Externally programmed computer, 37 
External store 

function of, 194 
External storage media, 400-402 

organization of data in, 402-403 
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E x t r a p o l a t i v e m o d e o f o p e r a t i o n ( i n a 
d i g i t a l i n t e g r a t o r ) , 4 7 9 

F a i l u r e 
b a s i c t y p e s o f , 5 2 2 

F a u l t 
i n t e r m i t t e n t , 5 4 0 - 5 4 1 
l o c a t i o n ( u t i l i t y o f a r e v e r t i v e s i g n a l 

f o r ) , 3 8 9 
F e e d b a c k 

c o n n e c t i o n s i n d i f f e r e n t i a l a n a l y z e r s , 
4 5 0 - 4 5 1 

F e r r o e l e c t r i c s t o r a g e , 2 5 3 - 2 5 6 
c h a r a c t e r i s t i c s a n d e x a m p l e s o f s u i t ­

a b l e m a t e r i a l s , 2 5 3 - 2 5 4 
d y n a m i c c a p a c i t a n c e , d e f i n i t i o n o f , 2 5 3 
p a r t i a l s e l e c t i o n i n , 2 5 5 
p o l a r i z a t i o n h y s t e r e s i s c u r v e , 2 5 4 
r e a d o u t c i r c u i t , 2 5 4 
s c h e m a t i c o f a s t o r a g e a r r a y , 2 5 5 
s t o r a g e c e l l , 2 5 4 

F i l e 
e x t e r n a l s t o r a g e , 4 0 2 

F i l l i n g a c o m p u t e r 
l o g i c a l r e q u i r e m e n t s f o r , 4 2 5 - 4 2 6 

F i x e d - p o i n t c o m p u t a t i o n , s c a l i n g f o r , 
3 5 8 - 3 6 0 

c o m p a r i s o n w i t h ñoat ing-point o p e r a ­
t i o n , 3 6 2 - 3 6 4 

Fl ip-ñop ( c i r c u i t s ) 
b a s e g a t e d D C T L , 141 
D C T L flip-flop, 1 4 0 
f o r m e d f r o m a c o m p l e m e n t a r y c u r r e n t 

t r a n s i s t o r s w i t c h , 1 4 9 
f o r m e d f r o m t w o c r y o t r o n s , 171 
n o n s a t u r a t i n g D C T L , 1 4 3 
n o n s a t u r a t i n g D C T L R C , 143 
s a t u r a t i n g D C T L e m i t t e r f o l l o w e r 

c o u p l e d flip-flop, 1 4 3 
s i m p l i f i e d t r a n s i s t o r c o m p l e m e n t a r y 

c u r r e n t , 1 5 1 
t r a n s i s t o r c o m p l e m e n t a r y c u r r e n t , w i t h 

f o u r o u t p u t s , 1 5 2 
F l i p - f l o p ( f u n c t i o n a l d e s c r i p t i o n ) , 7 2 - 8 7 

a p p l i c a t i o n e q u a t i o n , g e n e r a l f o r m , 7 6 
d e r i v a t i o n o f a s p e c i f i c a p p l i c a t i o n 

e q u a t i o n , 7 6 , 7 7 

c h a r a c t e r i s t i c e q u a t i o n s , d e r i v a t i o n f o r 
7 , R-S-T a n d RT-ST flip-flops, 
7 9 - 8 2 

d i f f e r e n c e e q u a t i o n , d e f i n i t i o n , 7 5 , 7 6 
d y n a m i c , 8 5 - 8 7 

R-S, T, R-S-T t y p e s , 8 6 , 8 7 
g e n e r a l d e s c r i p t i o n , 7 2 - 7 3 
s t a t i c , 7 3 - 7 5 

R-S, T, R-S-T a n d RT-ST t y p e s , 7 4 
F l i p - f l o p ( i n p u t e q u a t i o n s ) 

d e r i v a t i o n f o r R-S, T, R-S-T a n d 
RT-ST t y p e s , 7 7 - 7 9 

d e r i v a t i o n o f s p e c i f i c e q u a t i o n s f o r a 
p a r t i c u l a r a p p l i c a t i o n 

f r o m a K a r n a u g h m a p o f a p p l i c a ­
t i o n e q u a t i o n , 8 2 , 8 3 

f r o m c o n s i d e r a t i o n o f c o n d i t i o n s 
p r e c e d i n g a c h a n g e , 8 3 - 8 5 

i n a s i m p l e G P c o m p u t e r w i t h a d y ­
n a m i c m a i n s t o r e , 4 3 7 - 4 4 0 

i n a s i m p l e G P c o m p u t e r w i t h a s t a t i c 
m a i n s t o r e , 4 2 3 - 4 2 5 

F l i p - f l o p ( s p e c i f i c f u n c t i o n s ) 
c o n t r o l flip-flops ( i n a D D A ) , 4 6 3 
f u n c t i o n s i n a D D A , 4 7 3 - 4 7 4 
m a j o r f u n c t i o n s i n a G P c o m p u t e r , 4 3 2 
use o f m o r e t h a n t h e m i n i m u m n u m ­

b e r , 4 3 3 
F l o a t i n g - p o i n t o p e r a t i o n 

c o m p a r i s o n w i t h fixed-point o p e r a t i o n , 

3 6 2 - 3 6 4 
n o t a t i o n f o r n u m b e r s , 3 6 0 - 3 6 1 
r e p r e s e n t a t i o n o f floating-point n u m ­

b e r s w i t h i n a c o m p u t e r , 3 6 1 - 3 6 2 
F l u x , t r a p p e d 

i n a s u p e r c o n d u c t i n g film, 2 3 6 , 2 3 7 
F l u x l o k s y s t e m , 2 2 7 
F l u x p a t t e r n ( m a g n e t i c s u r f a c e r e c o r d ­

i n g ) , 2 0 0 
F o r m a t f o r r e p r e s e n t a t i o n o f a floating­

p o i n t n u m b e r i n a c o m p u t e r , 3 6 2 
F o r m a t c o n t r o l 

o n a l i n e - a t - a - t i m e p r i n t e r , 5 6 7 
F o u r - a d d r e s s s y s t e m i n a G P c o m p u t e r 

d e s c r i p t i o n o f , 3 9 3 
F r a c t i o n a l c o m p u t e r 

d e f i n i t i o n o f , 3 1 1 
r e s t r i c t i o n o n s i ze o f o p e r a n d s i n 

d i v i s i o n , 3 4 0 - 3 4 1 
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Function generation 

by Chebyshev polynomials, 514 
by difference equations, 514 
by power series, 514 
errors peculiar to generation of cer­

tain functions, 508-509 
function inversion by a digital servo 

in a DDA, 492-495 
generation of by a digital inte­

grator, 467-468 
in a differential analyzer, 454-462, 

477, 484 
non-analytic function generation by 

decision units in a DDA, 485-487 
Function table, encoding and decoding 

(see Switching matrix) 
Functional relationships 

as an aid to error detection, 534-535 

Gates (see also Gating circuits) 
functional representations of AND 

and OR gates, 103 
general description of, 102-104 
pyramid gates, 112 
reduction of higher to lower level 

gates, 113 
Gating circuits 

diode gating circuits, 104-112 
equivalent circuits of a semicon­

ductor diode, 104 
finite back resistance of diodes, 

effect of, 109, 110 
load on gating circuit, effect of, 110 
multi-level gating circuits, design 

of, 106-110 
two-level diode gates, 107, 108 

nonzero forward resistance of 
diodes, effect of, 109 

single level gates, design of, 105, 
106 

switching speed, factors affecting, 
111, 112 

voltage and current requirements in, 
110, 111 

voltage current characteristic of a 
semiconductor diode, 104 

formed from complementary transistor 
switches, 148, 149 

magnetic gate, 153, 154 
OR and AND gates, 159, 160 
transfer loops for coupling gates, 

155, 159 
parametric oscillator circuits, 171-172 
pulse-pedestal gate circuits, 114, 115 
superconductive switching elements, 

166-171 
symbolic representation of magnetic 

core logic circuits, 154-159 
tunnel diode circuits, 172, 173 

General purpose computer (see GP com­
puter), 16-17, 19, 20, 22-32, 372-
447, 503 

Gigacycle computer operation 
increasing speed by means of local in­

formation processors, 385 
Gigacycle, definition of, 171 

gating circuits for operation at giga­
cycle frequencies, 171-173 

GP computer (system design), 372-447 
applications, 16-17 
basic parameters in organization, 372 
concluding remarks, 442-447 
control unit, 378-412 
fixed program type, 19 
general description, 19, 22-32 
instructions, number and type of, 372-

376 
logical designs of GP arithmetic com­

puters, 412-442 
main store, 376-377 
sine wave generation, maximum 

frequency of, 503 
system design, 372-447 
word format, 377-378 

Gray code (see Cyclic codes), 542-543 

Half-selection (see also Partial selection) 
minor hysteresis loop produced by 

half-select signals, 221 
Harvard Mark I calculator, 10, 28 
Hazards 

in asynchronous networks, 390 
Head selection matrix 

in magnetic surface recording, 429 
Head trailing effect, 211 
Histogram, of error free operating in­

tervals, 521 
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H o l e s t o r a g e ( i n a p - n - p t r a n s i s t o r ) , 
1 2 9 , 134 

H y s t e r e s i s l o o p 
m i n o r , p r o d u c e d b y h a l f - s e l e c t s i g n a l s , 

2 2 1 
o f a f e r r o m a g n e t i c m a t e r i a l , 1 5 2 - 1 5 3 

i d l e s ta te 
a u t o m a t i c s e t t i n g t o , 5 3 1 
o f a c o m p u t e r , 4 2 5 , 4 3 9 

I m p l i c a n t s , p r i m e , 6 2 
I n a c t i v e s ta te ( see I d l e s t a t e ) 
I n c r e m e n t a l a n a l y z e r ( see D i g i t a l d i f f e r ­

e n t i a l a n a l y z e r ) , 19 , 2 0 , 4 4 8 - 5 2 0 
I n c r e m e n t a l c h a n g e 

i n a n i n t e g r a t o r , 4 4 9 
I n c r e m e n t a l c o m p u t e r ( see D i g i t a l d i f f e r ­

e n t i a l a n a l y z e r ) , 1 9 , 2 0 , 4 4 8 - 5 2 0 
v a r i a b l e i n c r e m e n t m a c h i n e s , 4 6 5 

I n c r e m e n t a l t r a n s f e r c o m p u t e r ( see 
D i g i t a l d i f f e r e n t i a l a n a l y z e r ) , 1 9 , 
2 0 , 4 4 8 - 5 2 0 

I n c r e m e n t s 
r e s t r i c t i o n s o n s ize i n a D D A , 4 6 5 
v a r i a b l e , 4 6 5 

I n d e x r e g i s t e r s , 3 9 4 - 3 9 9 
e x a m p l e o f a p r o g r a m u s i n g i n d e x 

r e g i s t e r s , 3 9 6 - 3 9 7 
m e a n s f o r a d d r e s s i n g , 3 8 1 
m o d i f i c a t i o n s r e q u i r e d i n c o m p u t e r i n ­

s t r u c t i o n r e p e r t o r y , 3 9 5 
r e p r e s e n t a t i v e c o m p u t e r s i n w h i c h i n ­

c o r p o r a t e d , 3 9 9 
uses o f , 3 9 8 - 3 9 9 

I n f o r m a t i o n p r o c e s s i n g s y s t e m s 
a p p l i c a t i o n s o f , 15 , 1 6 , 17 , 4 9 8 - 5 0 1 , 

5 0 2 - 5 0 4 
e l e m e n t s o f , 18 

c e n t r a l p r o c e s s o r s , 18 
i n f o r m a t i o n c o l l e c t i n g d e v i c e s , 18 
o u t p u t t e r m i n a l s , 19 
t r a n s m i s s i o n l i n k s , 18 

n a t u r e o f , 18 
I n h i b i t w i n d i n g ( i n a c o i n c i d e n t c u r r e n t 

m a g n e t i c c o r e m e m o r y ) , 2 2 0 
I n h i b i t i n g s w i t c h i n g f u n c t i o n , 8 6 , 1 2 2 
I n h i b i t o r 

t r a n s i s t o r c o m p l e m e n t a r y c u r r e n t , 1 5 1 

I n p u t e q u a t i o n s ( see F l i p - f l o p i n p u t 
e q u a t i o n s ) 

I n p u t - o u t p u t 
b u f f e r s , 4 0 2 
i n s t r u c t i o n s , e x a m p l e s o f , 3 7 6 
r a t i o o f i n p u t - o u t p u t t o i n t e r n a l o p e r a ­

t i o n s , e f f e c t o f o n c o m p u t e r 
o r g a n i z a t i o n , 4 0 1 - 4 0 2 

I n p u t - o u t p u t e q u i p m e n t , 3 9 9 - 4 0 3 , 5 5 4 -
5 7 2 

c a t h o d e - r a y t u b e s , 5 6 9 - 5 7 1 
e f f e c t o f o n c o n t r o l u n i t , 3 9 9 - 4 0 3 

o f f - l i n e o p e r a t i o n , 3 9 9 
o n - l i n e o p e r a t i o n , 3 9 9 

e x t e r n a l s t o r a g e m e d i a , 5 5 5 - 5 6 6 
m a g n e t i c t a p e , 5 6 0 - 5 6 6 
p u n c h e d c a r d s , 5 5 7 - 5 6 0 
p u n c h e d p a p e r t a p e , 5 5 5 - 5 5 7 

g e n e r a l r e m a r k s , 5 5 4 - 5 5 5 
i n d i v i d u a l c h a r a c t e r d i s p l a y d e v i c e s , 

5 7 1 - 5 7 2 
i n t e g r a t i o n i n t o a c o m p u t e r s y s t e m , 

3 9 9 - 4 0 3 
p r i n t e r s , 5 6 6 - 5 6 8 

c h a r a c t e r - a t - a - t i m e , 5 6 6 - 5 6 7 
h i g h s p e e d , 5 6 8 
l i n e - a t - a - t i m e , 5 6 7 

I n s t r u c t i o n a c q u i s i t i o n ( l o o k - u p ) c o m ­
m a n d s , 3 8 3 , 4 1 8 - 4 1 9 

i n a m i c r o p r o g r a m m e d c o n t r o l u n i t , 
4 0 5 

I n s t r u c t i o n c o u n t e r ( s e e C o n t r o l , c o u n t e r , 
3 7 9 ) 

I n s t r u c t i o n e x e c u t i o n c o m m a n d s , 4 1 8 -
4 1 9 

I n s t r u c t i o n r e g i s t e r ( s e e C o n t r o l , r e g i s t e r , 
3 7 9 - 3 8 2 , 3 9 3 - 3 9 4 , 4 1 6 - 4 1 7 , 4 1 9 -
4 2 1 ) 

I n s t r u c t i o n r e p e r t o r y 
o f a s i m p l e G P c o m p u t e r , 2 4 , 4 1 5 

I n s t r u c t i o n s 
B - b o x i n s t r u c t i o n s 

Β c o n d i t i o n a l , 3 9 6 
Β m o d i f i a b l e , 3 9 5 - 3 9 6 
n o n - B m o d i f i a b l e , 3 9 5 - 3 9 6 

b l o c k t r a n s f e r , 4 0 3 
d u m m y , i n use o f B - b o x i n s t r u c t i o n s , 

3 9 6 
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effective, 395 
example of, 29, 30, 31 
general types of, 23 
modification of, 28 
number and type of, 372-376 
presumptive, 395 
representative set for a GP computer, 

374-376 
tally, 396 
three basic categories of, 383-384 

integral transfer computer (see GP com­
puter), 16-17, 19, 20, 22-32, 372-
447, 503 

Integration formulas 
choice of, 470-472 
rectangular summation, 465, 467-470, 

497, 515-516 
example of function generation, 

467-468 
in multiplication, 497 

trapezoidal summation, 465-466 
in multiplication, 498 

Integrator 
bases for use, 451 
digital (see Integrator, digital) 
functional schematic, 449 
general properties, 449 
idealized equation, 450 
mechanical, 449-450 

Integrator, digital 
assignment of a number to, 479-480, 

502, 506 
example of function generation, 467-

468 
interconnection of (mapping), 477-

480 
interpolative mode of operation, 466 
mechanization of serial integrator, 

472-473 
simulation of in a GP machine, 515 
sources and limits of inputs, 477 
theory of, 467-472 
used as a digital servo, 494 
variations in design, 464 

Intelligence (artificial), 16, 17 
Interlock 

for an external storage device, 403 
system for nonregular networks, 390 

intermittent 
errors, 523 
faults, 540-541 

Internal store 
function of, 194 

Interpolative formulas 
in trigonometric function generation, 

357-358 
interpolative mode of operation (in a 

digital integrator), 466, 479 
interrogation 

of a magnetic core memory, 218 
Interrupt control (see Program interrupt 

control), 410-412 
inverse check, 535 
inverter circuit, 116, 117 

AND and OR gates formed from in­
verters, 117 

junction transistor circuits, 134, 135 
parallel inverter, 117 

iteration rate 
in a serial DDA, 474 
in parallel DDA's, 503 

iterative formulas, 349-352 
derivation of a general formula, 349-

350 
formula for the reciprocal, 350 
formulas for higher order roots, 355-

356 
formulas for the square root, 351-352 

Junction transistor circuits 
current switching circuits, 147-152 

non-saturating complementary cur­
rent switching and inhibiting cir­
cuits, 150-152 

non-saturating complementary cur­
rent switching systems, 147-150 

dynamic pulse circuits, 143, 144 
gated-pulse amplifier circuits, 144, 147 

Language, machine (see Machine lan­
guage), 444, 445 

Latency time 
figures for typical rotating magnetic 

stores, 215 
in a magnetic disk store, 216 

Level discrimination in adders, 277 
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L i m i t i n g o f a f u n c t i o n 
i n a D D A , 4 8 6 - 4 8 7 

L i n e a r se lec t m e m o r y 
( see W o r d o r g a n i z e d m e m o r y ) , 2 2 8 -

2 3 0 
L o c a t i n g d a t a 

i n a m a g n e t i c t a p e s t o r e , 5 6 2 
L o g i c t a b u l a t i o n , 4 4 4 - 4 4 5 
L o g i c a l 

i n s t r u c t i o n s , e x a m p l e s o f , 3 7 5 
p r o d u c t , t y p e o f i n s t r u c t i o n s , 3 7 5 

L o g i c a l d e s i g n 
a i d s i n d e s c r i p t i o n o f , 4 4 3 
d e f i n i t i o n o f , 4 4 3 
g e n e r a l d e s c r i p t i o n o f , 9 4 

L o g i c a l d e s i g n , m o d i f i c a t i o n o f d i f f i c u l ­
t i es i n t r o d u c e d b y s c h e m e s f o r 
e q u i p m e n t m i n i m i z a t i o n , 4 4 6 

L o g i c a l d e s i g n s , o f G P a r i t h m e t i c 
c o m p u t e r s , 4 1 2 - 4 4 2 

G P c o m p u t e r w i t h a s t a t i c m a i n s t o r e , 
4 1 5 - 4 2 6 

a r i t h m e t i c u n i t , 4 1 7 - 4 1 8 
d e s c r i p t i o n o f c o n t r o l u n i t , 4 1 6 - 4 1 7 
e l e m e n t a r y c o m m a n d s , 4 1 8 - 4 2 0 
flip-ñop i n p u t e q u a t i o n s , 4 2 3 - 4 2 5 
flow d i a g r a m o f i n s t r u c t i o n e x e c u ­

t i o n , 4 2 2 
i n s t r u c t i o n r e p e r t o r y , 4 1 5 
o t h e r s p e c i f i c a t i o n s , 4 1 5 
w o r d f o r m a t , 4 1 6 

G P c o m p u t e r w i t h a d y n a m i c m a i n 
s t o r e , 4 2 6 - 4 4 2 

b l o c k d i a g r a m o f o r g a n i z a t i o n , 4 2 7 
c i r c u l a t i n g r e g i s t e r s , 4 3 1 
flip-flop i n p u t e q u a t i o n s , 4 3 7 - 4 4 0 
i n s t r u c t i o n r e p e r t o r y , 4 2 6 
o t h e r s p e c i f i c a t i o n s , 4 2 6 
p e r m a n e n t t i m i n g t r a c k s , 4 3 0 
r e c o r d i n g e q u a t i o n s , 4 4 0 - 4 4 2 
t i m e d u r a t i o n s i g n a l s , 4 3 0 - 4 3 1 
use o f p a s s i v e s t o r a g e e l e m e n t s f o r 

i n f o r m a t i o n p r o c e s s i n g a n d c o n ­
t r o l , 4 2 7 

w o r d f o r m a t , 4 2 8 - 4 2 9 
L o g i c a l e l e m e n t s ( see G a t e s a n d G a t i n g 

c i r c u i t s ) 
L o o p s , h i g h s p e e d ( see R e v o l v e r s ) , 4 2 8 

L o s s e s i n d y n a m i c m a g n e t i c r e c o r d i n g 
s y s t e m s , 2 0 3 - 2 0 4 

g a p l o s s , 2 0 4 
s e l f - d e m a g n e t i z a t i o n , 2 0 4 
s p a c i n g losses , 2 0 3 
t h i c k n e s s l o s s , 2 0 3 - 2 0 4 

M a c h i n e l a n g u a g e 
d e f i n i t i o n o f , 4 4 4 
use i n a c o m p u t e r s i m u l a t i o n p r o g r a m , 

4 4 5 
M a g n e t i c c o a t i n g s 

e f f e c t o n r e a d v o l t a g e v a r i a t i o n w i t h 
r e c o r d i n g d e n s i t y , 2 1 0 - 2 1 1 

o n a d r u m s u r f a c e , 2 1 2 
M a g n e t i c c o r e l o g i c c i r c u i t s , 1 5 2 - 1 6 6 

s y m b o l s f o r , 1 5 4 , 1 5 9 
M a g n e t i c c o r e s t o r a g e , 2 1 6 - 2 2 9 

c o i n c i d e n t c u r r e n t c o r e m e m o r y , 2 1 8 -
2 2 3 

d e s i r a b l e c h a r a c t e r i s t i c s o f t h e c o r e 
m a t e r i a l f o r m e m o r y a p p l i c a t i o n s , 
2 1 7 

g e n e r a l r e m a r k s , 2 1 6 - 2 1 8 
w o r d o r g a n i z e d c o r e m e m o r y , 2 2 8 -

2 2 9 
M a g n e t i c c o r e s w i t c h e s ( f o r m e m o r y 

d r i v e s y s t e m s ) , 2 2 3 - 2 2 6 
a n t i - c o i n c i d e n t c u r r e n t s w i t c h , 2 2 5 
b i a s e d c o i n c i d e n t c u r r e n t s w i t c h , 2 2 4 
b i a s e d m u l t i - c o i n c i d e n c e s w i t c h , 2 2 5 , 

2 2 6 
m u l t i - c o i n c i d e n c e s w i t c h , 2 2 5 

M a g n e t i c d i s k s t o r e ( s e e M a g n e t i c s u r ­
f a c e s t o r a g e , a l s o 1 9 9 - 2 1 6 ) 

g e n e r a l d e s c r i p t i o n o f , 2 1 4 - 2 1 6 
c h a r a c t e r i s t i c s o f t y p i c a l m u l t i - d i s k 

u n i t s , 2 1 5 
i n a s e r i a l D D A , 4 7 3 , 4 7 4 

M a g n e t i c d r u m s t o r e ( s e e M a g n e t i c s u r ­
f a c e s t o r a g e , a l s o 1 9 9 - 2 1 6 ) 

c h a r a c t e r i s t i c s o f t y p i c a l u n i t s , 2 1 5 
g e n e r a l d e s c r i p t i o n , 2 1 1 - 2 1 3 

access t i m e , m e a n s f o r i m p r o v i n g , 
2 1 3 

h e a d - t o - s u r f a c e s p a c i n g v a r i a t i o n , 
2 1 2 

r e c o r d - r e a d s y s t e m f o r o n e c h a n n e l , 
2 1 1 
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head selection matrix, 213 
in a serial DDA, 473, 474 

Magnetic heads 
air bearings for, 212 

in IBM-RAMAC memory, 216 
design of, 200, 201 
switching matrix for selection of, 213 

Magnetic recording (see Magnetic sur­
face storage), 199-216 

Magnetic reluctance 
definition of, 201 

Magnetic surface (rotating) storage, 
199-216 

coding techniques, 204-211 
comparison of NRZ and RZ record­

ing, 208-209 
general remarks, 204-205 
NRZ recording, 207-208 
RZ recording, 205-207 
phase modulation recording, 209-

210 
efficiency of, 202-203 
general remarks, 199 
memory transfer function, 203-204 
recording process, 200-201 

Magnetic tape, 560-566 
advantages of, 564-565 
comparison with disks and drums, 565 
composition, 560 
head stack design, 560-561 
organization of data, 560 
storage capacity, 565 

Magnetic tape control unit 
facilities for searching operations, 403 

Magnetic tape transport 
start and stop times, 562-566 

schemes for reducing, 563-564 
Magnetostrictive delay line 

schematic of, 248 
typical amounts of delay, 251 

Magnetostrictive effect, 248, 249 
Main store (see Store, main), 376-377, 

387-388 
Maintenance 

difficulties introduced by schemes for 
equipment minimization, 446 

logic and usage tabulations as an aid 
to, 445 

preventive, 540-541 

Mantissa 
definition of, 360 
representation in a computer, 361-362 

Many-to-many networks (see Switching 
matrix), 178 

Many-to-one networks (see Switching 
matrix) 

Mapping (in a D D A ) , 477-480, 506 
errors producible by schematic repre­

sentation of, 511-512 
in a special purpose DDA, 502 

Marginal 
checking, 540-541 
operation, 523 

Marker bits 
in an addressing channel, 475-476 

Mass storage units 
characteristics of typical multi-disk 

units, 215 
Matrix printer, 568 
Matrix switch (see Switching matrix) 
Mean (round-off error), 545-547 
Mean-time-to-failure, 522 
Mechanical differential analyzers 

accuracy, 452 
auxiliary elements, 453 
general description, 449-450 

Meissner effect (in superconductors), 
168 

Memory (see Storage systems and Store, 
main) 

advantages of storing numbers and 
instructions in a common unit, 28 

differentiation between numbers and 
instructions, 27, 28 

Memory cores (ferrite) 
typical dimensions, 216, 217 

Microcontrol unit, 406 
Microprogrammed control unit 

control register unit, 404-405 
Microprograms 

effect of on control unit, 404-410 
execution of microprogrammed in­

structions, 406-410 
flow diagram of, 408 
means of access to, 410 

Micro-operations (see Microprograms), 
404 
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M i c r o w a v e c i r c u i t s , 1 7 1 - 1 7 3 
p a r a m e t r i c o s c i l l a t o r s , 172 
t u n n e l d i o d e c i r c u i t s , 1 7 2 , 173 

M i n i m i z a t i o n o f e q u i p m e n t 
d i s a d v a n t a g e s o f , 4 4 6 

M i n i m u m access p r o g r a m m i n g 
f o r a n o n r a n d o m access m a i n s t o r e , 

3 9 3 
M i n i m u m t r a n s l a t i o n a l n e t w o r k , 177 
M i n o r i t y c a r r i e r s t o r a g e , 1 3 2 , 1 3 4 , 135 
M i r r o r s y s t e m o f n o t a t i o n f o r m a g n e t i c 

c o r e c i r c u i t s , 2 2 5 , 2 2 6 
Μ I T C o m p u t e r L a b o r a t o r i e s 

p e n t o d e g a t e s y s t e m , 1 1 9 , 120 
M o d u l o c h e c k s ( see R e s i d u e c h e c k s ) , 

5 3 1 - 5 3 2 
M u l t i a p e r t u r e d e v i c e s 

t r a n s f l u x o r g a t e s , 1 6 3 - 1 6 6 
M u l t i p l e c o m p u t a t i o n , 5 3 4 
M u l t i p l e p a r i t y b i t s , 5 2 7 
M u l t i p l e - p r e c i s i o n 

a r i t h m e t i c , 5 5 0 - 5 5 1 
n u m b e r s , 5 4 4 - 5 4 5 

M u l t i p l e x i n g , 4 1 4 - 4 1 5 
i n a D D A , 4 1 4 

M u l t i p l i c a t i o n ( see B i n a r y m u l t i p l i c a ­
t i o n , 3 1 8 - 3 3 5 a n d D e c i m a l m u l t i ­
p l i c a t i o n , 3 3 5 - 3 4 0 ) 

a n a l y s i s o f a n i n t e g r a t o r n e t w o r k f o r 
m u l t i p l i c a t i o n i n a D D A , 4 9 4 -
4 9 8 

b y s p e c i a l o p e r a t i o n a l u n i t s i n a D D A , 
4 9 9 - 5 0 2 

g e n e r a l r e m a r k s , 3 1 6 - 3 1 8 
i n c o m p u t e r s f o r s o l v i n g n a v i g a t i o n 

p r o b l e m s , 4 9 9 - 5 0 2 
i n c r e m e n t a l ( i n a D D A ) , 4 5 3 - 4 5 4 

•o f n u m b e r s i n floating-point n o t a t i o n , 
3 6 0 - 3 6 1 

t a b l e f o r b i n a r y n u m b e r s , 3 1 7 
M u l t i p l i e r ( see M u l t i p l i c a t i o n ) 

b i n a r y 
s e r i a l b i n a r y m u l t i p l i e r w i t h d e l a y 

l i n e s t o r a g e , 3 2 2 
s e r i a l - p a r a l l e l b i n a r y m u l t i p l i e r , 

3 2 3 - 3 2 5 
s e r i a l - p a r a l l e l b i n a r y m u l t i p l i e r c o n ­

t r o l l e d b y p a i r e d b i t s o f t h e 
m u l t i p l i e r , 3 2 5 - 3 2 7 

t y p i c a l s t a g e o f a n a s y n c h r o n o u s 
b i n a r y m u l t i p l i e r , 3 2 7 

s i m u l t a n e o u s m u l t i p l i e r , 3 2 8 - 3 3 0 
d e c i m a l 

s e r i a l - p a r a l l e l m u l t i p l i e r , 3 3 9 
i n c r e m e n t a l , 4 5 3 - 4 5 4 
o u t p u t m u l t i p l i e r s i n a D D A , 4 8 3 - 4 8 4 

N a n o s e c o n d 
d e f i n i t i o n o f . 111 

N a t i o n a l B u r e a u o f S t a n d a r d s 
A C s y s t e m o f c i r c u i t l o g i c , 1 2 0 - 1 2 3 

N a v i g a t i o n 
d i g i t a l c o m p u t e r s as a n a i d t o , 4 9 8 -

5 0 1 
N e g a t i v e n u m b e r s , r e p r e s e n t a t i o n o f , 

3 0 8 - 3 1 5 
b y a b s o l u t e v a l u e p l u s a s i g n , 3 0 8 - 3 1 0 
c o m p l e m e n t a r y n o t a t i o n , 3 1 0 - 3 1 2 

n i n e ' s c o m p l e m e n t , 3 1 3 - 3 1 5 
o n e ' s c o m p l e m e n t , 3 1 1 - 3 1 2 
t e n ' s c o m p l e m e n t , 3 1 2 - 3 1 3 
t w o ' s c o m p l e m e n t , 3 1 0 - 3 1 1 

N e g a t i v e r e m a i n d e r i n d i v i s i o n , 3 4 1 
N e t w o r k s , r e g u l a r 

a s y n c h r o n o u s o p e r a t i o n o f , 3 9 0 
d e f i n i t i o n o f , 3 9 0 

N o i s e 
d e l t a n o i s e i n a c o i n c i d e n t c u r r e n t 

c o r e m e m o r y , 2 2 2 
d e l t a n o i s e i n a t h i n film m e m o r y , 2 3 5 
e l i m i n a t i o n o f , i n a s u p e r c o n d u c t i v e 

m e m o r y , 2 3 7 
r e d u c t i o n o f , i n a m a g n e t i c c o r e 

a r r a y , 2 1 9 
N o n a n a l y t i c f u n c t i o n g e n e r a t i o n 

b y d e c i s i o n u n i t s i n a D D A , 4 8 4 
N o n d e s t r u c t i v e r e a d o u t 

i n a m a g n e t i c c o r e m e m o r y , 2 2 6 - 2 2 8 
b y e l a s t i c m o t i o n o f d o m a i n w a l l s , 

2 2 7 
q u a d r a t u r e field m e t h o d s , 2 2 7 

F L U X L O K , 2 2 7 
R F s e n s i n g , 2 2 7 
z e r o flux, 2 2 7 , 2 2 8 

i n a t r a n s f l u x o r m e m o r y , 2 3 1 
i n a t u n n e l d i o d e m e m o r y , 2 3 9 

N o r m a l i z a t i o n o f e q u a t i o n s 
i n a D D A , 4 8 2 - 4 8 3 
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NRZ recording, 207-208 

read waveforms, 208 
Numbers 

binary coded, II, 12 
binary information transfer, 13 
circular number system in a digital 

integrator, 489 
floating point notation, 360-361 
parallel representation, 11-13 
serial representation, 11-13 
sign designation, 13, 14 
ternary information transfer, 13 
unitary weighted, II, 12 

Numerals 
cardinal, 1 
display devices, 570-572 
external storage media, 556-567 
ordinal, 1 
printers, 567-569 

Numerical representation 
in an electronic digital computer, 11, 

13 
in the arithmetic unit 

effect on control unit, 390-392 
Numerical symbols 

development of, 2, 3 
Roman numerals, 3 
uses of, 1 

Off-line 
data preparation, 400, 555 
operation of input-output equipment, 

399 
On-line 

operation of input-output equipment, 
399 

One-address system in a GP computer 
description of, 393 

One cycle of operation, 439 
One-shot delay circuit (delay multi­

vibrator), 187 
One-to-many-networks (see Switching 

matrix) 
Operand storage register, 417-418 
Operating speed (of a storage system), 

194 
Operating time 

consistency of, in various computer 
elements, 390 

Operation codes 
basic types and their effect on decod­

ing and encoding function tables, 
381-382 

Operation field, 24 
Operation period 

minor and major periods in syn­
chronous control of a GP 
machine, 386-387 

Operation time 
in asynchronous circuits, 124 

Operational units (in a D D A ) 
basic units, 475 
more complex units, 498-502 

Order codes (see Operation codes), 381 -
382 

function of, 432 
Order register (see Instruction register) 

416-417 
Ordering of arithmetic operations 

for minimum round-off error, 548-551 
Organization 

of a serial DDA, 472-476 
Orthogonal fields (see Nondestructive 

readout), 227 
Output data 

considerations in choice of output re­
cording devices, 401 

forms of, 401 
Output devices (see Input-output equip­

ment), 554-572 
Output rate 

of data in magnetic tape units, 566 
Overflow (in an accumulator) 

automatic checking of, 531 
logical conditions describing, 440 
of R accumulator in a DDA, 464, 

468-469 

Parametric oscillator, 171, 172 
Parity checking, 525-530 

array, 526 
even parity, 525 
hardware requirements, 529-530 
multiple error detection, 526-527 
multiple parity bits, 527 
odd parity, 525 
on magnetic tape, 562 
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single error correction scheme, 527-
530 

single error detection, 526 
Partial selection 

in a coincident current memory, 218-
219, 221-222 

Passive storage elements 
in a serial DDA, 475 

Pattern generators, 273-275 
Peripheral equipment (see Input-output 

equipment), 553-571 
Persistent-supercurrent storage elements, 

236-238 
Phase error (in a D D A ) , 507-508 
Phase-locked subharmonic oscillator, 172 
Phase modulation recording 

record and read waveforms, 209 
Phases of operation, in a computer, 

432-436 
Photoelectric readers 

of paper tape, 557 
Playback voltage (see Read voltage) 
Plugboard controlled computer, 37 
Point contact transistors 

nonsaturating flip-flops, 132 
saturating flip-flops, 128-132 

Polish notation, 107 
Positional notation 

advantages of, 4, 5, 15 
Post-write-disturb pulse (in a coincident 

current core memory), 222, 223 
Power series 

for function generation, 514 
Precision 

trade off with solution time in a DDA, 
482 

Preparation of problems 
for a DDA, 476-484 
general remarks, 476-477 

Presumptive instruction, 395 
Preventive maintenance, 540-541 
Prime implicants, 62 
Princeton Institute for Advanced Study, 

127 
type of operation code in IAS com­

puter, 382 
Printers, 566-568 

character-at-a-time, 566-567 
film, 570 

high speed, 568 
line-at-a-time, 567 
Xerox, 57 

Priority interrupt control (see Program-
interrupt control), 410-412 

Priority number, in program-interrupt 
control, 410-411 

Problem preparation for a DDA, 476-
484 

assignment of integrator numbers in a 
serial DDA, 479-480 

mapping (establishing interconnection 
of units), 477-480 

normalization of equations, 482-483 
scaling, 480-482 

Program-interrupt control, 410-412 
effect of on control unit, 411-412 
examples of types of demands, 411 

Programmed error detection and correc­
tion, 533-538 

analytic checks, 534-537 
data transfer checks, 537-538 
general remarks, 533-534 

basic procedures, 533 
comparison of criteria for labora­

tory and control computers, 533 
sequencing checks (programmed), 

537 
testing and diagnostic programs, 

538-540 
Programming 

minimum access, 393 
search operations on magnetic tape, 

565-566 
Programs 

debugging routines, 34 
flow diagrams 

example of, 34-36 
function of, 33 

procedures in preparation of, 32-34 
production running, 34 
program for determining the highest 

factor of an integer, 25-27 
program for simulating a DDA on a 

GP machine, 513-517 
subprograms (subroutines), 31-34 
tracing, 523, 539 
test, 523 
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Propagation time 

importance of, 173 
Pseudo-operations 

due to round off, 548-549 
Pulse density (magnetic recording) 

effect on read voltage, 211 
in typical mass storage units, 216 

Punched card 
advantages of, 559 
Hollerith, 10 
IBM, 558 
Remington Rand, 558 

Punched paper tape readers and re­
corders, 555-557 

Punches 
card, 558-560 
paper tape, 555-557 

Pyrimidal switching matrix 
many-to-one, 175-177 
one-to-many, 177-178 

Pyramiding 
in multi-input core gating circuits, 162 

Quantization 
binary, 8 
nature of, 7, 8 
reasons for, 7, 8 

Quartz (fused), velocity and attenuation 
figures for RF transmission, 247, 
248 

Read-around ratio 
(in a cathode-ray tube store), 242 

Read voltage (magnetic surface record­
ing) 

variation with head spacing, 201 
variation with recording density for 

different magnetic coatings, 211 
waveforms from induced positive and 

negative poles, 202 
waveforms in phase modulation re­

cording, 209 
Readers 

card, 558-559 
magnetic tape, 560-566 
punched paper tape, 557 

Reciprocal, computation of, 350 
Recomputation 

for error detection, 534 

Recording flux pattern, 200 
Recording, magnetic (see Magnetic sur­

face storage, 199-216 and Magnetic 
drum and disk store, 211-215, 473, 
474) 

Rectangular switching matrix, 174-178 
Redundancy 

definition of, 52 
in built-in storage and transfer checks, 

525, 530 
in initial designs of new equipment, 

15 
in numerical representation, 14 
in primitive notations, 15 

Reflected binary codes (see Cyclic 
codes), 542-543 

Regeneration cycle, 195 
Register 

buffer register, location of, 426 
circulating registers, 431, 473 
control register, 416-417 
instruction register, 419-421 
operand storage register, 417-418 
Zdy (in a D D A ) , 463 
shift register, 85, 180-186 

Relay computers, 10 
Reliability, 521 
Remanence, magnetic, 153 
Remanent state, of a magnetic core, 222 
Repeat counter, 399 
Residue checks, 531-532 
Return address 

in priority-interrupt control, 412 
Return-to-bias magnetic recording, 209 
Revertive signal, in asynchronous con­

trol, 389 
Revolvers, in a dynamic memory, 428 
Rollback program, 539-540 
Roots, method of computing, 351-356 

higher order roots, 355-356 
square root, 351-355 

Rotating magnetic memory (see Mag­
netic surface storage, 199-216 and 
Magnetic drum and disk store, 2 1 1 -
215, 473, 474) 

Round off (of a product), 318 
Round-off error, 543-550 

absolute, 544 
bias, 545-547 
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effect on multiplication, 549 
effect on scaling, 551 
in a DDA, 505 
in a digital integrator, 470 
mean, 545-547 
multiple-precision operations, 544-545 
relative, 544 
standard deviation, 545-547 

Round-off procedures 
mechanization of, 546-548 

in a binary system, 546-547 
in a decimal system, 547-548 
summary of binary and decimal 

schemes, 548 
Row check (see Parity checking), 526 
RZ magnetic recording, 205-207 

head arrangement in, 205 
read waveforms for various recording 

densities, 206 

Sawtooth function generation 
by decision units in a DDA, 486 

Scale factors 
in a DDA, 480-482 

derivation of an optimal set, 482 
in fixed-point operation, 359 

Scaling 
effect in limiting magnitude of errors, 

536 
in a DDA, 480-482 

checking solutions by runs with 
different scaling, 512 

effect on computational error, 506-
507 

effect on solution time, 482 
scaling relationships for a set of in­

tegrators, 481-482 
scaling relationships within an inte­

grator, 480-481 
summary of steps, 482 
systematic generation of an optimal 

set of scales, 482 
in a GP computer, 358-364 

comparison of fixed and floating­
point operation in a computer, 
362-364 

fixed point computation, 358-360 
floating point notation for numbers, 

360-361 

representation of floating point 
numbers within a computer, 361-
362 

influence of round-off error, 551 
Search and acquisition cycle 

in a GP computer, 379 
Search operation 

in an external store, 403 
in a GP computer, 433-434 

Secondary emission coefficient of a 
phosphor surface, 240-241 

Sector number 
of an address in a dynamic store, 430 

Selection 
of a word in a dynamic store, 380-381 
of a word in a static store, 380 

Selection network for a static storage 
system 

general remarks, 195-197 
Selection ratio 

in a coincident current memory, 219, 
221, 222 

Self checking 
of data on magnetic tape, 561 

Self demagnetization 
in dynamic recording media, 204, 210, 

551 
Sense instructions, examples of, 375-376 
Sense voltage 

strobing of in a coincident current 
core memory, 221, 222 

Sense winding 
in a coincident current array, 219 

Sequencing, automatic methods of, 37 
Sequencing of arithmetic operations 

for minimum round-off error, 548-
551 

Sequencing checks 
built-in, 532 
programmed, 537 

Serial or parallel operation 
comparison of, for certain figures of 

merit, 385 
effect on control unit, 384-385 

Servo adder (in a D D A ) , 464, 477 
Servo, digital (in a D D A ) , 488-494 

addition of rates by, 488-491 
hard servo (integrator), 488-491 
soft servo (integrator), 490-491 
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errors produced by, 5U 
function inversion, 492-495 
servo action from an accumulator, 

494 
servo action from a decision unit, 494 
servo with gain, 491-492 

Set, determination of 
elements in by counting, 2 

Shift operations 
in scaling of problems, 361-362 

Shift register, 180-186 
arrangements for vacuum tubes or 

transistors, 180-182 
magnetic core shift registers, 182-186 
transistor-magnetic core shift register, 

185-186 
Significant digits, loss of through incor­

rect scaling, 363-364 
Signum function, 485 
Simulation 

of a continuous differential analyzer 
by a digital computer, 514 

of a DDA by a GP machine, 513-517 
of an integrator by a GP machine, 515 

Simulation programs as an aid to 
computer design, 445 

developing maintenance procedures, 
445 

Sine wave 
maximum frequency of generation by 

different computers, 503 
Single-address GP computer 

schematic of over-all control arrange­
ment, 383 

Skew effect in magnetic tape, 561 
Smoothness test, 535-536 
Solution time 

trade off with precision in a DDA, 
482 

Space domain storage (see also Storage 
systems) 

general remarks, 195-197 
Special purpose computer, 20 
SPEDAC computer, 503 
Speed, of 

card punches, 558 
card readers, 558 
cathode-ray tube displays, 569 
character-at-a-time printers, 566 

electronic printers, 570 
high speed printers, 568 
line-at-a-time printers, 567 
magnetic tape units, 564 
paper tape punches, 556 
paper tape readers, 557 

Speed independence 
in asynchronous circuits, 123-127 
University of Illinois design tech­

niques, 126, 127 
Spot check, 512 
Square root, methods for computation 

of, 351-355 
interpolative formula, 352 
iterative formulas, 351-352 
odd series approximation, 352-355 

in the binary system, 354-355 
in the decimal system, 352-354 

Standard deviation (or round-off error), 
545-547 

Starting a computer's operation 
logical scheme for, 425 

Start-up error (in a D D A ) , 508 
State of a computer 

conditions that define active states, 
431-432 

Static magnetic storage, 216-236 
apertured ferrite plate, 230-231 
magnetic core storage, 216-229 

coincident current memory, 218-
223 

word organized memory, 228-229 
thin film elements, 234-236 
transfluxor, 231, 232 
twistor, 232-234 

Static storage (see also Storage systems) 
general remarks, 195-197 

Stibitz (Bell Telephone relay computer), 
10 

Storage cycle 
in cathode-ray tube store, 242 
in coincident current magnetic core 

memory, 222-223 
Storage media 

external (see also Input-output equip­
ment), 400-402, 555-566 

internal (see Storage systems) 
Storage systems 

access time, 195 
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Switching time 
in a magnetic core, 217 

Symbols for magnetic core logic circuits, 
154, 159 

Synchronizer 
definition of, 96 

Synchronous (clock) control 
comparison of synchronous and asyn­

chronous control, 389-391 
nature of, 382, 385-386 
schematic of synchronous control for 

a single address GP computer, 
387 

Synchronous operation of a computer 
effect on control unit, 385-391 
effect on microprogrammed control, 

410 

Tabulations 
logic, wiring and usage tabulations in 

a computer, 444-445 
Tags, identifying 

for data in a magnetic tape store, 562 
Tally instruction, 396 
Tally number, 397 
Taylor series expansion, in trigonometric 

function generation, 356-357 
Temperature coefficient 

of coercivity for ferrite core materials, 
229 

Temperature range 
transfluxor memory, 231 

Ternary transfer, 13 
in a DDA, 464 

Test programs, 523 
Thin film memory 

continuous plane type of supercon­
ductive film memory, 238 

superconductive film storage elements, 
236-238 

Three address system in a GP computer, 
393 

Time domain storage (see Dynamic 
storage), 197-198 

Time sharing 
example of use in a GP computer, 

427 ff 
of arithmetic unit in a serial DDA, 473 
of storage elements, 413-415 

Timing channels 
in a dynamic magnetic memory, 429-

430 
Timing control 

paper tape punch, 556-557 
Timing pattern generator 

for a synchronous control unit, 386, 
387 

Timing signals 
binary counters for generation of, 95, 

96 
derivation from permanent timing 

tracks, 430-431 
logical equations of, 435 
multiple timing sources for magnetic 

core gating systems, 160 
purpose of, 95, 96 
synchronous control of a GP com­

puter, 386 
Timing tracks (in a rotating magnetic 

memory), 430-431 
Tracing programs, 523, 539 
Track number 

of an address in a dynamic store, 430 
Trade-off 

between precision and solution time in 
a DDA, 482 

Transfer checks, 537-538 
Transfer loops 

for magnetic gates, 155-159 
Transfer of control instructions, ex­

amples of, 375 
Transfluxor memory, 231, 232 
Transfluxors 

gating circuits, 165-166 
general description, 163-165 

Transients 
in carrying propagation, 287 

Transistor 
alloy, 134 
electron storage in an n-p-n transistor, 

134 
epitaxial, 134 
hole storage in a p-n-p transistor, 129, 

134 
mesa, 134 
micro-alloy, 134 
minority carrier storage, 132, 134, 135 
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Transit time 
use of local information processors to 

alleviate effects of, 385 
Transition temperature for a supercon­

ductor, 166 
Translation, computer language, 566 
Translational networks (see Switching 

matrix) 
TRICE computer, 503 
Trigger circuits 

relaxation oscillator circuits, 186, 187 
single-stable-state circuits, 187 
two-stable-state circuits, 187 

Trigonometric function generation, 356-
358 

Truncation error 
description of, 544 
in a DDA, 505 

Truth table, 39 
Tunnel diode 

characteristic curve of, 239 
logic circuits, 172, 173 
memory, 238-239 

Twistor memory, 232-234 
Two-address system in a GP computer, 

393 
Typewriter, electric 

as an on-line data entry device, 400 
Typotron, 569-570 

University of Illinois Digital Computer 
Laboratory 

asynchronous computer design, 125-
127 

University of Manchester computer 
organization of serial-parallel multi­

plier, 324-325 

Variable increment computers, 465 
Verification of input data, means of, 400 
Volatility (of a storage medium), 195 

Williams storage system (cathode-ray 
tube storage), 239-243 

Wiring tabulations 
uses of, 445 

Word format in a computer 
criteria affecting, 377-378 

Word organized memory, 228-229 
apertured ferrite plate, 230 
magnetic core, 228-229 
tunnel diode memory, 239 
twistor memory, 233 

Xerox printer, 570 

Ζ line 
in a DDA, 475 

Zero access time 
in a DDA, 475 

Zero rate 
generation in a DDA with binary 

transfer, 464-465 
Zero, representations of in comple­

mentary number systems, 312 


