
DIGITAL COMPUTER
DESIGN

Logic, Circuifry, and Synthesis

EDWARD L. BRAUN
Aerospace Corpora/ion

l o s Angeles, California

1963

A C A D E M I C P R E S S · N E W Y O R K A N D L O N D O N

COPYRIGHT © 1 9 6 3 , BY ACADEMIC PRESS INC.
ALL RIGHTS RESERVED.
NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM,
BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS, WITHOUT
WRITTEN PERMISSION FROM THE PUBLISHERS.

ACADEMIC PRESS INC.
I l l Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS INC. (LONDON) LTD.
Berkeley Square House, London W.l

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 6 3 - 1 5 7 2 5

First Printing, 1963
Second Printing, 1967

PRINTED IN THE UNITED STATES OF AMERICA

To my son Geffrey and my parents

Preface

This book provides an introductory treatment of the logical structure,
electronic realization, and application of digital information processors.
The extent of coverage of each major topic should also make the book
useful as a review and reference text for persons experienced in the field.
Each major chapter is a relatively self-contained unit in an important
area: Boolean algebra for switching networks (Chapter 3) , electronic
building blocks for switching circuits (Chapter 4) , memories for digital
computers (Chapter 5) , arithmetic operations in digital computers
(Chapter 6) , system design of GP (integral transfer) computers (Chapter
7) , an extensive description of DDA (incremental transfer) computers
(Chapter 8) , and detection and correction of errors (Chapter 9) , and
input-output equipment (the Appendix).

With the exception of Chapters 4 and 5, the presentation is on a
functional level, i.e., in terms of how elements with defined input-output
characteristics may be organized to synthesize subsystems or systems with
specified functional capabilities. Although functional descriptions and
circuit problems cannot be separated completely, the discussion of de­
tailed problems in the electronic realization of computers has been con­
fined mainly to these two chapters. This was done for a number of
reasons—first of all, in order not to obscure (by the intricacies and
details of practical means of mechanization) the conceptual simplicity of
fundamental principles treated in other chapters. This separation and
the way material is organized in each chapter also facilitates looking-up
particular topics. Also, while the entire field is evolving rapidly, develop­
ments in circuit techniques have advanced more rapidly than in logical
design. When the writing of this book was begun, the clock-repetition
rate of most digital computers was about 100 kc. Currently (1962)
computer circuits are under development for operation in the microwave
region of several hundred megacycles. (Developments in microwave,
tunnel diode, and superconductive circuits are described in Chapters 4 and
5 and also referenced in the bibliographies of these chapters.)

The importance of digital information processing technology in the
betterment of human welfare, in government, commerce, industry, science,

vii

Viii PREFACE

engineering, and military systems (as well as dangers inherent in misuse)
makes it desirable that certain principles and the breadth of applications
be widely appreciated. The text's emphasis on the functional approach
makes much of the subject accessible to those with limited technical
backgrounds. The presentation of material is designed to supplement
instruction in university level classes and also to facilitate independent
study. Because problems associated with various types of electronic
circuits are largely confined to two chapters, the intelligent reader with
limited knowledge in electrical and electronic circuits can (in accordance
with his capability and inclinations) skim these chapters and still under­
stand and benefit from the remainder of the text. (An additional reserva­
tion is that appreciation of all of Chapter 8 calls for a basic knowledge
of ordinary differential equations.) The entire text can be understood by
one having a background equivalent to a Bachelor's degree in electrical
engineering with mathematics through differential equations.

Even after thorough study of branches of a subject, one may still have
doubts on how to apply this knowledge in the synthesis of a particular
design. Often this situation can be alleviated by the study of examples
that illustrate in detail the application of the basic material. In the present
case an effort was made to integrate material presented in earlier chapters
by presenting (in Chapter 7) a detailed explanation of two simple digital
computer logical designs.

The author is indebted to many organizations and individuals who have
advanced the digital computer field and whose work forms the reservoir
from which the material for this book was drawn. Many of these sources
are listed in the bibliographies. Reports and publications of the Massa­
chusetts Institute of Technology, John von Neumann and his colleagues
at the Princeton Institute for Advanced Study, the University of Illinois,
and the University of Manchester deserve special mention. If the principal
source of any important material has not been properly referenced, the
author invites this being called to his attention.

The author is grateful to the Northrop Corp. and Dr. Erik Ackeriind
for the opportunity to enter the digital computer field. Thanks are due
Lockheed Aircraft Corp., Hughes Aircraft Co., and Information Systems,
Inc., for furnishing typing assistance, Mrs. Barbara Fine for typing the
final manuscript, and the Aerospace Corp. for assistance on the subject
index. Acknowledgment is due Mr. Geoffrey Post for his encouragement
while the author was at Information Systems, Inc.

It is a pleasure to acknowledge valuable aid from the following indi­
viduals, who read and constructively criticized final page proofs: Chapter 3,
William Shooman, System Development Corp.] Chapter 4 (transistor

PREFACE ix

circuits) and Chapter 5 (magnetic surface recording techniques), Marvin G.
Ettinghoff, Librascope, Inc.; Chapter 5 (magnetic core memories), Milton
Rosenberg, Electronic Memories, Inc.; Chapter 6, Dr. John M. Salzer,
Space Technology Laboratories.

The list of acknowledgments would be incomplete without mention of
my family's understanding and forbearance during the period of prepa­
ration of this book.

EDWARD LOUIS BRAUN
March 1963

1. Introduction

1.1. Uses of Number

The subject matter of this book is the stored program digital computer.
We will consider its fundamental nature, ways of describing its logical
organization, various means of mechanization, and principles and tech­
niques useful in its synthesis and utilization. Since these machines ac­
complish their fimction by means of operations on numerically coded
information, some preliminary discussion is in order on the subject of
numbers. We will consider briefly the nature of numbers, certain symbols
and notations used to represent them, and a description of mechanical
and/or electronic means for representing numbers and operating on them.

Numerical symbols may be used for various purposes. Sometimes they
are used merely as labels to distinguish one of a set of objects from the
others. In other words, they can be used as names or symbols for objects.
They are convenient to use as names of persons or things because they
provide an inexhaustible supply of such names.

Ordinarily, one associates a deñnite order among numerals (or groups
of numerals). Often, numerals are used for this characteristic alone, as
in assigning them to houses on a street. The function of a street address is
not to indicate how many houses there are on a street, but to indicate a
particular house's position relative to other houses on the street, i.e., its
order. The use of numerals to indicate the number of items in a set will
be discussed in Section 1.2.

1.2. Counting

Before considering how numbers came to be associated with the process
of counting, it is well to emphasize the distinction between ordinal and
cardinal numbers since, in common usage, the word number alone may
refer to either. When numbers are used solely for an order property that
has been deñned previously for them, they are called ordinal numbers (or
ordinals)—^for example, numbers indicating relative locations or points
in time. Numbers used to designate the manyness of a set of things are
called cardinal numbers (or cardinals). As mentioned in Section 1.1,
numerals can be used merely as convenient tags or symbols to distinguish
objects from one another. In this case, the numerals are used neither to

1

2 1. I N T R O D U C T I O N

convey the property of ordinality nor cardinality. Within a computer, num­
bers may be used in any of these ways. An important property of all
numerical symbols is that mathematical and logical operations can be
performed on them to serve various useful purposes.

A fundamental numerical operation is that of determining whether the
number of elements in one set is equal to, greater than or less than the
number of elements in another set. An obvious procedure is to pair off an
element in one set with an element of the other set, at the same time re­
moving each element from its set, and to continue this process until one
or the other set is depleted. For this process to be generally useful for
enumerating elements in a set, it is necessary that one have available a
standard set of sets. The smallest of these subsets will contain only one
element, and the entire set of subsets may be built up from it simply by
the addition of one element at a time. The idea of using a standard set of
sets, formed from some easily transportable objects, resulted in a great
convenience since it meant that one could determine the relative magnitude
of two sets of objects and, also, the number of elements in each set
without bringing the sets in proxiipity. Since each subset is included in tlie
next larger subset of the set, the total number of elements to be provided
did not have to exceed the largest set which might have to be enumerated.
The most convenient set of elements at primitive man's disposal was the
set comprised of his fingers (and toes), and it was only natural for him to
use them (therein lies the origin of the quinary, bi-quinary and decimal
number systems). As the need to enumerate larger sets developed, sets of
small pebbles or beads (also easily transportable) came into use. At a later
time, a symbol (or group of symbols) was assigned to each subset of the
set. Then, the manyness of sets could be indicated conveniently in terms
of these symbols. Finally, this led to the process of ordering the symbols in
accordance with the manyness of the sets they represented, and to our
present day convention in which we count by introducing the name of the
symbol for the next larger set in a standard sequence each time the present
set is augmented by " 1 . " This same type of procedure allows us to count
from any initially specified location in a sequence, to count backwards as
well as forwards and, also, to count by multiple as well as single increments.

1.3. Numerical Symbols

Early man represented a single element by a mark like I or —, both
because of their similarity to an extended finger and because they were
easy to inscribe with a stick or other pointed instrument. Two elements

1.4. F U N D A M E N T A L S O F C O M P U T I N G A I D S 3

4592 MMMMDLXXXXII

To obtain the sum in Roman numerals, one need only know that the
sum of any number (from one through four) of the Roman numerals I,
X, C, M, etc. was represented simply by writing each symbol in the sum
a number of times equal to the frequency with which it appeared in the
addends. The only other rules, which achieve a more compact notation,
are that IUI + I = V, V + V = X, XXXX + X = L, L + L = C,
CCCC + C = D, etc. Contrast this simple process of accumulating like
symbols with modem decimal addition which requires memorization of
the decimal addition table as well as knowing when sums or borrows are
generated and their disposition.

1.4. Fundamentals of Computing Aids

The first significant mechanical aid to computing, the abacus, was
invented in ancient times and is widely used in many parts of the world
even today. It consists of an array of similar physical elements, each of
which represents a count whose magnitude is determined by the row and
column coordinates of the element's position. These physical elements
are in the shape of beads, referred to by the Romans as calculi (the
origin of the terms calculus, calculate, etc.). Each column is divided in

were represented by I I or Z I . From the former is seen the origin of the
Roman numeral II. The latter when written quickly, without removing
the instrument from the writing surface, would appear as Z, and is the
origin of 2. Similarly Ξ becomes 3. The reasons for the choice of the
other numerals are not so apparent, and need not be discussed here.

A major step forward in the representation of a collection of elements
came with the use of special symbols to represent large collections of
elements. For example, the Romans used V for five, X for ten, L for
fifty, C for one hundred, D for five hundred, Μ for one thousand, etc.
Even so, the representation of large numbers was cumbersome compared
to present day notation. For example 3738 would be expressed as
MMMDCCXXXVIII. Nevertheless, Roman numerals were retained in
commercial accounting imtil the eighteenth century. One reason for their
continued use was that they made addition and subtraction easier for those
with little or no mathematical training. This was because they allowed
these operations to be performed by a process more akin, on the surface,
to counting than is addition (or subtraction) of modem numerals. Con­
sider, for example, the addition of 854 to 3738

3738 MMMDCCXXXVIII
854 DCCCL IUI

4 1. I N T R O D U C T I O N

two by a crosspiece. There may be one or two beads above the crosspiece,
and four or five below i t Each upper bead defines a count equal to that
of five beads below the crosspiece in the same column. Both upper and
lower beads within a column are free to move along the column. In the
column on the extreme right each lower bead represents one. In the next
column each lower bead represents ten. As one proceeds to the left, the
value assigned to the beads in any column is ten times that assigned
to the beads in the adjacent column on the right. A number is set into the
abacus by pushing beads up to the crosspiece.

The abacus provided a speed advantage for addition or subtraction
compared to the manipulation of written Roman numerals, due to the
fact that beads could be moved about in less time than it took to write
the operands and result in Roman numerals. Another reason for its use
was that it provided a cheap means of temporary storage of information.
Numbers could be readily inserted and erased simply by movement of the
beads. Parchment and ink were not readily available, expensive, and
therefore practical only for permanent records, documents, etc. Another
cheap means of temporary storage that was used consisted of a board
covered with a thin coat of wax. Marks could be scratched into the wax
and erased by resmoothing the wax. However, this was a slow and tedious
process. It was not until slates, blackboards, and paper came into common
use just a few centuries ago that the abacus and similar devices known
as counting boards were replaced in Europe.

In the abacus, an important concept appears whose significance was
not appreciated until many centuries later. We refer to the idea of a
positional notation, i.e., one where the value represented by a particular
symbol is a function of where the symbol appears in a group. In the
abacus, there is only one symbol, namely a bead, and these beads repre­
sent different magnitudes in accordance with their positions. The inter­
pretation of a symbol according to its position is characteristic of modem
numerical representation and one of its most important features. It makes
it unnecessary to create new symbols for successively larger counts. With
the positional notation, and its simple rule for going from one number to
the next larger one, any new number, as large as we please, may be
written from a basic small set of symbols. The number of symbols required
to represent any magnitude depends on how many symbols are used in
defining the basic set. In the decimal system, based on using the fingers for
counting, ten symbols, the numerals 0, 1, 2, 3, . . . 9 comprise the basic
set and the representation of a number such as

di di-i di-2 . . . do d-i d-2 · . . d-f

is really the shorthand notation for

1.4. F U N D A M E N T A L S O F C O M P U T I N G A I D S 5

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010

All mechanical, electromechanical, and electronic digital computing
aids utilize the positional notation in the representation of numbers, for
it allows a number of any magnitude to be formed from a defined, small
set of symbols. This is of fundamental importance for the following
reasons. First of all, it allows a digital unit to be fabricated from a
relatively small number of standardized elements. Also, it is responsible
for the high precision attainable, for the precision may be increased
indefinitely simply by the use of more elements. For example, a common

(di X 10*) + (d^^ X io*-i) + . . . + (d;, X 100) + (¿ ^ X 10-1) + . , .

where each d may represent any of the ten symbols: 0, 1, 2, 3, . . . 9.
For example, the representation 2943.0 implies: (2 X 1000) + (9 x 100)
+ (4 X 10) + (3 X 1) + (0 X .1) = 2943.0. A system of numerical rep­
resentation in which only two symbols are used is referred to as the binary
system. A representation of a number in the binary system, such as

bm bm-l bm-2 · · . ¿ 0 6-1 6-2 · · · 6-n

is the shorthand notation for

(bn X 2-) + (6^1 X 2-1) + . . . + (6o X 2«) + (61 X 2-^) + . . .

where each b may represent either of the two symbols in the binary system:
0 or 1. Each of the symbols in a binary number is referred to as a bit
(for binary digit). A comparison of the decimal and binary representations
for numbers of magnitude from zero to ten is shown in Table 1.1. From
it, a disadvantage of the binary system for written notation is apparent,
namely the fact that the representation of a number requires, in general,
more symbols than does the decimal system.

TABLE 1.1.

6 1. I N T R O D U C T I O N

mechanical method of representing a digit is by means of a notched
wheel or disk which can be turned by a shaft through its center. At any
time, the disk is defined to represent one of the symbols 0, 1, 2, . . . 9,
depending on the disk's angular displacement from an arbitrary reference.
To represent a number with, say, η digits, η similar disks are used. To
perform an addition, it is necessary to displace each disk by an amount
proportional to the value of the digit to be added to the order defined by
each disk. It is also necessary to intercouple the disks in such a manner
that when any disk passes from the 9 to the 0 state, a motion is imparted
to the disk in the next more significant position such that it passes from
state / to / 4- 1.

As a rule, mechanical and electromechanical computing aids used for
normal computational work employ the decimal system. This is because
it is a relatively simple matter to define and maintain ten distinct positions
of a rotary element. In electronic computing aids, where a number is
represented by such things as the amount of charge on a dielectric
material, the state of magnetization of a magnetic element, or the voltage
at some point in an electronic circuit, the use of the decimal system pro­
duces difficulties. These can all be attributed to the fact that it is difficult
to control the placement of an electrical element precisely into one of ten
stable states, and equally difficult to read the states of circuits to such
precision. Because of such practical difficulties, all electronic digital com­
puters are formed from binary elements, i.e., switching and storage
devices which need assume only two distinguishable stable states. Hence,
use of the binary rather than the decimal system is dictated. This is
because two (or some power of two) is the most economical radix to
use with binary elements simply because all possible configurations of a
group of binary elements can then be utilized. The use of the binary
system presents no great difficulty, and there is no intrinsic reason why
one must use the decimal number system. One may choose any radix for
the base of a number system. The Babylonians used the sexagesimal
system (i.e., the base was 60, as opposed to 10 for the decimal), the
Mayans used the duodecimal system. Outside of psychological reasons,
stemming from its common use in all phases of human commerce, the
decimal system is not the best to use for computing.

Even though numbers are represented within a machine in the binary
number system, conversion between the two types of number systems
can take place at the inputs and outputs of a machine so that, as far as
the user is concerned, the machine operates in the decimal system. To
facilitate this conversion, the binary-coded decimal system (see Chapter 6)
may be used in the internal storage elements of a computer as well as in
its input and output equipment.

1.5. Q U A N T I Z A T I O N 7

(Λ

Quantized
function

-^T-h k \ H

FiG. 1.1. Quantization of a function

The nature of the quantizing process is shown in Fig. 1.1. Note, first
of all, that the range of values of the fimction is divided, on some basis,
into a number of smaller subranges. The values selected to define the
subranges are called levels of quantization. Ctae way of quantizing a
function is to replace its value by the value of the nearest level of
quantization whenever it passes the halfway point between two levels,
the value of the quantized function remaining constant between such occur­
rences. However, in practice, and as shown in Fig. 1.1, the quantization
process is usually associated with a fixed period sampling process wherein
the original function is inspected at times to, h, Í2 . . . and its value replaced
by that of the closest level of quantization at these times. In a synchronous
digital computer, the instants of time, would be specified by a timing

1.5. Quantization

Media used for the recording of information are usually capable of
responding to a continuous range of input signal intensity, from the so-
called threshold level to the saturation level. For example, information
can be represented on magnetic tape by the intensity of magnetization
of specified areas on the tape, and this intensity is determined, over the
threshold to saturation range, by the magnitude of current applied to a
recording head. A measure of the amount of information stored in any
one area is given by the total number of levels of magnetization that can
be recorded and sensed. Ideally, it would be desirable to store a large
amount of data with a minimum amount of storage media. However, in
practice a compromise must be made in order to reduce the probable
error in inteφreting the recorded information when sensed at some later
time. Use of quantization in the recording and sensing processes allows
one to trade efficiency of storage for a greater probability of correct
interpretation of the data.

8 1. I N T R O D U C T I O N

source referred to as a clock (see Chapter 3) . Often one uses a quantizing
process without realizing it as, for example, when reading a dial, gauge,
or scale to the nearest unit.

The way in which quantization can be employed to reduce the prob­
ability of misinterpreting stored data will now be described. For the pur­
pose of illustration, consider again a magnetic storage medium. For each
state of magnetization of the medium, there is a finite probability that an
accidental event will cause a transition to some other state of magnetiza­
tion. Of course, the greater the separation between two states the less the
probability that an accident will occur to cause the transition from one
state to the other. Accordingly, the difference between levels of quantiza­
tion can be defined in such a way that the probability of a signal on one
level being mistaken for that on an adjacent level is less than a specified
amount. An ideal, absolutely stable state of a storage medium exists only
if a perfect switching action is involved, i.e., if an impulse of energy is
required for a transition between two states, and only in this case could
the probability of misinterpreting stored data be reduced to an absolute
minimum. In practice this situation is adequately approximated by choos­
ing levels sufficiently far apart that a large amplitude signal is required to
switch the storage element from one level to the other. The passive storage
elements used in all contemporary electronic digital computers are referred
to as binary elements because of this type of arrangement. Bounds are
specified about each level within which the sensing device reports the
same value. This is done so that variations from the specified levels, due
either to small irregularities in the medium or small transitions that may
have occurred, are not sensed. Two advantages of the binary quantizing
process are apparent. It allows for exactness and for reproducibility of
results. Binary quantization reduces the problems associated with measur­
ing physical parameters to a simple determination of the presence of signals
near the threshold and saturation levels. Thus, the uncertainties entering
into measurement are replaced by the relative certainty of detection of a
large amplitude signal. Binary quantized data can be processed with
relative immunity to the compounding of small errors that occurs in a
nonquantized data system. In a binary system the end result of a series
of operations will always be the same no matter how many times it is
repeated. This is an especially important factor in the processing of
commercial data where money and other items must be accounted for,
not to within some tolerance of error, but to a precise figure.

Of course, for an increased efficiency of storage multilevel storage
devices could be used if the additional levels could be recorded and

1.6. T H E E V O L U T I O N O F C O M P U T I N G A I D S 9

sensed without an objectionable increase in the probability of error of
interpretation.

1.6. The Evolution of Computing Aids

It is only natural to expect that means for representing and processing
information would be influenced by the technological level of each age.
We have already observed that man first counted by means of his fingers,
and later used line segments to represent elements in a collection. In early
forms of the abacus, developed over 5000 years ago, a number was rep­
resented by the pattern in which a set of pebbles was arranged. Later the
abacus evolved to its present form which differs principally in that beads
are threaded on wires or thin rods that define the colmnns and the whole
is enclosed in a frame. There were no significant new developments in
computing aids until the seventeenth century. Then in 1642, the first
desk calculator was invented by Blaise Pascal. It could perform addition
and subtraction, and its operation was based on the use of toothed wheels.
Leibnitz designed the so-called stepped wheel, and improved upon Pascal's
machine by devising a means of multiplication by repeated addition. A
machine with this feature was completed in 1694, but suffered from
mechanical imperfections. Further improvement on Pascal's machine was
made by Thomas de Colmar who, in 1820, produced the first successful
machine for multiplication. In 1878, the Swedish engineer Odhner, invented
the pin-wheel method of adding numbers from one to nine. His patents
were subsequently incoφorated in the Brunswiga hand calculating ma­
chines. The first successful key driven adding machine, the Comptometer,
was developed in 1887 by D. E. Felt. After this time, a number of signifi­
cant improvements were added by new designs as well as additions to old
ones. Single operation multiplication was introduced by Leon Bollée in
1888. In 1889, a printing feature was added to the Comptometer. After
1910, electric drive motors were added to mechanical calculators. This
allowed more complex circuits to be used, since keys or light parts of the
machine's internal mechanism could be used to actuate control switches.

In the era of the Industrial Revolution, the idea of mechanical auto­
mata achieved a marked popularity, and many ingenious mechanical
devices were developed which, upon being actuated would foUow a
prescribed set of motions. Two relatively important devices were developed
at this time to control the motions of two quite different mechanisms.
From them have evolved two input-output media widely used with present
electronic digital computers, and which in their present form are basically

10 1. I N T R O D U C T I O N

similar. One of these devices was a metallic disk or cylinder upon which
bumps were placed at designated points to control the times at which
different notes were struck in a music box. From it were developed player
piano rolls and various types of punched paper tape, most notably those
used to control teletype equipment. The other was the Jacquard card,
used to control the weaving of patterns into cloth. It served as a model
for the development of the Hollerith punched card. The holes in these
cards are sensed by electric circuits connected to metal brushes that
make contact through the holes. The punched card, on which a number
is represented by a pattern of punched holes, was not conceptually an
advance over the abacus. However, it afforded the ñrst signiñcant practical
means of semiautomatic data processing. Its importance was derived
from the many special types of electromechanical units that could be,
and were devised for the rapid sorting, interpretation, and manipulation
of data on cards. By 1945, punched card machines were in widespread
use throughout the world for the tabulating, sorting, and analysis of data
for accounting and statistical purposes.

Another important contribution, current with the development of
punched card machines, was the development of relays for controlling
complex telephone switching networks. These switching systems showed
that it was possible to perform complicated logical operations with relays,
and to obtain reliable operation by self-checking techniques. In 1938,
Stibitz developed, at the Bell Telephone Laboratories, a relay computer
capable of addition, subtraction, multiplication, or division of complex
numbers and which could be remotely controlled. In subsequent relay
computers a self-checking code was introduced to detect a malfunction in
the transmission of numbers. Subsequently, other relay computers were
developed at the Bell Telephone Laboratories. These machines and the
Harvard Mark I Calculator, developed jointly by IBM and Harvard
University, were the pioneer efforts in relay computers. The latter machine
was the ñrst large scale general purpose digital computer to be completed
(1944). Punched cards were used as the input and main storage medium,
and relays were used for the arithmetic unit. About the same time, the
ñrst electronic digital computer was built. This machine, termed the
ENIAC (Electronic Numerical Integrator And Calculator), was developed
by the Moore School of Engineering at the University of Pennsylvania. It
contained about 18,000 vacuum tubes. The last decade has seen the rapid
development of the stored program electronic digital computer. This type
of machine has wide application because it can perform many types of
information processing operations at high speed and without human inter­
vention, once a suitable program of instructions has been entered into it.

1.7. T H E R E P R E S E N T A T I O N O F N U M B E R S 11

1.7. The Representation of Numbers in an Electronic
Digital Computer

We have seen that in a mechanical digital computer, a number is
represented by discrete positions of a shaft and numerical information is
transmitted between these elements by the coupling of discrete rotary
motion. In an electronic digital computer, a number is commonly repre­
sented in binary form by the current state of a set of storage elements
each of which is capable of, and restricted to, assuming two stable output
voltage levels. Information is transmitted between these elements either
serially in the form of voltage pulse trains on a single information channel,
or in parallel by the signals currently present on each of a set of informa­
tion channels. Each of the pulses in a train may represent a single incre­
ment (corresponding to counting), or a set of pulses beginning and ending
at defined positions in time may represent a number in some binary coded
form (corresponding to a positional notation). The former representation
may be termed a unitary weighted pulse train, and the latter a binary
coded pulse train. Both types of serial representation are shown in Fig. 1.2.
In the binary coded pulse train, the first bit of the train to appear repre­
sents the least significant bit of the number. This is for reasons associated
with the computation processes. Since the electrical waveform convention
is that time flows from left to right, the order of digits in a number so

Although the state of development of commercially available digital
computers was quite limited up to the time of World War II, the concept
of a stored program automatic digital computer had been worked out by
Charles Babbagein about 1833 in his design for an "Analytical Engine."
The plan of this machine called for 50 digit numbers and a storage
capacity of 1000 numbers, and it was intended that Jacquard cards be
used in two ways. So-called "operation cards" were to be used to convey
instructions to the arithmetic unit, and "variable cards" to specify the
locations in storage from which two operands were to be taken and the
result of a computation stored. The plans called for punching the output
data on cards, for the purpose of having them available for future com­
putation. Also, there was to be a device for printing results directly and a
means for producing stereotype molds to be used for printing additional
copies. Babbage's writings show that he was aware that the same language
could be used for numbers and instructions, and that the machine could
be made to modify its own program in accordance with the results of
computations.

12 1. I N T R O D U C T I O N

2U

2^ HUL
23 π

4) ^ 2

FIG. 1.3. Parallel representation of a number
= ¿0 2^ + ^1 2^ + ^2 22 + ¿3 23 where 6̂ = 1 or 0

At Ν = 13; / j , Ν = 6; t^. Ν = 5

be a pulse on each of the lines. Each line has an assigned weight as
shown, and the value of the number, appearing at any time is the
weighted sum of the pulses on all the lines. An important distinction
between serial and parallel weighted numerical representation is that in the

•Our numerical symbols were introduced from India by the Arabs who read from
right to left. When introduced into English, the matter of reversing the order of a
group of numerals to conform to our reading convention was overlooked. However,
in reading it is not inconvenient to read the higher orders of a number first, for
it is the complete configuration that conveys the value.

represented will be reversed from the order of digits in the conventional
written notation.*

(,) Π Π Π Π Π Π Π Π Π Π

(b) π π π π

^Ohh 9̂

FIG. 1.2. Serial representation of a number by a pulse train
(a) Unitary weighted pulse train: the ten pulses

represent ten unit increments
(b) Binary coded pulse train: The presence of a

pulse at time represents an increment of 2*.
The number shown is 2» + 2^ + 2'' -f 2» =
424

The parallel representation of a number within a computer is always
in a binary coded form where different weights are assigned to the different
channels in a group. Figure 1.3 illustrates how a four bit number would
appear in a parallel representation. At each time, there may or may not

?o [L D

1.7. T H E R E P R E S E N T A T I O N O F N U M B E R S 13

former case different weights are assigned to different time positions, i.e.,
the weight of a pulse is determined by the relative time of its appearance
at a given point, while in the latter case different weights are assigned to
different physical locations.

Since there may be either positive or negative pulses on a line, a choice
may be made as to how to represent O's and I's. For example, a positive
pulse may be chosen to represent 1, and a negative pulse to represent 0,
or vice versa. When it is desirable to use pulses of only one polarity, the
presence of a pulse may be used to represent 1 and the absence of a pulse
0, or vice versa. If a unitary weighted pulse train represents information
that has been generated asynchronously, then a single line may be used
for transmitting either positive or negative increments, but not both. To
provide for both, two lines must be used, the presence of pulses on one
line representing positive increments and the presence of pulses on the
other representing negative increments. Either positive or negative pulses
may be used to represent increments on either Une, as shown in Fig. 1.4.
The choice will depend on the characteristics of circuit elements. Schemes
(a) and (b) are most commonly used.

Line I

Line 2

^ ΤΠΠΓ ^ jmr-

^ - Γ - σ π ^

(α) (b) (c) (d)

FIG. 1.4. Asynchronous unitary weighted pulse trains

The use of a numerical biasing technique permits the use of a singje
line to transmit unitary weighted information of both positive and nega­
tive sign if the information appears synchronously. Using this technique,
the presence of a pulse on the line at any time defined by the timing
source indicates a positive increment while the absence of a pulse indicates
a negative increment. This technique depends on generating a train of
alternate I's and O's in a system in the absence of positive or negative
increments. This type of information transmission is sometimes referred
to as binary information transfer, while the method described in the
preceding paragraph is termed ternary transfer.

In a binary coded pulse train, a single line is always suflBcient for the
representation of positive or negative numbers. The sign of the number
is indicated by the presence or absence of a pulse in a position reserved

14 1. I N T R O D U C T I O N

for sign identification. The number may be represented either as an absolute
value plus sign, or a complementary system may be used to represent
negative numbers. (See Chapter 6.)

1.8. Arithmetic Processes in Digital Computers

A considerable amount of space in the text is devoted to a description
of different ways of performing the commonly encountered operations of
counting, addition, subtraction, multiplication, and division in a digital
computer. Since these operations are apparently so simple when per­
formed in our heads or with pencil and paper, some words of explanation
may be in order. First of all, the characteristics of different physical ele­
ments used to perform these operations must be considered. A procedure
suitable when using one type of element may not be suitable when using
another. Also, certain logical formulations of these processes may be more
economical equipment-wise than others. Finally, a vast number of dif­
ferent types of serial, parallel, and serial-parallel, i.e., semiparallel, opera­
tion is possible, some more suitable with particular physical elements than
others. The average person, in performing computations, functions in a
serial manner, i.e., he performs one operation at a time as, for example, in
adding where he adds one column and produces one digit of the sum at
a time. Since he can only write one digit at a time his serial arithmetic
operations are adequate. However, within a digital computer, it is possible
to incorporate control circuits that cause all digits of the addend and
augend to be sensed simultaneously. The sum can then be recorded in
far less time than required by serial arithmetic operation. The purpose of
all parallel arithmetic operation is to decrease the time required for
computation. This is paid for by an increased amoimt and complexity
of equipment. When serial operation is not fast enough, and parallel
operation is too expensive, a compromise may be made with serial-parallel
procedures.

1.9. Redundancy

Let us return again to the subject of numerical representation used by
the Romans. Not only were different symbols used for different orders,
e.g., X for 10, C for 100, etc., but these symbols were written by con­
vention in an ordered relation. For example, 2153 was written as
MMCLIII, not as, say CLMMIII, LCIIIMM, etc. However, if one were
to come upon one of the latter representations, he could still interpret
it correctly. The Romans, though fond of order, did not appreciate the
fact that placing symbols, by convention, in an ordered relation makes it
unnecessary to have different symbols for different orders. Consequenüy,

1.10. C O M P U T E R A P P L I C A T I O N S 15

the Roman notation had a redundancy which is not present in modem
positional notation. As a rule, redundancy is a measure of how efficiently
a particular set of symbols or type of notation conveys information. (In
Chapter 9 the subject of redundancy is considered in relation to error
detection and correction). The use of a positional notation allows a small
set of symbols to be adequate for representing any magnitude, and a proper
choice of radix (the number of different symbols) allows large magnitudes
to be represented by a reasonable number of symbols.

It is not unusual for primitive notations to exhibit redundancies. The
same can be said for initial designs of new equipment. In an "idealized"
type of world where no unintentional disturbances, i.e., accidents, were
possible, and everything always functioned as designed, redundancy would
serve no purpose. However, in reality it often proves useful as a means
of reducing or eliminating the detrimental effect of an accident. How this
can be done will be discussed, for certain types of failures, in Chapter 9.
Here we only wish to point out that once the logical requirements of a
piece of equipment such as a digital computer are better understood,
redundancy may be minimized for the sake of economy. However, even
then one may find it desirable to incorporate certain intentional redundan­
cies for the sake of improving the reliability of performance of a system
composed of nonideal physical elements.

1.10. Computer Applications

Human progress is dependent on eflBcient means for the processing
of information, as an aid to the creative processes of thought. Simply for
the purpose of drawing an analogy, we will consider first certain functional
similarities between information processing by humans and machines.

When an individual is confronted with a problem, he may call upon
intuition, learning, and experience to solve that problem. All of these
terms refer to the fact that he has available inherited and acquired infor­
mation pertinent to the solution of specific problems. This information is
stored (in ways as yet undetermined) in his memory. This memory is of
sufiBcient capacity to store vast amounts of information pertinent to the
solution of specific problems, and there are mechanisms for integrating
various sections of this stored data in a manner appropriate to the
solution of new and more complex problems. It will be shown in Chapter 2
that before a digital computer can produce the solution to a specific
problem, it, too, must be furnished with information—^in the form of a
program which describes a specific sequence of operations to be per­
formed. If a computer is to be able to solve different problems, it must
be furnished with appropriate programs. These are stored in its memory.

16 1. INTRODUCTION

•For a lucid survey of this subject see M. Minsky [1961] Steps toward artificial intelli­
gence, Proc. IRE, 49, 8-30.

referred to as the store, to which access may be gained by means of a
control unit.

Though a stored program digital computer is conceptually a simple
device, its high rate of operation and facility for arithmetic and logical
operations, coupled with the ingenuity of its users, make it of great utility.
Outside of their importance to many specific areas (delineated below) such
machines are contributing materially to the acquisition of knowledge by
processing vast amounts of data and performing computations to check
new theories. An important indirect benefit they provide is the introduction
of improved procedures and terminology to areas previously limited in
their use of systematic mathematical and logical formulations.

Application of digital computer technology to more fields of human
endeavor is increasing rapidly. In the business world, digital computers
facilitate and accelerate the extensive routine data processing vital to daily
commerce, e.g., processing of credit transaction data, customer bilUng,
inventory control and various accounting operations. Information proc­
essors are essential to the military in many areas, e.g., in military intelU-
gence data processing, early warning systems, command and control
systems; for automatic navigation of ships, aircraft and space vehicles,
automatic control of weapons systems, automatic checkout of complex
electronic systems prior to use. Computers can be used in industrial auto­
mation for data refinement and assimilation, scanning of instrumentation
for detection of alarm conditions, automatic data logging, evaluation of
plant performance and control of machines, plants and processes. Com­
puters can be used in factories to improve record keeping and scheduling
of production. They can be appUed to the regulation of traffic, e.g., 1)
aircraft, train, steamship and freeway traffic, 2) messages to be routed
through complex communications networks (such as satellite relay sys­
tems), 3) commodities like natural gas and oil, whose flow through
hundreds of miles of pipeUne distribution systems must be economically
controlled. Application to management problems, whether in industrial,
governmental or military areas, will be extensive because the amount of
data upon which decisions must be based is increasing while the time
available for decision making is decreasing. Some interesting applications
on the horizon are: 1) teaching machines for efficient, automatic factual
instruction, 2) machines to aid medical diagnosis, 3) large scale informa­
tion storage and retrieval systems.

One of the most intriguing areas of investigation is the application of
artificial intelligence systems* to problems which, though well defined, are
too difficult for complete analysis. Obtaining a solution to some of these

1.10. COMPUTER APPLICATIONS 17

problems by an exhaustive search and test of all possibilities would require
an unattainable amount of time even with the fastest machines. Therefore,
various techniques are being investigated to produce computer programs
that limit the search to manageable proportions. For example, there are:
1) pattern recognition programs which, by extracting significant features
from a totality containing much that is irrelevant, classify problems into
categories for which specific problem solving procedures may be prescribed,
2) learning programs which generalize on accumulated experience, 3)
planning and administrative procedures for attacking the over-all problem
and its interrelated parts, 4) inductive methods which, given a model of a
universe, can generate useful predictions for it. All of these higher level
information processors are based on externally observable features of
schemes by which men attack new problems.

A mental process important to creativity is that by which relations
between events are recognized, stored and new information being associated
and integrated to form new ideas. This is usually on a gross level at first,
but with continued refinement can lead to a useful model or set of laws
which state these relationships in a quantitative manner. No one has yet
brought forth a means by which a computer could create a useful new con­
cept. Even if a machine could generate new theories, say by some statistical
process of connecting various facts and testing them for consistency, it
would still lack criteria for selecting meaningful ones unless well defined
abstract and/or physical goals were implanted by a program (realization of
a physical goal requiring interconnection between the computer and ap­
propriate actuators).

Application of digital computers to higher level types of information
processing has brought renewed speculation on whether machines can
be made to think (reminiscent of earlier descriptions of digital computers
as electronic brains). This speculation is meaningless since "thought" has
never been adequately defined and serves merely as a label for a complex
of mental processes whose mechanisms are not understood. The term
"artificial intelligence" simply refers to higher level information processing
performed by machines which have been furnished with heuristic and/or
algorithmic devices for solving problems. This extension of man's intellect
does not degrade his dignity, as some suggest, but is a further expression of
his mental powers.

In case you are chagrined by the suggestion of being only an intelligent
machine we submit an observation from Karl Jasper's The Future of Man­
kind (translated by E.B. Ashton, University of Chicago Press, 1961):
"Intelligence alone loses sight of final ends, of life itself, of the totality of
conditions of life in the pursuit of particular realizable goals. Something
more must control as well as animate mere intelligence."

2. The Nature of Automatic Computation

2.1. Elements of Information Processing Systems and Types of
Digital Computers

Before discussing the structure and techniques for utilization of digital
computers, a few words may be in order concerning information processing
systems in general. The term, information processing system, is used here
to include all systems containing the following elements. (1) Sources of
information from which data is obtained. (2) Transmission links which
convey the source data to a central processor and from there to locations
of end use. (3) The central processor which appUes elementary and/or
complex transformations to the original data to obtain a final set of data
in a desired form. (4) Output terminals for the processed data, including
cathode ray tubes or other visual displays, printers, recorders, and input
signals to actuators in control systems.

Information
sources

Central
processor

Displays
Recorders
Signals to actuators

Information
sources

Central
processor

Displays
Recorders
Signals to actuators

Information
sources

Central
processor

Displays
Recorders
Signals to actuators

Transmission Transmission
links links

FIG. 2.1. Elements of an information processing system

The elements of an information processing system are shown in Fig.
2.1. Many devices and methods have been developed for the purpose of
accomplishing each of the specialized functions:

(1) Information collecting devices: instruments for sensing pressure,
temperature, electromagnetic radiation, fluid flow; composition analyzers;
radars; human beings; etc.

(2) Transmission links: phone, teletype, coaxial Unes, radio, vehicular
transportation, human beings, etc.

(3) Central processors: desk calculators, sequencing devices (or pro­
grammers), coding devices, electronic digital computers, regulators, ana­
log computers, human beings, etc. A central processor may perform one
or more of the following types of operations on input data: arithmetic,

18

2.1. INFORMATION PROCESSING SYSTEMS 19

logical transforaiations, sorting and classification, conversion from one
type of code or numerical representation to another, storing, sequencing.

(4) Output terminals: For scientific, engineering, or business studies,
the outputs of a digital computer are usually graphs or printed data. For
commercial applications such as billing of notices to customers, or payroll
computations, the output is in printed form. In control applications, e.g.,
in industrial process control systems, or airborne navigation, flight manage­
ment, and weapons control systems, a number of simple monitoring dis­
plays are provided in addition to the electrical signals generated for con­
trolling the operation of various actuators within a regulator or servo
system. In other control applications, e.g., tactical data systems for proc­
essing radar, logistics, and intelligence information, or air traffic control
systems, input signals to various actuators must also be provided, but
the major emphasis is on a large number of displays, including cathode ray
tubes, display counters, and yes-no indicators, to inform responsible per­
sonnel of the various aspects of a situation as it develops.

When a "general purpose" digital computer, or GP machine, is referred
to, a central processor is implied that is capable of any of the operations
listed under item (3) . A few words are in order concerning the term
"general purpose" computer. Unfortunately, it often leads to confusion or
awkward types of descriptions. This tag became affixed to the first large
electronic digital computers. It arose because of the flexibility of these
computers in solving many different types of problems. This flexibility
derives from two principal sources. First, these machines are capable of
executing a large number of different elementary operations, from which
more complex operations can be obtained by combining the elementary
ones. Second, the manner in which elementary operations are to be com­
bined for the solution of a specific problem is specified by a sequence of
coded instructions, termed a program, which is inserted in the computer's
central memory known, too, as the main or central store, and which con­
trols the execution of a problem. Different programs are inserted for the
solution of different problems.

At a later date, similar computers were designed for specific applica­
tions. This allowed simplifications to be made, since only a single fixed
program had to be provided for. However, the tag "general purpose" had
already been assigned to this class of equipment, and therefore machines
designed for a special function were termed fixed program GP machines.

Another class of machines was devised primarily for the purpose of
solving differential equations. Its chief difference from the GP is that only
single bits, i.e., increments of information rather than whole numbers,
are transferred on its internal communication lines. This type of machine

20 2. THE NATURE OF AUTOMATIC COMPUTATION

•Since these processes were evolved to facilitate computation by human beings, they
may not necessarily be the best methods for computers. It may develop that
specialized methods of computation will evolve, and eventually change our present
day techniques of mathematical education.

is referred to as a digital differential analyzer, or DDA. It can be used
to solve any of a number of different types of algebraic as well as dif­
ferential equations, and, in this sense, is a general purpose computer.
Most DDA's in use are of the fixed program type, designed for incorpora­
tion, separately or in conjunction with a GP machine (the two usually
sharing a large capacity memory), into a control system. In this case, only a
particular set of equations has to be solved, subject to different initial
conditions and forcing functions.

To conclude, if a particular machine is designated as a special purpose
or general purpose type, it is not always clear whether reference is being
made to a GP machine or a DDA. One way out of this confusion is to
refer to one type of machine as an absolute, arithmetic, or integral transfer
computer and the other as an incremental or incremental analyzer, or
incremental transfer type of computer. The additional classification of
"general" or "special" purpose is made according to whether the machine
has a variable or fixed program.

2.2. The Nature of Automatic Computation

Our purpose here is to demonstrate the simplicity of the concepts
involved in the design of a general purpose arithmetic digital computer.
First of all, it must be emphasized that a computer cannot perform any
mathematical or logical operation beyond the capability of a suitably
trained human being. Its great utility is derived from the high speed
capabiUty of the electronic circuits used to perform arithmetic and logical
operations and other functions. There are descriptions of such circuits in
Chapters 4, and 5. At this point, we will consider the fundamental
nature of computational processes* performed by human beings, and
how these processes may be simulated by an automatic computer.

Consider first how a human being with only pencil and paper performs
a computation. Suppose, for example, that he wishes to determine how
much money he has spent during the previous weeks. He has several bills,
each of which has some amount of money specified on it. These bills can
be considered as storage devices because they retain information, making
it available when needed. To produce the sum total, he would most likely
list the amounts of the individual bills on a piece of paper, and then pro­
ceed to find the sum. The following different types of elements entered
into the operations described:

2.2. THE NATURE OF AUTOMATIC COMPUTATION 21

(1) An input element: The pencil, controlled by the human being,
which effected the transfer of the individual pieces of information from
several places (the individual bills) to a single place (the tally sheet)
where the required summation could be performed.

(2) Storage elements. Permanent: The bills which retain information
and make it available when needed. Temporary: The tally sheet. After
the sum is obtained the information on this sheet of paper may be erased,
if required for no additional purpose.

(3) Arithmetic element: Certain parts of the brain which are capable
of performing the operation of addition. The inputs to the brain's arith­
metic section are derived via visual signals received from the pencil marks
on the paper.

(4) Output element: The pencil, by means of which the human being
records the answer on the sheet of paper.

(5) Control element: The control element controls the now of infor­
mation between the other elements. In this case it is the human being who
determines from where information is to be accepted, what types of opera­
tion to perform, and where processed information (the answer) is to be
stored.

Input

Arithnnetic
Control Storage elenfient Control Storage

1 1 j i \
1 1 •

Output

FIG. 2.2. Interrelation of elements in a digital computing system

The interrelation of the various elements is shown in Fig. 2.2. In our
example, the data transmission lines shown in Fig. 2.2 are of two types.
Information is transmitted from the paper to the eye via light rays, and
from the eye to the brain via electrical signals propagated along a nerve
bimdle. It is transmitted from the brain to the paper via electrical signals
which cause the fingers of the hand to move a writing instrument so that
it forms the desired characters.

Certain variants of the operations described are possible. For example,
the use of pencil and paper as input-output and temporary storage ele­
ments may be eUminated. Information from the bills may be sent to
temporary storage positions in the brain, the computation performed in
the brain's arithmetic elements, and the final answer stored in other storage
elements of the brain. However, not many people have developed the

22 2. THE NATURE OF AUTOMATIC COMPUTATION

facility of performing a long sequence of arithmetic operations "in their
head" and therefore mechanical aids are utilized. An important aid is the
electromechanical desk calculator which permits long sequences of arith­
metic operations to be carried out in less time and with less fatigue for the
operator (consequently with less chance for error) than computation with
only pencil and paper.

The types of operational capabilities required of a general purpose
electronic digital computer will now be considered. An important point
to remember is that the function of performing arithmetic and logical
operations comprises only part of a computing system. Another important
function is the transfer of information from one locality to anoüier. In
an average computation using a desk calculator an appreciable percentage
of time is spent in information transfer operations, e.g., transferring
information from original sources to data sheets, copying information
from data sheets into the calculator, copying intermediate results from
the calculator onto sheets of paper, preparing sheets of paper with the
final tabulated answers.

It becomes apparent that in order to increase the speed of a complete
computational process, it is necessary to increase the speed of the transfer
operations as well as that of the arithmetic operations. This implies the
elimination of the human operator once the computation is begun, for
he is the bottleneck. Clearly one gains very little by decreasing the time
required to perform an arithmetic operation from say, 1 sec to 1/100
sec, if at the end of each operation a human operator has to spend several
seconds copying information out of and inserting new information into
an arithmetic unit.

The utility of present electronic digital computers results not only
from their basic high speed of operation, but also from the fact that they
can perform without human intervention all the steps required in a com­
putation involving thousands of operations. This is possible because of
three distinct reasons. First of all, a method for solution of a given prob­
lem can be stated in terms of a relatively short program which lists all
the elemental arithmetic, logical, and transfer operations that are to be
performed in the course of solving a problem. This program is prevented
from becoming too long by the use of iterative problem-solving techniques
in which a sequence of operations is repeated until a desired result is
obtained. This makes it unnecessary to write new steps for each repetition
of the sequence. Instead, one merely writes the sequence and specifies
that it be repeated, with new initial conditions each time, until a desired
result is obtained, at which time an indication is provided by the machine.
Second, the control unit of the computer causes the individual steps of a
computation to be carried out as directed in the program. Third, the com-

2.3. STORED PROGRAM DIGITAL COMPUTERS 23

• C
Instructions Nunnbers Accumulator Control register

Main storage unit

FIG. 2.3. Principal storage units in a digital computer

puter can execute conditional transfer instructions. This permits the opera­
tions in a subsequent iterative section of a program to be initiated without
human intervention upon the successful completion of a preceding iterative
section of a program.

The general types of instructions that a computer should be capable
of executing are:

(1) Combination transfer and arithmetic or logical instructions. These
instructions cause information from specified memory locations to be
brought to the arithmetic unit where operations such as the multiplication,
division, addition, subtraction, and comparison of two numbers are per­
formed. The result is left in the arithmetic unit at the end of an operation.

(2) Operations involving the arithmetic unit only with no reference
to the memory; e.g., shift instructions.

(3) Transfer instructions which cause a transfer of information from
one part of the computer, e.g., the memory or arithmetic unit, to one or
more other parts of tíie computer.

(4) Control transfer instructions. There are two major types of con­
trol transfer instructions. The imconditional transfer instruction transfers
control to an instruction out of sequence. The transfer may be to auxiliary
programs outside the main program or may serve to skip mstructions in
a given sequence. This type of transfer does not involve the use of any
data not contained in the instruction itself. One conditional transfer or test
instruction operates as follows: If the number in the arithmetic unit (the
accumulator) is ^ 0, control will proceed to the next instruction in
sequence, but if the number is < 0, control will be shifted to the instruc­
tion located in the memory position specified by the conditional transfer
mstructions (for some variants see Section 7.2).

(5) Instructions involving the transmission of information from the
input units and to the output units.

2.3. Computation by α Stored Program Digital Computer

The following discussion will show how automatic computation can
be achieved even by a computer capable of executing only a very few
shnple instructions. Assume that the computer contains the following
elements (shown schematically in Fig. 2.3):

24 2. THE NATURE OF AUTOMATIC COMPUTATION

The code used to represent an instruction consists basically of two
parts: 1) an operation field in which is placed a code s)mbol for a speci­
fied operation, 2) an address field in which appears a number whose
meaning depends on the operation. In the one-address type of machine
described here (see Section 7.5.4 for a description of multi-address in­
structions) the number in the address field of certain instructions (for
example, cAm, Am, Sm and C m) indicates a storage location whose
contents are to be transmitted elsewhere or altered; in transfer of control
instructions (for example. Um, T m) the number in the address field
indicates an address to which control will or may be transferred; in a binary

(1) A main storage unit which has adequate capacity to hold the
coded representations of the instructions in a program, as well as numbers
that must be stored, e.g., constants, initial values of problem parameters,
and numbers generated during the computation which must be stored
temporarily.

(2) An accumulator, which is a special storage register associated
with the arithmetic unit. It holds an operand in a form accessible to the
arithmetic unit, allowing certain operations to be performed on it. In
operations involving two operands, it holds one while the second is located
in the store and transmitted to the arithmetic unit. Also, it serves to store
a result until it can be transmitted elsewhere.

(3) A register called the control register whose contents indicate
from which location in the main storage to obtain the instruction to be
executed next.
Assume also that the computer can execute only seven different instruc­
tions. The nature of these instructions as well as mnemonic codes for them
are shown in Table 2.1.

TABLE 2.1. Instruction repertory of a simple, hypothetical computer

Code Instruction

c A m Add the contents of storage location m to the cleared accumulator.
A m Add the contents of storage location m to the contents of the accumula­

tor, leaving the sum in the accumulator.
S m Subtract the contents of storage location m from the contents of the

accumulator, leaving the difference in the accumulator.
C m Copy the contents of the accumulator into storage location m.
U m Transfer the address m to the control register.
Τ m Test (i.e., inspect) the sign of the number in the accumulator. If the

number is negative transfer the address m to the control register. If the
number is zero or positive do nothing.

STOP Go into an idle state.

2.3. STORED PROGRAM DIGITAL COMPUTERS 25

shift instruction it indicates the number of binary places to be shifted.
The Ust of instructions in Section 7.2 indicates other uses to which the
address field may be applied. Because failure to distinguish between an
address and data stored at that address can be a major source of difficulty
in writing and understanding programs, sometimes parentheses are placed
about the number in the address field to emphasize that the contents of the
designated location are being referred to. However, in this text paren­
theses will not be used in the instruction codes.

The STOP instruction defined in Table 2.1 implies that the computer
is capable of being in either an active or idle state, and that external means
are provided for placing the computer in one or the other state. This is
the case and the actions of the computer in these states is outlined below.

State Operations Performed

Idle: D o nothing
Active: When not otherwise occupied:

(1) Add 1 to the number in the control register, leaving the simi there.
(2) Read and execute the instruction in the storage location designated

by the new number in the control register.

We will specify that when the computer is first set to an active state,
the contents of the control register are set to zero. As a result of operation
(1) in the active state, the number in the control register is changed to 1
w d the instruction stored in the storage location designated by 1 is
executed. After the execution of each instruction, the instruction in the
next consecutively numbered storage location will be executed. Instruc­
tions U m and T m can cause an exception to this normal sequence
of operations. If the instruction U m appears in storage location /, the
next instruction executed after it will not be that in storage location / + 1,
but rather that in storage location m. If the instruction Τ m appears in
storage location /, the next instruction executed after it will be that in
location / -f 1 if the number currently in the accumulator is positive or zero;
otherwise, it will be the instruction in location m. U m and T m are
referred to as unconditional transfer and conditional transfer (or test)
instructions, respectively.

The way has now been prepared to show how a large number of
arithmetic and logical operations that may be required in the solution
of a problem can be performed without the aid of outside intervention,
provided the computer has certain elements and capabilities which have
been described. As an example of automatic computation consider the
program shown in Table 2.2. It is designed to find the highest factor of
an integer, x. Each instruction is executed after its address, shown in
column one, appears in the control register. The third column shows the
contents of the accumulator after the execution of each instruction.

26 2. T H E N A T U R E O F A U T O M A T I C C O M P U T A T I O N

Address Instruction Contents of Accumulator

001 cA 104 0
002 S 101 — X
003 A 102 -x + jyi
004 Τ 003 -x + jyi
005 C 103
006 cA 104 0
007 S 103 x-iyi
008 Τ 010 x-jyi
009 STOP 0
010 cA 102 yi
Oil S 105
012 C 102
013 U 001

Numbers ^
101

X 1 102 yi* \ Constants and intermediate
103 results are stored here.
104 . . . 000 \
105 . . . 001 /

•The number stored here before th**
y^ = x-\.

nart of the program is the initial trial factor

An explanation of the program itself follows: The instructions of the
program are placed in correct sequence in locations 001 through 013;
101 through 105 are reserved for storage of numbers. Location 101 holds
the integer, x; 102 and 103 serve as temporary or working storage for
numbers generated in the course of the program; 104 and 105 store the
constants required by the program.

The instructions in locations 001 and 002 clear the accumulator and
enter — χ into it. The instruction in location 003 produces — χ + yi. Each
time instruction Τ 003 is obeyed, control is returned to location 003 until,
after / cycles, the sign digit of the accumulator indicates that - x + jyi is
either a positive number or zero.t When this occurs, the instruction Τ 003
advances control to location 005.

t in a system of numerical representation (see Section 6.1.4) in which the sign digit
of zero is the same as that of a positive number, testing of the sign digit (which
is the operation performed in a U m or Τ m instruction) will not distinguish between
•he two cases.

TABLE 2.2. Program for determining the highest factor of an integer, x.

2.3. STORED PROGRAM DIGITAL COMPUTERS 27

In order to detect whether - JC + ;>i is a positive number or zero, the
quantity - x + jyt is converted by means of the instructions in locations
005, 006 and 007 into the quantity χ - jyi (by storing - χ-\- jyi in loca­
tion 103 and then subtracting it from the cleared accumulator). If — χ + jyi
is a positive number the conversion results in a negative number, if it is
zero the conversion has no effect. If yi is a factor of x, χ - jyi is zero. In
this case, the instruction Τ 010 advances control to location 009 and
completion of the program. If yi is not a factor, the converted quantity
X - jyi is not zero and Τ 010 advances control to location 010. The instruc­
tions in locations 010 through 012 produce a new trial factor yi - I and
store it in location 102. Instruction U 001 permits the whole sequence of
instructions to be reiterated with yt - 1 as the new trial factor.

All the integers from yo downwards will be tested until finally one is
found that is a factor. When this occurs, the number in the accumulator
will be zero when the test instruction Τ 010 is executed, so control will
be advanced to the instruction in location 009. The STOP instruction puts
the machine into an idle state, and the highest factor of JC will be found in
location 102.

The preceding example has shown how a computational problem may
be solved completely without human intervention, provided certain speci­
fied conditions are met. Consideration of the example reveals the following
important characteristics of computation with a stored program computer:

(1) The number of different types of instructions that the computer
must be capable of executing need not be large.

(2) The number of instructions in the stored program is extremely
small compared to the total number of instructions executed in the running
of the program. This is possible because of the unconditional transfer
instruction which may be used to provide recycling of a set of instructions.

(3) The conditional transfer, or test, instruction supplies the necessary
means for breaking out of iterative loops at the correct point in the
computation.

(4) The repertory of instructions the computer is capable of executing
and the nature of its control unit (i.e., its rules of operation) are dis­
tinguishing features of a particular computer.

(5) The initial contents of the main storage unit, both instructions and
numbers, are distinguishing features of a particular computation.

In the preceding description illustrating the operation of a stored
program computer, it was assumed that both instructions and numbers
were stored in a common storage unit. The reader may ask, then, how the
computer can distinguish whether the contents of a particular storage

28 2. THE NATURE OF AUTOMATIC COMPUTATION

location represent a number or an instruction, since instructions are
represented by numerical codes. The answer is that it cannot. If the control
unit is directed to a specified storage location for the next instruction, the
contents of that location will be interpreted as an instruction (even though
it represents a number). Also, if the control unit is directed to a specified
storage location for an operand, the contents of that location will be inter­
preted as a number (even though it represents an instruction). Such a
situation does not, however, imply unavoidable confusion. The treatment
of a number as an instruction may be avoided if the control unit is never
directed to seek an instruction in a storage location not containing an
instruction. The treatment of an instruction as a number may be avoided
if the control unit is never directed to transfer to the arithmetic unit the
contents of a storage location holding an instruction. However, while at
first glance it may seem undesirable, the capability of operating on an
instruction as a conventional number is actually an asset and contributes
greatly to the utility of a stored program digital computer. This is because
as a result of such operations one instruction may be converted to another.
By this process, a computer can modify its own program and substitute
new sequences of instructions for old ones, when required, during the
course of a computation. This feature is valuable as a means of conserving
storage.

If separate storage units were used for instructions and numbers,
then the problem of possible misinterpretation of one as the other would
not be present. Actually some of the earlier digital computers did have
separate stores for instructions and numbers: for example, the Harvard
Mark I computer. However, the advantages afforded by a common stor­
age unit are so significant that such an arrangement is now common prac­
tice in digital computers. These advantages are first that it allows the use
of a smaller total storage capacity since large variations in the relative
amount of storage space allotted to instructions and numbers in different
problems can be accommodated, provided the total storage requirement
does not exceed the capacity of the computer. Secondly, the flexibility and
efficiency of use are increased. As already indicated, when the program of
instructions is stored in the same storage unit as numbers, they also may
be transferred to the arithmetic unit. There they may be modified, xmder
the control of other instructions, and used subsequently as systematically
different instructions. Either or both the order and address codes of an
instruction may be modified. In Section 7.5.5, there is a description of
special devices that may be incorporated into the control unit to facilitate
address modification. The example following illustrates an application in
which the storage space required for a series of operations may be reduced
if an address modification procedure is utilized.

2.3. STORED PROGRAM DIGITAL COMPUTERS 29

Address Instruction Result

000 cA 401 Puts contents of 401 into accumulator
001 C 451 Duplicates contents of 401 (now in accumulator) in 451
002 cA 402
003 C 452
000

048 cA 425
049 C 475

Inspection of this simple program shows that there are only two distinct
instructions; namely cA(jCi) and C (y i) , and each is repeated 25 times,
with each address X i = \ X i - u and each new address y i = 1 + y i _ i .

An equivalent, but considerably shorter program can be obtained by
storing only one pair of instructions, rather than 25, together with addi­
tional instructions that automatically change the addresses Xt, y», by 1
after each pair of instructions is executed. A program utilizing this address
modification procedure is shown in Table 2.4.

Before continuing with an explanation of the program in Table 2.4,
some prefatory remarks are in order. First of all, as a matter of con­
venience, different orders are designated by literal codes although within
a machine they are represented by numerical codes. To understand the
operation of this program, it is necessary to know that the order cA is, in
this case, specified internally b y the code 01. Also, as a rule, specific
sections of the main store are reserved for the storage of constants and
problem parameters. In this example, the storage locations for the constants
are designated by the literal symbols a, b, rather than by numerical
addresses. An important reason for the separation of instructions and
numbers is that it prevents the accidental interpretation of a number as an
instruction. This is because after starting at a specified point, the control

A technique by which the addresses of certain designated instructions
are modified as needed will be described with reference to a pirogram for
transferring the contents of one group of storage locations to another group.
Assume that for some good reason it is desirable to transfer the contents
of storage locations 401-425 to locations 451-475. This could be done
without recourse to an address modification scheme by the program
shown in Table 2.3.

TABLE 2.3. A program for relocating data in storage

30 2. T H E N A T U R E O F A U T O M A T I C C O M P U T A T I O N

Address Instruction

000 cA 401
001 C451
002 cA a
003 SOOO
004 Τ 012 (Exit to 012)
005 cAOOO
006 A b
007 COOO
008 cA 001
009 A b
010 COOl
Oil UOOO
012 Next instruction

Constants
a 01 424
b 00 001

unit obtains its instructions from consecutively numbered storage locations.
If a constant were stored within the main body of the program, say at
location 008, then after the instruction in location 007 had been executed,
the control unit would take the number from location 008 and interpret
it as an instruction. The reason for the use of the literal symbols a, b,
rather than specific storage location numbers is simply to indicate that
the constants may be placed anywhere, so long as they are kept out of
the main body of the program. Actually, the use of literal symbols to
indicate addresses of the main body of the program as well as of con­
stants and problem parameters is of considerable importance. First of
all, it is useful to employ symbolic addresses in the initial preparation of
relatively long programs because alterations may be made in one part of
the program without the need for extensive changes of addresses through­
out. For example, if actual addresses were used and a required instruction
inadvertently omitted, then all addresses beyond that point, as well as
all references to such addresses, would have to be altered. Of course,
after the program has been adequately checked, and is ready to be inserted
into the computer, actual addresses would be substituted for the symbolic
addresses. Symbolic addresses are also of importance in the automatic

TABLE 2.4. A shorter program for relocating data in storage

2.3. S T O R E D P R O G R A M DIGITAL C O M P U T E R S 31

assembly of subroutines (defined in the closing paragraphs of this section)
into working programs.

An explanation of the function of the different instructions in the
program shown in Table 2.4 follows.

Address of
Instruction Effect of Instruction

000, 001 This part of the program has the same effect as the corresponding
instructions in Table 2.3.

002,003 Causes the instruction in storage location 000, i.e., the number
01 401 to be subtracted from the number 01 424 obtained from
location a. (As a result a number ^ 0 will be in the accumulator
at the time the instruction Τ 012 is executed, for the first 24
cycles of the iteration loop. On the twenty-fifth cycle, after all the
required transfers have been performed, the number in the
accumulator will be < 0 at the time Τ 012 is executed.

004 Causes control to be transferred to storage location 012 if the
number in the accumulator is negative. This instruction provides
the required exit from the program.

005, 006, 007 Adds 1 to the address of the instruction in location 000.

008,009,010 Adds 1 to the address of the instruction in location 001.

Oil Returns control to the beginning of the program, enabling the
sequence of operations to be repeated (with different addresses,
in locations 000 and 001). After 25 such cycles the sequence will
be automatically terminated by means of the instruction in
location 004.

The program of Table 2.4 accomplishes the transfer of the 25 numbers
with the storage of only 12 instructions and two constants, whereas the
first program requires 50 words of storage. However, as often occurs, a
reduction in storage requirements results in an increase in computation
time. The program in Table 2.3 requires only 50 operations whereas that
in Table 2.4 requires 293.

In practice, while frequently used operations such as addition and
multiplication are built into a machine as instructions, more complex
and less frequently used mathematical and logical functions are performed
by means of special programs. (Each of these programs may be con­
sidered as a complex instruction.) When these functions are required
in the course of solving a larger problem, they may be taken from a Hbrary
of such programs and incoφorated into the larger program. Programs
for specific functions, which have already been designed and are available
for incoφoration into larger programs, are referred to as subprograms or

32 2. T H E N A T U R E O F A U T O M A T I C C O M P U T A T I O N

subroutines. The main program, the highest level of organization of a
computer program, prescribes all operations not covered by a subroutine.
Generally speaking, any sequence of instructions that a programmer finds
convenient to treat as a sub-unit may be considered a subroutine.

Each time a subroutine, carefully planned to minimize storage require­
ments and execution time, is written, checked out, and made available
for incorporation into a main program, the list of instructions the com­
puter can execute is effectively augmented. The availability of a hbrary
of subroutines allows a programmer to utilize data processing operations
not built into a computer's instruction repertory without having to write
corresponding programs each time they are required. This greatly reduces
the drudgery of program preparation—lessening both the time spent in
program preparation and the probability of introducing errors. Also,
since the use of subroutines allows the over-all program to be constructed
from fewer blocks, the program becomes easier to comprehend and future
modifications of it are simplified. Because the capacity of the main or high
speed store is limited by cost and other practical engineering considera­
tions, it is usually reserved for storage of the program to be executed
while a complete library of subroutines is kept in an auxiliary store of
lower speed and greater capacity.

For scientific and engineering computation, the most commonly used
computational subroutines include those for extraction of square, cube,
and higher order roots, and the solution of nth degree algebraic equations;
generation of elementary functions—trigonometric, inverse trigonometric,
hyperbolic, exponential and logarithmetic; interpolation; functional summa­
tion; matrix manipulation; integration of ordinary differential equations.

2.4. Program Preparation
The solution of a problem by means of a digital computer calls for

the preparation and execution of a detailed plan of attack on the part of
the person or persons responsible. The important items entering into such
a plan are described below.

First of all, the problem must be analyzed and defined in detail. For
scientific and engineering problems, this includes a statement of any sim­
plifying assumptions or idealizations and results in an appropriate mathe­
matical expression of the problem, usually in the form of one or more
equations, together with any diagrams that may aid in clarifying the pro­
cedures to be used. Subsequently, the original mathematical expressions
are replaced by appropriate explicit, finite, arithmetic and logical pro­
cedures adequate to provide the required degree of approximation to the
exact solution. An important part of the analysis of the problem and its
reduction to solution of numerical expressions, relates to the processes of

2.4. P R O G R A M P R E P A R A T I O N 33

scaling and error analysis. The scaling of a problem depends on the
range of magnitudes the problem variables can assume over the interval
of interest. This range may either be estimated or, in some cases, com­
pensated for by the computer itself. (See the discussion on scaling and
on fixed- and floating-point operation in Chapter 6.) An error analysis
is made to determine the accuracy that may be expected of the com­
puter's answers. This accuracy will be influenced by two major sources of
error, whose effect on the final answers must be estimated. They are
truncation errors, which are introduced by the particular numerical ap­
proximation selected, and round-off errors introduced by the machine
itself, as a result of the finite length of its registers.

For commercial problems of a bookkeeping or record keeping nature,
such as preparation of financial statements, employee payroll deduction
computations, or insurance premium billing operations, only precise quan­
tities such as numbers and types of items, and dollars and cents are dealt
with. As a resuh, the problems of error analysis associated with most
scientific and engineering problems are not encountered. For these com­
mercial applications, a detailed statement of the problem is usually made
in English words accompanied by information flow diagrams. This descrip­
tion covers all pertinent procedures in the system and every eventuality
that may be encountered.

After specific numerical procedures have been chosen, they must be
translated into sequences of arithmetic and logical operations. This part of
the process is referred to as programming. It consists of adapting the
original problem definition to the capabilities of a computer. Preparation
of the program calls for a thorough knowledge of the capabilities of the
computer and its associated peripheral equipment. Since most problems
to be solved by a digital computer require many sequences of arithmetic
and logical operations, some type of mnemonic aid is called for. One that
is commonly used is the so called problem flow diagram which as the
name indicates shows the over-all flow of a problem. It provides organi­
zational clarity, and indicates the general structure of a sequence of
operations. It shows the location from which given quantities are obtained,
where and how quantities to be generated are produced, where inter­
mediate quantities are stored, and where output quantities are generated.
It is useful, also, in showing how a complete program can be built up from
simple processes for which programs have been worked out in the past
and which are available from a subroutine library. The flow diagrams
produced in the programming process differ from the diagrams used in
the analysis in that they are intended for use with a particular computer
and contain considerably more detail.

After an adequate flow diagram has been produced, the arithmetic and

34 2. T H E N A T U R E O F A U T O M A T I C C O M P U T A T I O N

logical operations indicated by it must be translated into a sequence of
instructions that a particular computer is capable of executing. This process
is referred to as coding and is the first part of the plan of attack discussed
thus far that requires an exact, comprehensive knowledge of the particular
machine to be used. Coding also includes such details as the specification
of an arrangement for the storage of input information and intermediate
results, and for the presentation of output information. The routine of
coding can be minimized by the use of subroutines and various automatic
coding techniques. Whenever subroutines are to be used, the main program
must be designed in such a way that it allows for the inclusion of sub­
routines. The effect of automatic coding is that it allows the problem
analyst's work to be brought to the machine in more or less general state­
ments rather than in detailed step-by-step codes.

After a detailed sequence of instructions for the solution of a problem
has been prepared, it must be inspected for mistakes that may have been
inadvertently introduced. To assist in this inspection, a number of special
mistake-hunting routines, usually referred to as debugging routines, have
been developed.

After a program has been debugged, it is ready for running. In the
event that the same program is run over and over, with variations in
certain parameters, say, with different boundary conditions, the process
is referred to as production running. After the program has been run, there
remains the task of evaluating the results. This is an extensive subject in
itself, and will not be treated here.

2.5. Program Flow Diagrams

It was stated in the preceding section that flow diagrams are useful in
preparing a complete program for machine solution. For the sake of
brevity, a flow diagram will be described for an operation that normally
would be only a small part of an over-all program, namely a program for
generating the square root of a given number N, where 0 < Ν < 1.
Since there are a number of numerical procedures by means of which the
square root may be obtained, the first decision to be made is in regard
to the choice of a particular method. Let us assume that because of its
relative simplicity and rapid convergence, the iterative expression shown
below is chosen

In this equation, Ν represents the number whose square root is to be
obtained, and Xi+i the approximation to this root obtained after (/ + 1)

2.5. PROGRAM FLOW DIAGRAMS 35

iterations. The initial approximation XQ may be obtained by providing a
small table giving the value of the square root for a selected number of
arguments. If such a table is not used, XQ is assumed to be approximately
equal to 1.0. The iteration is repeated until the difference (Xi^i — Xi)
becomes equal to or less than the precision required in the result.

In its most elementary form, a flow diagram may be composed simply
of a series of boxes interconnected by directed line segments. Each box
contains either a word or symbolic statement of an operation that is to
be performed. It may include such items as a statement of an equation
to be solved, a condition to be met, a check to be performed to determine
whether an operation is legitimate or numerically accurate, the source of
input data, the disposition of output data, etc. A useful preliminary pro­
cedure, at least for purposes of explanation, is to describe verbaUy the
major operations that have to be performed. Such a description is shown
below.

(1) Provide for the storage of problem parameters, constants, and
intermediate quantities. For the square root program, these quantities
include the constants N, 1, and V2, the intermediate quantities N/2,
Xu NXi/2, andZi+i.

(2) Provide for the execution of a sequence of arithmetic and logical
operations adequate to obtain the desired result. For the square root pro­
gram one such sequence is: (a) form the product Vi · Ν and store
the result; (b) divide N/2 by Xi and store the result; (c) form the
product V2 ' Xi', (d) form Xi^i by combining the quantities generated in
(b) and (c) , and store; (e) test for convergence by subtracting ΛΓ*
from Xi^i. (In Fig. 2.4 the notation (/ -f 1) / means: use the value of
Xi+i as the value of Xi in the next iteration).

{)^0 ()=0

Initial set-up Main iterative routine

FIG. 2.4. Flow design for a square root program

36 2. T H E N A T U R E O F A U T O M A T I C C O M P U T A T I O N

Function box

Choice box

®
0' @

Variable connector

FIG. 2.5. A basic set of symbols for a flow diagram

A flow diagram indicating a square root program is shown in Fig. 2.4.
The simple form of this diagram is adequate for the relatively simple
problem illustrated. However, for more lengthy and complex problems,
a better view of the program may be obtained by using a specialized set
of symbols and notations. Figure 2.5 illustrates a basic set of symbols,
adequate to describe any program. The function box will contain a verbal
or mathematical statement of a particular function to be performed. The
operations so indicated may be few or many in number and may or may
not contain conditional operations. Regardless, there is only a single entry
point and a single exit from the box. The choice box contains a question.
Which of the two or more possible exit paths will be followed depends on
the current result of computations which immediately precede and control
the branching operation (as illustrated in Table 2.2 and 2.4). The variable
connector symbols indicate to which of several addresses control can ad­
vance, as designated by the current address in a transfer of control in­
struction—this address being subject to modification during the running
of the program.

In addition to the basic set of symbols described, a number of others
may be provided to facilitate either the drawing or interpretation of a flow
diagram. For example, remote points may be connected without lines by
placing a circle containing the same symbol at the terminus of points to
be connected. Special symbols may be used to indicate stopping points in
the program, and the transfer of information into or out of the computer.
Another highly useful device is a special form of box, termed an assertion
box, in which annotations are placed explaining certain tricks or pro­
cedures used at various points in a program.

2.6. A U T O M A T I C S E Q U E N C I N G M E T H O D S 37

2.6. Automatic Sequencing Methods

Three distinct types of practical automatically sequenced digital com­
puters have been developed, namely, machines in which the execution of
instructions is controlled by I) external devices (such as punched cards
or tapes), 2) a plugboard connected to the internal circuits of the machine,
or 3) an internally stored program. Since the subject of this book is the
stored program computer, the other types will be mentioned only briefly.

In an externally programmed computer, instructions on punched cards
or tapes, in a code meaningful to the computer and read under control
of its internal circuits, direct the transfer of data into and out of sections
of the arithmetic unit. The programming flexibility is poor compared to the
stored program machine. Specifically, neither program iterations nor con­
ditional transfer operations can be handled efficiently. For example, while
one can resort to the cumbersome process of duplicating a set of instructions
many times when the number of iterations required is known in advance,
when it is not some other device must be employed. The simplest practical
device is to prepare an endless loop of tape and have it read over and
over until a number produced by the program being repeated indicates the
process has been completed. However, if there are many loops this pro­
cedure, too, is uneconomical because of the many tape readers and the
complexity of control that would be required. Finally, this type of com­
puter lacks facihties for modification of instructions.

In a plugboard controlled machine, the sequence of operations is
determined by the pattern of interconnecting jumper wires plugged into
the board. More time is normally required to prepare a plugboard than
a deck of punched cards. However, because there are many standard types
of problems, especially in commercial applications, a removeable plug­
board once wired for a particular program can be stored and available for
future use. In practice, the plugboard wiring is manageable and the amount
of equipment reasonable only when there are not more than a hundred or
so steps in a given program sequence. A number of techniques for program
iteration and conditional transfers of control are available in such machines.

3. Boolean Algebra

3.1. Introduction

The subject of Boolean algebra has important application in the
design of systems composed of storage elements capable of assuming a
discrete number of stable states and switching devices that trigger these
elements from one stable state to another. An electronic digital computer
is such a system. The utility of Boolean algebra in the design of digital
equipment will be better appreciated after the discussion in this chapter of
certain fundamentals, including a comparison of ordinary algebra and
Boolean algebra, procedures for simplifying Boolean algebraic equations,
and the basis for representing switching functions in binary computers by
Boolean algebraic equations.

Algebra ordinarily refers to that branch of mathematics wherein
quantitative relationships between entities are indicated by the use of
numbers, letters (as symbols for the entities), and operational symbols
(such as multiplication or addition signs). The rules of arithmetic are
used in the solution of such algebraic equations.

The ways in which Boolean algebra differs from ordinary algebra are
summarized below:

(1) There are no coefficients associated with the terms in a Boolean
algebraic equation.

(2) Each letter designates which of two distinguishable events exists.
As a matter of convenience, the value assigned to the letter upon the
occurrence of one event is 0, and for the other it is 1.

(3) A Boolean algebraic function can only state whether one of two
possible events exists, e.g., whether a circuit is open or closed, a signal
present or not, a statement true or false, etc. The two possible values of
the function are also usually designated by 0 and 1.

(4) There are a number of logical operators for producing Boolean
algebraic functions. However, in general, they are not all used in the
logical description of a digital computer for any Boolean function can be
generated by the use of a proper subset of these operators. To date, the
subset most commonly used includes the primitive operators referred to
by the designation OR, AND, and NOT. If the two assigned values of a
Boolean algebraic variable are interpreted as representing the numerical
values of the binary number system, namely 0 and 1, then the three opera-

38

3.2. LOGICAL FUNCTIONS OF BOOLEAN ALGEBRA 39

Case A Β c

1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 1

*An algebra can be formed from an arbitrary set of rules provided they are used
systematically and do not invalidate each other.

tors are analogous to addition, multiplication, and complementation, re­
spectively, of binary elements. There is an exception* to the analogy in
that the result of the OR (Boolean addition) operation on two or more I's
produces 1 as a result. These, as well as other Boolean operators will be
described in the sections following.

(5) In Boolean algebra, there are no subtraction or division operators
as in ordinary algebra, nor operators such as roots or transcendental
operators. (Nevertheless, all the arithmetic operations of number algebra
can be performed using only Boolean algebraic operators. Various means
for accomplishing this are described in Chapter 6) .

3.2. Logical Functions of Boolean Algebra

In this section three of the most common operations of Boolean alge­
bra will be described. Later in the chapter other operations will be con­
sidered, also.

The "inclusive or" operation of Boolean algebra will be designated
literally by OR and in equations by the symbol +. The Boolean equation
representing the OR function, C, of two variables A, Β is written as C =
(A + J5). This expression means: C is true if 4̂ or Β or both are true.
An equivalent interpretation is: the truth of A or Β or both impUes, and is
implied by, the truth of C. This relationship is defined in Table 3.1, which
shows all possible combinations of values of A, Β and defines the corres­
ponding values for C. In Table 3.1 truth is indicated by 1 and falsity by 0.
Reading across the table for all four possible cases, it is seen that C is
true if, and only if, either /I or Β or both are true. Except for case (4) ,
application of the OR operator produces the same result as the addition
operator of ordinary algebra. This similarity accounts for the OR operator
being sometimes referred to as the Boolean (or logical) addition operator,
and also partly explains the choice of the symbol + .

TABLE 3.1. Truth table for the OR function C, of two variables: A, B.

40 3. BOOLEAN ALGEBRA

Case A Β c

1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

The complementation or negation operation of Boolean algebra will
be designated literally by NOT and in equations by placing a bar over the
variable or variables so to be operated upon. For example, the NOT
function of a single variable. A, is written as A. The symbol. A, is read
as "the complement of A'' or "not / Í . " Its meaning is defined by Table 3.3,
which shows the relation between A and A.

TABLE 3 . 3 . Truth table for the NOT function, A.

A A

0 1
1 0

3.3. Fundamentals of Boolean Algebra

The reader may verify, either through induction or the construction

The "and" operation of Boolean algebra will be designated literally by
AND and in equations by placing the variables so to be operated upon
adjacent to one another. For example, the AND function, C, of two vari­
ables A, Β is written 2LS C = AB. This expression means: C is true if, and
only if, A and Β are both true. An equivalent interpretation is: the truth
of both A and Β implies, and is implied by, the truth of C. This relationship
is defined by Table 3.2. For all cases, application of the AND operator
produces the same result as the multiplication operator of ordinary algebra.
This similarity accounts for the AND operator being sometimes referred to
as the Boolean (or logical) multiplication operator, and also partly ex­
plains the way chosen to represent it in equations.

TABLE 3 . 2 . Truth table for the AND function, C, of two variables: A, B.

3.2. LOGICAL FUNCTIONS OF BOOLEAN ALGEBRA 41

of truth tables, that the commutative, associative, and distributive laws
of number algebra apply to Boolean algebra.

For addition

A+B = B+A Commutative

A + (B + C) (A + B) + C Associative.

One can demonstrate by means of a truth table, a proof of the
associative law for three variables A, B, and C. The proof for other
numbers of variables can be obtained by induction.

TABLE 3.4

Column 1 2 3 4 5 6 7
A B C (B+C) A+(B+C) (A+B) (A+B)+C

Case
1 0 0 0 0 0 0 0
2 0 0 1 1 1 0 1
3 0 1 0 1 1 1 1
4 0 0 1 1 1 1 1
5 1 0 0 0 1 1 1
6 1 0 1 1 1 1 1
7 1 1 0 1 1 1 1
8 1 1 1 1 1 1 1

It is seen that column 5 is identical to column 7 for all possible com­
binations of values of A, B, and C.

For multiplication

AB

A(BC) =

A(B + C)

BA

(AB)C

AB+AC

Commutative

Associative

Distributive.

The reader may easily verify the above relations by means of a truth
table.

Relationships useful in the manipulation of Boolean algebraic equations
are listed in Eqs. (3-1) - (3-8). Some of these relationships will look
incorrect if interpreted as ordinary numerical algebraic equations. The
reader is warned, therefore, to be cognizant that these are Boolean algebraic
equations, and to interpret their meaning accordingly.

42 3. BOOLEAN ALGEBRA

and -I- 5 = (AB). (3-13)
A proof of Eq. (3-13) can be provided by means of a truth table

TABLE 3.5

Column 1 2 3 4 5 6 7

A Β A β AS (Aß) A+B

Case
1 0 0 1 1 1 0 0
2 0 1 1 0 0 1 1
3 1 0 0 1 0 1 1
4 1 I 0 0 0 1 1

Special cases of Boolean multiplication

AA = A (3-1)

0^ = 0 (3-2)

IA = A (3-3)

AÄ = 0. (3-4)

Special cases of Boolean addition

A+A = A (3-5)

0 + A = A (3-6)

1 + ^ = 1 (3-7)

A+Ä= I. (3-8)

An important theorem in Boolean algebra, referred to as the principle
of dualization, states in eííect

i f ^ + 5 = l (3-9)

then AS = 0. (3-10)

It should be noted that Eq. (3-10) may be obtained from Eq. (3-9)
merely by replacing each letter and/or truth value by its complement, and
each addition operator by a multiplication operator.

In general

ifA+B=C (3-11)

then AS = C (3-12)

3.3. F U N D A M E N T A L S O F B O O L E A N A L G E B R A 43

{AB) = ΑΛ-Ε (3-16)

{A+B)^ AB (3-17)

(J) = A, (3-18)

Some tautologiest useful for simplifying elemental forms are listed
below:

A+ A = \ (3-19)

ÄA = Q (3-20)

A= A+A= Α+Α-{Ά = . . . (3-21)

A = AA = AAA = . . . (3-22)

•Thus indicating that any Boolean equation can be written using the three operators,
AND, OR, and NOT.

t A tautology is an equation that is true whatever be the truth values of the elemen­
tary propositions of which it is composed.

It is seen that column 6 is identical to column 7 for all possible com­
binations of values of A and B,

A theorem due to De Morgan states that any Boolean function can be
represented as a logical sum of logical products* (generally abbreviated,
for convenience, to "a sum of products") each of which contains all input
variables. A representation of this type is said to be in elemental form
or disjunctive normal form. Equation (3-14) is an example.

y = ABC + ABC + ABC + . . . (3-14)

Such an expression may be obtained directly from a truth table by noting
all combinations of input variables for which the output variable has a
value of 1.

Equation (3-15) is obtained from Eq. (3-14) by the principle of
dualization. It states that any Boolean equation can be written as a
logical product of logical sums* (generally abbreviated, for convenience,
to "a product of sums") each of which contains all input variables. A
representation of this type is said to be in conjunctive normal form. Equa­
tion (3-15) is an example

y=^{Ä + B+C){A+B+C).., (3-15)

Some simple identities that can be obtained by means of the duaUty
theorem are

44 3. B O O L E A N A L G E B R A

g(Ai) + [giAdMBj) = g(Ai)-hh(Bj)

where Ai denotes a set of / variables and Bj a set of / variables. Any
variable may appear in either set, and there is no Hmitation on the form of
the functional relationships denoted by g and h.

The validity of Eq. (3-25) may be demonstrated as follows. Con­
sidering the right side of Eq. (3-25)

A(A + Β) = A + AB = A (3-23)

A+ÄB = A+B (3-24)

AB + ÄC + BC = AB + AC, (3-25)

Equations (3-23), (3-24), and (3-25) merit special comment. Equa­
tion (3-23) may be factored as follows:

A+ AB = Α(1 +B) = A, (3-26)

The validity of this expression is obvious upon recalUng that (1 + B) = 1
and lA = A. Equation (3-23) is a special case of the identity:

A+f(A,B,C...) = A+MB,C,.,.)

The vaUdity of Eq. (3-24) may be demonstrated as follows. Con­
sidering the left side of Eq. (3-24)

A + ÄB = A(l + Ä + B) + AB (3-27)

where the factor (I + A + B) = 1 (see Eq. (3-7)) is arbitrarily intro­
duced to facilitate manipulation of the equation.

Expanding the expression on the right of Eq. (3-27)

A + ÄB = A + AÄ + AB + ÄB. (3-28)

Since A = AA, Eq. (3-28) may be written

A + ÄB = AA + AÄ + AB + ÄB. (3-29)

Factoring the right side of Eq. (3-29)

A + ÄB = (A + Ä)(A + Β). (3-30)

Since (A + A) = I

A + ÄB = l(A + B) = A + B. (3-31)

Equation (3-24) is a special case of the identity: A + f(A, B, C . . .) =
A Λ- f(l, B, C ...), which can be generalized for functions involving three
or more input variables to the form

3.3. FUNDAMENTALS OF BOOLEAN ALGEBRA 45

AB + AC = (AB)l + AC, (3-32)

Since (1 + C) = 1, Eq. (3-32) may be written

AB + Ac = AB(l + C) + Ac, (3-33)

Expanding the expression on the right side of (3-33)

AB + Ac = AB + ABC + AC. (3-34)

Factoring out C on the right side of Eq. (3-34)

AB + AC = AB + C{AB + A), (3-35)

From Eq. (3-24), {AB + A) = A -\- Β, so Eq. (3-35) may be written as

AB + AC = AB+ C{A + B). (3-36)

Finally, expanding the expression on the right side of Eq. (3-36)

AB + AC = AB + CÄ + CB (3-37)

3.4. The Representation of Switching Functions by
Boolean Equations

Now that certain fundamentals of Boolean algebra have been discussed,
it is appropriate to state why this subject is of importance in the field of
digital computer design. We recall from Chapter 1 that, because of prac­
tical difficulties in producing suitable multistable state electrical elements,
all present electronic digital computers are composed principally of binary
storage elements (with the exception of certain specialized components
used to facilitate the data inputs to the computer and to display its out­
puts). A storage element must be capable of assuming different stable
states, (e.g., voltage levels, states of magnetization, etc.) and of remaining
for some specified time in the last state in which it was placed. ImpHcit
in this statement is the assumption that each element is capable of being
triggered or switched from one stable state to another. The signals used
to trigger any particular circuit are determined according to certain cri­
teria. For example, when an addition is being performed in an electro­
mechanical computer, the condition that must be satisfied before a par­
ticular wheel is advanced by a notch, is that the less significant wheel
(usually to its right) must pass from position 9 to position 0, i.e., produce
a carry. As discussed in Chapter 1, the state of each element in an elec­
tronic digital computer is usually described by the voltage level at its
output, and information is transmitted between elements by the routing
of voltage signals. The output voltage states could be simply referred to as
high or low, positive or negative, etc. However, for our purposes it is more

46 3. BOOLEAN ALGEBRA

convenient and permissible to refer to a 1 state and a 0 state. Also, if
some arbitrary symbol, say Ki, is assigned to the /th element, it is per­
missible to arbitrarily define one state of the element as the Ki state
and the other as the R , state. This arrangement is of great utility. First
of all, it enables each binary element to be uniquely defined. Second, the
current state of the elements of a machine can be described in terms of
symbols rather than voltage levels. As a result, the condition or conditions
for switching the state of any particular element can be specified and
expressed in terms of the requisite coincident states of other elements. For
example, if we wish element Ki to be triggered to the state Ri if and only
if elements Ka and K^ are in the states Ka and K^, respectively, then the
required switching signal is Ka K^. Therefore, if the switching signal input
to the element, Ki is defined to be Si, then Si = Ka K^. From this it becomes
apparent that any switching signal requirement can be stated in terms
of a Boolean algebraic function of the binary variables in the system.
Such a Boolean algebraic expression will be referred to as a switching
function. Since any function of binary variables has only two permissible
values, it follows that any switching function has only two permissible
values.

As stated earlier, any Boolean function can be formed by the use of
the three Boolean operators, AND, OR, and NOT. Similarly, any switching
function can be written utilizing only these three operators, and each
operator can be considered as an elemental switching function. However,
as stated earlier there are other Boolean operators, and at this point we
will consider all the Boolean operators and switching functions for one
and two variables.

The four possible switching functions of a single input variable. A ,
are described in Table 3.6. One may think of these switching functions as
being represented physically by "black boxes," each having one input line
to which either of two signals may be applied, and one output line on
which either of two signals appear. The nature of the transformations
produced by each box are shown in Table 3.6.

TABLE 3.6. Switching Functions, E^, of a Single Input Variable, A.

Input, A Output, Input, A Output, E^

0 0 0 0

1 0 1 1

Negation: E^ = 0 Identity: E2 = A

3.4. T H E R E P R E S E N T A T I O N O F S W I T C H I N G F U N C T I O N S 47

Input, A Output,

0 1

1 0

Complement: E3 = A

Input, A Output,

0 1

1 1

Tautology: E^ = 1

TABLE 3.7. Switching Functions, F^, of Two Input Variables, (A, B).

A/B 0 1

0

1

0 0

0 0

Negation = 0

A/B 0 1

0 0

0 1

A N D F 9 = AB

A/B 0 1

0 1 0

1 0 0

NOR F2 = AB

A/B 0 1

0

1

1 0

0 1

Comparison Fio = AB -\- AB

A/B 0 1

0

1

0 1

0 0

Inhibiting gate F3 = AB

A/B 0 1

0 1

0 1

Single identity Fn

A/B 0 1

1 1

0 0

A/B 0 1

1 1

0 1

Single negation F4 = A Conditional generator Fn = (Aß)

48 3. BOOLEAN ALGEBRA

A/B 0 1

0 0

1 0

Inhibiting gate F5 = AB

A/B 0 1

0

1

1 0

1 0

Single negation Fe = Β

A/B 0 1

0 1

1 0

Exclusive or Fj = Aß -\- AB

A/B 0 1

0

1

1 1

1 0

Sheffer stroke Fg = AB

A/B 0 1

0 0

1 1

Single identity F^g = A

A/B 0 1

0

1

1 0

1 1

Conditional generator Fu = (AB)

A/B 0 1

0 1

1 1

orFis = A Β

A/B 0 1

0

1

1 1

1 1

Tautology Fie = 1

Fi Fi Fi Fi

Note that the functions £Ί and E4 produce outputs independent of the
input, and may be thought of as a 0 generator and a 1 generator, respec­
tively. The function Eo produces an output equal to the input. The only
significant switching function of a single variable is E3, which represents
the complement operator.

The 16 possible switching functions of two input variables (A, B),
are described in Table 3.7. It has already been stated that any Boolean
algebraic equation can be expressed by the use of the AND, OR, and NOT

3.4. THE REPRESENTATION OF SWITCHING FUNCTIONS 49

Operators only. An analogous statement is that any switching function
can be constructed utilizing these three switching functions. The
functions Fo and Fis, shown in Table 3.7, represent the AND and OR
operators, while E3, shown in Table 3.6, represents the NOT operator.
Actually, AND, OR, and NOT do not represent a minimal set of independent
operators. This can be proved by showing that the OR function can be gen­
erated by means of AND and NOT functions, and also that the AND function
can be generated by means of OR and NOT functions. The proof of the
first case is simply that A + Β = (ÄB). The proof of the second is that
AB = (Ä + Β).

The functions F4 and Fe are independent of the values of Β and A ,
respectively. Therefore, the lines on which each appears can be considered
to be removed, in which case both F4 and Fe degenerate to a switching
function of one variable, namely the NOT operator, E3. Fi and F12 are
analogous to the 0 and 1 generators, Εχ and E4, respectively; their out­
puts being completely independent of the inputs. F u and F13 are inde­
pendent of the values of A and B, respectively. Therefore, they are each
equivalent to the single input switching function, £2.

There are two functions that deserve special comment. They are the
NOT-OR function, F2, known as the NOR function, and the NOT-AND
function, Fg, known as the AND, NAND, or Sheffer stroke. The significant
characteristic of each of these functions is that any Boolean equation or
switching function can be constructed by the sole use of either of them.
This places F2 and Fg in the category of universal switching functions. A
simple proof of these statements is to show that all three primitive opera­
tions, namely AND, OR, and NOT can be obtained by the use of only the
NOR or the AND. Derivation of the primitive operations from NOR operators
only is shown in Fig. 3.1. If only one of the input lines, say that for A ,

NOR

48

Bo- NOR NOR

FIG. 3.1. Derivation of primitive logical operations by NOR operators only

50 3. BOOLEAN ALGEBRA

is used, then Fi = ÄB reduces to F2 = Ä, and is equivalent to the "com­
plement" operator. By If two single-input Fi operators are used to gen­
erate the complements of A and Β and if A and Β are each entered as
inputs to a two-input F2 operator, then the output is F2 = (Ä) (B) = AB.
If A and Β are entered as the inputs to an F2 operator, the output will be
AB which, if entered as the input to a single-input F2 operator will yield
(ÄB) = A + B. Derivation of the primitive operations from the use of
only AND operators is shown in Fig. 3.2. Note that the arrangements for

A N D A N D Ä

A N D A N D 'Aß

Ao—HAND

Bor A N D
A N D -A-^B

FIG. 3.2. Derivation of primitive logical operations by AND operators only

producing the AND and OR operations by means of AND functions is the
same as that for producing tiie OR and AND operations, respectively, by
means of NOR functions.

Only the functions F 3 , ^7> FiQ^ Fi2i and F14 remain to be con­
sidered. The functions F 3 = ÄB and F5 = / i ß and thek complements F14
and F12, respectively, are of relatively little interest and may, along with
Fn and F 1 3 be considered relatively unimportant. The function F7 is of
special interest in that if A and Β are binary variables, then F7 represents
the "exclusive or" function of these variables; also, if A and Β represent the
values of the individual bits of two numbers in binary form, F7 produces
the arithmetic sum (modulo 2) . (For a description of binary addition by
the use of logical operations, see Section 6.1.2.1.2).

3.5. Combinational Switching Networks

The term network is used to designate a group of switching functions
integrated into a whole, and producing one or more required switching
signals. Such networks are of fundamental importance in applications
requiring the transmission of information signals. The most complex
switching network in operation today is in the vast switching system used
by the telephone companies to permit connection of any telephone to any

3.5. COMBINATIONAL SWITCHING NETWORKS 51

Other telephone. Switching networks are widely used in a multitude of
communication and control systems.

The importance of switching networks in digital computers derives
from two reasons. First of all, a digital computer requires switching cir­
cuits to control the transfer of information from one section of the com­
puter to another. Secondly, switching circuits may be used as arithmetic
or logical operators that transform operands according to prescribed rules.
A major part of a digital computer system as well as the bulk of other
specialized switching systems is composed of so-called combinational
switching networks. The term combinational is used to indicate that these
networks are formed by combining the outputs of elementary switches,
such as the ones described, and also to distinguish them from so-called
sequential networks which consist of combinational networks into which
storage elements have been incoφorated. (Sequential networks are de­
scribed later in this chapter.) A model of a combinational network is
shown in Fig. 3.3. Each box represents some Boolean function of the

Input lines

c^J Γ 7 3 ^ 2 /

^ 3 / - m c .

Output lines

FIG. 3.3. Model of a combinational switching network

input variables. Each external input may be sent to one or more of the
boxes, and the output of each box may have one or more destinations.
A combinational network may consist of only a simple Boolean operator
like an AND or an OR switch, or it may contain a large number of inter­
related switches for generating several logical functions. A specific
example of a simple combinational network is shown in Fig. 3.4.

When only the logical functions of a combinational switching network
are considered, it is implicitly assumed that there is no delay from the
time when input signals appear to when output signals are produced. In
physically realizable networks this is not the case, for each switch
introduces a small delay. However, the spacing between successive input

52 3. BOOLEAN ALGEBRA

Ζ, = AB

Z^-(C-^D)(EF+G)

•Z2 = £F+(7

FIG. 3.4. A Combinational switching network

signals is such that the combinational function of the preceding set of input
signals has been generated by the time a new set of input signals appears.

Even the most complicated switching networks may be formed in a
straightforward manner. However, finding a network that must also meet
other requirements, like minimizing the number of switching elements or
maximizing the speed of operation, is another matter. Although a com­
puter can be designed without recourse to Boolean algebra, its use affords
certain conveniences. One of the most important of these is that a Boolean
algebraic equation can be manipulated to yield equivalent functional forms.
Then one can choose to mechanize that particular form which best satisfies
certain specified physical requirements. The discussion following is in­
tended to describe a number of techniques that are commonly used to sim­
plify a Boolean equation or convert it to an equivalent form more desirable
in the light of certain physical requirements.

3.5.1. REARRANGEMENT AND SIMPLIFICATION OF BOOLEAN EQUATIONS

When a term appears in the expression for a switching function which
is superfluous, i.e., its removal does not alter values of the expression, that
term is said to be redundant. A redundancy is often unintentional, appear­
ing because its existence was not obvious in the original statement of the
switching expression. One of the principal aims in rearranging Boolean
expressions is to eliminate superfluous or redundant terms. However, they
cannot always be removed by straightforward algebraic manipulation, e.g.,
see Eq. (3-25). Therefore, special devices must be employed for the
detection and elimination of such terms. A number of methods useful
for effecting rearrangement and simpUfication of Boolean equations will
be described in this section.

3.5. COMBINATIONAL SWITCHING NETWORKS 53

•Since it is difficult to handle any of the methods for a large number of variables,
it may prove useful to attempt a quick trial and error simplification, first of all,
for the purpose of assembling terms into groups which may be treated separately
by any method applicable.

5.5.Í.7. Trial and Error*

This method consists of finding simplifications by means of guesses
based on experience and/or intuition, i.e., educated guesses, as to what
device or procedure to employ. With experience, certain patterns will be
recognized as containing superfluous terms, and therefore can be readily
simplified. To aid this process, one may first try a number of regroupings
of terms in the original expression so that simpUfications may be made
(by means of known tautologies) that were not apparent previous to the
regrouping.

One of the devices that one can employ is to alter the form of an
equation without altering its value by multiplying one or more terms by
functions Hke (Z + Jf) or (1 + X + 7 + . . .), or adding functions like
Ä'J?. Then simpUfications may be produced by combining the extra terms
generated with others in the original equation. Earlier in this chapter the
right hand side of Eq. (3-25), AB + AC, was manipulated to show its equiv­
alence to AB + AC + BC, The manipulation was begun by multiplying
the first term of AB + AC by 1 + C. Now we will start with the expression
AB + Ac + BC and show how it may be simplified by multiplying one
of its terms by ^ -h ^

f ^ AB + ÄC + BC

= AB -h Ac + BC{A + A)

= .45(1 + C) + ÄC{\ + Β)

^ ΑΒΛ- Ac.
The introduction of a dummy factor like .4 + ^ in the example above
may be considered as a special case of the general process of expanding
terms in an expression. An example will make the point clear. If / is a
function of four variables. A , B, C, and D, then the appearance of a
three variable term like AED, for example, implies that the value of the
term is independent of the value of C and therefore ABD = ABCD +
ABCD. Similarly, if a two variable term like AB appears, it may be re­
placed by AB {CD + CD + CD + CD), Note that if any term in the paren­
thesis is represented by X, the logical sum of the other three represents
As an example of what effect may be produced by expansion of a func­
tion, consider the expression / = ABC + ABC ACD + ÄCD. If all

54 3. BCX)LEAN ALGEBRA

terms are expanded, one possible regrouping results in the expression
/ = ABD + ÄBD + BCD + BCD, Note that, although logically equivalent,
the two expressions have no common terms.

A simple procedure for detecting superfluous terms is as follows. First
observe the values of the input variables for which the value of the term
being tested is 1. Then, inspect other terms in the expression to see
whether for the same values of the input variables, one or more of the
other terms in the expression has the value 1. If so, either one, but not
both, of the two terms is superfluous.

There are times when the form of an expression can be simplified by
the deliberate introduction of redundant terms representing conditions
which cannot exist physically or, if they could, would produce no detri­
mental effect on the function. As an example, consider the expression,

/ = ABC + ABD + ACD ABD, If the signal AB cannot occur, which
implies AB = 0, then any product containing AB can be added to the
expression for / without altering its value for any allowable values of the
input variables. If the terms ABC, ABD, and ABD are added, there results

/ = {ABC + ABC) + {ABD + ABD) + ACD + {ÄBD + ABD)
= AC + AD + BD,

A shortcoming of the trial and error method is that, even though for
an experienced person it may be the quickest, not all the simplest forms
of an expression (when there are more than one) are likely to be obtained.

3,5,1.2, Converting a Boolean Sum of Products to a Product of Sums,
or vice-versa

This technique leads to simplification if the equation as expressed con­
tains more than half the possible functions of a given number of variables.
Also, its use is dictated when one type of representation is preferable to
the other, circuitwise.

A shorthand notation useful for converting a Boolean sum of products
to a product of sums is as follows: Represent any product of η variables
(where any variable may be either in its true or complemented form)
by Pi, where / would be the binary number obtained by substituting a 1
or 0 for each variable, according to whether it is in its true or com­
plemented state. For example, for a function of three variables. A, B, C

ABC: i = 101, Λ = Λ = ABC

ABC: i = 010, Pi = P2 = ABC,

3.5. COMBINATIONAL SWITCHING NETWORKS 55

1 Pi Si
000 = 0 ABC = Po ^ -f 5 + C = 5o
001 = 1 ABC = Pi A + B + C = Si
010 = 2 ABC = P2 A^B-^-C = Sz
Oil = 3 ABC = Pi /Í + Β -f C = 53
100 = 4 ABC = Pa /4 + 5 + C = 54
101 = 5 ABC = Ps A^B-\-C = Ss
110 = 6 ABC = P6 A + B-^-C = Se
111 = 7 ABC = Ρη A+B + C = Si

Inspection of the table shows that in Pi, each variable has the complement
of its value in Sj-i, i.e.

PI = Sn^I.

For η variables

PI = Sis'*-!)-.. (3-38)
There are 2*» products that can be formed from η binary variables. For
each set of values the variables may assume, there is always one and only
one product that has the value 1. Therefore

(2**-!)

^ Pi= I. (3-39)
i = 0

For η = 1

For η = 2

etc.

^ + . Í = 1.

{A^Ä){B + B)=\

ÄS + AB + AS + AB = 1

A sum of variables is similariy represented by Si. For example

(A+5+C) = S5

(Ä + B + C) = 52.

All the Pi and Si for three variables are shown in Table 3.8.

TABLE 3.8. Logical sums and products of three variables

56 3. BOOLEAN ALGEBRA

Π = 0. (3-40)
i = 0

The validity of this expression may be seen by taking the complement of

i = 0

For example, for η = 2

f AB + ÄB + AB + AB = I
f=^iA+B)(A+E){Ä + Β) (Ä + B) = 0.

By the use of Eq. (3-39) and the fact t h a t / + / = 1, a complementary
expression for a sum of products may be written as the sum of all products
not appearing in the original expression, thus preserving the sum of
products form. This latter expression can then be complemented using
the relationship of Eq. (3-38) to yield a product of sums form of the
original expression. This is illustrated in the following example

f = ABC + ABC + ABC + ABC + ABC

f=P0+P2+P6

f = 575551

= (A+B+C)iA+B+C){Ä + B+Q
= (A + Β + C)(B + C) = Aß + Sc + AC + BC + C

= AS + C.

By the use of Eq. (3-40) and the fact that ff = 0, a complementary
expression for a product of sums may be written as the product of all
sums not appearing in the original expression. This latter expression can
then be complemented using the relationship of Eq. (3-38) to yield a
sum of products form of the original expression. This is illustrated in the
following example

It is also true that

(2**-!)

3.5. COMBINATIONAL SWITCHING NETWORKS 57

f = (A + Β + C){A + Β + C)(A + β + C)(A + Β + C)

(A + E + Q

f = SqS^S^

f=P,+P, + P,

= ABC + ABC + ABC,

The conversion of a sum of products to a product of sums may also be
facilitated by use of the identity: A -l· BC = (A + B)(A + C) . This
relationship, sometimes referred to as the second distributive law of
Boolean algebra, may be derived from the expression of the first distribu­
tive law stated on page 41 by application of the duality principle. Its
general form is (X + ¥^¥2 . . . r «) = + ¥i)(X + Ys) . . . (Z + y «) .
(Note that the first distributive law of Boolean algebra applies to number
algebra also, but the second does not).

Theoretically there is a one-to-one correspondence between the set
of all possible functions of each type, so there is an equal probability
of obtaining a simpler or more complex function after transformation. In
actual practice, it is doubtful whether all functions are equally probable
(i.e., that there is a random distribution). An example of a sum of prod­
ucts which yields a more complex form after conversion is the expression
on the left in Eq. (3-41), and one that yields a simpler form is the ex­
pression on the left in Eq. (3-42).

AB + CD = (A-^ CD) (B + CD)
= (^ + C) (/ i + ß) (ß + C) (5 + D)(3-41)

AC + AD^BC + BD = A(C + D) + B (C + D)
= (A-l·B)(C-l·D). (3-42)

If one performs a double conversion, i.e., first converts a sum of
products to a product of sums and then reconverts to a sum of products,
the final expression obtained may Save superfluous terms not removable
by simple algebraic manipulation. As an example, consider the expression

f=AB + BC + ABC,

This expression can be converted to a product of sums by repeated appU-
cation of the identity (X + ¥i¥2 . . . ¥n = (X ¥i)(X + ¥2) . , ,
(X+¥n):

58 3. B(X)LEAN ALGEBRA

f=(ÄB + Β) (ÄB +C) + ABC

= [A + (Ä + B) (ÄB + C)] [B + (Ä+ B) (ÄB + C)]
[C + (Ä + B) (ÄB + C)]

= μ + (i + B)] [Ä + (ÄB + C)]
[5 + α + Β)] [Β + + c)]
[C + (Ä + Β)] [C + (ÄB + C)]

= + (C + ^) + B)] [B + (C + Ä) (C + B)][C + Ä + B]
[C + + Ä) (C + B)]

= μ + (c + i)] μ + ((: + 5)] [5 + (c + i)] [5 + + 5)]

[C + i + 5] [C + + i)] [C + C + B]

= (B+C)(C + Ä+ B).
The final expression may be converted to a sum of products by multiply­
ing the factors yielding

f=BC + BC + BÄ + CA.

Either the third or fourth term (but not both) of this expression is
superfluous. The third term may be eliminated by expanding BÄ, i.e.
replacing it by BÄ(C + C) and then factoring the resultant expression

f=BC + BC + BCÄ + BCA + CÄ

f=BC + BC+ CA,

An identity that is sometimes useful for simplifying expressions ob­
tained at intermediate steps in a conversion process is

F(Zi ,Z2, ...Xm) [F(XuX2, ...Xm) + G(XuX2, . . . XJ]
— Ρ(Χΐ^Χ2, · . . Xm)'

The validity of this expression becomes apparent if one multiplies the
terms on the left and factors the result.

For different reasons, e.g., either to maintain uniformity of sub­
assemblies, or because certain types of components function better in one
type of circuit, it may be desirable to standardize, and use one type of
network arrangement exclusively. If the type most suitable because of the
characteristics of the components should require more components than
the other type, this may be avoided, (according to the design of a par­
ticular machine) by redefining the presence and absence of a signal, and
thereby interchanging the AND and OR functions. The majority of practical
switching functions is less complex in the sum of products form, and
visualization of the operations involved is usually easier in this form.

If there is no rigid requirement for a circuit to be of the pure sum

3.5. COMBINATIONAL SWITCHING NETWORKS 59

ABC AB AC BC

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1 0
o i l 0 1 0 1 1 1
1 0 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0 1
1 1 0 1 1 1 0 1 0
1 1 1 1 1 11 1 1

The form of the chart can be simplified by considering the functions
as binary numbers and then replacing them with their decimal equivalents,
as shown in Table 3.10.

The procedure is as follows:
(1) If the equation to be simplified is not in the form of a sum of

products convert it to this form. Then, draw horizontal lines through those
rows in which the products ABC , , , should be zero for this equation.

(2) Cross out wherever else they occur in a given column those num­
bers that were crossed out by the horizontal lines in step 1.

(3) In general, one may find that some row has only one combination

of products or product of sums form, a miscellaneous form of network
may offer the most desirable solution. A miscellaneous form implies a
multiple level switching network (described in Chapter 4) .

The derivation of a simpUfied equivalent expression of a switching
function by trial and error and algebraic manipulation can be quite diflS-
cult, even though its equivalence to the original expression can be readily
shown once it has been derived. A principal advantage of the chart
method described in the next section is that even though it is quite
tedious it enables all equivalent forms to be found by a routine process.

i.5.7.5. Chart Methods

(a) THE HARVARD METHOD (See Staff of the Computation Labora­
tory [1951]):

The advantage of this method is that it gives all possible simplified
expressions automatically. It consists of laying out a chart which contains
for η variables, all products of length η or less (where a variable may or
may not be complemented in each product). Table 3.9 is a chart for η = 3.

TABLE 3.9

60 3. BOOLEAN ALGEBRA

ABC AB B C

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 2 2 0

5 2 3 1

6 3 2 2

7 3 3 3

of a minimum number of variables that has not been crossed out. Such
a combination is called essential and is circled together with all its appear­
ances in a given column.

(4) Rows may still remain with neither horizontal Unes drawn through
them nor encircled elements. Each of these rows will contain two or more
unmarked combinations of a minimum number of variables. Circle at
least one arbitrary combination in each nondeleted row and encircle
all occurrences per column of each arbitrary combination in a way that
minimizes the number of combinations encircled.

(5) A minimal expression of the original equation is given by the
Boolean sum of all encircled combinations. As an example, consider the
expression

/ = ABC + AB + BC
ABC AB AC BC

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 2 2 0

5 2 3 1

6 3 2 2

7 3 3 3

Steps 1 and 2 need no comment. In step 3, one finds that there are only

TABLE 3 . 1 0

AC

3 . 5 . COMBINATIONAL SWITCHING NETWORKS 6 1

two rows (row 5 and 8) containing essential elements; these are 0 and 3
in column BC. In step 4 , one finds the only nondeleted row with a non-
encircled element to be row 3 . One then has a choice of encircling
either element 1 in column AB, or element 0 in column AC. In step 5 ,
one of two minimal expressions is obtained for /, depending on the
choice made in step 4 . If the element in column AB were chosen, one
obtains

fi = BC + AB + BC.
The other solution is

/ 2 = BC + AC + BC.
The equivalence of fi and / 2 to / and, hence, to each other may be shown
as follows

/ = ABC + AB + BC

= B(AC + Ä)+BC

= BC + AB + BC

f = ABC + AB + BC

= ABC + ABC + ABC + BC

= BC(A + Ä) + C{ÄB + Β)

^ BC + AC + BC

As the number of variables increases, simplification by algebraic manipu­
lation becomes more difficult. However, the chart methods can be utiHzed,
and if the number of variables makes the process too cumbersome for
manual execution, it can be programmed (within limits), for a digital
computer.

(b) THE QUINE SIMPLIFICATION [1 9 5 2 , 1 9 5 5] :

This method is similar to the Harvard method. It differs in that the
chart is constructed for a specific case, and contains only the pertinent
terms. Most of the advantages and disadvantages of the Harvard method
apply to this method also, except that for a large number of variables
it is not as cumbersome. The procedure is as follows:

(1) Expand all terms to include all variables, e.g., if there are three
input variables and the term AB appears, replace it with ABC, ABC. Elimi­
nate duplicates of terms that may appear.

(2) Starting with the Ust of terms formed in step (1) , add additional
entries as follows. Whenever two entries in the original list differ by
only one variable, e.g., ABC, ABC, enter the similar part of the terms

62 3. BOOLEAN ALGEBRA

on the list (in this case ÄB), and enter checks opposite the two terms
from which it was obtained. This process is continued until a group of
unchecked terms remains which cannot be reduced by further combina­
tion. The unchecked terms, i.e., those never combined with any other
terms, constitute a set of prime impHcants. (A prime impHcant is a logi­
cal product which is a term of every minimal form of a Boolean function).

(3) List the expanded terms of step (1) , and the prime implicants
of step (2) as column and row headings, respectively, of a table, and
place marks in each row in those columns where the expanded term is
implied by the prime implicant.

(4) If any column has only one mark, the corresponding prime im­
plicant is essential and is to be included in the result. This column and
all other columns included in the same prime implicants are eliminated.

(5) Whenever in the remaining table there are two columns such
that each has marks only in rows where the other has marks, one of
these columns may be eliminated.

(6) The remaining columns are examined to determine how they
may be covered with the fewest prime implicants.

As an example, consider the expression
f = ABCD + ABC + BCD + ACD

Step 1: Step 2:
ABCD

ÄBCD

ÄBCD

ABCD

ABCD

ABCD

ABCD

ABCDV

ABCDV

ABCDV

ABCDV

ABCDV

ABCDV

ABC

BCD

BCD

ACD

Steps 3, 4, 5:

ABCD ÄBCD ÄBCD ABCD ÄSCD ABCD

ABC

BCD

BCD

ACD

Θ

Θ
f = ABC + BCD + BCD + ACD

3.5. COMBINATIONAL SWITCHING NETWORKS 63

The result may be verified algebraically

/ = ABCD + ABC + BCD + ACD

= BC{AD + Ä)+ BCD + ACD

= BCD + ABC + BCD + ACD.

A systematic way of transforming a Boolean function to yield all mini­
mal forms which are sums of products allows one to be chosen to replace a
given switching function. This may be an improvement over the original
expression even though the latter contains no superfluous terms. The
procedure will now be summarized. First, the function is expanded to its
elemental form, and by apnlications of the identity, AB + AB = A , all
basic terms (i.e., any correct term containing no superfluous variables)
in the expression may be found. Then, a table is made indicating which
of the basic terms are contained in each term in the elemental form.
The terms that are basic are not known until each of them has been com­
pared with all others, and further reductions are not possible. The use of
the table enables all possible combinations of basic terms equivalent to
the original expression to be found.

The simplest product of sums expression may also be obtained from
this procedure. First, the original sum of products expression, /, is replaced
by a complementary sum of products function, / , utilizing Eq. (3-39) and
the identity f + f = I, Then the complementary function is reduced by
the process described to yield the simplest sum of products expression
for / . Complementing the expression for / yields the simplest product of
sums expression of the original function, /.

A systematic procedure for analyzing switching functions may be
useful even in the event that an algebraic simplification cannot be achieved,
for an alternate expression may be found that would have been difficult
to find otherwise. This alternate expression may be more desirable circuit-
wise, e.g., it might not put as great a load on a circuit already loaded
heavily.

3.5.1.4. Map Methods

The Harvard method, previously described, consists of generating a
list of possible simplifications followed by a choice between these possi­
bilities. The method to be described here consists of presenting the func­
tion in a form in which possible simplifications are made more apparent,
thereby reducing appreciably the routine work of the chart methods. An
early form of the type of map to be considered here, proposed by Veitch,

64 3. BOOLEAN ALGEBRA

Á 0 \ β
O l

/?=2

0 0 1 1 ^
>ί 0 I QIC

/7=3

0 0 1 1 4
CD 0 \ 0 \ θ
0 0
Ol
10
I I

/7=4

FIG. 3.5. Veitch maps

one of the 2** logical products of η variables (which compares favorably
with the 22̂ ^ entries used in the Harvard method). The product designated
by a particular square is obtained by noting the values of the variables
in the column and row that intersects the square. A reorganization of the
Veitch maps, proposed by Karnaugh, [1953] is shown in Fig. 3.6. The

A A

Β

/7 = 2

Β

C

/7 = 3
D

/7=4

Β

77 = 5
D D

/7 = 6

Β

Β

FIG. 3.6. Karnaugh maps

[1952] is shown in Fig. 3.5. Each map provides a square for entry of any

3.5. COMBINATIONAL SWITCHING NETWORKS 65

rows or columns within a bracket are those m which the designated
variable has the value 1, while it is 0 elsewhere. Adjacent squares are
defined as those that differ in the value of only one variable, so that
squares at the opposite ends of a row or column are considered adjacent.
Because the Kamaugji map is generally more convenient, it will be used
in the examples that follow.

Use of the map method requires that the function to be simplified
be represented first in its elemental form, i.e., as a logical sum of products.
For each elemental term in the function, a mark such as a check or cross
is placed in the square corresponding to that particular product of η
variables. Then the map is inspected for the purpose of recognizing
which of several possible groupings of terms represents the best factoring
of terms in the function. It is desirable to choose these groups so that
each encompasses as many positions as possible. Each checked square
must be represented by at least one of the groups, though it may be
included in two or more. The usefulness of the map derives from the
fact that patterns of checks which will yield the simplest terms can, after
sufficient practice, be easily and quickly determined by mspection. Some
typical patterns that may be encountered in a four variable map are
shown m Fig. 3.7.

Β ^B

D D

FIG. 3.7. Typical patterns in a map

f^ÄD f=BD f^CD
As a matter of definition, a group is the map of a logical product

formed according to the following rule: the factors of the product are
those variables whose values are fixed within the group, whether in the
uncomplemented or complemented condition. Larger groups correspond
to products of fewer variables, since fewer variables are fixed in them.
To obtain a minimal expression, one chooses a set of groups which in­
cludes every checked square at least once. In general, it is desirable to
make the selected groups as large (for less terms per product) and as
few (for less products) as possible.

As a first e xample, consider the expression / = ABC + ABC + ABC

66 3. B O O L E A N A L G E B R A

+ ABCD. Each of the first three terms in the expression requires the entry
of two checks (one for D and one for D) while the last term requires only
one. In Fig. 3.8, a particular grouping of these checks is shown which
yields the simplified expression / = EC + ABC + BCD.

Θ

E E

Β

f=BC-{- ABC + BCD

FIG. 3.8. Derivation of an expression from appropriate groupings of checked squares

In Fig. 3.9 two alternate groupings of the terms in a given expression

Β

fi = AC + ACD + BCD

= AC-\- CD(A -f B)

f2 = AC+ ACD + ABD

=^ AC-\- D(AC + AB)

FIG. 3.9. Alternate expressions based on different groupings of a function

are formed, resulting in different but equivalent expressions, / i and / 2 .
This method is also useful in finding the simplest product of sums

expression equivalent to a given sum of products. The map procedure
is analogous to the procedure wherein one first replaces the original sum
of products by the complementary sum of products, finds a simplest form
of the latter, and complements it to yield a product of sums representation
of the original function. As an example, consider the function / = ABC
+ ABC + ABC. The complementary sum of products is: / = ABC +
ABC + ABC + ABC + ABC. By factoring, the latter expression may be
reduced to f = BC + AB + AC + ABC. Taking the complement of this
expression yields: / = (B + C) (A + B) (A + C) (A + Β + C). When
using the map method, (see Fig. 3.10), a simplified expression for the

3.5. COMBINATIONAL SWITCHING NETWORKS 6 7

ra

/ = A C + / ÍA + / Í Í + ABC

/^{ΒΛ' C){A -f B){A -h C) (^

FIG. 3 . 1 0 . Obtaining a simplified product-of-sums expression
by groupings of unchecked squares

complementary function / is obtained by forming appropriate groupings
of unchecked squares. Taking the complement of this expression then
yields a simplified product of sums expression.

In some cases it may be more convenient to derive the simplest sum
of products expression by means of an intermediate product of sums
expression. As an example consider the function / = AD + ACD + ABC
+ ABCD. The map of this function is shown in Fig. 3.11. By forming

o D Dil
1 • •ill D α Dil
D • DBJ

8

f= AB-{'CD

f=(A-^BXC-{-D)

= AD + AC-j-BC + ÉD

FIG. 3.11. An expression based on the complement of groupings
of unchecked squares

a particular set of groupings of the checked squares, the expression / =
AD + AC + BC + BD may be obtained. However, a simpler grouping
may be formed by combining the unchecked squares into the two groups
indicated in Fig. 3.11. This grouping yields f = AB + CD, If this expres­
sion is then complemented, there results f = (A + B)(C + D), which is
a factored form of/ = AD + AC + BC + BD,

Figure 3.12 illustrates a "combination" solution; i.e., one obtained
by considering both checked and unchecked squares. In order to reduce
the number of groups, the square corresponding to ABCD is first assumed

68 3. BOOLEAN ALGEBRA

m π níi]
• • • Í D I • • • D I • • mm

f=(Äß + CD)(AÉCD) = (Aß + CD)(A -\-B + C D)

f = Aß(C + D) + CD{A + B)

FIG. 3.12. An expression based on groups containing checked and
unchecked squares

to be checked, and later this state is inhibited. After some practice, one
can immediately, by inspection of the map, write a reduced expression
such as the one shown in Fig. 3.13. Here the checked squares are con-

ini mm i j i • I I I
ia j i •JDJ
liij • l a

β

f=(Aß + AB)(CD + CD)

FIG. 3,13. An expression based on the intersection of four groups

sidered as a group defined by the intersection of four other groups, each
containing both checked and unchecked squares.

An important advantage of the map and the Harvard chart method
is the convenience it provides for taking advantage of nonallowable or
indifferent combinations of the input variables. These combinations, re­
ferred to as redundant, may occur because the particular combination
never is realized in practice or because it has no undesirable effect on
the output. In searching for the simplest expression, one may or may not
include redundant combinations in a group. As a rule, those redundancies
are included which enlarge and combine the necessary groups as much as
possible, but do not necessitate the selection of additional groups.

In conclusion it should be stated that often a solution as good or better
than any map or chart solution may be obtained by other means. For
example, the expression obtained from the map shown in Fig. 3.8 could
have been obtained very easily by factoring

3.6. T H E S T O R A G E F U N C T I O N 69

/ = ABC + ABC + ÄBCD + ABC

= BC(A + A) + BC(ÄD + A)

= BC + BC{D + A)

There are times, however, when the use of a map facilitates derivation of
a simplified form of a Boolean function. As with chart methods, the pro­
cess becomes more cumbersome as the number of variables increases. (For
the special case of symmetric circuits the reader is referred to Cald­
well [1954], Lee [1954], Slepian [1953], and Washburn [1949]).

In the preceding discussion of procedures for simplifying Boolean
equations, two important items were neglected. First, there was no con­
sideration of the problem of deriving a form of an equation corresponding
to the combinational circuit most desirable from a physical standpoint.
There are effects peculiar to different types of components and circuits
which do not show up in consideration of the equations alone, but which
place restrictions on logical formulations. The nature of the restrictions
placed on logical formulations by the available circuitry, as well as the
circuit implications of different logical formulations, will be considered in
Chapter 4. The second item neglected was the subject of how digital
computers may be used to simpUfy Boolean descriptions of new machines.
This will be discussed in Chapter 7.

3.6. The Storage Function

In Section 3.4 there was reference to the fact that input signals
to a combinational switching network cause the network to generate ap­
propriate output signals after a short and unavoidable transit time.
In other words, there is a free flow of signals between input and output
without any significant delays or storage. Such networks operate on
binary inputs but do not store either the inputs themselves or any trans­
formation of them. They can only represent on their output lines some
function or functions of the variables currently present on their input
lines. By the incorporation of storage elements, inputs received by a com­
binational network at one time can be stored for combination with inputs
received at other specified times.

In general, the concept of memory or storage implies the receipt of
information at some time, i, and the retention of that information until
some later time, t -f Af. There are basically two ways in which informa­
tion may be retained — referred to as static and dynamic storage. There
are many possible physical realizations of both types of storage, and

70 3. BOOLEAN ALGEBRA

descriptions of a number of them are provided in Chapters 4 and 5.
Because of considerations of reUability, discussed in Chapter 1, the
internal storage elements in a digital computer are used as binary elements,
although many of them could also be operated in a multistable mode.
Since the parameters of physical elements used to represent information
are continuous in nature, use of these parameters for discrete data storage
requires that certain constraints be imposed on the behavior of the
elements. For example, the angular position of a rotatable disk is a con­
tinuous quantity, but can be used to represent discrete data if only
certain positions are defined, as in a notched counter wheel. A vacuum
tube amplifier is an analog device, as evidenced by its transconductance
curves, but can be constrained to behave hke a discrete device by in-
coφorating it into a bistable circuit called a flip-flop. Data may be
stored in a continuous manner on the magnetic surface of a drum, disk,
or tape. However, by restricting the use of the magnetic medium to the
point where only the presence or absence of magnetization, or its direc­
tion, is considered, bistable storage elements are obtained.

The duration of a stable state varies with the particular element and
the circuit in which it is used. For example, magnetic storage can be
retained for an indefinitely long period. On the other hand, the electrical
charge on a condenser will gradually leak off, and at first sight an elec­
trical condenser might not seem suitable as a storage element. However,
if it is used in an appropriate circuit, and its charge sampled at time
intervals small compared to the interval it takes to lose an appreciable
part of its charge, and circuitry provided to periodically regenerate the
charges which otherwise would leak off, it becomes useable as a digital
storage device. Electrostatic and ferroelectric storage systems described
in Chapter 5 employ condenser-like elements.

An important differentiation that enters into the application of dif­
ferent storage devices is whether they are suited better for the storage
of a single bit or small group of bits, a main storage unit with a capacity
of anywhere from several hundred to tens of thousands of words, or for
an auxiliary or file storage unit that may call for hundreds of thousands
to millions of words.

Single bit storage elements may be formed from either static or
dynamic units, and may be interconnected to form registers and accumula­
tors. Immediate access to any of these elements is possible. The most
commonly encountered type of single bit storage device is the flip-flop.
Static nip-flops, whose logic and circuitry are described in Section 3.7
and Chapter 4, respectively, can be triggered to either of two states of
static equilibrium. They are commonly formed from a pair of regeneratively

3.6. THE STORAGE FUNCTION 71

coupled amplifiers in a circuit designed to have two stable operating
points. By incorporating an electromagnetic delay element (of the type used
in electronic circuits for synchronization purposes) into a suitable feed­
back loop, one can form dynamic types of flip-flops, whose operation does
not depend on circuits with stable operating points. Once introduced, a pulse
is continually recirculated until the loop is effectively opened momentarily
by an externally applied signal (see Section 3.7.5). The presence or
absence of the recirculating pulse at an output terminal is arbitrarily
tagged to represent either a 1 or 0 state. Static flip-flops are used where
the combinational circuits are designed to operate on dc inputs, where 0
and 1 are represented by two voltage levels, and dynamic flip-flops are
used in systems where 0 and 1 are represented by the absence or presence
of voltage pulses at regularly spaced sampling times.

In a digital computer, (see Chapter 2) , the totaUty of operations to
be performed in the solution of a given problem is specified by data in
the form of a program originally entered into the computer's main storage.
Space in the main store is also used for the storage of initial conditions,
and for intermediate and final results. In Chapter 5 there are descriptions
of a number of types of main storage systems, including the two most
widely used today; namely, magnetic drum and magnetic core storage
systems. The control unit of the computer contains the circuits that per­
form the operations common to the execution of all instructions, namely
selection of coded instructions and operands from the main store in some
specified sequence, and the advancement of control to the next instruction
in a sequence upon the execution of any given instruction. The control
as well as the logical or arithmetic operations called for by a specific
instruction must be derived from the data contained in a given instruc­
tion. Certain storage elements in the control and arithmetic units of a
digital computer are reserved for the puφose of receiving this data from
the main storage and holding it in a form suitable for input to the
various control and arithmetic switching networks within the computer.
The need for these storage elements in the control and arithmetic units
arises because the data in the main store is usually in a form that cannot
be used directly as an input to a voltage or current switching network.
To elaborate, a 1 and 0 may be represented in the main store in any of
the following ways: by the direction of magnetization of a cell on a
magnetic surface, or of a magnetic core, the absence or presence of
electric charge on the surface of a dielectric material, or the emergence
from a delay line of a pulse train at some specified point during a specified
time interval. Before data in any of these forms can be used to drive
switching networks, certain preliminary operations are required. These

72 3. B O O L E A N A L G E B R A

operations cause selection of a storage location and sensing of the infor­
mation stored there. In static stores all words are equally accessible and
means are provided to sense all bits of a word in parallel. In dynamic
stores the access time varies with the location of a word relative to a trans­
ducer at the time of selection (see Chapter 5) , and bits of a word are
usually made available serially, thereby requiring a conversion of the data
from serial to parallel form. In both cases means must be provided to
transform the data from its form in the main store to representation in
the form of the voltage or current states of a set of storage elements in
the control and arithmetic units. The outputs of these storage elements
can be used as inputs to the control and computation switching networks.
Subsequently, the outputs of these networks may be used to alter the
states of storage elements in the main store, the control unit or the
arithmetic unit. In Section 3.8 there is a general description of how
switching and storage elements are interconnected in a digital computer.
Whenever it is desired that a network be sequence sensitive, i.e., its
response be governed not only by the current input signals, but on pre­
ceding ones also, then such a network must contain storage elements. A
system composed, not of switching circuits alone, but also containing
storage elements, is usually referred to as a sequential switching network.
A sequential switching network is, in general, reducible to a multioutput
combinational network in many variables. The general characteristics of
sequential switching networks will be described after the description in
Section 3.7 of the functional characteristics of flip-flops.

3.7. Flip-Flops

The term flip-flop refers to a circuit having basically one, two, or
three points, and one or two output points, which can be triggered to each
of two stable states by appropriate signals at one or more input points.
Once triggered to a particular state, a flip-flop will remain in that state
until triggered by an appropriate new input signal. Flip-flops may be
utilized for a number of purposes. These functions, described in succeed­
ing chapters, include the following: to receive and retain information for
controlling arithmetic and logical operations, to provide time delays for
carries in synchronous adders, and to generate timing signals.

Besides differences in the number of input and output points, and
the input-output logical relationships, designs will differ, also, in the
uature of the points at which inputs are received, e.g., at the grid or
cathode of a vacuum tube, and the characteristics of the waveform re­
quired to trigger the flip-flop from one stable state to the other, i.e., its
amplitude, width, rise and fall times, and repetition rate. In practice, the

3 . 7 . FLIP-FLOPS 7 3

width of the input pulse must be only a small fraction of the period cor­
responding to the input pulse repetition frequency. The stability, reli­
ability, and range of operating frequencies of a flip-flop are determined by
circuit parameters. Representative flip-flop circuits are described in
Chapter 4 .

Before the advent of transistors, flip-flops were usually formed from
a pair of vacuum tubes, either triodes or pentodes, regeneratively coupled
in a circuit having the characteristic that when one tube was conducting,
the other tube was cut off, and vice versa, thus providing the circuit with
two stable states. An indication of the state of the circuit was usually
obtained by examining the plate voltages. Output signals could be taken
from any of a number of points, depending on the polarity, amplitude,
and dc level of signal desired. Very few of the digital computers now
being built or contemplated utilize vacuum tubes for flip-flops. Instead,
transistors are now largely used for this purpose.

If the flip-flop action is obtained by the regenerative coupling of
vacuum tube or transistor amplifiers, two output lines are available. After
a switching action has occurred, i.e., in the steadystate, one of the lines
will be at a relatively high voltage and the other at a relatively low
voltage, depending on which tube or transistor is conducting current more
heavily. The two output lines of a flip-flop. A, may be arbitrarily desig­
nated as A and A. The flip-flop is said to be in state A, or A, depending
on the voltages of the output lines. Sometimes a flip-flop may have only
one useable output line, as for example in the case where the flip-flop
action is obtained by the negative resistance characteristic of a single
transistor amplifier. In this case, the flip-flop is said to be in state A or A,
depending on whether the voltage on the output line is relatively high
or low.

3 . 7 . 1 . STATIC FLIP-FLOPS

Throughout the remainder of the text, the block diagrams shown in
Fig. 3 . 1 4 will be used to represent the different types of static flip-flops.
They vary principally in the number and placement of their input lines.
Though the letter F is used in Fig. 3 . 1 4 , any capital letter may be used
to designate a flip-flop (though the letter D is often reserved to indicate
a delay element). Usually, the different flip-flops in an assemblage are
designated by the same letter with a distinguishing numerical superscript
or subscript attached to the letter. In some systems, different capital
letters are used to designate different flip-flops or groups of flip-flops,
and the particular letters used have some mnemonic significance. In a

74 3. BOOLEAN ALGEBRA

TRUTH TABLE TRUTH TABLE

R S F t F t +1 F F T Ft Ft +1 F F

0 0 00 0 0 0
0 0 1 1 F 0 1 1 F
0 1 0 1 S R 1 0 1
0 1 1 1 1 1 0
1 0 0 0 T
1 0 1 0

(b \1 1 0 (a)

1 1 1

(a) The R-S flip-flop (b) The T flip-flop

TRUTH TABLE TRUTH TABLE

R S T F t F t +1 F F R p Sp F t Ft +1 F F

0 0 0 0 0 0 0 0 0
0 0 0 1 1 F 0 0 1 1 F
0 0 1 0 1 S R 0 1 0 1 Sr Rr0 0 1 1 0 0 1 1 1
0 1 0 0 1 T 1 0 0 0
0 1 0 1 1 1 0 1 0

(d)1 0 0 0 0 (c) 1 1 0 1
1 0 0 1 0 1 1 1 0

(c) The R-S-T flip-flop (d) The Rp-Sp flip-flop

FIG. 3.14.

block diagram, when there is no need to designate a specific flip-flop by
letter, the symbol FF (for flip-flop) may be used.

Truth tables are shown in Fig. 3.14 to aid in the description of the
input-output relationships of the types of flip-flops shown. In these tables,
1 indicates the presence and 0 the absence of signals at indicated points.
When output line F = 1, the flip-flop is said to be in the F state, and
when output line F = 1, it is said to be in the F state.

The type of flip-flop whose block diagram and input-output truth
table are shown in Fig. 3.14(a) is usually referred to as a set-reset type
of flip-flop, or simply as an R-S flip-flop, because a signal on the S line
sets the flip-flop to the F state and a signal on the R line resets it to the
F state. Rand S refer to the two input lines and their current states,
while F t and F t + 1 refer to the state of the flip-flop at times t and (t + 1),
respectively. Ft = 0 means the output line F has the value 1 at time t.
Ft = 1 implies the output line F has the value 1. The condition on the
output lines at time (t + 1) will depend on the signals received on the
input lines Sand R at time t, as well as the state of the flip-flop at time t.

3.7. FLIP-FLOPS 75

The logical nature of this type of flip-flop will be explained by considering
the truth table which defines its operation. A signal on either input line,
indicated by a 1 in the appropriate column, will cause the flip-flop to as­
sume a corresponding state, i.e., ii RS = 1 at time t, Ft+i = I; if RS = I
at time r, Ft+\ = 1 (or Ft+i = 0). Note that once this type of flip-flop
has been set to a particular state, additional signals on the corresponding
input line produce no effect. The blanks in the last two rows of the table
are used to indicate that the effect of simultaneous inputs is not considered
in the design of this type of flip-flop. It is intended for use in systems
where this event either cannot occur or is prevented by design from
occurring during normal operation.

The type of flip-flop indicated in Fig. 3.14(b) is usually referred to as
a complementing or trigger flip-flop or simply as a Γ flip-flop. It has only
a sin^e line for input signals, and successive signals on this line will
cause it to trigger alternately from one state to another, which is evident
from the truth table. Circuitwise, it is similar to the RS flip-flop. The
most significant difference is that it is symmetrically coupled to a single
source of triggermg. This makes the circuit especially useful as a counting
element.

The flip-flops shown in Figs. 3.14(c) and 3.14(d) effectively combine
the functions of both the flip-flops of Fig. 3.14(a) and Fig. 3.14(b). All
theoretically possible input signal configurations are not shown in the
table of Fig. 3.14(c), since the flip-flop is restricted to operate
under the condition that signals on more tíian one input Ime at a time
are not allowed.

The RT-ST flip-flop, whose operation is defined by the truth table in
Fig. 3.14(d), is similar to the R-S-T flip-flop in that it can be activated
in three distinct ways. Although it has only two input lines, it can be set,
reset, or triggered. It can be set to either of two specified states by a
signal on either the ST or RT line or caused to flip from one state to
another by appUcation of a signal to both input lines. Inspection of the
truth table shows that the logic of this flip-flop differs from that of the
RS flip-flop only in that simultaneous inputs are allowed and cause
the flip-flop to change state.

3.7.2. THE CHARACTERISTIC EQUATION OF A FLIP-FLOP AND DERIVATION
OF THE GENERAL FORM OF ITS INPUT EQUATIONS

The information in the truth table defining the response of a given type
of flip-flop to signals on its input lines can be put in the form of a
Boolean expression, which indicates the state of the flip-flop at time t+ I

76 3. BOOLEAN ALGEBRA

= [F3 (F2 Fl) + F 3 (F2 Fl)],

Fh+i = (F 3 f 2 Fl + F 3 F2 Fl + F 3 F 2 Fl + F 3 F2 Fl), (3-44)

= (F 2 Fl + F2 Fl),

Fi,+i = (F 3 F 2 Fl + F 3 F2 Fl + F 3 F 2 Fi + F 3 F2 Fl),

= (F'h
Each equation states that the presence of any of the stated conditions at
time t is to cause the indicated flip-flop to assume the state 1 at time
t + 1 and any other configuration of the input variables is to cause the
flip-flop to assume the state 0 at time í -f 1. Note that the difference equa-

in terms of ine states of pertinent variables at time t. This expression is
called a difference equation because of the time differential between
receipt of an input signal and assumption of a new state. Since this expres­
sion also describes the logical nature of a particular type of flip-flop, it is
referred to as the characteristic equation of the flip-flop.

The principal logical design problem in the design of a sequential
switching network is to determine what the signals on the input lines
of a given flip-flop should be in order for the flip-flop to assume a sequence
of states in accordance with a difference equation for a given application.
This problem may be attacked by first equating the characteristic equation
of the flip-flop to the difference equation of a specific application. The
latter equation, sometimes referred to as an application equation, is
readily obtained from a table showing the state each flip-flop is to assume
at each instant of time for each possible configuration of states, at the
preceding instant of time, of all elements which may influence it. The
application equation can always be written in the following general form

Ft^i = (xF + yF)t (3-43)
where χ represents one function of the pertinent input variables and y
another function of the same variables.

To illustrate how a specific appUcation equation may be derived, let
us consider three flip-flops, F^, F^, F \ which are to be used as a counter
whose contents are to be augmented by a single binary increment at each
succeeding instant of time, and which is to be reset to zero after reaching
its maximum value. The contents of this counter at successive instants of
time are shown in Table 3.11. For each flip-flop, a specific application
equation may be written showing the state it is to assume at time í + 1
in terms of the state at time t of itself and others in the group.

F3 ,+i = (f 3 F2 Fl + F 3 F2 / Ί + F 3 F2 Fl + F 3 F2 / i) ,

3.7. FLIP-FLOPS 77

tions for the specific application neither state nor imply the logical
properties of the flip-flops. It will be shown later that any of the types
of flip-flops considered can satisfy such appUcation equations.

TABLE 3.11

T ime/
F3 F2 Fl

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Time / + 1
F3 F2 Fl

0
0
0
1
1
1
1
0

0
1
1
0
0
1
1
0

1
0
1
0
1
0
1
0

The input equations for each type of flip-flop (which specify the signals
required on the input lines to satisfy the application equation) will be de­
rived now in terms of variables in the general form of the application
equation.

Let us consider first, the R-S flip-flop. From its truth table, its char­
acteristic equation is

Ft+i = (RSF + RSF + RSF)t

= (RSF + RS)t. (3-45)
The restriction on the simultaneous occurrence of signals on both R
and S is expressed algebraically by

(RS)t = 0. (3-46)
Since (RS)t = 0, it may be added to Eq. (3-45) without altering its
value. This results in a simplification of Eq. (3-45).

F,^i = {RSF +RS + RS)t

= (RF + 5),. (3-47)
Equating the characteristic equation of the R-S flip-flop to the general
form of a specific difference equation yields

Ft+i = (RF + S)t = (xF + yF),. (3-48)
To obtain the input equations for the R-S flip-flop in terms of the input

78 3. BOOLEAN ALGEBRA

Ft^i
X y Ft ^(RF + S)t R S

0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 1

0 1 1 0 1 0

1 0 0 0 ^4 0
1 0 1 1 0
1 1 0 1 0 1

1 1 1 1 0

TABLE 3 . 1 3

Ft^i = ixF^yF)t
X y Ft = {TF + TF)t τ

0 0 0 0 0
0 0 1 0 1

0 1 0 1 1

0 1 1 0 1

1 0 0 0 0
1 0 1 1 0
1 1 0 1 1

1 1 1 1 0

functions χ and y , one may proceed as follows. Construct a truth table
showing the value of xF + yF for each possible configuration of states
of x,y, and F. (See Table 3.12). From Eq. (3-48) it is clear that this also
defines the value of RF + S for each configuration of x, y, F, and allows
the values of R and S to be derived by logical inference. For example,
consider row 2 or 4. Since RF + 5 = 0 in these cases, both RF and S
must each be equal to 0. Since F = \, this imphes that i? = 0, or equiva-
lently that R = 1. In row 3 or 7, i?F + 5 = 1 while F = 0. This implies
that 5 = 1 , and since RS is always equal to zero for this type of flip-flop,
R = 0. In row 1 or 5, i?F + 5 = 0, so 5 = 0, and RF = 0. However,
since F = 0, R may be either 0 or 1. Therefore, R is represented by the
symbol k which may assume either value. In row 6 or 8, RF + 5 = 1
while F = 1. This condition is satisfied if jR = 1, or equivalently if R = 0,
When R = 0, S may be either 0 or 1 and is represented by k^ and Λ7,
respectively. From columns 1, 2, 3, and 5, 6 of Table 3.12, the following
equations for R and S, the so-called input equations may be obtained

TABLE 3 . 1 2

3.7. FLIP-FLOPS 79

R = (ko xyF + xyF + xyF + A:4 xyñ (3-49)

5 = {xyF + Ars xyF + JC>;F + Ä:7 xyF), (3-50)

That this represents a general solution independent of the value of
any ki can be proved by substitution of the values of R and S given by
Eqs. (3-49) and (3-50) into the term (/?F -f 5) , in Eq. (3-48). Therefore,
to reduce Eqs. (3-49) and (3-50) to simple form, set = *4 = *δ =
= 0

R ^ xF (3-51)

5 = yF, (3-52)

The product RS will be zero independent of the values of χ and y.
This is assured since FF = 0. However, in the special case where xy = 0,
the inclusion of F and F in the expressions for R and S is not necessary.
The simplified expressions for R and 5 may be obtained from Eqs. (3-49)
and (3-50) as follows. First set /co = = 1, and k^ = k^ = 0. Then

R = xyF^- xyF + xyF (3-53)

S = xyF + xyF + xyF, (3-54)

Since Xy = 0, it may be added to Eqs. (3-53) and (3-54) to yield

Λ = Jcy + Jcy = Jc (3-55)

S ^ xy + xy = y, (3-56)

Often X and y are time functions in the form χ = uta and y = vt^. If ta
and tb represent mutually exclusive instants of time or time intervals, the
product Jcy will be zero. In general one may consider the product xy as
a sum of products. For xy to be equal to zero, each term of the sum must
be zero. There is assurance that RS = 0, if each term of R contains the
variable F while each term of S contains the variable F , for then each
term in the expression for RS will contain the factor F F = 0. However,
if the product of any term in the expression for either Jc or with all the
terms in the other is zero, then the F or F modifier (as the case may be)
may be eliminated from that term. For example, assume

X = k + I + m + , , ,

y =p + q^-r + , , , (3-57)

where the letters on the right hand side of Eq. (3-57) represent functions
of certain variables. If, say, ky - 0, then R - {k Λ- I Λ- m + , . .)F may
be replaced b y Ä = A : + (/ - f m + . . ,)F,

The characteristic equations of the Γ, the R-S-T, and the RT-ST
flip-flops will be derived next. From the truth table of the Τ flip-flop, its
characteristic equation is

80 3. B O O L E A N A L G E B R A

X y Ft
Ft+1 = {xF + yF)t

= {RTF-{-TF + S)t R S Τ

0 0 0 0 ko 0 0

0 0 1 0 ki 0 kx*
0 1 0 1 0 ki ki*
0 1 1 0 ki 0 h*

1 0 0 0 kA 0 0

1 0 1 1 0 ks 0

1 1 0 1 0 k6
1 1 1 0 ki 0

*ki is the complemsnt of k^.

F,+i = {TF + TF),, (3-58)

As in the case of the RS flip-flop, one first constructs a truth table
showing the value of xF + yF for each possible configuration of x, y, F,
This time xF + yF = TF -\- TF. By a process of logical inference the
values of Τ may be obtained from the values of TF + TF. From columns
1, 2, 3, and 5 of Table 3.13, the following equation for Τ may be obtained

Τ = xyF + xyF + xyF + xyF

= + yF. (3-59)

If Jc = J, Eq. (3-59) may be simplified to

Γ = Jc. (3-60)

From the truth table of the RS-T flip-flop, its characteristic equation
is

Ft+i = {RSTF + RSTF + RSTF + RSTF)t

= {RSTF + RSTF + RST)t, (3-61)

Since, by definition, RS = ST = RT = 0, each may be added to Eq.
(3-61). A simplified expression, readily obtainable from a Karnaugh map
by selective inclusion of redundancies in a group (see Section 3.5.1.4), is

F,+i = {RTF+TF+S),. (3-62)

To obtain the input equations, one constructs a truth table, as before,
showing the value of xF -f yF for each possible configuration of x, y, F.
This time xF + yF = RTF + TF + S)t, The values of S and Γ in

TABLE 3 . 1 4

3.7. FLIP-FLOPS 81

TABLE 3.15

F,+l = (xF + yF),
x y F, = (RTF + STF), RT ST

0 0 0 0 ko 0
0 0 1 0 1 k1
0 1 0 1 k2 1
0 1 1 0 1 ka
1 0 0 0 k4 0
1 0 1 1 0 kG
1 1 0 1 ke 1
1 1 1 1 0 k'l

Table 3.14 may be obtained by inference from the values of RTF + TF +
s. The input equations are

R = koxyF + k1 xYF + k3 xyF + k4 xyF (3-63)

S = k2 iyF + k3 xYF + k6 xyF + k7 xyF (3-64)

T = " iyF + "2 xyF + "3 xyF + "6 xyF. (3-65)
If k 1 = k2 = kg = k 6 = 1, and ko = k4 = k 5 = k'l = 0

R = xF

If all k. = 0

S =yF

T = o.
Case (1)

R=O
S = 0 Case (2)

T = xF+yF.
If ko = k1 = ka = k7 = 1, and k2 = kg = k4 = kr, = 0

R = xy

S = xy Case (3)

T = xy.
If ko = k1 = k2 = ka = 1, and kg = k4 = k5 = k7 = 0

R = xy

S = yF Case (4)

T = xyF.

82 3. BOOLEAN ALGEBRA

It Λι = = = * 7 = 1, and ko = ki = = = 0

R = xF

S ^ xy Case (5)

Τ = xyF.

In cases (1) and (2) the R-S-T flip-flop becomes equivalent to the RS
and Τ flip-flops, respectively. In some instances the solutions called for
by (3) , (4) , or (5) may be simpler, i.e., require fewer combinational
circuits and/or fewer inputs per combinational circuit than that called
for by solutions (1) or (2) . This is equivalent to saying that sometimes
the use of an R-S-T type of flip-flop is more economical in the amount of
circuitry required to form its input signals than either the RS or Γ
type of flip-flop.

From the truth table of the RT-ST flip-flop, its characteristic equation
is

Ft-\.\ = {RTSTF + RTSTF -|- RTSTF -f- RTSTF)t

= (RTF + STF)^, (3-66)

By a process now famihar, the values of RT and ST shown in Table 3.15
may be derived. The input equations are

RT = koxyF + xyF + k2xyF + xyF
+ k,xyF+kexyF (3-67)

ST = kixyF + xyF -^ k^xyF + k^xyF
+ xyF + knxyF. (3-68)

If ko = k2 = kz = ki = 1, and = *e = Ατι = Λ5 = 0

RT = X (3-69)

ST = 7. (3-70)

The general input equations (3-69) and (3-70) for the RT—ST flip-flop
are equal to the input equations (3-55) and (3-56) of the R-S flip-flop
when xy = 0.

3.7.3. DERIVATION OF SPECIFIC INPUT EQUATIONS FROM A KARNAUGH
MAP OF THE APPLICATION EQUATION

The flip-flop input equations for a particular application can be
obtained from a plot of the application equation (and any redundancies
that may exist) on a Karnaugh map. For example, if the difference
equation and redundancies are as follows

3.7. FLIP-FLOPS 83

Ft+i = ABF + BCF + BCF + ÄBF (3-71)

AECF = ABCF = 0 . . . (3-72)

their plot on a Karnaugh map would be as shown in Fig. 3.15.
{k marks a redundancy and may be assigned a checked or unchecked value).

Í + 1

FIG. 3 . 1 5 . Plot of the difference equation
= ABF + BCF + BCF and the redundancies ABCF = ABCF = 0

Only those terms for which F is true appear in the left half of the map
while those for which F is true appear in the right. Therefore, the values
of X and y in the general application equation (3-43), are equal to the logical,
sum of the checked squares (and χ and y are equal to the logical sums
of the unchecked squares) in the left and right half planes respectively.
Substituting the values of χ and y obtained from inspection of the map
into the general input equations (3-51) and (3-52) of the R-S flip-flop
yields

R = (B + ÄBC)F

= (5 + ÄC)F

S =^ BF

(3-73)

(3-74)

3.7.4. DERIVATION OF SPECIFIC INPUT EQUATIONS FROM CONSIDERATION
ONLY OF CONDITIONS PRECEDING A CHANGE

The procedures described thus far for obtaining flip-flop input equa­
tions are inefficient because they consider all possible input signals to a
flip-flop rather than only those which produce an effect. Since a condition
which does not cause a flip-flop to change its state is irrelevant to its
operation, there is no need to include it as a term in any input equation.
Any such condition may be omitted by deriving the input equations in
the following manner. Consider and include only those conditions whose
existence at time t cause a change in the state of a flip-flop at time r + 1.
In the case of an R-S flip-flop, it is only necessary to include in the S

84 3. BOOLEAN ALGEBRA

and R equations those conditions which are to cause the flip-flop to
change from state 0 to 1 and 1 to 0, respectively. For example, consider
again the three stage counter comprised of flip-flops: F^, F^, F^. We see
that flip-flop Fl changes state every time. Therefore, = Fi, 5i = Fi .
Flip-flop F2 changes from 0 to 1 when either F^F^F^ or F^F^F^ is true.
Therefore, = F^FK The change from 1 to 0 occurs when F3F2F1 or
F3F2F1 is true. Therefore, ^2 = fifi^ f3 changes from 0 to 1 only when
F3F2F1 is true, so 5^ = F^F^F^, and from 1 to 0 only when F3F2F1 is true,
so R^ = F^F^F^, Actually, it is not even necessary to have two sets of
columns, one for time t and one for time i + 1. The different rows can
be written in a sequential order, i.e., if the contents of any given row are
taken to represent the state of a group of elements at time t, that of the
row above may be considered to represent the state at time t — 1 and that of
the row below it the state at time ί + 1. In short, succeeding rows corres­
pond to succeeding instants of time. There is the additional convention
that, when lower rows indicate later instants of time, one proceeds from
the bottom row back to the top row. With this arrangement, the input
equations for each flip-flop may be determined by scanning each column
from top to bottom (in that order) and noting all the conditions of all the
flip-flops just prior to a change of the flip-flop being considered. In the
case of a trigger flip-flop, the logical sum of all these conditions represents
the input equation. In the case of the R-S flip-flop the logical sum of all
those conditions preceding a change from 0 to 1 represents 5 and the logical
sum of those preceding a change from 1 to 0 represents R,

There are times when a set of flip-flops may go from any given state
to either of two other states depending on the presence of external control
signals. For example, the value of a counter may be either increased or
decreased by a single increment each time a count command is received
in accordance with whether the command says count-up or count-down.
The way to derive the conditions for the count-up logic has already been
described. The count-down logic is obtained in a similar manner, the
difference being that each column is scanned from the bottom row to the
top and the bottom row follows the top row. The logical product of
the count-up logic and the count-up command is formed, and so is the
logical product of the count-down logic and the count-down command.
The logical sum of these two products represents the inputs to the flip-
flops for the combined up-down counter action.

Another example will be provided here of how the input equations
for a flip-flop may be determined directly from consideration of its func-

3.7. FLIP-FLOPS 85

A* ^ 3 A" Al

Ks K2 Κι
Ί — Κ, Ks Κ2

— — Κ* Ks
h *—~ —— Κ,

If the contents of A'^ are to be inspected only during the interval to
through ts, it is irrelevant whether y4̂ is set to 1 or to 0 upon receipt of
the first shift command. From consideration of Table 3.16, it is apparent
that if an R-S type of flip-flop is used

= . . . Si = A^C.

= . . . Ri = Ä^C.

5 2 = AiC. 5 1 = A^C,

R2 = AiC. RÍ = Ä2C..

In this case, even the construction of the simple table is not necessary,
for the verbal statement of the requirements clearly indicates the nature
of the flip-flop input equations.

3.7.5. DYNAMIC FLIP-FLOPS

The basic bistable active storage device utilized in ac coupled systems
of circuit logic (described in Chapter 4) is the so-called dynamic flip-
flop, sometimes referred to as the regenerative or ac flip-flop. Schematics
of dynamic flip-flops are shown in Figs. 3.16(a),*(b), and (c) .

tion. Assume that we have a set of flip-flops: A^, A^, A^, A'^ whose con­
tents at time ίο are given by K4, K3, K2, Ki where each Ki may be either
0 or 1. It is required that the contents of this register be made available
by examination of at four successive instants of time. This requirement
can be met if the contents of each flip-flop are shifted one place to the
right each time a shift command, C«, appears. The contents of the flip-
flops at four successive instants of time are shown in Table 3.16.

TABLE 3 . 1 6

86 3. BCXDLEAN ALGEBRA

Unit
delay

Amp

0 Input

Unit
delay

Amp Inv Κ
Γ — { A N D L r

I Input

OR

Output / ?

(a)

(b)

Unit
delay

A m p M H Inv

Id
^iHÍANDUr
Γ Η AND

:f1
OR

(0
FiG. 3.16. Dynamic flip-flops: (a) set-reset type, (b) trigger type,

(c) set-reset-complement type. [Amp denotes an amplifier. Inv denotes an
inverter which amplifies and complements a signal. The unit delay is

provided by an electromagnetic delay line}.

The set reset type of dynamic flip-flop shown in Fig. 3.16(a) is set
to the 1 state by applying a set pulse, 5, to the 1 input line. As a result
of the recirculation loop, a sequence of pulses (separated by a one pulse
period delay) will be produced at the output. This condition of dynamic
equilibrium may be used to represent a 1 state. The 0 state may be
produced by closing the AND gate (see Section 4.2), thereby terminating
the recirculation. This is done by making R false. In another scheme, the
signal R is applied to an inhibitor used in place of the AND gate. A state­
ment of conditions necessary to produce and maintain the 1 state is

Ai+i = 5 4- RAi

where / + 1 and / are used to distinguish between the outputs of the
amplifier at times / + 1 and /. Instead of using an ampUfier to maintain
pulse shape and amplitude, an AND gate controlled by clock pulses could
be inserted in the loop ahead of the OR gate. In this case, a pulse applied
to the 1 input line must be at a time such that, after passing through
the delay unit, it arrives at the clock gate in coincidence with the next
clock pulse.

The trigger type of dynamic flip-flop shown in Fig. 3.16(b) is designed
to change state each time a trigger pulse Τ is applied. The input-output
relation expressed in Boolean algebra is

3.8. SEQUENTUL SWITCHING NETWORKS 87

which states that if the flip-flop is in the off or 0 condition designated by
Ai, a trigger pulse Τ will turn it on. It will stay on as long as another Τ
pulse is not applied, i.e., as long as the condition ^»T exists.

The set-reset-complement type of dynamic flip-flop shown in Fig.
3.16(c) combines features of the set-reset and the trigger types. The in­
put-output relationship is

Ai^i =S + AiT + AiTR.

This states that an 5 pulse will set the flip-flop to the on condition. If it
is off, a trigger pulse Τ will set it to the "on" condition. Once on, it will
remain in this condition until a trigger or reset pulse is applied.

3.8. Sequential Switching Networks

As stated earlier, a sequential switching network is formed from
switching elements and storage elements. As a prelude to considering
what is required to completely specify at any given time the condition
or state of the network, certain assumptions will be stated. Since the
constrained logical behavior rather than the complete circuital behavior
of such networks is of interest here, it will be assumed that the condition
of the network will be observed only at discrete times, when the network
is in the steady state, and that input signals are applied and output signals
produced only at these discrete times. Another assumption, implicit in the
nature of digital elements, is that a given element always produces pre­
cisely the same response to a given stimulus. For example, if all inputs
to an AND gate have the value 1, the output of the gate will be 1. The
appearance of a proper signal at the input to a trigger flip-flop will cause
the flip-flop to change to its complementary state. It is apparent that a
sequential switching network, which is an integrated collection of discrete
valued stimulus response devices, can be considered as a single large
behaviorial device, i.e., as an organism.

A complete behavioral description of the organism described is given
by enumerating all the distinguishable states which it can assume, and
the permissible transitions from any given state to other states. At any
time of observation, the functional state of the organism is completely
described by a statement of the current state of each storage element. If
the organism has a total of m bistable storage elements, then it is capable,
at most, of exhibiting 2*« distinguishable states. The state which the
organism will assume after any given state, a, depends on its internal
structure, i.e., the way in which its storage and switching elements are

88 3. BOOLEAN ALGEBRA

interconnected, where Unes that will carry input signals from external
sources are connected, and the signals present on the input lines at the
time the organism is in state a.

Of course, the function of an organism like a sequential switching net­
work is not merely to assume a number of distinguishable stable states.
It is designed to produce certain useable output signals. These output
signals usually take the form of the output of certain combinational cir­
cuits or the states of specified storage elements in the network. The
preceding discussion may be clarified by reference to Fig. 3.17. It indi-

Output
lines

FIG. 3 . 1 7 . Model of a sequential switching network. (F = storage element,
C = combinational circuit)

cates the internal structure of a sequential switching network, and also
the lines that convey input signals from external sources as well as those
on which specified output signals appear. The network consists of m
bistable storage elements FS F^, . . . F"* and a number of combinational
switching circuits O, C^, . . . Some of the input lines are used as
inputs to the combinational circuits while others may be coupled directly
to the input lines of the storage elements. However, there is no loss of
generality if it is assumed that all the input lines are coupled only to
combinational circuits. The other inputs to a combinational circuit come
either from the outputs of specified storage elements or of combinational
circuits. The inputs to the storage elements come either from the outputs
of other storage elements or from the outputs of the combinational cir­
cuits. Again, there is no loss of generality if it is assumed inputs to the
storage elements come only from the outputs of combinational circuits.
The output lines may be coupled either to the outputs of specified com­
binational circuits or storage elements.

3.8. SEQUENTIAL SWITCHING NETWORKS 89

FIG. 3.18. Superstates and permissible superstate sequences of a
sequential switching network

Figure 3.18 illustrates how a sequential network advances from one
superstate to another. Each encircled letter designates a particular super­
state which, we recall, refers to a particular state of all the storage ele­
ments F \ F 2 , . . . F"^. In this example, it is assumed that there are only two
input lines, A and B, and that at any specified instant, any of the four
possible input signal combinations: 00, 01, 10, or 11 may be present.

The logical state of a sequential network in the steady state may be
described in terms of the states of its storage elements. For convenience,
we will sometimes use the term "superstate" to emphasize "logical state of
all internal storage elements of the network." When the context permits,
sometimes the term "state" will be used interchangeably. The superstate
that exists at time / is a function of the following

(1) The superstate at time / — 1
(2) The external inputs received by the network at time / — 1
(3) The structure of the network (which defines the sequence of

permissible superstates).
For a network of m storage elements in which all 2^ possible superstates
are allowed, during a sequence of η transitions one of (2"*)** possible super­
state sequences will be generated. With like inputs, the superstate follow­
ing a particular superstate will always be the same. This quality of exact
repeatability is an important characteristic of digital machines. It means
that in the solution of a given problem, a digital computer should always
pass through the same sequence of superstates, and produce the same
solution. If it does not, one knows that something is amiss. This is a
property that can be utilized in error detecting techniques (see Chapter 9) .

90 3. BOOLEAN ALGEBRA

3.8.1. MINIMIZATION OF STORAGE ELEMENTS IN A SEQUENTIAL NETWORK

Circuit analysis and synthesis procedures described by Huffman [1954]
and Mealy [1955] allow one to minimize the number of storage elements
required in a sequential switching network. However, they do so without
concern for the number of switching elements required.

The directed line segments and their associated numbers define the struc­
ture of the network, for they indicate to what superstate a particular
superstate will advance when given input signals are received. In general,
not all input signals will cause a change in a superstate. Only those input
signals are shown which cause the network to advance from one super­
state to another. In the example, when the network is in superstate a,
any of the four possible input signal combinations will cause it to advance
to another superstate. However, when the network is in superstate e, it
can advance to another superstate, namely /, only if A and Β have the
values 1 and 0, respectively.

Some comment is in order here on the subject of the two basic modes
in which a sequential network may be made to operate. One is termed
synchronous operation and the other asynchronous. In synchronous
operation, switching action can occur only at distinct times. These times
are specified by uniformly spaced pulses received from a generator re­
ferred to as a clock. By combining all switching signals in AND combina­
tions with clock signals, no switching action can occur except at times
when clock signals are present. On the other hand, an asynchronous sys­
tem is free-running. An asynchronous network may advance from its
present superstate to another when signals are generated indicating that
the transition from the preceding to the present superstate has been com­
pleted. These signals are generated by the network itself. The topic of
synchronous and asynchronous operation will be discussed in Chapters 4
and 7.

The preceding description of the mode of operation of a sequential
network leads, at least in principle, to a procedure for synthesis. We begin
by assuming an arbitrary initial superstate for the network. Then we must
specify, for each possible combination of superstate and input configura­
tions, the output configuration to be produced and the succeeding super­
state. This process is repeated until all allowable superstates have been
specified. In practice, the network will be closed in the sense that it
should be possible to go through some path from any superstate to any
other. The structure of the network shown in Fig. 3.18 is such that this
will be so.

3.8. SEQUENTIAL SWITCHING NETWORKS 91

A little reflection indicates that the total number of storage elements
required to perform some complex function or series of operations will
depend on how many different storage configurations (superstates) are
required during the course of these operations. In essence, the Huffman-
Mealy method provides a formalized method for reducing the number of
these configurations to a minimum. The method consists essentially of
a procedure for eliminating unnecessary states. This is possible when the
function of the network is so stated initially that a direct translation
to a truth table produces one or more equivalent states.

One state is equivalent to another state if, for all possible configu­
rations of input signals that may be presented at a time, the same outputs
are produced and the two states advance to the same state. A procedure
for detecting and eliminating equivalent states is as follows: 1) Con­
struct a table in which all states are represented symbolically and which
shows the state at time η 4- 1 and the outputs at time w as a function of
the state at time η and the inputs at time n. 2) From this table of states
form one or more sets of states in which all members of a set produce the
same configuration of output signals in response to each of the possible
input signal configurations, and assign a number to each set for identifi­
cation. 3) Determine and list the assigned number of the set to which each
state advances for all possible input configurations. 4) From each set in
which there are now states that do not produce the same set of output con­
figurations as other members of the set, form two or more new sets by
grouping those states which do. 5) Repeat steps 2, 3 and 4 until no addi­
tional sets can be formed. At this point, all states in any one set are
equivalent and may be replaced by a single state. The total number of
states required is the number of sets formed. A simpUfied table of states
can be produced now, and from it one can generate difference equations,
flip-flop input equations and output equations.

If for any state one or more output signals are undefined, or there
are configurations of input signals for which the next state is undefined,
these undefined items may be assigned any value necessary to establish an
equivalence.

Let us consider now the effect that the number of originaUy specified
states has on the reduction process. For example, suppose there are 192
states. In this case, a reduction of 65 states (to 128) is required to
save one flip-flop. If 130 states were called for originally, a reduction
of only two states is required to save one flip-flop. Since the number of
states that can be represented by η flip-flops is 2̂ *, and since 2" - 2**-̂
increases with n, the maximum number of states to be eliminated to save
one flip-flop depends on the particular interval in which the originaUy

92 3. BOOLEAN ALGEBRA

specified number of states falls. However, regardless of the magnitude of
this number, an elimination of some states will generally reduce the amount
of combinational circuitry.

The Huffman-Mealy method does not guarantee an optimum network,
since

(1) The network with the fewest storage elements is not necessarily
the most desirable, when other considerations, such as the number of
switching elements, are taken into consideration.

(2) It provides no indication of how the different states should be
represented by the flip-flops for the switching network to be minimal.
(In other words it is no substitute for ingenuity)

(3) It cannot be guaranteed to give the smallest number of states
unless there are no redundancies present in the network.
In regard to item (1) , there are times when one may wish to use more
than the minimum number of storage elements—for example, to realize
savings in the number of switching elements, to simplify visualization of the
function of the flip-flops (as an aid to maintenance), to faciUtate a future
expansion. The trade-offs possible between storage and switching elements
are referred to in subsequent chapters. For example, in Section 4.2.7 there
is a description of how additional flip-flops can be brought in to reduce
the number and/or complexity of the combinational circuits. As indi­
cated in Section 7.5, if 2** rather than η flip-flops are used to generate 2**
distinct states (i.e. if a non-weighted code is used) so that particular
flip-flops may be associated with particular classes of functions, the out­
puts of the flip-flops can be connected directly to gates without the use
of intervening decoding and encoding switching networks (see Section 4.8).

If the magnitude of the simplification process becomes excessive, one
can construct a computer program, incorporating the Huffman-Mealy algor­
ithm or its equivalent, which can accept a functional description of a
sequential network and from it proceed through the operations required to
automatically produce tables of states, difference equations, flip-flop input
equations and network output equations.

3.9. The Advantages of α Boolean Algebraic Description
of α Digital Computer

At this point, let us review the nature of a digital computer for the
purpose of showing why it may be described by Boolean algebraic equa­
tions, and the advantages that may be derived from such a description.
We recall that a digital computer is composed principally of switching
and storage elements. (Other physically essential elements of a nonlogical
nature will be described in Chapter 4) . A statement of the permissible

3.9. ADVANTAGES OF BOOLEAN DESCRIPTION 93

superstate sequences a computer can assume, in terms of the requisite
conditions for transitions of superstates, is readily made by a Boolean
algebraic description. This description implies how the elements are inter­
connected. For a network whose storage elements are all of the active type,
this description is provided by the flip-flop input equations. In a practi­
cal computer, with a large capacity main store comprised of passive storage
elements and, perhaps, delay Hne registers, the description must also in­
clude input equations for the record stations. (See, for example, those
in Section 7.6.3). In a transition between two superstates, only a small
number of bits is recorded into or read from the main store, and by means
of a small set of recording and reading stations. This greatly simplifies
the logical description of a machine, for the input signals from the main
store to the active storage elements contain only the small set of signals
from the reading stations and the input signals to the main store consist
of the input signals to the small set of record stations.

The basic reasons why Boolean algebra is well suited for the descrip­
tion of a binary (or binary coded) digital computer are: It is easy to
equate the two values of the binary number system to the two values of
Boolean algebra. In a binary machine all signals whether representing
arithmetic, logical, or control operations have to be specified only to the
extent of existing or not. All the conditions to be met for signals to occur
at prescribed times and places may be included in a Boolean expression
and an equivalence established between the truth values of the expressions
and the occurrence of the signals.

Although the use of Boolean algebra has certain limitations in the
design of digital computers, it is a tool of major importance offering many
significant advantages. Its use in preliminary design (with or without
auxiliary block diagrams) permits a general description of switching opera­
tions without the use of circuit schematic diagrams, thus enabling the
designer to focus his attention on logical organization. At the same time
it enables him to move freely from the level of logical organization to
that of electronic embodiment. Another important group of advantages
follows from the fact that it provides formalized methods which, from an
initial formulation, can generate all equivalent forms and alternate mech­
anizations. One of these may then be chosen on the basis of such criteria
as a minimal number of circuit components, a minimal loading of circuits,
the use of terms already developed elsewhere in the machine, fewer con­
nections, etc. Often the economy is realized from the elimination of implicit
redundancies in the original formulation of the switching function. At
other times a simplification may result from the fact that a Boolean
description facilitates the inclusion of certain nonallowable states as well
as intentional redundancies for the purpose of improving reliabiUty.

94 3. BOOLEAN ALGEBRA

In Section 7.7 there is a description of the use of Boolean algebra as
an aid to 1) automating many tedious aspects of computer design—^for
example, circuit loading computations and the generation of wiring tabu­
lations (used in place of wiring diagrams), 2) constructing simulation
programs for testing a new design, 3) utilizing time-sharing techniques
(which permit not only savings in components but can aid the equaUzation
of circuit loading since various functional requirements can be distributed
in a number of ways among time-shared flip-flops).

A Boolean algebraic description of a preliminary design affords a
convenient indication of where there are deficiencies in the design and
how they may be corrected. Also, the fact that Boolean algebraic equa­
tions representing specific functions can be easily separated out and studied
independently (except possibly in the case where there is considerable
time-sharing) aids in the understanding of a machine's operation and
simplifies maintenance.

In the synthesis of a digital computer, there must be generated a
description of the machine in terms of the types of elements and circuits
to be used for the entry, storage, and processing of the data, and for the
display of solutions, and the way in which all these elements are to be
organized, i.e., interconnected, into an integrated system for accomplish­
ing certain objectives. This latter task is often referred to as logical design.
The term, unfortunately, is sometimes interpreted to mean simply the
writing of a description of a machine in terms of logical, i.e., Boolean
algebraic, equations. However, this is only one phase of logical design.
It begins with the conception of the general structure of a machine for
satisfying specified requirements. This conception does not occur in the
form of Boolean algebraic equations, but rather in terms of an arrange­
ment which by experience and native skill a designer senses to be optimmn
for the purposes he has in mind. The derivation of this arrangement is
based on the functional specifications, usually in terms of verbal state­
ments, and is aided by preliminary organizational descriptions in the form
of information flow block diagrams. After the general organizational
structure has been outlined, a description of the machine may be written
in terms of Boolean algebraic equations. If the original conception is
not well thought out, simpUfication of the Boolean description wiU not
reUeve aU its iUs. ActuaUy, the use of Boolean algebra is not even neces­
sary to the design of a digital computer. Many of the early large digital
computers were designed without its aid. However, Boolean algebra is an
important tool which simpUfies the description of a digital computer and
provides the other advantages which have been referred to earUer. In
addition, its use, in general, stimulates and faciUtates the creation of

3.10. CLOCK PULSE GENERATORS, TIMING CIRCUITS 95

more sophisticated designs, i.e., those providing more efficient utilization
of switching and storage elements.

3.10, Clock Pulse Generators and Timing Circuits

When establishing an equivalence between the two values of Boolean
algebra and the physical states of various electrical or mechanical devices,
a practical problem presents itself. Physical devices cannot instantaneously
change their state because of mechanical inertia or electrical capacitance
or inductance. For example, in passing between open and closed states,
there is a time interval during which there is uncertainty as to which state
a relay is in; elements like vacuum tubes, transistors, diodes, cannot be
switched- between states of high or low conduction without passing
through intermediate states whose duration is determined by the electrical
capacitance and inductance of these elements and the circuits in which
they are incorporated. One way to bypass this difficulty is to specify that
the states of circuit elements will be inspected only at discrete times when
the elements can be considered to have reached steady states.

It is convenient, for purposes of synchronization and logical organi­
zation, as well as for the reason stated above, to provide a clock, con­
sisting of uniformly spaced electrical signals which are continually gen­
erated by some device within the system. The clock signals define discrete
time intervals and the gates are so designed that there is ample time to
complete a switching action during the clock interval. One way of using
the clock to control all switching operations in a computer is to combine
the outputs of all combinational circuits in an AND gate with the clock
signal. Then, a clock signal must be present in order for any of these
circuits to produce an output.

Sometimes there is a requirement for a multiplicity of clock pulse
trains, all of the same frequency, which are so phased that none of the
pulses of one train are time coincident with those of another train. All
of these pulse trains may be generated by a single source, referred to as
a multiphase clock. A multiphase clock is used in a number of computers,
e.g., the SEAC, and is also required for driving certain types of magnetic
core logic circuits (see Chapter 4) .

A number of distinct time signals can be generated by means of a
binary counter (see Section 6.1.1) activated by signals from a clock gen­
erator. Signals from this clock pulse counter can be used to specify when
prescribed switching operations are to occur. For example, if it is desir­
able that the output, K, of a combinational circuit be capable of influenc­
ing some other circuit only at time, Ts, then Κ is combined in an AND

96 3. BOOLEAN ALGEBRA

gate with a signal that is true if, and only if the counter indicates time Ts,
and the output of this gate is used as the input to the circuit in question. A
clock pulse counter does not necessarily have to count in a conventional
way (see Section 6.1.1.6).

A device for converting an input pulse train whose pulses may occur
at random times into an output pulse train of the same average pulse
rate, and with a fixed interval between pulses, is termed a synchronizer.
To operate correctly, it must have timing pulses whose separation is less
than that of any two input pulses. This insures the occurrence of a timing
pulse between any two data pulses. Considered functionally, a synchronizer
is a memory device in which a data pulse is read in at an arbitrary time,
and always read out at a specified time, namely, upon the occurrence of
the next timing pulse. Once a pulse has been read out, subsequent timing
pulses have no effect on the circuit until after a new data pulse has been
read in. As the name implies, a synchronizer is utilized to synchronize
external inputs with a system's internal signals. It is a specialized case of
a buflier register (see Section 4.9).

It has already been noted that in synchronous systems, information
can be sensed only during the coincidence of a clock signal with informa­
tion signals. Also, there is a fixed phase relationship between the clock
signals and the information signals. For example, when a magnetic disk or
drum is used as a storage medium, the clock signal is usually generated
from a track on which uniformly spaced signals have been recorded.
Since the information bits are recorded on the same surface, the proper
phase relationship is maintained between the information bits and the
clock bits, even if the angular velocity of the surface varies. In other sys­
tems the phase and frequency of the information bits may be determined
by an independently generated clock signal. In still other systems it may
be inconvenient or impossible to use an independently generated clock
signal. In these systems the clock signal may be derived from the infor­
mation bits themselves by means of a circuit referred to as a phased
clock pulse generator. Such a circuit is described in the article by L. D.
Seader [1957] listed in the bibliography of Chapter 5.

3.11. Subdivision of the Computer Synthesis Problem

The general method of sequential network synthesis referred to in
Section 3.8 would, in practice, be unwieldy for machines requiring a great
number of switching and storage elements. In the design of large, general
puφose, stored program computers, it is convenient to subdivide the over­
all design problem into the problem of designing a number of smaller units
which correspond to the major functional units of a general purpose com-

3.11. SUBDIVISION OF COMPUTER SYNTHESIS 97

puter which were described in Chapter 2, namely the main storage, the
arithmetic unit, the input equipment, the output equipment, and the
control unit. There are, of course, many forms which each of these units
can assume, both as a result of the particular circuitry used, and the
logical arrangement of this circuitry. Chapter 4 is devoted principally to
a description of the different sets of circuits that have been used as the
logical building blocks of present-day digital computers, and Chapter 5
describes the major types of physical realization of large capacity storage
units. Chapter 6 describes a large number of logical arrangements, and
circuit mechanizations that could be employed to implement various arith­
metic and control processes, e.g., synchronization, counting, addition, sub­
traction, multiplication, division, comparison, etc. In Chapter 7, the
pertinent characteristics of storage and arithmetic units are reviewed, and
a description of the control unit design problem is provided to aid in an
appreciation of the problems of computer synthesis. The important con­
cept of time-sharing is introduced to show how its use permits a reduction
in the amount of equipment required for a computer (at the cost of a
reduced speed of operation). Finally, the logical design of two computers,
one employing a static and the other a dynamic type of main store is
derived. These designs also illustrate that it is not always necessary to
sharply subdivide a machine into separate compartments for the opera­
tions of storage, arithmetic, and control.

LITERATURE

Abhyankar, S. [1958] Minimal sum of products of sums, expressions of Boolean
functions, IRE Trans. El. Comp. EC-7, 268-276.

Beatson, T. J. [1958] Minimization of components in electronic switching circuits,
Trans Amer. Inst. Elec. Engrs. 7 7 (I) , 283-291.

Birkhoff, G., and MacLane, S. [1948] A Survey of Modern Algebra, pp. 311-25,
MacMillan, London.

Boole, G. [1854] Investigation of the Laws of Thought, reprint, Dover, New York,
1951.

Caldwell, S. H. [1954] The recognition and identification of synmietric switching
functions, Trans. Amer. Inst. Elec. Engrs., 7 3 (I) 142-147.

Epstein, G. [1958] Synthesis of electronic circuits for symmetric functions, IRE
Trans. El. Comp. EC-7, 57-60.

Ghazala, M. J. [1957] Irredundant disjunctive and conjunctive forms of a Boolean
function, IBM Journal, 1, 171-176.

Ginsburg, S. [1959a] A synthesis technique for minimal state sequential machines,
IRE Trans. El. Comp., EC-8, 13-24.

Ginsburg, S. [1959b] A technique for the reduction of a given machine to a minimal
state machine, IRE Trans. El. Comp., EC-8, 346-355.

Hartree, D. R. [1949] Calculating Instruments and Machines, pp. 99-105, Univ.
of Illinois Press, Urbana, Illinois.

98 3. BOOLEAN ALGEBRA

Huffman, D. A. [1954] The synthesis of sequential switching circuits, Jour.
Franklin Inst., 257, 161-190, 275-303.

Huffman, D. A. [1957] The design and use of hazard-free switching networks.
Jour. ACM, 4, 47-62.

Huntington, E. V. [1904] The algebra of logic, Trans. Amer. Math. Soc, 5,
288-309.

Karnaugh, M. [1953] The map method for synthesis of combinational logic circuits.
Trans. Amer. Inst. Elec. Engrs., 72 (I) , 593-99.

Karnaugh, M. [1954] A map method for synthesis of logic circuits. Trans. Amer.
Inst. Elec. Engrs., 73 (I) , 136.

Keister, W., Ritchie, A. E., Washburn, S. H. [1951] The Design of Switching
Circuits, Van Nostrand, New York.

Kleene, S. C. [1952] Introduction to Metamathematics, Van Nostrand, Princeton,
N.J.

Ledermann, W. [1957] Introduction to the Theory of Finite Groups, Interscience,
New York.

Lee, C. Y. [1954] Switching functions on an n-dimensional cube. Trans. Amer.
Inst. Elec. Engrs., 73 (I) , 289-91.

Lee, C. Y., and Chen, W. H. [1956] Several valued combinational switching circuits,
Trans. Amer. Inst. Elec. Engrs., 75 (I) , 278-283.

Lewis, L A. D. [1951] A symbolic method for the solution of some switching and
relay circuit problems, Proc. Inst. Elec. Engrs., 98 (I) , 181-191.

McCluskey, Jr., Ε. J. [1956] Minimization of Boolean functions, Bell System Tech.
Jour., 35, 1417-1444.

McCluskey, Jr., E. J. [1958] Iterative combinational switching networks—general
design considerations, IRE Trans. El. Comp., EC-7, 285-291.

McCulloch and Pitts [1943] A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophysics, 5, 115.

Mealy, G. H. [1955] A method for synthesizing sequential circuits, Bell System
Tech. Jour., 34, 1045-1080.

Moore, Ε. F. [1952] A simplified universal Turing machine, Proc. ACM Meeting,
Toronto, 50-55.

Moore, E. F. [1956] Gedanken experiments on sequential machines. Automata
Studies (Annals of Mathematics Studies No. 34) , (C. Shannon and J.
McCarthy, eds.) pp. 129-153, Princeton Univ. Press.

MuUer, D. Ε. [1954] Application of boolean algebra to switching circuit design
and to error detection, IRE Trans. El. Comp., 3, 6-11.

Muller, D. Ε. [1956] Complexity in electronic switching circuits, IRE Trans. El.
Comp., 5, 15-18.

Nelson, R. J. [1955a] Simplest normal truth functions, Jour. Symbolic Logic, 20,
105-108.

Nelson, R. J. [1955b] Weak simplest normal truth functions. Jour. Symbolic Logic,
23, 232-234.

Netherwood, D. B. [1959] Minimum sequential machines, IRE Trans. El. Comp.,
EC-8, 339-345.

Pauli, Μ. C. and Unger, S. H. [1959] Minimizing the number of states in incom­
pletely specified sequential switching functions, IRE Trans. El. Comp., EC-8,
356-367.

Quine, W. V. [1952] The problem of simplifying truth functions, Amer. Math.
Monthly, 59, 521-31.

LITERATURE 99

Quine, W. V. [1955] A way to simplify truth functions, Amer. Math. Monthly, 62,
627-31.

Reichenbach, Η. [1947] Elements of Symbolic Logic, MacMillan, London.
Roth, J. P. and Jacobi, G. T. [1955] A Topological Method for the Synthesis of

Switching Circuits in η Variables, General Electric Co. Report No. R55GL 345.
Roth, J. P. [1959] Algebraic topological methods in synthesis, in Proceedings of an

International Symposium on the Theory of Switching (Ft. I) Harvard Univ.
Press, Cambridge, Mass., pp. 57-73.

Rubinoff, Μ. [1959] Remarks on the design of sequential circuits, in Proceedings
of an International Symposium on the Theory of Switching (Pt. II) Harvard
Univ. Press, Cambridge, Mass., pp. 241-280.

Serrell, R. [1953] Elements of Boolean algebra for the study of information-
handling systems, Proc. IRE, 41, 1366-79. (Corrections [1954]. Proc. IRE, 42,
475).

Shannon, C. E. [1938] A symbolic analysis of relay and switching circuits, Trans.
Amer. Inst. Elec. Engrs. Suppt., 57 (I) , 713-723.

Shannon, C. E. [1949] The synthesis of two-terminal switching circuits, Bell System
Tech. Jour., 28, 59-98.

Sheffer, H. M. [1913] A set of five independent postulates for Boolean algebras, with
applications to logical constants. Trans. Amer. Math. Soc, 14, 481-488.

Slepian, D. [1953] On the number of symmetry types of Boolean functions of n-
variables, Ganad. Jour. Math., 5, 185-92.

Staehler, R. [1952] An application of boolean algebra to switching circuit design,
Bell System Tech. Jour., 31, 280-305.

Staff of the Computation Laboratory, Harvard University [1951]. Synthesis of
Electronic Computing and Control Circuits, Harvard Univ. Pres§, Cambridge,
Massachusetts.

Turing, A. M. [1937] On computable numbers, with an application to the entschei-
dungsproblem, Proc. London Math. Soc, Ser. 2, 42, 1936-1937; Corrections,
43, 544-546.

Turing, A. M. [1954] Solvable and unsolvable problems, Science News, 31, 7-23,
Penguin Books, Harmondsworth, England.

Urbano, R. H. and Mueller, R. K. [1956] A topological method for the determina­
tion of the minimal forms of a Boolean function, IRE Trans. El. Comp.,
EC-5, 126-132.

Veitch, E. W. [1952] A chart method for simplifying truth functions, Proceedings
of the Association for Computing Machinery Meeting at Toronto, Ontario,
1952, pp. 128-133, Assoc. Comput. Mach., New York.

Wang, Hao [1957] A variant to Turing's theory of computing machines, Jour. ACM,
4, 63-92.

Washburn, S. H. [1949] Relay 'trees' and synmietric circuits, Trans, Amer. Inst.
Elec. Engrs., 68 (I) , 582-86.

4. Circuit Descriptions of Switching and

Storage Elements

In Chapter 3, the concept of a switching function and switching net­
works was introduced, and it was shown how sequential networks could
be formed by a combination of storage elements and combinational
switching networks. There are many physical elements available for the
realization of both of these functions. Often, the same physical element
can be utilized for switching, storage, and auxiliary functions such as
power amplification by incoφorating it into appropriate circuits. For
example, vacuum tubes, transistors, and magnetic cores may all be used
in both switching, storage, and amplification circuits. In this chapter
descriptions will be provided of the most prominent of these circuits.

The functioning of switching networks and of complete digital com­
puters can be appreciated even with a very limited knowledge of circuitry.
However, a certain amount of circuit description will aid both in providing
a better over-all orientation with respect to the subject and also a better
appreciation of the problems associated with physical systems as con­
trasted to idealized systems of perfect elements. Whereas ideal elements
can be interconnected without restriction, real elements cannot. Accord­
ingly, different types of physical elements impose different restrictions on
the logical arrangement of switching networks.

There is no attempt in this chapter to provide an exhaustive treat­
ment of either switching or storage circuitry. This not only would con­
sume an inordinate number of pages, but is imnecessary for the main
purpose of this book, namely a presentation of the fundamentals essential
to an understanding of the design and capabilities of digital computing
machines. There is another cogent reason for limiting the discussion of
computer circuitry. New components and techniques for their utilization
are appearing on the scene at an amazing rate, and many, if not most,
of the circuits common a few years ago have now been replaced. Most of
the earlier machines used vacuum tubes, both as switching and storage
elements. The first major change in a sequence of changes still continuing
occurred when vacuum tube switching elements were replaced by semi­
conductor diodes. This was the situation when the writing of this book

100

4.1. SYSTEMS OF CIRCUIT LOGIC 101

was undertaken. Now, vacuum tubes have been replaced almost com­
pletely. Present machines utilize semiconductor diodes, transistors, or
magnetic cores as switching elements, and transistors and magnetic cores
as storage elements for small quantities of data. High speed and medium
speed large capacity storage systems, described in Chapter 5, now almost
universally use arrays of magnetic cores, and the surface of a magnetic
drum or disc, respectively. Among more recent elements to appear, and
which hold promise for faster switching and storage, are those that operate
by exploiting the switching action between superconductivity and normal
conductivity obtainable with certain materials at temperatures near abso­
lute zero. Superconductive switching elements are described in Section 4.6
while superconductive storage elements are described in Section 5.4.
Some other elements that have been investigated for computers operating
beyond 100-Mc are described briefly in Section 4.7. Emphasis is placed
on semiconductors (diodes and transistors) and on magnetic core devices
because of their dominant position at this time. However, the principles
and techniques of utilizing switching and storage elements that are pre­
sented should be helpful m exploiting new devices that may appear.

4.1 . Systems of Circuit Logic

A compatible set of switching and storage circuits, adequate for the
realization of any sequential switching network that may be called for
in a digital computer is termed a system of circuit logic. In designing
a digital computer, considerable effort is usually directed towards forming
a system of circuit logic from a small set of standardized circuits. This
yields a saving in engineering design effort and in the cost of manufacture,
equipment maintenance and spare parts inventory. Several systems of cir­
cuit logic have been developed to date and some of the most outstanding
ones will be discussed here. Among the items that must be considered
when designing a set of circuits are: the selection of voltages or currents
to represent the binary signals in various parts of the system, the design
of circuits capable of a speciñed speed of response, the specification of
permissible loading on the various circuits. In connection with the first
item it should be remarked that whereas one set of voltages or currents
may be used to represent the binary signals in one part of the system,
others may be used in other parts of the system. The permissible loading
on the various circuits is of considerable interest to the logical designer.
Ideally, he would not like to have any restrictions placed on the inter­
connection of logical elements. When circuit considerations impose such
restrictions he may have to reformulate his set of logical equations to a
form realizable by the circuitry to be used. In general, for a given set of

102 4. SWITCHING AND STORAGE CIRCUITS

building blocks, there is specified a set of restrictions on the permissible
interconnections of the elements in the set. These restrictions are due
principally to time delays introduced by various circuits, circuit inter­
actions, and waveform degradations caused by passing through certain
chains of elements.

The systems of circuit logic described in this chapter are classified
under the headings of vacuum tube, transistor, and magnetic core sys­
tems. In each category, a number of different types of circuits and
modes of operation are presented. However, certain arrangements can be
used with more than one type of physical element. For example, the ac
(dynamic pulse) system and the dc (asynchronous) system are described
under vacuum tube systems because they were first developed using
vacuum tube circuits and these vacuum tube versions are currently in
operation. An ac system, originally based upon a combination of diode
switching networks and a particular configuration of vacuum tube pulse
amplification and regeneration circuits, can also be built with a similar
set of transistor circuits. A dc system can also be constructed using transis­
tors. At the University of Illinois Computer Laboratory, work is in progress
on an asynchronous dc computer system which will use transistor circuitry
and be approximately 100 times faster than the earlier ILLIAC computer.

There are a number of systems of circuit logic in which the combina­
tional switching circuits are comprised of AND and OR circuits formed
from semiconductor diodes, in a type of circuit referred to as a gate.
These gates are widely used not only in computers but also in many
specialized data processing units such as analog-to-digital converters and
other peripheral equipment. Because of their wide appUcation, diode
gaiing circuits wiU be discussed separately in the sections foUowing.

4.2. Gates
The term "gate" is often used for any of the elemental switching circuits

of which combinational switching networks are composed. The term
originated in electrical circuit terminology. The signals produced on an
output Une of a switching circuit were considered to be the signals on
one of the input lines which had been permitted to pass through (i.e.,
gated) provided specified control signals were present on other input
lines.

In so-called dc systems, the signals consist of two specified voltage
levels. In ac systems, the signals consist of the presence or absence of
a voltage pulse (of either polarity). There are also "mixed" systems where
some of the signals are represented by pulses and others by voltage levels.
Gates can be formed of either active elements, e.g., vacuum tube diodes.

4.1. SYSTEMS OF CIRCUIT LOGIC 103

triodes, multigrid tubes, or transistors, (all capable of amplifying signals)
or from passive elements such as the diodes described in Section 4.2.1.

Among the most commonly encoxmtered gates in digital computers
are those that correspond to the Boolean AND and OR operators. In elec­
trical circuit terminology the term "buffer" or "mixing circuit" is used
for an OR circuit, and the term "coincidence gate" is used for an AND
circuit. However, the term "gate" when used alone usually refers to a
"coincidence gate".

An AND gate will produce a signal on its output line, if, and only if,
there is a signal present on all inputs, of which there may be two or more.
Some of the most widely used representations of AND gates are shown in
Fig. 4.1. The representation on the left will usually be used in this text.

I I
I 1

.C A-
B-

AND gates

A
Β OR

Τ

A
B-

.C A-
B-

OR gates

Fio. 4 .1 . Functional representations of AND and OR gates

The dashed lines indicate that there is no restriction relative to the sides
to which input lines may be directed. There will also be no restriction
relative to the side from which the output line may emanate. The
equivalence of the electrical circuit viewpoint and the Boolean algebra
viewpoint relative to a gate may be described with reference to this symbol.
In electrical circuit terminology, it is said that a gate permits a train of
pulses to pass from one of its inputs to its output provided specified sig­
nals (referred to as control signals) are present on the other input Unes.
In Boolean descriptions, 1 can be assigned to the presence and 0 to the ab­
sence of a signal. In Fig. 4.1 if Β (assumed to be the control signal)
has the value 1, the output C = ^45 is equivalent to C = ^ . Therefore,
the control signal Β can be considered to let the input signal A pass
through to the output.

1 0 4 4 . SWITCHING AND STORAGE CIRCUITS

An OR gate will produce a signal on its output line if there is a signal
present at one or more of the inputs. Some of the most widely used
representations of OR gates are shown in Fig. 4 . 1 . The representation on
the left will be used in this text. In electrical circuit terminology, the
term "mixer" or "mixing circuit" is used to indicate that this type of
circuit can be used to convert noncoincident trains of pulses on two or
more lines to a single train of pulses on another line.

4 . 2 . 1 . DIODE GATING CIRCUITS

Diodes are two-terminal devices exhibiting the property of rectification,
i.e., the amount of current that passes between the two terminals depends
not only on the amplitude of the voltage applied, but also on its polarity.
The "ideal" diode represents an open or a short circuit depending on the
polarity of the voltage applied. Among the more common diodes are
vacuum tube diodes and those formed from semiconductors like selenium,
germanium, and silicon. Because of their relatively large bulk, power
consumption, and circuitry requirements, vacuum tube diodes have been
completely replaced in digital computer circuits by semiconductor diodes.
The latter are small, do not require the continuous dissipation of power
as do the filaments of a vacuum tube, and have very simple circuit
requirements. Selenium diodes are limited by their relatively slow switch­
ing action to frequencies less than 5 0 Kc. Germanium and sihcon diode
gates are operable at frequencies in the megacycle range, the attainable
frequency of operation being a function not only of the diode's characteris­
tics, but of the circuit in which it is incorporated.

The equivalent circuits of all the diodes discussed may be represented
as shown in Fig. 4 . 2 . In these schematics, (a) represents the equivalent
circuit when a potential is applied in the forward direction, and (b) repre-

(b)

Forward
current /

/ Forward
Reverse voltage ^ voltage

Reverse
current

FIG. 4.2. Equivalent circuits of a
semiconductor diode

FIG. 4.3. Typical voltage-current
characteristic of a semiconductor diode

4.2. GATES 105

sents the equivalent circuit when a potential is appUed in the opposite
direction. Figure 4.3 shows the flow of current in a semiconductor diode
as a function of the magnitude and polarity of the applied voltage.

Both AND and OR gates may be physically realized by means of simple
circuits utilizing diodes and resistors. The operation of these circuits
depends upon the fact that when a voltage of one polarity is impressed
across the terminals of a diode, it exhibits a very high resistance, R i , ,
(the so-K:alled back resistance) and when a voltage of opposite polarity
is applied, it exhibits a very low resistance, Rf (the so-called forward
resistance). Figure 4.4 shows a schematic of semiconductor diode circuits
that are used to realize AND or OR gates. Though only two inputs are

Β­ ΟΗ

[a)

A Β

.A^B

> ΚΛ > F , > V-

¿ _ J A N D
AB

(b)

Block diagram

.AB

A Β

Diode circuit

FIG. 4.4. Single level gates

shown for each gate, additional inputs can be accommodated simply by
adding diodes in parallel. The circuits shown are intended to work with
binary signals represented by two positive voltage levels. These voltages
may be termed Vn and Vu where the subscripts stand for high and low.
In Fig. 4.4(a) if a voltage of magnitude Vi is applied to both inputs, each
diode exhibits a high resistance which allows only a negligible current
flow through the resistor. Therefore, the output voltage will be low. If Γ*
is applied to one input and Vi to the other, the diode connected to the
input carrying Vj, exhibits a low resistance while the other diode exhibits
a high resistance. The net effect is that a substantial amount of current

1 0 6 4 . SWITCHING AND STORAGE CIRCUITS

can flow through the resistor to the terminal where is applied. Since
a diode conducting in the forward direction has a very low resistance, the
voltage drop across it is negligible compared to the drop across the resistor,
and therefore the output voltage will be approximately equal to F^. If VH
is applied to both inputs, the voltage drop across the two forward con­
ducting diodes in parallel is negUgible so that the output voltage will be
approximately equal to F^. To summarize, the output voltage will be
approximately equal to Vn whenever a voltage of magnitude Vn is appUed
to one or both of the inputs. If it is specified that Vn represents 1 and Vi
represents 0 , this circuit represents an OR gate. The operation of the AND
circuit shown in Fig. 4 .4 (b) may be explained in a similar manner. In
both of these circuits, if two negative, instead of positive, voltage levels
are used, the AND gate for positive signals becomes an OR gate for negative
signals, and the OR gate for positive signals becomes an AND gate for
negative signals.

The problems of design in diode gating circuits are simple in prin­
ciple. However, in actual practice they can become rather involved,
especially in multilevel networks (described in the section following).
Essentially the problem consists of specifying the two voltage levels
corresponding to the values of a binary variable, selecting the two supply
voltages, F+ and V-, and then determining resistor values such that the
correct output voltage is produced for all possible combinations of input
voltages. Also, a particular type of diode must be selected from the large
number of different types available. The selection of operating voltages
and diode types are not independent. For example, the reverse voltage
(i.e., an appHed voltage of polarity such that the diode exhibits a high
impedance) that can be applied across a diode before it breaks down, the
so-called breakdown voltage, varies with diode type. Also, although the
characteristic curve shown in Fig. 4 . 3 is typical of many semiconductor
diodes, there are some variations in the shape of the curvo as well as the
scale of the coordinates for different diode types. Another important fac­
tor in the design of high-speed circuits relates to the maximum rate at
which a particular type of diode can be switched between states of high
and low current conduction.

The preceding description of a diode gate circuit assumed not only
the use of ideal diodes, but also the use of dc voltages for input signals
and a no-load condition at the output of the circuit. The effect of nonideal
diodes and loading will be considered in the description of multilevel
gating circuits which follows.

4 . 2 . 2 . MULTILEVEL GATING QRCUITS

As described in Chapter 3 , in the synthesis of a switching network.

4.2. GATES 107

* This operational notation for a function of other functions is sometimes referred
to as the Polish notation because of its use in classic works by Polish logicians.

it is a common occurrence for the output of a switching element to be
used as the input to one or more others. When this occurs, the network
is said to have more than one level. This discussion of multilevel gating
circuits assumes that all networks are formed by interconnectmg AND and
OR gates. The level of a particular network is given by the total of the
AND and OR gates in an AND-OR-AND- . . . or an OR-AND-OR- . . . chain.
It may be determined either from the block diagram or circuit schematic
by noting the largest number of AND and OR gates through which any
input passes before reaching the output line. The number of levels may
be determined, too, from the equation as follows. Represent an AND
function by the notation α(/, / , . . .) and an OR function by o{U, V, . ,
If a Boolean equation is rewritten in this form, the number of levels is
equal to the total number of parenthetical enclosures. For example

A(B + CD) = a{A,o[B,a(C,D)]}*

indicating a three level gate.
In Fig. 4.5 are shown two examples of two-level diode gates. Only the

AND-OR arrangement in Fig. 4.5(b) will be considered in detail, but
similar remarks apply to the OR-AND arrangement. Assume that the supply
voltages, signal voltage levels, and diode type have already been specified.
Then, the only design problem remaining is that of determining resistor
values. To minimize current requirements, they should be as large as
practical. Also, they must allow the gating circuit to produce an output
voltage of either VH or Vi in accordance with the values of the signal
voltages present at the input terminals.

For reasons which will become apparent, the resistor values in gating
chains are determined starting at the load end. In Fig. 4.5(b), the
value of Ri may be determined by noting that, if all the inputs are at the
level Vu the current through Ri must be suflScient to produce an output
voltage, Vout ^ Vi. If there were no load, Ri could have any value. When
a load is present, it is in parallel with Α χ . The resulting division of current
flow limits the maximum allowable value of Ri, The value of R2 may be
determined as follows. Consider the point ρ in the circuit. The voltage at ρ
must rise to Vn whenever A and Β are both equal to V^, If points A and Β
are left floating and if C and D are both equal to Vu the voltage at ρ
must be greater than or equal to K .̂ If it were not, diodes Z>6 and De
would be in the reverse direction when A and Β were reconnected to
V^, and Vout would fail to rise to K .̂ To assure that Kout can be pulled

108

Β-
C-

4. SWITCHING AND STORAGE CIRCUITS

OR A N D OR A N D

Β C %

(a)

> A (B^C)

A .
B-

C
D

A N D

A N D

AB^CD

o AB^CD

(b)

Block diagram Diode circuit

FIG. 4.5. Two-level gates

up to FA, the following relationship must exist

Ä 2 <

The same relationship holds between Ri and each R2 in the event that
there are more than two inputs to either the OR circuit or to any or all of
the AND circuits.

The values of the resistors in higher level gates may be determined
by following the type of analysis used for the two-level gate. The analysis
proceeds by starting at the load end of the gate and determining the
resistor values for higher levels in sequence. For a three-level OR-AND-OR
network, the maximum value of the third level resistor(s) is given by

nR^R2{Vi-V-)
'^^ ^ nR^{V+ - Vi) - R2(Vi - V')

where η is equal to the number of inputs to the first level OR circuit.
Since the resistors in any given level draw current in a direction oppo­

site to that in the next lower level, enough current must be drawn to

4.2. GATES 109

overcome the effects of the next lower level. The maximmn permissible
values of the resistors decrease rapidly as the level increases, requiring
that larger currents be supplied by the input signals.

In the preceding discussion, it was tacitly assumed that the diodes
had a zero forward resistance. However, as the curve in Fig. 4.3 indicates,
this is not the case. As a result, an attenuation in voltage swing will
occur between the input and output of a gate, and spurious signals may
be introduced. Both of these effects occur because the current distribution
through the diodes will not be the same for the conditions that are to
produce a high and low output voltage, respectively, nor even for all the
input configurations that should produce the same output voltage. As an
example, consider first a multi-input OR gate. If all the inputs are at a
high voltage, the current passing through the gating resistor will be
equally distributed through all the diode paths (neglecting small variations
in the diode forward resistances). The output voltage will be determined
by the voltage division between the parallel diode forward resistances on
the one hand and the gating resistor on the other. If some of the inputs
are at a low voltage, the current from the gating resistor will only pass
through those diodes whose inputs are high. In addition, there will be a
reverse current from the diodes whose inputs are low through the diodes
whose inputs are high. As a result, the voltage drop between the input
and output will increase, whereas, according to the logical relationship
desired, it should not. Now consider a multi-input AND gate. If all the
inputs are at a low voltage, the output voltage will be determined by the
voltage division between the parallel diode forward resistances and the
gating resistor. If any input voltage becomes high, the corresponding
diode will have a reverse voltage impressed upon it and therefore will
exhibit a high back resistance. In addition, there will be a current now
from the diodes whose inputs are at a low voltage to the diode whose
input is at a high voltage. As a result, the output voltage will rise slightly.

In both of the preceding examples, if the amplitude of the spurious
signals generated is below a certain level, depending on the characteristics
of the circuitry, they will not be detected by the system. In any event,
such effects may be minimized by selecting diodes with very low forward
and high back resistance. In multilevel circuits there is some compensation
for the attenuation in voltage swing because for an AND circuit the shift
occurs in a positive direction while for an OR circuit it occurs in a negative
direction.

Another item not previously considered is that the diode back resist­
ance, while very large, is not infinite. In a single level circuit this does
not affect the permissible values for the gating resistor. However, it places

1 1 0 4 . SWITCHING AND STORAGE CIRCUITS

an extra load on the input signal. For example, in the OR gate of Fig. 4 . 4 ,
if A is at Vn and Β at Vu current will flow from A to Β through Rf of the
first diode and Rb of the second. The sources of the input signals must
be capable of supplying this current. In multilevel networks the effect of
the diode back resistance is to reduce the maximum permissible values of
the gating resistors.

The actual load to be placed on a given network must also be con­
sidered when determining the values of the gating resistors. The resistive
part of the load may be treated, by Thevenin's theorem, as a
resistor returned to a supply voltage F,. If the first level of switching is
an OR gate, the load can serve as the gating resistor provided Vi is positive
with'respect to F«. If is positive with respect to Vi, the maximum per­
missible value of the first-level gating resistor may be found by a procedure
similar to that described earlier for determining a second-level resistor. In
solving for a second-level resistor under actual load conditions, the first-
level resistor must be replaced by the Thevenin equivalent of the first-level
resistor and the load.

4 . 2 . 3 . VOLTAGE AND CURRENT REQXΠREMENTS IN GATING CIRCUITS

From the preceding discussion of multilevel diode gates, it is evident
that the current required to drive the input lines increases rapidly with
the number of levels. The current increase is a direct function of power
supply and resistor tolerances, the number of diodes, and the signal voltage
swing. The current increase is less for higher voltage supphes, but the
power dissipation in network resistors becomes greater. As usual, a com­
promise must be made between increased power dissipation and increasing
current in high level gates.

The current required to drive a multilevel circuit can be reduced by
choosing F+ and V- such that (F+ - F^) and (Vi - F ") are much
larger than (F^ - F^). Though a large value of (F+ - F ") facilitates
switching action (since the absolute change in voltage will be greater in a
given charge or discharge time), there is more power dissipation in the
gating resistors and a risk that, in the event of an accidental open circuit,
voltages in excess of the breakdown voltage may appear across diodes.

A major deficiency of diode gates is that their outputs cannot be
heavily loaded. Since a diode gate does not constitute a constant current
source, current amplifiers such as cathode followers or enütter followers
must be incoφorated in each two-level or three-level circuit. After pro­
pagation through several gates and current amplifiers, the input signals must
have their voltage amplitude restored by means of voltage amplifiers.
Because diode gates have a relatively low input impedance, it is necessary

4.2. GATES 111

that they be driven by a relatively low impedance (constant current)
source.

Since the power consumption of switching circuits increases as the
square of the vohage swing, the latter should be as small as possible con­
sistent with reliable operation. However, at low signal levels the voltage
drop across a diode becomes appreciable compared to the signal swing.
For example, if a diode has a 0.25 volt forward voltage drop, and signal
voltage swings of only 2 volts are used, there will be a 12.5% level
shift of the signal through the diode. Also, at megacycle frequencies
large currents are required to switch diode logic circuits, thus limiting
the number of circuits that can be driven by one current amplifier. In
Section 4.4.2.2, the use of transistor gates is described. These gates can
be adequately switched by small signals, and a large number of them
can be driven by a single transistor current amplifier.

In computing the load current to be suppUed by a flip-ñop in a large
sequential network, account should be taken of the case where both
outputs of a flip-flop drive a combinational circuit which is also driven
by another flip-flop. In this case, the load to be supplied by the other
flip-flop will be diminished because of the aid that is always received from
the first. This type of situation is referred to as current sharing. When
current sharing is taken into account, the total current drain on a flip-
flop will be found to be less than if the sum of currents to each circuit
were considered independently. For detailed descriptions of methods of
computing currents and resistor values in diode networks, the reader is
referred to Gluck et al [1953], Hussey [1953], Scobey et al [1956],
and Yokelson and Ulrich [1955].

4.2.4. SWITCHING SPEED IN DIODE GATES

The switching speed obtainable in diode gates is adversely affected by
a numt)er of factors. The most important of these are circuit capacitances
and diode recovery time. The effects of load capacitance, stray wiring
capacitance, and diode interelectrode capacitance may be determined by
conventional electrical network analysis. The net effect is that the value
of the gating resistors must be reduced from the maximum value permis­
sible when these capacitances are ignored. When a semiconductor diode
has been conducting heavily in the forward direction, and the applied
vohage is suddenly reversed, a time lag, referred to as diode recovery
time, occurs before the diode assumes its normal value of back resistance.
However, recovery time for some newer diodes is under 10 nanosec
(where 1 nanosec = 10"® sec), so it need not be a serious Hmitation
to high speed circuits. The finite back resistance of a diode also affects

112 4. SWITCHING AND STORAGE CIRCUITS

switching speed. The net effect is that for a given switching speed, the
value of the gating resistors must be reduced. The fact that the forward
resistance of a diode is not actually zero has Uttle effect compared to the
tolerances in resistor values and uncertainties in circuit capacitances in
a gating network.

4.2.5. PYRAMID GATES

Frequently it occurs that two or more switching functions required
in the construction of a network have a number of common inputs. For
example, suppose / i = ABC and / 2 = ABCDEF, A saving in the total
number of switching elements required may be realized by using an
arrangement such as shown in Fig. 4.6(a), referred to as a pyramid.
Though it is actually a two-level gate (ANI>-AND) each section can be
designed independently. It is only necessary that the source of each
input signal be capable of supplying the current drawn by the resistor in
each section. A two-level OR-OR pyramid is shown in Fig. 4.6(b).

{ABCDEF)^

Ε F
ÁABO

A B C

A N D gates

A B C

{A^B*C), O F F

AA*B^C*D+E+F)

OR gates

FIG. 4.6. Pyramid arrangements

Though, in general, a multi-input gate represents a single level network,
an expression like A + Β + C D, for example, might be used in the
two-level form A -\- (B + C D) if (Ö4-C + D) were available.

4.2. GATES 113

4.2.6. ALGEBRAIC REDUCTION OF HIGHER LEVEL GATES

TO LOWER LEVEL GATES

As we have seen, when all circuit parameters are considered and
adequate safety tolerances included, the design of multilevel networks
becomes complicated. Since the current at each level increases, and the
values of voltages and resistors become more critical, more than three
levels are seldom used. In fact, the number of levels is often limited to
two.

Higher level gates may be reduced to lower order ones by multiplying
out the factors in the hi¿ier level expressions. As an example, consider
the expression, f4=-AB[{C + D + E){C + D + E) + FG]. As written,
this represents a four-level network. Multiplying out the terms in paren­
theses yields an expression that represents a three-level network:
Γ3 = AB [CE + CE + D + F G l Performing the indicated multiplication
yields an expression that represents a two-level network: / 2 = ABCE +
ABCE + ABD + ABFG. If the functions / 4 , /a, and / 2 were mechanized
by diode networks, they would require 16, 14, and 19 diodes, respectively.
As a rule, a lower-level network will require more diodes than a higher-
level one. That this did not occur in going from the fourth- to the third-
level network in the example is due to the simplification obtained as a
result of the special nature of the terms in the parentheses. To see what
happens in the worst case, replace the terms in the parentheses as follows:
h = AB [(H + I + J)(K-i- L M) + FGl In this case the correspond­
ing three- and two-level networks will require 34 and 50 diodes, re­
spectively.

4.2.7. REDUCTION OF THE LEVEL OR NUMBER OF ELEMENTS IN A
COMBINATIONAL CIRCUIT BY THE USE OF STORAGE ELEMENTS

In Section 4.2.6 we saw that, as a rule, a lower-level gate produced
from a higher-level one by algebraic manipulation requires more gating
elements. In special cases it is possible to reduce both the level of com­
binational networks and the number of switching elements required by
the introduction of auxiliary flip-flops. As an example consider the
expression

/ = (AB-l·CD'}•EF)(KL + MN'l·P).

In this form, 18 diodes would be required to generate / in a three-level
combinational network. If all the terms were multiplied out to produce a
second-order expression, 42 diodes would be required. We will consider

1 1 4 4 . SWITCHING AND STORAGE CIRCUITS

(α) (b)

FIG. 4.7. Pedestal-pulse gate circuits

now the effect of introducing two auxiliary ñip-ñops, U, V, The term
(AB + C D + EF) will be used to set one nip-flop and the term (KL +
ΛίΛ̂ + Ρ) will be used to set the other. Normally, there is a unit time
delay from the instant at which an input signal occurs to the time at which
its effect is observed at the output of a flip-flop. Therefore, time must be
introduced into the expression for / as shown

ft = (AB + CD + EF)t(KL + MN + P)t = (UV)t+i.

Thus the original expression can be mechanized by the use of two set-
reset flip-flops and two two-level combinational networks, one with nine
diodes and the other with seven, plus the input circuits for carrying the
reset signals to the flip-flops. In practice a flip-flop is triggered at times
within each operating cycle defined by signals derived from a clock.
The timing signal is combined with other terms in the flip-flop input
equation. For example, the input equation for setting the flip-flop, Í/,
might be (AB + CD-l· EF)Tn, where ΓΗ could refer to a single clock
signal, or a function of several timing signals.

Note that whereas a combinational circuit alone would indicate at
time t whether the function / were true at time t, the sequential circuit
does not provide this indication until time r 4- 1. For assurance that the
value of (AB + C D + EF) is compared with the value of (KL + ΛίΛ^ + Ρ)
that occurred at the same time, both flip-flops are reset after each com­
parison. Thus, the restrictions on the use of such auxiliary flip-flops are
that the delay introduced be tolerable (normally, a system can be designed
to accept such fixed delays), and that there is time to reset the flip-flops
before introducing a new set of input signals.

4 . 2 . 8 . PULSE-PEDESTAL GATE CIRCUIT

A requirement that often arises in digital computer systems is the
gating of a voltage pulse signal by another signal in the form of a dc
voltage level. Diode gate circuits for positive and negative voltage signals
are shown in Fig. 4.7. In both cases, the output pulse occurs during the
period of coincidence of the input signals.

In Fig. 4.7(a) a dc supply in the load holds the output line to K .̂

J " h " 1 -

tX 0 - J L | ^ ο-ΛΛΛ, J II o -Y-

4.2. GATES 115

When the input to the resistor is Vu the diode (which is back biased)
blocks passage of an applied positive pulse of amplitude less than (F ^ -
F I) . However, when the input to the resistor is F^ , the diode is biased in
the forward direction, allowing passage of the pulse to the output. In Fig.
4.7 (b) , if the input to the resistor is Vu the diode is back biased and blocks
passage of the applied pulse. When the input to the resistor is F^ , the
diode (now biased in the forward direction) allows passage of the applied
pulse.

The need for pedestal gating arises whenever a system calls for dc
gating networks to be used with binary storage elements which require
pulse inputs. The characteristics of different flip-flop circuits are described
later in the chapter. When the triggering of a flip-flop from one stable
state to another calls for input signals in the form of voltage pulses rather
than levels, the pulse pedestal gate circuit can be used to convert the dc
voltage level outputs of a dc gating network to the pulse type signals
required as flip-flop inputs.

Pulse pedestal circuits are commonly used as a means of controlling
the transition of a synchronous computer from one superstate to another.
The outputs of all dc gates to be used for triggering flip-flops are com­
bined in a pulse-pedestal circuit whose pulse input is derived from a clock
pulse generator which supplies pulses at regular intervals. Since the
pulse-pedestal circuit can have an output only if a clock pulse is present,
the states of the flip-flops cannot be altered except at the time of occur­
rence of clock pulses.

4.2.9. GENERATION OF COMPLEMENTARY FUNCTIONS

If a switching function, /, is synthesized by some combination of
elementary functions, then the complementary function, / , can always be
synthesized by some other function of the variables involved. In general,
the complementary function can be realized physically only if some device
is available to provide the complement of the switching variables. A
flip-flop with two output lines provides both a signal and its complement
and, therefore, permits the generation of / by means of AND and OR
circuits alone. For example, if / = (AB + AC), then f = (A + SC) Can
readily by generated by combinations of AND and OR circuits, provided
A, B, and C are available. There are times, though, when it may be
desirable to limit the number of elementary signals in complemented form
used in constructing a switching function. These are occasioned by
practical circuit considerations. Even though both the complemented and
uncomplemented signals are available from a flip-flop, a power amplifier
may be required for each of the outputs that is to be used as an input

116 4. SWITCHING AND STORAGE CIRCUITS

to many other circuits. Also, additional wires are required, which may be a
disadvantage if the signals have to be transmitted an appreciable distance.

It is often more convenient and simpler to form the complement of a
complex signal, i.e., one developed from a large number of elementary
signals, by applying it to the input of a suitably designed voltage amplifier,
which has the characteristic that when a signal is appUed to its input an
amplified and inverted form of the signal appears at its output. Inverter
circuits, which are physical realizations of the complement operator, are
described in the sections on vacuum tube and transistor circuits which
appear later in this chapter. Because inverters may introduce serious time
lags and distortion of wave forms, especially if one or more of them are
in cascade within a multilevel gate, it is often desirable to limit their use
in switching networks. This may be done by transforming a given equa­
tion. For example, replacing (A + B) by ÄB eliminates the need for an
inverter (provided the switching variables are available in complemented
as well as uncomplemented form).

Often, the problem of optimization of a switching network is equiva­
lent to minimizing the number of elementary switching circuits, usually
AND and OR gates, required for the realization of specified functions. When,
in addition, it is desirable to limit the number of complemented signal
sources or the number of inverters, derivation of an optimum circuit is
not as clear cut.

4.3. Vacuum Tube Systems of Circuit Logic
The early electronic digital computers used vacuum tube circuitry

extensively for gating and storage. However, after an evolutionary period
of about ten years' duration, tubes were replaced more and more by other
devices. At the present time practically all new machines under develop­
ment utilize combinations of solid state devices for the functions of cir­
cuit logic (as well as for the main store).

Because of their historical importance, and the fact that a large num­
ber of machines using vacuum tubes in their logical circuitry are still in
operation, a brief description of vacuum tube gating and storage circuits
will be provided. One of the basic circuits is the famihar inverter circuit,
shown in Fig. 4.8. To operate this circuit as a binary switch, the input
signal is chosen to either cause the tube to be fully conducting or to
be cut off. The function of the voltage divider is to scale down the output
voltage of one circuit to the proper level for input to the grid of another
circuit. The capacitor improves the circuit response time. An increase
in voltage in the positive direction on the grid causes the tube to conduct
more current, thereby increasing the voltage drop across the load resistor

4.3. VACUUM TUBE SYSTEMS OF CIRCUIT LOGIC 117

, Output=>i
/i o—Ijwv-I—I—v\ H i n v K

FIG. 4.8. A vacuum tube inverter

and reducing the output voltage. A decrease in voUage on the grid has
the opposite effect. If a sufficiently large negative voltage is applied to the
grid, the tube will be cut off, and the output voltage will be equal to the
positive supply voltage. It is apparent that if the two values of a binary
variable are represented by a pair of voltages, then application of one
voltage to the input of the inverter can cause the complementary voltage
to be produced at the output. Whether a given voltage represents a 1 or
a 0 is at the discretion of the designer. He may, in fact, reverse the
convention from place to place within a machine if by so doing he can
effect simplifications in the over-all circuitry. Of course, account must be
taken of what conventions are used in any section. In Fig. 4.9 a circuit

Output

FiG. 4.9. A parallel inverter

comprised of two inverters sharing a common load resistor is shown. It
serves as an inverting OR gate for positive signals and an inverting AND
gate for negative signals. Both the AND and OR functions can be generated
by combinations of inverter and parallel inverter circuits, as shown in
Fig. 4.10.

A o — [inv

Β

Ä

^i~^^:^^AB A^B

FIG. 4.10. AND and OR gates formed from inverters

118 4. SWITCHING AND STORAGE CIRCUITS

A Static flip-flop circuit can be formed from two inverters by regenera-
tively coupling the output of each to the input of the other. This circuit,
based on the Eccles-Jordan multivibrator circuit, is useful both in ma­
chines using dc coupled gates as well as in machines using ac coupled
gates. The basic nature of the vacuum tube static-flip-flop circuit
is shown in Fig. 4.11. The circuit shown can actually be monostable or
astable as well as bistable, depending on the impedances Ζ χ and Z 2 .
The circuit will be bistable only if both Z i and Z 2 contain dc paths.
Typically, Z i and Z 2 are identical parallel RC branches. The use of the
circuit affects its design. For example, as a counter (see Chapter 6) the
circuit requires symmetrical inputs. When used as a stage in a shift
register, separate inputs would be required for data pulses and shift com­
mand signals. Usually, a flip-flop is not used to drive a diode gating
circuit directly because spurious pulses coupled from one diode input line
to other input unes may cause unwanted triggering of the flip-flop.

Theoretically, any combinational switching function can be derived
from the use of the inverter and the parallel inverter circuits. This is
because they provide the operations of Boolean complementation and
addition which, as stated in Chapter 3, are adequate for generating any
Boolean function. However, a number of other types of electronic cir­
cuits are available for various practical purposes. One of the most im­
portant of these circuits is the cathode follower, which is a physical
realization of the "single identity" operator E2 in Table 3.6. However, it
is not used as a switching element, but for other puφOses. Its high effec­
tive input impedance (compared to an ordinary amplifier) and a low
effective output impedance (from 200-1000 ohms), make it useful as a
current amplifier and an impedance matching device for coupling a high
impedance circuit to a low impedance one. Figure 4.12 shows a schematic
of a cathode follower utilizing a triode. Use of a pentode in such a circuit
would provide a lower input capacitance and a higher gain. However, the

FIG. 4.11. Basic vacuum tube static FIG. 4.12. Basic cathode follower circuit
flip-flop circuit

4.3. VACUUM TUBE SYSTEMS OF CIRCUIT LOGIC 119

pentode circuit is not as satisfactory for handling large input signals. In
practice, cathode follower circuits are better suited for driving diode OR
gates whereas inverters are better for driving diode AND gates. An OR gate
for positive signals can be realized by a circuit comprised of two cathode
followers sharing a common load resistor. When both tubes are fully
conducting, the output vohage is high. Also, if either tube is cut off, there
is only a negligible drop in output voltage. When both tubes are cut off,
the output voltage drops to the value of the negative supply voltage.

4.3.1. THE DIODE GATE, FLIP-FLOP SYSTEM

In this system of circuit logic, diodes are used for AND and OR gates,
inverters for complementation where desirable, and vacuum tube flip-flops
for storage. The output signals of the flip-flops are coupled to the inputs
of cathode followers, which are provided both to isolate the flip-flop from
its load, and to provide the current source called for by the diode gates.
Each steady state output signal of the switching network is used as one
of the inputs to a pulse pedestal gate in the appropriate input circuit of a
designated flip-flop. The other input to all of these pulse-pedestal gates
comes from a clock pulse source. This arrangement places the entire
system under control of the clock, for no flip-flop can be triggered except
at times when clock pulses appear.

4.3.2. THE PENTODE GATE SYSTEM

Multigrid tubes have also been used as gating elements in vacuum
tube computers. Not all multigrid tubes can serve as practical gating
elements because, in general, the different grids have different quantitative
effects on the plate currents and therefore the signal voltages applied to
them would have to be adjusted accordingly. One tube in which the
control and suppressor grid each have approximately the same degree of
control on plate current is the 6AS6. A specially designed gating tube,
the GL-5915-A, has two independent control grids, and it can be utilized
as a two input inverting AND gate for positive signals. The cut-off voltage
is the same on both grids, and the tube is normally cut off by bias voltages
applied to these grids. The appHcation of two appropriately large positive
signals to both grids simultaneously causes the tube to conduct, producing
a negative output signal at the plate.

Logic circuitry using pentodes for gating was developed at MIT for the
Whirlwind Computer. The pentode circuit, shown in Fig. 4.13 operates
as an AND gate in which pulse signals applied to the grid are gated under

1 2 0 4 . SWITCHING AND STORAGE CIRCUITS

Wide pulse
or voltage level

standard pulse

FIG. 4 . 1 3 . Pentode pulse gate

the control of a dc gating signal or a wide pulse applied to the suppressor
grid. A positive output pulse is produced at the point indicated when the
gating signal and the input pulse are both positive and sufficiently large.
An important characteristic of this circuit is that the output pulse can be
made of suitable shape and amphtude to drive other pentode gates
directly.

In a circuit logic system built around a pentode gate, the dc outputs
of ffip-flops would be used as the inputs to the suppressor grids of the
pentode gates. The pulse outputs of these gates could be used either as
inputs to diode OR gates or as inputs to flip-flops. In the latter case pulse
transformers could be used at the inputs to the flip-flops in order to obtain
negative pulses, which are more suitable for triggering flip-flops. The out­
puts of the diode OR gates can be used as the pulse inputs to other pentode
gates or as inputs to the flip-flops.

Asynchronous and/or synchronous operation may be used with this
system of circuit logic according to which produces a desired function
with minimum circuitry. In asynchronous operation each network could
be activated either by a start signal or an end of operation signal from
another network.

4 . 3 . 3 . THE AC SYSTEM

The so called ac system of circuit logic was developed at the National
Bureau of Standards. It is used in their SEAC and DYSEAC computers,
and in the MIDAC and MIDSAC computers built at the University of
Michigan. In this type of system all signals are in the form of pulses, i.e.,
there are no signals in the form of dc voltage levels. The system includes
diode gates for generating the AND and OR functions, pulse transformers
for producing inversion, and electromagnetic delay lines for storage. The
nonlogical, but essential, function of power amplification is provided by
a vacuum tube.

4.3. VACUUM TUBE SYSTEMS OF CIRCUIT LOGIC 121

This system of circuit logic is essentially formed from only one type
of standardized unit, which is a combination pulse gate and regeneration
circuit. This circuit, sometimes referred to as a pulse repeater, is shown
schematically in Fig. 4.14. When appropriately combined with delay units

«-»-Output

Clock o w-

Clock o-

Input o-

6AN5

- f r
-Output

-65V -5V
Clock
Clock
Input

»•Output
•o-Output

FIG. 4 . 1 4 . Circuit and block diagram of a pulse gate and regeneration circuit
for an ac system

it serves as a dynamic flip-flop. At the left end of the schematic are diode
AND gates whose output is combined in an OR gate. (Though only two
AND gates are shown, a large number of multi-input AND gates would
usually be included in the circuit.) The clock signals applied to the AND
gates serve to synchronize all input pulses. The principles involved in
the design of diode switching circuits for pulse inputs are essentially
the same as for dc level inputs, though considerations pertaining to switch­
ing speed are more important. Because of the various capacitances in a
system, the signal that appears at an input may be degraded both in shape
and amplitude. To limit this degradation to tolerable limits, one may
regenerate the pulse after each small switching network. Pulse reshaping
and synchronization to the timing of the clock waveform is achieved as
follows: The signal input applied to the lower AND gate overlaps the lead­
ing edge of the clock waveform, thus assuring an output beginning with
the leading edge of the clock. This output (clamped between + 2 and —5
volts) is amplified and fed back to the input of the upper gate. After the
signal input to the lower gate has decayed, this delayed and amplified
signal sustains the output of the circuit until completion of the clock
signal. In detail, the regeneration process is as follows. The input pulse
to be regenerated is applied at the point shown at a time before the clock
pulse is positive going. The signal passes through the OR gate to the grid
of the tube, causing it to conduct. This produces a negative pulse at the
plate of the tube and a positive pulse at the point shown on the secondary

122 4. SWITCHING AND STORAGE CIRCUITS

o£ the transformer. This output pulse is fed back to the input of the tube
via another AND gate, and the tube is kept in a state of conduction as long
as the clock pulse is present. Each regeneration circuit derives large
current amplification from a 10-1 stepdown turns ratio in the transformer.
As a result, the output can drive up to 12 AND gates of other repeater
circuits. (For a detailed description of this circuit the reader is referred
to the articles by Elboum and Witt [1953] and by Haueter, Alexander
and Greenwald [1953].)

Inversion is accomplished by use of the negative output pulse of the
transformer in the regeneration circuit. When such pulses are applied to
any of the inputs of an AND gate, the effect is to inhibit the generation of a
positive output signal. A two-input AND gate with one inhibiting input is
a physical realization of the inhibiting switching function (see F 3 or F5
in Table 3.7). It may be considered as a type of AND gate in which an
output is not produced if certain control signals are present. Schematically,
an inhibiting input to a gate is usually designated by a small circle placed
on the input line where it touches the function box.

As indicated earUer, a dynamic flip-ñop is used in this system. It is
formed from the repeater circuit shown in Fig. 4.14 by returning the
positive output of the transformer via a delay element to the input of a
third AND gate connected as shown in Fig. 4.15. To synchronize the
flip-flop's operation with the internal clock of the computer, a "start"
pulse is appUed to the 1 input, causing a stream of clock pulses to be
recirculated via the delay Une and the lower AND gate. To set the flip-
flop to the 0 state, a pulse is appUed to the inhibiting input of the AND
gate, labelled in Fig. 4.15 as tíie 0 input. This halts the recirculation.
The flip-flop just described is essentially that shown in Fig. 3.15(a).

The basic timing source in the National Bureau of Standards system is
a 1 Mc sine wave. Since the input-output delay of the pulse gate and re­
generation circuit is less than .25 /xsecs, the basic timing waveform is
distributed in four phases, 90° apart. When connecting circuits in cascade,
successive ones are driven by successive phases of the clock. The net
effect of this phasing scheme and the regenerative connection of the cir­
cuit is to insure that the signal inputs to a circuit clocked by phase η
(which are restricted to the outputs of circuits clocked by phase η - I)
are present before the appearance of clock phase η and that clock phase η
is present after the signal inputs have decayed as assumed in the descrip­
tion of Fig. 4.14 on page 121. Among practical difficulties associated
with this system of circuit logic is the fact that one must keep track of
the proper clock phase for each circuit and distribute the clock wave­
forms accordingly. Also, because multiple clock phases constitute an addi-

4 . 3 . VACUUM TUBE SYSTEMS OF CIRCUIT LOGIC 1 2 3

tional design parameter, the design effort to minimize the total number
of circuits employed, or to minimize delays in propagation of pulses
through cascaded circuits is increased. As far as economy is concerned, the
components saved by a minimum requirement for separate amplification
circuits are offset by the number of diodes used for other than circuit logic
purposes.

4 . 3 . 4 . THE ASYNCHRONOUS, DC COUPLED SYSTEM

In the logical description of combinational networks, it is usually
assumed that an input variable has an instantaneous effect on the output
of the network. In practice, unwanted delays may produce so-called hazards
in the transient behavior which can result in malfunctions when the combin­
ational circuits are incorporated into a sequential network.

In a synchronous computer, the elementary arithmetic and lo^cal
operations occur at fixed intervals defined and controlled by the clock.
The over-all speed is determined by the expected response time of the
slowest elements under estimated worst case conditions. The problem of
hazards does not normally occur in such a system because the interval be­
tween successive clock pulses is specified to be long enough for transients
to die out.

Generally speaking, in asynchronous systems each new operation is
initiated by a completion signal produced by another group of circuits
after the execution of the preceding operation. Therefore, individual
switching operations do not require a predetermined duration corres­
ponding to the maximum time required by any of them, but are deter­
mined solely by the electrical parameters of the circuit performing the
operation. As a result, greater over-all speed is obtainable since each new
operation can begin immediately upon completion of the preceding one.

There are varying degrees of asynchronous operation. For example,
in an elementary form, a new completion signal is simply produced by
routing the preceding completion signal through a delay whose magnitude
corresponds to the maximum time required for a given set of circuits to
operate. In another form, the operation of each set of circuits is examined
by a checking circuit that provides completion signals only when the set
of circuits completes its function. Finally, the asynchronous feature may
be at the level of individual logic elements. In asynchronous circuits
where there are no clock pulses, the signal propagation time through
chains of elements is limited only by the response time of the elements
and the over-all speed is determined by the average speed of the com­
ponents.

The speed of synchronous circuits is usually indicated by specifying
the clock frequency. A convenient measure of speed in an asynchronous

124 4. SWITCHING AND STORAGE CIRCUITS

* Huffman, D. A. [1957], Design of hazard-free switching circuits, 7. ACM, 4, 47-62.
Unger, S. H. [1959], Hazards and delays in asynchronous sequential switching cir­
cuits, IRE Trans. Circuit theory, 6, 12-25.

system is the operation time. This is the interval from when an input
signal to a circuit reaches a critical value to when the output signal
reaches a critical value.

As indicated earUer in this section, the new state to which a sequen­
tial network advance may depend upon the delays encountered in various
paths within the network. To eliminate the hazards presented by the possi­
bility of "races" to new states in asynchronous circuits, certain techniques
have been worked out.* While considerable additional circuitry may be
called for to ehminate hazards in the general case, the amount may be re­
duced appreciably or omitted if certain states or sequences would not occur
naturally, or if external delays may be introduced economically.

Asynchronous systems are associated with dc coupled circuits as
opposed to the ac coupled circuitry found in synchronous systems. In an
ac coupled system, capacitors or transformers may be used to inter­
connect logical elements. In the dc coupled system not only are the
elements interconnected by means of resistive networks but each element,
e.g., a flip-flop, is also dc coupled internally. The signals in dc coupled
circuits are normally in the form of one of two voltage or current levels,
rather than a pulse or no pulse at specified times as in clock controlled
systems, and as previously indicated, the steady state output signal of a
logical block is coupled directly to the inputs of other blocks. The use of
dc coupled circuitry in an asynchronous system makes proper operation
independent of variations in shape of input waveforms and does not requhre
strict control of propagation time to insure arrival of these waveforms in
coincidence with a clock signal. Servicing is simplified because a dc coupled
asynchronous machine can be put in a state of static equilibrium for as
long as desired and its operation checked by an inspection of the steady
state voltages at strategic points. Completion circuits may be included
to detect failures in operation of other circuits, thereupon causing the
machine to stop and indicate a malfunction. Another reason why asyn­
chronous dc coupled circuitry can be faster, is that while in capacity
coupled circuits a change in signal level must be followed by an inverse
change to reach equilibrium of the capacitor, in a dc coupled circuit the
signal needs to change in voltage in only one direction.

Because the operation of an asynchronous system can be made inde­
pendent of the relative speeds of its elements, correct operation may be
obtained without the need for matching speeds and without synchronizing
signals. This is especially important when the individual circuits are so

4 . 3 . VACUUM TUBE SYSTEMS OF CIRCUIT LOGIC 1 2 5

fast that the time required for the flow of information from one part of
the computer to another is comparable to the operation times of the
elements themselves. For example, signals are delayed by about 1
nanosec/foot, and transistor computer circuits with operation times less
than 10 nanosec have been built. In very high speed systems, such as that
under development at the University of lUinois, asynchronous circuitry
offers an important advantage by not requiring precise knowledge of intra-
system transit times to assure correct operation. On the other hand there
are certain disadvantages. For example, an asynchronous system requires
considerably more logical elements than a synchronous system because of
the circuits required to generate completion signals and hold information
while it is in transit, even after considering the saving resulting from the
absence of circuitry for a clock and its gates. Also, an asynchronous
system introduces engineering design problems because of the drift nor­
mally encountered with dc coupled circuits. However, the problem of
drift in a switching circuit is considerably less than in a linear ampUfier.

The eUmination of hazards from asynchronous circuits makes them
speed independent* in that correct operation does not depend on the rela­
tive speeds of their elements. Speed independent circuits aUow a special type
of completely asynchronous operation in which information can continue
to flow only when aU preceding elements in a chain have reacted to it.
To meet the conditions of speed independence, individual logical elements
must be speciaUy designed and so-caUed last moving points provided to
shnpUfy the design procedures. A last moving point is a location in a
circuit which by its new output gives proof that a new state of a ckcuit
has been reached. However, because these circuits need not respond within
a fixed interval, as circuits in synchronous systems must, reliabiUty of
operation is improved. Relative insensitivity to deterioration of compo­
nents and variations in circuit parameters, which may also be used to relax
requirements for uniformity in component specifications, often justifies
the extra components used to eliminate hazards in asynchronous circuits.

With speed-independent networks within an asynchronous computer
signal changes need not occur in a definite time sequence. ParaUel actions
can occur without giving rise to "race" conditions if logical elements are
incorporated which have the logical property of producing an output only
when all of several incoming signals have appeared. This output can be

* For formal deñnitions of speed independence see: Muller, D. E. and Bartky, W. S.
A theory of asynchronous circuits, in Annals of the Computation Lab,, 29, pp.
204-243, Harvard Univ. Press, 1959; also, Univ. of Illinois Digital Computer Lab.
Repts. Nos. 75 and 78, 1956 and 1957. Also, see Nelson, J. C. Speed Independent
Counting Circuits, Univ. of Illinois Digital Computer Lab. Rept. No. 71, 1956.

126 4. SWITCHING AND STORAGE CIRCUITS

used as a completion signal to indicate that all of several parallel opera­
tions have occurred, and permits more complex paralleling schemes than
possible with synchronous circuits.

Three techniques have been used in the design of speed-independent*
networks at the University of lUinois. The first consists of using certain
rules for interconnecting previously designed circuits to form more com­
plex ones. As an example, consider the interconnection of a counter and
a shift register to form a circuit for generating any given number of shifts.
These two units could be interconnected in a serial fashion, but the prop­
erty of speed independence is best illustrated by having them operate in
parallel, as shown in Fig. 4.16. The counter element A changes state /

C l o c k s -
Clock-^Tu

0 Input,

AmpH

Delay!"

Counter

Shift register

•Ψ—I
io-—I

FIG. 4 . 1 5 . Block diagram of a
dynamic flip-flop

FIG. 4 . 1 6 . Control of two parallel
operations by an operation

completion circuit, C

times before the counter stops, where / depends on the initial setting of the
coimter and is less than 2*» where (2*» - 1) is the capacity of the counter.
The shift register element Β changes state whenever a shift occiurs. The
completion circuit C prevents either the counter or register from getting
more than one step ahead of the other. If the shift register operates faster,
the next shift will be delayed until the signal from A appears at the input
to C. If the counter acts faster, initiation of the next count is delayed until
the signal from Β appears. The time taken by the complete system is
the greater of the times taken by the two units plus the time for 2i opera­
tions of the completion circuit.

The second technique is used for designing the basic logical circuitry.
The fundamental logical requirements of the machine may be described by
a set of Boolean equations, as in the case of a synchronous computer.
Then, the conversion from a synchronous to an asynchronous system
may be made as follows. First, each flip-flop in the synchronous system is
replaced by two, since a second one is required to store information dur-

* See: On the Design of a Very High Speed Computer, Univ. of Illinois Digital
Computer Lab. Rept. No. 80, 1957.

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 127

ing the process of gating into the first. Secondly, a two-wire system is
introduced to connect each flip-flop pair with direct connections from the
second to the first. During the transmission of information, one Une wiU
always be 0 and the other 1. A 1 or a 0 on one of the Unes determines a
bit of information. To distinguish individual bits, the Unes are cleared after
each transmission by applying the same signal to both. The final step in
converting to asynchronous operation consists of adding completion cir­
cuits where necessary.

The third technique makes use of a change chart which Usts the signal
changes which take place at the nodes of the network together with an
ordering of these changes from which a speed independent circuit can be
derived. The end result can be expressed by a set of Boolean functions.
In the very high speed computer project at the University of Illinois,
programs have been written for its ILLIAC computer for the purpose of
simulating the behavior of circuits and testing them for speed independ­
ence. Without such programs the design of these circuits would not be
practicaUy feasible, since the checking process is usuaUy too tedious to be
performed by hand.

The asynchronous dc coupled system of circuit logic was proposed by
the Princeton Institute for Advanced Study, and extensive refinements
have been developed at the Digital Computer Laboratory of the University
of lUinois. It was used with vacuum tube circuits in the I.A.S. MANIAC,
University of lUinois ILLIAC and other computers of the I.A.S. family.
Fig. 4.17 shows the principal gating circuits in the early ILLIAC computer.
The inverter and twin cathode foUower have already been described.
The vacuum tube diode circuit acts as an OR gate for negative input
signals and as an AND gate for positive ones. By placing the load resistor
in the cathode circuit rather than in the plate circuit, one would obtain
an OR gate for positive signals and an AND gate for negative signals.

4.4. Transistor Systems of Circuit Logic

4.4.1. POINT-CONTACT TRANSISTOR QRCUITS

In designing systems of circuit logic based on the use of transistors,
two major problems peculiar to transistor circuits must be taken into
account. First, there are problems associated with the low input impedance
of a transistor. Second, in high speed circuits, there is a problem due to
delays in response, resulting from the storage of minority carriers when a
transistor is operated in a region of saturation (see pages 129 and 132).

Systems of circuit logic for point-contact transistors are different from

128 4. S W I T C H I N G A N D STORAGE C I R C U I T S

, + l50V

_ [^ 6 J 6

A o v\ y\f οβ
o Output 'AS

4 0 Κ

- 3 0 0 V

2 2 K

r-'/2 6 A L 5
-o Output =>4+^

«Output =>1

FIG. 4 . 1 7 . I L L I A C gating circuits

those for junction transistors. For computer systems, point-contact tran­
sistors have now been replaced by junction transistors. The presentation
of point-contact transistor circuitry is therefore limited, and included prin­
cipally because of historical importance and inclusion of these circuits in
older computers still in operation.

4AJ.L Point-Contact Transistor Flip-Flops

This section will be devoted to a brief summary of the characteristics
and limitations of the most commonly used types of point-contact tran­
sistor flip-flop circuits. Three states of a transistor are of interest in the
design of flip-flop circuits. They are: (1) The "active" state, in which
the transistor behaves as an active, power ampUfying element. (2) The
"on" state, in which the current flow is such that the transistor appears as

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 129

a low resistance device. (3) The "off" state, in which the transistor ap­
pears as a high resistance device. The characteristic curve shows that a
point-contact transistor connected as shown in Fig. 4-18 (a) has two stable

-Supply
-Bias Ί voltage

(a)

Positive,
dynamic i

resistance/

Negative dynamic
r̂esistance

I /Positive
/dynamic

|- resistance
j For:l¿ constant

Rt large
(b)

FIG. 4.18. (a) Single point-contact transistor flip-flop, and (b) Voltage-current
characteristic of emitter circuit

states, one characterized by smaU negative values of emitter current /^,
and the other by large positive values of 7 .̂ If the emitter bias voltage and
resistance have appropriate values, the circuit can be triggered from
one stable state to another. This type of operation is not possible with a
single vacuum tube.

An obstacle to high speed operation of point-contact and junction
transistors arises from the delays in response due to the phenomena of
saturation and hole storage. If the collector voltage for a p-n-p transistor is
not sufficiently negative to collect all holes suppHed by the emitter, the holes
tend to remain in the body of the transistor. Upon reduction of the
emitter current to zero, the collector resistance will remain low until
the stored holes are removed by the collector ñeld. When the holes are
generated by the emitter faster than the collector can remove them, the
transistor is said to be saturated.

A capacitor placed between the emitter and collector terminals would
increase the high frequency coupling between emitter and collector,
thereby decreasing the transition time from one state to the other. How­
ever, this circuit has a disadvantage in that a high impedance collector is
coupled back to a low impedance emitter (to reduce high frequency gain).

The circuit of Fig. 4.18(a) is shown triggered by a positive pulse which

130 4. S W I T C H I N G A N D STORAGE C I R C U I T S

- 3 0 V

ΛΛΛτ-

+ 2 V ^

FIG. 4 . 1 9 . Basic circuit of current type of single point-contact transistor flip-flop

produces a transition from low to high conduction. From Fig. 4.18(b)
it is apparent that triggering of the circuit back to a state of low con­
duction requires application of a negative pulse. The need for pulses of
opposite polarity to trigger the flip-flop at successive times can be cir­
cumvented by using a rectangular input waveform and differentiating it to
yield a positive and negative pulse at the leading and traiUng edge, re­
spectively. The switching time of the circuit must be longer than the
width of the rectangular input pulse, or else a single rectangular waveform
will trigger the circuit through both states. The dependence of this cir­
cuit's operation on the shape of the input waveform and narrow triggering
pulses make it undesirable from the standpoint of reUability.

The so-called "current" types of single transistor flip-flops are de­
scribed by Wilhams, F. C. and ChapUn, G. B. B. [1953]. The basic cir­
cuit, shown in Fig. 4.19, depends for its operation on the fact that the
transistor in its "active" state simulates a current ampUfier and can, there­
fore, be designed to switch a current between an external diode and itself.
This type of circuit is relatively insensitive to transistor parameter varia­
tion and can be designed for either a saturating or nonsaturating mode of
operation. Its advantages are economy of components and power. How­
ever, there are certain disadvantages: (1) Since gates can be connected
only at one point, two flip-flops are required if a variable and its comple­
ment must be used as signal sources. (2) The circuit is very sensitive to
narrow noise pulses when it is in the "off" state, because there is no satura­
tion to overcome. (3) The margins on pulse width and ampUtude for
complement triggering are not as good as for a two-transistor flip-flop.

The basic form of a two-transistor point-contact saturating flip-flop
Is shown in Fig. 4.20. A composite voltage-current curve, which can
serve as a basis for the design of the dc circuit, may be obtained from the
single characteristic curves of the two transistors by adding the emitter
currents of each for successive emitter voltages. An operating point
may be set anywhere on this characteristic curve by choosing a suitable
load to be inserted in the position of Re.

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 131

FIG. 4.20. Basic two-transistor (point-contact) saturating flip-flop.

A two-transistor flip-flop eliminates two objectionable characteristics
of the one transistor flip-flop described—^namely, dependence on triggering
by narrow pulses produced by differentiating a rectangular input waveform
and availability of only one output point for driving other ckcuits. The
operation of the two-transistor flip-flop can be clarified by referring to the
characteristic transistor gain function shown in Fig. 4.21. Assume Üiat one
transistor is in high conduction (operatmg on the right hand section of the
gain ciu^e). Therefore, its collector potential will be near ground, thus
holding the other transistor in a state of low conduction by making its
emitter potential negative with respect to its base. The circuit can be
triggered to its other stable state by either positive or negative pulses
appUed to both emitters since the high gain region of the curve Ues to the
left of the operating point of one transistor and to the right of the operatmg
point of the other. However, as also apparent from the curve, negative
trigger pulses are preferable since the curve decreases much more rapidly
in the negative dkection.

Various types of coupUng circuits may be used to increase the gain
of the flip-flop feedback loop during the switching transients. For example,
a capacitor may be placed between the base of each transistor and the
coUector of the other. Important characteristics of the capacitor coupled
type of circuit are: (1) StabiUty with respect to noise triggering is im­
proved by the hole storage in the "on" transistor, since any noise pulse
too narrow to last beyond the turn off time of the saturated transistor
wiU fail to trigger the flip-flop. (2) Triggering sensitivity as weU as the
width of pulses suitable for triggering is proportional to the size of the
capacitors. (3) The maximum frequency of operation is inversely pro­
portional to the size of the capacitors. Transformer coupling may be
obtained by placing one winding of a transformer between points χ and y
and the other between the two bases (see Fig. 4.20). The advantage of
the transformer coupled circuit is improved complement triggering sensi­
tivity, because: (1) Each transistor acts like a blocking oscillator during

132 4. SWITCHING AND STORAGE CIRCUITS

the switching time, thereby improving the switching transient. (2) The
transformer couples the current directly from collector to base and the
collector simulates a current generator in the switching.

The transistor flip-flops described in the preceding paragraphs are all
driven to saturation. Once a point-contact (or junction) transistor has
become saturated, it is difficult to turn off because of minority carrier
storage effects. When triggering a p -n-p transistor at the emitter, a pulse
width greater than the hole storage time is required. When triggering at
the base, the pulse width does not have to be as wide as when triggering
at the emitter, but considerable power must be applied to clear out stored
holes. The time required to clear out stored minority carriers is referred
to as minority carrier storage time. It may be computed from tg = K\ In
(1 + hx/ho) in which hx is the excess base current due to saturation,
I TO is the base current during turn-off, and AT', is a constant determined
by the transistor's characteristics. If neither transistor in a flip-flop is
driven to saturation, there will be no delay due to minority carrier stor­
age. Thus by establishing a stable point in the active region the flip-flop's
operable repetition rate can be increased. The nonsaturating flip-flop
of Fig. 4.22 differs from the circuit of Fig. 4.20 in that two germanium-
silicon diode pairs are added. They produce an essentially constant voltage
difference, clamping the collector-base voltage and preventing the base
from going negative with respect to the collector. The nonsaturating

Current
gain

Operating 4.0
point of low—> 3.0
conduction ζΟ\
transistor | cy

/c= α constant Operating
point of high
conduction
transistor

J .2 .3 .4 .5 Emitter current
(ma.)

FIG. 4.21. Characteristic transistor
gain function

FIG. 4.22. A simple nonsaturating
transistor (point-contact) flip-flop

circuit has certain limitations: (1) The output levels are not as consistent
unless clamping diodes are added, and the output voltage swing is approxi­
mately half that from a saturating circuit. (2) It is more sensitive to
narrow noise pulses. (3) Nonsaturating circuits are more sensitive to
variability and drift in transistor parameters (a major problem with point-
contact transistors) than saturating circuits. This is because the collector
voltage varies with collector current instead of stabilizing at the com­
paratively stable collector voltage which exists at saturation. (However,
stabilization schemes limit the speed of a circuit).

4 . 4 . TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 133

44,12. A Semiconductor Diode, Point-Contact Transistor System of
Circuit Logic

In systems of circuit logic utilizing point-contact transistors, the role
of the transistor is restricted to storage and amplification, (because of wide
variation in the dc characteristics of the transistors) while semiconductor
diodes are utilized for the function of gating. Fig. 4 . 2 3 shows such an
arrangement, suitable for junction transistors also. The input to the

Input o—r

I

-+3-

,+Clamp
1̂

I

»Output

-Clamp

I OR I AND '
Gate Gate

FIG. 4 . 2 3 . A transistor driven diode gating network

transistor is one of the outputs of a transistor nip-flop. The function of
the emitter follower circuit is to provide power gain so that several gates
may be driven by the flip-flop. The output of the emitter follower is shown
connected to an input of only one of several gates which it may drive.
The output of this gate, an OR circuit, is shown driving an input of an
AND gate. In systems of this type the gating networks are Umited to two
levels. If the output of the AND gate were required as an input to several
other gates or flip-flops, it would be fed first to the input of a transistor
amplifier. Diodes Di and D2 are clamps that hmit the pulse amplitude of
the AND gate's output. Synchronizing clock signals could be appUed as one
of the inputs to each AND gate in the system. Then no gate in the system
could produce an output except during the occurrence of a clock signal.

4 . 4 . 2 . JUNCTION TRANSISTOR CIRCUITS

An important difference between point-contact and junction tran­
sistors Ues in the parameter of current amplification, a, which is the ratio
of the increment in coUector current caused by an increment in emitter
current. For point-contact transistors, a is greater than unity. For junction
transistors, it is normally less than unity.

Another important difference is that junction transistors are available
in two basic types, a so-called n-p-n as weU as a p -n-p type. The point-
contact transistors are generally of the p -n-p type. These terms were

134 4. SWITCHING AND STORAGE CIRCUITS

chosen to indicate that in one type, the n-p-n, positive charge carriers or
holes are in the majority in the base region, whereas in the p -n -p negative
charge carriers or electrons are in the majority in the base region. With
an n-p-n transistor, current flows in an opposite sense to that in the
p-n-p transistor, and the supply voltages are of opposite polarity. With
an n-p-n transistor, both emitter and collector resistances are high when
these elements are positive with respect to the base. When the emitter
is made negative with respect to the base, it emits electrons which are
attracted toward the positive collector and constitute the collector current.
The availabiUty of junction transistors in both n-p-n and p -n-p types
provides the designer with an added degree of freedom in forming systems
of circuit logic. This will be brought out in the sections following.

Corresponding to the phenomenon of hole storage in a p -n -p tran­
sistor is that of electron storage in an n-p-n transistor. In an n-p-n tran­
sistor, if the collector voltage is not sufficiently positive to collect all
electrons supplied by the emitter, the electrons become trapped in the base
region. Where a distinction is not necessary, the term minority carrier is
often used to denote either holes or electrons, whichever is in the minority.

The first high frequency transistor to become available was the grown
junction germanium transistor. However, the alloy, mesa, micro-alloy and
epitaxial transistors which appeared later are more suitable for switching
circuits because of relatively low and consistent values of extrinsic base and
collector resistance. The alloy transistor is capable of high peak power,
while the mesa and micro-alloy transistors offer high speed operation, the
former at high voltage ratings and the latter with good saturation charac­
teristics. The epitaxial transistor offers high speed switching at higher
power levels.

4.4.2.1. The Basic Junction Transistor Circuits; the Inverter and
Emitter Follower

Corresponding to the vacuum tube inverter and cathode follower cir­
cuits are the transistor inverter and emitter follower circuits. They are
useful not only for the functions of signal amplification (and inversion in
the case of the inverter), but also serve as the basis of a number of
systems of switching circuit logic.

A schematic of a basic p -n-p junction transistor inverter circuit is
shown in Fig. 4.24. (For an n-p-n transistor, the polarity of the supply
voltages would be of opposite sign). When the input is positive with respect
to the emitter, the transistor does not conduct, and, therefore, the output
voltage will be near that of the collector supply voltage. It is not equal
to the supply voltage because of a small leakage current present in tran­
sistor circuits. When the input is negative with respect to the emitter, the

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 135

Time-

Input - i 0"*P"t

FIG. 4.24. A p-n-p transistor inverter FIG. 4.25. A p-n-p transistor emitter
follower

transistor. Both circuits provide a large current gain and a voltage gain
sUghtly less than unity. They also provide a relatively high input impedance
and a low output impedance. For the p-n-p circuit, the output signal
mil be somewhat more positive than the input signal. This small bias can
be offset by means of the voltage divider in the input circuit.

If the supply vohages chosen are adequate to maintain a large voltage
difference between base and collector, this will tend to alleviate saturation

transistor will conduct and the output voltage will be near ground. One
function of the input voltage divider is to convert the output voltage levels
of an inverter to values appropriate for inputs to another circuit. Another
important function is to limit the base input current in order to keep the
transistor out of saturation. The capacitor reduces the time required for
the output waveform of the circuit to follow sudden excursions in the
amplitude of the input waveform. It improves the response to positive ex­
cursions (usually measured in terms of the waveform's rise time) by sup­
plying a surge of input current when the transistor is put into the conducting
state. It improves the fall time by providing a low impedance path for the
removal of any stored minority charge carriers in the base-emitter region.

The output voltage waveform of the p -n -p transistor inverter has a
fast rise time characteristic, but is not as good with respect to fall time.
This is due to two causes. First, time is required to remove the minority
carrier charge by collector current. Also, the current for returning the
load to its negative potential must flow through Rc, which has a relatively
high value, in order to limit collector current. For an n -p-n transistor,
the opposite situation, with respect to the rise and fall times of the output
voltage waveform, is true. If it is important that both rise and fall times
be fast, then the p -n-p and the n-p-n circuit can be combined in a push-
pull type of circuit.

Modifications of the basic inverter circuit have been developed aimed
at reducing or preventing the buildup of minority charge carriers.

A schematic of a basic p -n-p junction transistor emitter follower cir­
cuit is shown m Fig. 4.25. A similar circuit is obtainable with an n-p-n

- j ^ Input waveform

y \ Output waveform j

136 4. SWITCHING AND STORAGE CIRCUITS

effects. However, care must be exercised when this is done to prevent
excessive dissipation in the transistor.

The rise time of the p-n-p circuit is adversely affected because of
the requirement for current flow through Re. The fall time of the n-p-n
circuit suffers because of the same reason. As in the case of the inverter
circuits, p -n-p and n-p-n transistors can be combined to provide a cir­
cuit with a good rise and fall time.

4.4.2.2, Junction Transistor Gating Circuits

A number of logical switching functions may be synthesized by com­
binations of the inverter and emitter follower circuits already described.
For example, if two inverter circuits (see Fig. 4.24) are connected in paral­
lel with a common collector resistor, there results a AND gate, i.e., given
inputs A , Β on the bases, the output at the common collector point is AB,
Also, if two emitter follower circuits (see Fig. 4.25) are connected with
a common emitter resistor, the output at the common emitter point is AB,
In these two cases, the use of n-p-n in place of p -n -p transistors would
produce the OR, (A + B\ and NOR, (AB\ functions, respectively. Fig­
ures 4.26(a) and (b) show how both p-n-p and n-p-n transistors may

-lOV

Β

J 5 V

+5V
-25V

ov=
-5V = 0

+I5V -
(b)

oAB

0V= I
" Î5V ^ -5V = 0

(c)

ßo ΙΛΛ/V J Ä a a I

(d)

[AB^O

FIG. 4 .26 . Junction transistor gating circuits: (a) AB, (b) {Ä + B\ (c) AB,
(d) {AB + O .

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 137

[— g 7 1

sP? i
(b)

FIG. 4.27. (a) Basic transistor NOR circuit (p-n-p type), and (b) Modification for
higher speed operation

boxes labelled Ζ may be resistors or diodes. Diodes are preferable for
limiting input current and for preventing feedback of signals between
inputs. The resistor Rt in conjunction with the supply voltage pro­
vides a bias to reduce the transistor leakage current h to a minimum
when the transistor is cut off. When conducting, the transistor is saturated
and offers a low impedance. The number of allowable inputs, m, is limited
chiefly by the input loading, although a crosstalk factor would also have to
be considered if the Z's were realized by relatively low resistances. The
number of circuits, n, that the output is capable of driving is limited by
the loading of the output. The response time of the circuit can be im­
proved by placing a small capacitor, 30-100 μμί, in parallel with each
input resistor, or, for an even higher frequency of operation, by incorporat­
ing a germanium and a silicon diode into the circuit, at the points shown

be combined to yield other logical functions of two variables. Actually, a
single inverter circuit may be used to generate a function of two variables
or even of three, as shown in Figs. 4.26(c) and (d) . In these cases,
signal sources are used to supply current that otherwise would be obtained
from a power supply. Such circuits are critical in operation and consider­
able care must be exercised in their application.

4.4,23. A System of Circuit Logic Based on Transistor NOR Circuits

The transistor NOR circuit is a reaUzation of the NOR switching func­
tion described in Chapter 3. It allows the synthesis of switching networks
from various arrangements of a single logic building block. It reduces
the problem of matching inputs and outputs which is present in systems
composed of a number of different logic circuits, and also alleviates prob­
lems associated with the loading of logic circuits.

A representative transistor NOR circuit is shown in Fig. 4.27(a). The

138 4. SWITCHING AND STORAGE CIRCUITS

Ο Λ Λ Α γ -

οΛΛΛτ-

TRL Gate TRL Flip-Flop

FIO. 4.28. Basic transistor-resistor logic circuits (n-p-n type)

considered as being formed either from two resistor coupled inverters
or from two two-input TRL circuits. The TRL system of circuit logic
(sometimes referred to as NOR logic) offers the advantage of reUability
with simplicity and economy, e.g., it is less dependent on collector satura­
tion and base-emitter voltage than DCTL circuits (described in Section
4.4.2.4).

The response time of the TRL circuit can be reduced by placing a
capacitor in paraUel with each gating resistor in order to produce a cur­
rent spike at the leading and traiUng edges of the signals. However, the
use of the circuit is complicated by the fact that if there is a simultaneous
transition of more than one input signal from a lower to an upper level,
fictitious spikes appear in the output, even though one or more other
inputs are at the lower level). These spikes can propagate through several
stages, amplified at each, because the speed-up capacitors in each stage
present a low impedance to these spikes. This difficulty may be overcome
by restricting the logical design to prevent movement of more than one
input at a time from a lower to an upper level, or by restricting the
number of inputs to two. The former process reduces the flexibility of
the system and the latter effectively cancels the economy of components
of the TRL circuit. A more direct approach is to use higher frequency
transistors rather than speed-up capacitors and extra transistors.

in Fig. 4.27(b). The subtraction of vohage drops between the diodes
keeps the collector out of heavy saturation and permits operation in the
area of 50 to 100 nanosec.

The circuit shown in Fig. 4.27(a) utilizes p -n -p transistors. By using
supply voltages of opposite polarities, n-p-n transistors could be used
instead. In that case the input and output signals would be positive in­
stead of negative voltages.

When resistors are used for the impedances shown in Fig. 4.27(a)
the circuit is often referred to as a TRL (for transistor-resistor logic) cir­
cuit. The basic switching and storage building blocks of the TRL system
using n-p-n transistors are shown in Fig. 4.28. The flip-flop can be

+ I2V t l 2 V
+ I2V

ΟΛΛΛ—

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 139

^A
I

/1*B

Β

(α) (b)

FIG. 4.29. Surface barrier transistor logic circuits: (a) NOR, (b) Sheffer stroke

because of the small emitter-collector voltage drop. The bases of the
transistors are connected to control voltages originating from the output
of other similar circuits or directly from nip-flop collectors. If any base
is at ground potential, that particular transistor will be nonconducting.
Therefore, the output will be at - 3 volts. If all base voltages are suflä-
ciently negative, the output will be close to ground potential. Therefore,
this circuit produces the NOR switching function of the input variables.
The circuit in Fig. 4.29(b) essentially represents a set of inverters in
parallel. If any base voltage is sufficiently negative, the transistor will
conduct, causing the output voltage to be near ground potential. There­
fore, this circuit produces the Sheffer stroke switching function (Fg in
Table 3.7). These switching circuits have rise and fall times less than 0.1
/usee. One of their disadvantages is that the transfer characteristics are
such that a noise pulse in excess of about 0.1 volts on the base may be
amplified and appear in the output.

The basic DCTL flip-flop circuit uses only two transistors and two
resistors. Figure 4.30(a) shows this basic flip-flop with associated input

442,4, Systems Using Direct Coupled Transistor Circuits

Surface barrier and alloy junction transistors are characterized by
low voltage drops, low power consumption, and rapid recovery time.
Special gating and storage circuits have been devised to exploit these
properties. The basic gating circuits developed by the Philco Corporation
are simple, the transistors being used in a way similar to the way relays
are used in switching circuits. Examples of these circuits are shown in
Figs. 4.29(a) and (b) . These circuits, characterized by a small number of
passive components as well as direct coupUng, are referred to as DCTL
(for direct coupled transistor logic) circuits. The transistors must have
a high ratio of base-emitter voltage to collector-emitter voltage at satu­
ration (so that a saturated transistor can keep off a gate it is driving).

In Fig. 4.29(a) the transistors are connected in series, which is possible

140 4. S W I T C H I N G A N D STORAGE C I R C U I T S

(a) (b)

FIG. 4,30. Basic D C T L flip-flop with input circuits

circuits. The input circuits, consisting of transistors Γι and Γ4 serve to
set or reset the flip-flop, and are cut off except during an input pulse.
Depending on the state of the flip-flop, either transistor T2 or Γ3 may be
conducting. The collector voltage of the non-conducting transistor is
determined by the current drawn from the base of the conducting tran­
sistor (which saturates heavily). In the circuit shown, the two collector
voltages are approximately - 0.04 and - 0.6 volts. The rise and fall
times are both less than 0.1 />tsec.

One limitation of the basic DCTL flip-flop circuit is that it contains no
well determined transient memory or delay (although hole storage pro­
duces an uncontrolled delay) and so has an uncertain response to a pulse
occurring at the same time as its set or reset input. Also, the low collector-
voltage swing is insuflScient to drive circuits requiring larger signals. A
variation of the basic DCTL flip-flop circuit that alleviates some of its
objectionable features is obtained by placing a silicon junction diode in
the feedback path from the base of each transistor to the collector of the
other with the orientation shown in Fig. 4.30(b). Each diode simulates
a constant voltage source during forward conduction and, while recovering,
in reverse conduction. The use of the diode results in a somewhat larger
collector voltage swing, in less saturation, and in shorter resolution and
fall times. The time constant improvements are due to the hole storage
effects of the diodes which act to draw out the holes stored in the base of
the conducting transistor. The diode also improves the inverter transfer
characteristics.

A relatively simple way of preventing saturation in a circuit is to
include breakdown diodes at appropriate points. The volt-ampere char­
acteristic of an idealized breakdown diode is shown in Fig. 4,31(a).
This characteristic is closely approximated by silicon junction diodes which
are available with breakdown voltages from 4 volts and up. In Fig. 4.32
a modification of the basic direct coupled flip-flop is shown. It is kept
out of saturation by the silicon junction diodes Di and D2 which have
a combined volt-ampere characteristic as shown in Fig. 4.31(b). Diodes

4.4. T R A N S I S T O R S Y S T E M S O F C I R C U I T LOGIC 141

Breokdown} Voltage

(a)

1/

•

•

(b)

FIG. 4 . 3 1 . Volt-ampere characteristics of idealized breakdown diodes

Da and D4 are also breakdown diodes, but with a breakdown voltage
greater than that of Di and D2. Ds and D4 are always kept in the broken
down state to maintain a constant voltage drop between the base of one
transistor and the collector of the other. Under stable conditions one
transistor conducts heavily and the other hghtly. If transistor Γι is con­
ducting heavily, then Di is broken down and D2 is conducting in the for­
ward direction. The circuit of Fig. 4.32 using 2N711 transistors is oper­
able up to about 5 Mc.

As already pointed out, a major factor limiting the switching speed of
saturating transistor circuits is the delay caused by minority carrier storage.
These stored carriers are most quickly removed by applying a reverse-
bias voltage to the base-emitter diode. Therefore, a transistor may be
switched oft more rapidly by bringing its base to an off-bias voltage in­
stead of to ground. The flip-flop circuit shown in Fig. 4.33 achieves a

+45V +45V

S e t H ^ ^h>Reset

FIG. 4 . 3 2 . A nonsaturating binary counter FIG. 4 . 3 3 . Base gated flip-flop

142 4. SWITCHING AND STORAGE CIRCUITS

higher switching rate than the basic DCTL flip-flop by the use of off-bias
gating. When V2 is properly chosen, not only does the gate switch off the
conducting transistor, but also it supplies an amount of current to the
load resistor of the nonconducting transistor equal to the amount the
transistor will conduct after the switching action is completed. This
pseudocoUector current reduces the delay normally preceding the switch-on
transient. As a result, the delay from the time of appUcation of the trigger
pulse until the end of the switching transient is only about 20 nanosec
using SB-100 surface barrier transistors.

The single input flip-flop circuit shown in Fig. 4.34 is kept out of
saturation by the use of diodes and dividing resistors which prevent the
conducting transistor from saturating. When the coUector voltage of the
conducting transistor drops to about 0.5 volts, the diode conducts, pre­
venting a further drop in collector-base voltage. This reduces the adverse
effects of minority carrier storage, since there are fewer carriers to be re­
moved from the base when the conducting transistor is triggered off. The
steering diodes, Di and D2, aUow the trigger to be either a pulse or a square
wave. Also, they provide isolation between the two sections of the
flip-flop.

If in the DCTL flip-flop of Fig. 4.30, a paraUel resistor, capacitor
combination is placed in each base lead, there results a flip-flop with
higher switching speed. This RC coupled flip-flop has a transition time
about 20% less Üian the direct coupled circuit. The fimction of the
resistor is to Umit the base current in order to reduce hole storage delay
tune. The capacitor aids in switching off a transistor by driving its base to a
positive voltage. Unfortunately, another effect of the resistance in the base
circuit is to reduce the stabiUty of the flip-flop, because it reduces the
base current into the conducting transistor. There are a number of devices
for improving the switching speed without sacrificing stabiUty. One way
of improving both speed and stabiUty is to add an emitter foUower in
each of the cross-coupUng arms. Also, the delay time due to hole storage
can generaUy be reduced to one-half by the use of nonsaturating circuitry.

Figure 4.35 shows a modification of the basic RC coupled flip-flop,
designed to provide nonsaturating operation. A resistor inserted from the
base of each transistor to ground forms a voltage divider which limits the
voltage swing of the base. A paraUel RC network inserted between the
common emitter point and ground provides dc feedback which causes the
emitter to stay at a level about 0.3 volts positive with respect to the
base of the conducting transistor. Since the base to emitter voltage is
independent of the emitter resistance, the choice of resistance controls
the emitter current. Fixing of the base voltage and emitter current deter­
mines the collector current. The transistor is kept out of saturation by

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 143

FIG. 4.34. A nonsaturating flip-flop FIG. 4.35. A nonsaturating RC
coupled flip-flop

choosing a collector resistance suflBciently small to hold the collector volt­
age of tíie conducting transistor sufficiently negative with respect to the
base.

Figure 4.36 illustrates a ffip-flop circuit m which an emitter follower is

- 3 V

6 8 0

FIG. 4.36. A saturating emitter follower coupled flip-flop

used to provide an active coupling network. It allows fast switching action
to be obtained because of two principal effects. First, it is not affected by
hole storage. Second, its low source impedance allows high charging cur­
rents to be supplied to the stray and internal capacitances. The outputs
of the emitter followers also provide convenient output terminals because
of their buffering action. The transition time for the emitter coupled flip-
flop is about 70% less than that of the direct coupled flip-flop. The emitter
follower flip-flop circuit can be modified to yield non-saturating operation,
by using the emitter biasing method employed to provide non-saturating
operation in the RC coupled flip-flop (see Fig. 4.35).

4.4,2.5, A System of Dynamic Pulse Circuitry

The circuits shown in Fig. 4.37 have been used'at IBM as the basis
of a system of logic for a high speed parallel computer application. These

144 4. SWITCHING AND STORAGE CIRCUITS

(a)

-oA+B

- l O V

-Reset

Set ond somple

(b)
- lOV

FIG. 4 . 3 7 . A dynamic pulse system of circuit logic

circuits were designed to use high speed p -n-p drift transistors and to
operate at a pulse repetition rate of 10 Mc. The input pulses are specified
to be in the form of a one-half cycle sine wave with an amplitude of —1
volt and a maximum width of 40 nanosec. A noteworthy characteristic of
the system is that only one power supply is required.

The AND and OR gates are similar in appearance to the direct coupled
transistor gating circuits with dc input signals described in Section
4.4.2.4. These circuits differ principally in that the base input signals are
pulses and the output of each circuit is fed to a pulse transformer which
can drive several loads.

The pulse storage circuit was designed to operate with asynchronous
inputs and to produce synchronous outputs. The storage function is
achieved essentially by the storage of charge on the capacitor C. Pulse
inputs to transistor T2 charge the capacitor C, and the charging current
produces an output pulse. The charge on C will gradually decrease, but
for a period of 10 μsec will be large enough to inhibit further inputs to
Γ 2 . During this period, inputs to Γ 2 will not produce an output, but will
reestablish the charge on C, allowing an additional 10 μsec of storage.
An input to Γι will remove the charge on C and allow the next input to
Γ 2 to produce an output. The readout process destroys the stored informa­
tion, and it must be rewritten if it is to be retained.

4.4.2,6. A Gated Pulse Amplifier System

The circuits shown in Fig. 4.38 have been used at Sylvania Electric
Products, Inc. in a system designed to operate on both dc and pulse

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 145

type signals. One of the basic circuits of this system is the pulse pedestal
gate, shown in Fig. 4.38 (a) . It is used for the detection of coincidence

+ S5V
Pedestal input . ^ j g y ~

/ ? 2

*"2V Output

Pulse input o

i -1.5V

(α!

| / ? 2

Output

Dz Pulse Input

-I.5V
2 N 9 4 A

(b)

Pedestal input

Output

- I .5V

Pulse input

- I .5V

(c)

FIG. 4.38. A gated pulse amplifier system of circuit logic, (a) pulse-pedestal gate,
(b) pulse amplifier, (c) combined pulse-pedestal gate and pulse amplifier.

between the dc output of a static nip-flop and a clock pulse. When the
input voltage from the flip-flop is relatively high, current flows through
Ru R2, Di, and the transformer secondary winding, while D2 is cut off.
When a positive pulse is applied across the transformer secondary wind­
ing, Di is cut off and D2 conducts, allowing the gated current to flow in
the load circuit. When the input voltage from the flip-flop is relatively
low, the current supply is effectively removed, thereby disabUng the gate.
The capacitor is provided to insure that a fast change in the pedestal level
does not of itself produce an output pulse. The circuit is relatively insensi­
tive to input pulse level variations.

Another major circuit of this system is the pulse ampUfier shown in
Fig. 4.38 (b) . It is used wherever a large output current is required, as
in the case where many flip-flops and gates must be driven by a single
source. The function of the capacitor is to improve the coUector current
rise time by providing a large initial surge of base current. After the

146 4. SWITCHING AND STORAGE CIRCUITS

capacitor is charged, resistor Ri Umits the drive current to minimize
minority carrier storage effects. The discharge of the capacitor at the end
of a pulse period facihtates rapid recovery of the transistor. In Fig.
4.38(c) the pulse amplifier is combined with the pulse pedestal gate to
provide current gain for the gate output. This combination is used when­
ever the pulse output of a gate must pass through two or more other
gates. The function of the diode D is to prevent saturation of the transistor.

For AND and OR operations in addition to those provided by the pulse-
pedestal gates, conventional diode gates are used. However, as shown in
Fig. 4.38(d), the output of each dc level gate is fed to an emitter follower
output circuit. This effectively isolates the diode gates from their load.
The inputs of these gates are obtained from the outputs of static nip-
flops, and the dc outputs of the emitter followers may be used for the dc
level inputs to the pulse-pedestal gates. The output circuit load itself
serves as the load resistor of the emitter follower circuit.

The static flip-flop circuit used in this system is shown in Fig.
4.38(e). It was designed to operate at a pulse repetition frequency of

4.7K^

+6V +6V

^ 2 N 9 4 A

(d)

-w -

+6V

j ^ 2 N 9 4 A

Í

0 Output °·

O S e t o

I Output

FIG. 4 . 3 8 . (Continued from page 1 4 5) : (d) dc gates, (e) flip-flop.

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 147

1 Mc. The circuit is basically the Eccles-Jordan configuration with push-
pull emitter followers incorporated in the feedback paths from the col­
lector of each transistor to the base of the other. The purpose of the
emitter followers is to isolate the flip-flop transistors from loading effects
of the internal regenerative coupUng circuits and the external load. They
permit faster switching action, and are capable of driving several gates.
The emitter followers, Γβ and Γβ, are required only when a dc AND gate
is to be driven. They then supply a negative drive current and Γ 3 and Γ 4
discharge the load capacitance. For all other loads Γ 0 and Tq can be
replaced by diodes, as indicated in Fig. 4.38(e). Γ 3 and Γ 4 then supply
the drive currents and the diodes discharge the load capacitance. The
function of the other diodes is to hold the collector of the conducting
transistor at a voltage ample to keep it out of saturation.

4.4.2 J. Systems Based on Current Switching Circuits

All the transistor switching circuits described thus far operate in
what may be termed a voltage mode. In this section, systems of logic are
described which are based on the use of circuits operating in a so-called
current mode, wherein the current from an essentially constant current
source is switched. Circuits of this type may be designed for either satur­
ating or nonsaturating operation. The discussion following will be con­
fined to nonsaturating current switching systems, these being capable of
higher speed operations.

4.4.2.7.1. NONSATURATING COMPLEMENTARY CURRENT
SWITCHING SYSTEMS

In the design of high speed circuits, consideration must be given to
the delays that may be introduced by minority carrier storage as well as
those due to the usual circuit parameters that limit frequency response.
The greater the saturation delay due to minority carrier storage, the less
time will there be available for transition to the switching threshold of
the stages being driven. Therefore, by operating the transistor in a region
out of saturation, the requirements on the rise and fall times of a chrcuit
for a given over-all delay may be reduced.

While the circuits to be described in this section could use other
transistors, they were designed for use with drift type transistors, and to
introduce delays of only 20 nanosec per circuit. Circuits using these tran­
sistors are not only simple and relatively insensitive to noise, but
also capable of a high frequency of operation. Also, the characteristics
of drift transistors are such that their most favorable operation is found
in a higher voltage, higher current region where the circuits are non-
saturating. To allow operation of the transistor within this optimal region

148 4. S W I T C H I N G A N D S T O R A G E C I R C U I T S

6.4V"

+6V '-I2V

FIG. 4.39. Complementary current switches

These circuits are simply differential amplifiers in which the circuit para­
meters are chosen to allow the transistors to operate in a region of good
frequency response and low collector capacitance. In the p -n-p circuit,
one input is referenced to ground, and in the n-p-n circuit one input is
referenced to - 6 volts. The swing of the input signals in either circuit is
just enough to switch current completely into either transistor. In the
p-n-p circuit, when the input is at +0.4 volts, Ti is biased off and T2 is
conducting, and when the input is at - 0 . 4 volts, the reverse situation
occurs. To make the output swing about —6 volts, a small current bias
is added through the resistor returned to the - 1 2 volt supply. For the
p -n-p circuit, the output voltage swing is from —5.6 to —6.4 volts.
Because of the voltage shift within each switch, the output of one switch
cannot be coupled directly to the input of another of the same type.
However, switches of opposite types can be directly coupled as observa­
tion of the input and output signals of each indicates.

Gating circuits may be formed from the basic current mode switch
by connecting transistors in parallel with Γι in either the p -n-p or n-p-n
circuit. Figure 4.40 shows a three input gate formed by adding two tran­
sistors in parallel with Γι of the p -n-p current mode switch. A similar
gate constructed of n-p-n transistors would have outputs (ABC) and
(A + Β + C) corresponding to the outputs (A + Β + C) and ABC of
the p -n -p gate shown in Fig. 4.40. Because these gates have two useable
outputs, each of which is the complement of the other, there is no need

with low signal voltage swings, it is necessary that the circuits used be
capable of controlUng the operating region of the transistor so that it is
kept within specified voltage and current ratings. These requirements
are satisfied by using a transistor as a current generator driving other
transistors. These circuits may be either ac or dc coupled.

Representative p-n-p and n-p-n current switches that can serve as
the basis of a current switching system of logic are shown in Fig. 4.39.

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 149

, - l2V -I2V

o ABC

FIG. 4.40. A p-n-p complementary current switch gate

for a separate inverter building block in the system. As a result, there is
also a reduced over-all delay in long logic chains frequently including
inverters. Complex switching functions can be constructed by combining
circuits similar to the one shown in Fig. 4.40. For example, assume a
circuit similar to the one in Fig. 4.40 is used to generate φ + Ε) and DE-
If these two output points are connected to the output points of
{Ä + Ε -\- C) and ABC, respectively, in Fig. 4.40, the complementary
functions produced at those points by the resulting circuit would be
{A Λ- Β + C)(D + Ε) = (ABC + DE) and (ABC + DE), It is pos.
sible to generate any function using either p -n -p or n -p-n gates exclu­
sively because each contains inversion in addition to its other logical pro­
perties. However, in general, use of both types of circuits will enable
switching functions to be generated with fewer transistors than if only one
type is used.

A flip-flop circuit can be formed by intercoupUng a p -n -p and an
n-p-n current mode switch. A flip-flop formed in this manner is shown
in Fig. 4.41. Note that the direct rather than the inverted output of each

%6V ''-IZV

FIG. 4.41. A complementary current switch flip-flop

switch is coupled to the base of the other. The circuit is set to one state
or the other by means of a pull over transistor added in parallel with
each switch. An OR function can be incorporated into each of the flip-

1 5 0 4 . SWITCHING AND STORAGE CIRCUITS

Input +4V

I p-n-p switch

+36V °-36V

FIG. 4.42. Complementary current switches

ceding section. In the p -n -p switch, the constant current at point ρ will
flow through whichever transistor has the more negative base voltage.
Therefore, either Γχ or T2 will conduct a constant current, according to
whether the input to Γι is greater or less than the bias voltage on Γ 2 .
Operation of the n-p-n switch is similar. Both circuits can be made non-
saturating because collector current is controlled. These circuits are not
only suitable for high speed switching, but, because of the large voltage
swings employed, relatively insensitive to noise.

If output number 2 is not required, a simplified form of the current
switches may be formed. Figure 4 . 4 3 shows the simpUfied complementary

Output

Input

"+367 -36V

FIG. 4.43. Simplified complementary current switches

current switches in which transistors Γ 2 and Γ 4 of Fig. 4 . 4 2 have each
been replaced by a semiconductor diode.

flop's input circuits by adding transistors in parallel with the pull over
transistors.

4 . 4 . 2 . 7 . 2 . A SYSTEM BASED ON NONSATURATING COMPLEMENTARY
CURRENT SWITCHING AND INHIBITING CIRCUITS. The basic nonsatura­
ting complementary current switches used in this system are shown in
Fig. 4 . 4 2 . They are essentially the same as those described in the pre-

Output * 1̂̂^ } \ ^Output^Z

4.4. TRANSISTOR SYSTEMS OF CIRCUIT LOGIC 151

A modification of the basic p -n -p complementary current switch,
referred to as an inhibitor, is shown in Fig. 4.44. When Γ 2 conducts,

To emitter of n-p-n
switch to be inhibited

FIG. 4.44. p-n-p complementary current inhibitor

its entire collector current flows into the common emitter resistor of the
n-p-n current switch to which the collector of Γ 2 is connected. This brings
the emitters of the n-p-n switch to ground potential (provided that Re
is suflSciently less than the common emitter resistor of the n-p-n switch).
Because the signal input to the n-p-n switch can never be more positive
than ground, both transistors of the n-p-n switch are back biased, and
both of its outputs will be +5 volts regardless of the input. Thus the
n-p-n switch is inhibited. The diode to ground prevents saturation of
T2 under dc worst case conditions. The other coUector of the inhibitor
can either be connected to a - 5 volt supply through a resistor, to provide
a regular p -n -p switch output, or used to inhibit another n -p-n switch.

Figure 4.45 is a schematic of a simpUfied flüip-flop circuit formed from

. 5 V n r

-47«—e^-

-36V

3V'
«Output

Reset

+36V

FIG. 4.45. SimpUfied complementary current flip-flop

an inhibitor and two simpUfied n-p-n current switches. The fUp-flop is
triggered by momentarily switching off the "on" transistor. Since it has
outputs only of positive sign, it can drive only p-n-p gates and switches.

152 4. SWITCHING AND STORAGE CIRCUITS

An important feature of this flip-flop is that both AND and OR gates can be
incoφorated within it, thus allowing appreciable savings in components in
a large switching system, AND gates may be incorporated by adding tran­
sistors in parallel with Γ3 and Γ4, and OR gates incoφorated by paralleling
transistors with Γι and Γ2.

Figure 4.46 is a schematic of a flip-flop with both positive and nega-

p-n-p Inhibitor p-n-p Inhibitor

FIG. 4.46. A complementary current flip-flop with four outputs

tive outputs and capable of driving n-p-n as well as p -n -p circuits.

4.5. Magnetic Core Systems of Circuit Logic

4.5.1. INTRODUCTION

A magnetic core is a small toroid formed of a material exhibiting
ferromagnetic properties. Representative dimensions for a core used in
logic circuits are inner and outer diameters of 0.08 in. and 0.12 in.
respectively, and a thickness of 0.03 in. The magnetic core is a versatile
computer element capable not only of being switched from one stable
state to the other within microseconds but also of remaining in a specified
state without a continuous dissipation of energy. The use of the magnetic
core as a gating element will be described first. In the succeeding section
its use in information storage applications will be described.

Let us consider briefly the switching properties of a magnetic core.
Figure 4.47 shows the idealized hysteresis loop of a ferromagnetic ma­
terial. If a core is magnetized at the point of the loop designated as Br
and is subjected to a negative magnetic force, — Hm, it will traverse the
downward path indicated by the arrow, and arrive at the point on the
loop, Oe. When the magnetic force is withdrawn, the core will return to

4.5. MAGNETIC CORE SYSTEMS OF CIRCUIT LOGIC 153

the point -B , . . While the application of -Hm to a core in the Br state
produces a large change of flux ΔΦι, the application of - H m to a core at
-Br produces a small change of flux ΔΦ^. Similar remarks apply when
-\-Hm is appUed to a core either at state -Br or +Br, the point being that
once a core has been switched to a stable state by a magnetic force, it
wUl remain in that state until a comparable magnetic force of opposite
sign is appUed. (Successive appUcation of forces of Uke sign essentiaUy
leave the core unaffected). This behavior is analagous to that of a set-
reset type of flip-flop wherein a signal on an input line wiU have an effect
only if the preceding input signal was on the other input Une. When an
appUed magnetic force adequate to switch the core is withdrawn, the core
wiU return to a state of positive or negative magnetic remanence (+ 5r or
-Br) according to whether the appUed force was positive or negative,
respectively. The two stable states +Br and —Br define the 1 and 0 state,
respectively.

The hysteresis loop shown in Fig. 4.47 is, as stated, ideaUzed since
discontinuous breaks are not obtainable with existing ferromagnetic ma­
terials. The hysteresis loop of a representative ferromagnetic material
which approaches the ideal is shown in Fig. 4.48. The more rectangular

Β (gauss)

-H

FIG. 4 . 4 7 . Idealized hysteresis loop of a
ferromagnetic material

FIG. 4 . 4 8 . Hysteresis loop of a
representative ferromagnetic material

in shape the hysteresis loop, the more suitable is the material as a switch­
ing element.

The operation of a simple magnetic gate wiU now be described. Con­
sider the circuit shown in Fig. 4.49. Three windings (two input windings,
A, D, and one output winding C) are formed on a toroid of suitable mag­
netic properties. Assume that the core is initially in magnetic state —B^,
(see Fig. 4 .48) . If a positive current pulse of sufficient magnitude is

154 4. S W I T C H I N G A N D STORAGE C I R C U I T S

Input

Inpu ts

FIG. 4 . 4 9 . A simple magnetic core gate

applied to winding A, the magnetic state of the core moves to + Sm. On
removal of this pulse, the magnetic state recedes slightly to +Br. If, sub­
sequently, a negative current pulse is appUed to Β (i.e., one producing
the opposite magnetizing effect as that produced by the pulse at A), the
magnetic state of the core is switched to —Bm, (receding subsequently
to -Br).

It is clear that signals are required on both input windings alter­
nately in order to obtain an appreciable signal on the output winding.
Consecutive inputs on only one of the input windings (without an inter­
vening input signal on the other input winding) produces only negligible
output signals, since successive application of forces of like sign essentially
leaves the core undisturbed. Specifically, two consecutive signals on winding
A produce a change of flux (B^-Br), while two consecutive signals on
winding Β produce a change of flux —{B^—Br).

In the course of forming the desired output signal, certain other
undesirable signals may be formed: A signal on an input winding may also
induce a signal (of opposite sign to the desired output signal) in the output
winding C. Also, a signal on one input winding may also cause a feed­
back signal into another input winding as well as produce an output signal
on winding C. These unwanted signals may be effectively removed, if neces­
sary, by means of appropriate circuitry.

A symbolic representation useful for describing magnetic core logic
circuitry is shown in Figure 4.50. The core is represented by a circle. A

- ψ -

(b) C (c)

FIG. 4 . 5 0 . A symbolic representation for magnetic core logical elements

4.5. MAGNETIC CORE SYSTEMS OF CIRCUIT LOGIC 155

/V, ^ /

(b)

FIG. 4.51. Schematic of a magnetic core in terms of (a) a controllable transformer,
(b) a variable impedance

schematics, conventional dot notation is used to indicate winding polarity,
with the added definition that current into a dot terminal corresponds to
a negative magnetizing force, and wiU set the core to the 0 state. In
Fig. 4.51(b), if the core is in state 1 when current, /, is appUed the
core wiU switch. A relatively large counter-emf, e, wiU be generated in
winding Ni and the core wiU look like a relatively large impedance to
the driving source. If the core is in state 0 when / is appUed, the
counter-emf wiU be smaU and the core wiU look like a smaU impedance
to the driving source.

4.5.2. TRANSFER LOOPS (Loev et ai [1956])

Before continuing with a description of different types of gating cir­
cuits, the basic types of transfer loops that may be used for coupUng these
circuits to one another wiU be considered. A transfer loop is a circuit

line with an arrow pointing to the circle represents an input that sets
the core to the binary state indicated just inside the circle. Open arrows
imply pulses, and closed arrows dc signals. Double arrowheads of either
type serve to indicate that the existence of this input will hold the core
to that state despite the presence of other input signals. The symbol on
the input Une may indicate either a timing input, or designate the source
of the input signal (and the time when it appears). Lines origmating at
the circle represent output circuits. A signal is present on the output line
when the core is switched to the state shown at the ori^n of the Une.
In Figure 4.50(c), there is a significant output only when the core is
switched from a 1 to a 0 state by a signal on Une C. This is a conditional
transfer circuit since an input on B, which also sets the core to the 0
state, does not produce an output.

A magnetic core may be used either as a controUable transformer or
as a variable impedance, as shown in Fig. 4.51(a) and (b) . In both

156 4. S W I T C H I N G A N D S T O R A G E C I R C U I T S

that connects two or more cores for the purpose of information transfer.
A transfer loop normally includes an output winding of a transmitting
core, an input winding of a receiving core, and one or more diodes. The
three types of transfer loops which will be discussed, namely the single
diode loop, the spUt winding loop, and the inhibit loop, permit synthesis
of all logical circuitry of a digital information processor.

A basic transfer loop is the so-called single diode loop. It permits
permanent storage, and unconditional transfer of information to one or
more receiving cores when an advance current is appUed to the trans­
mitting core. Such a loop, connecting core A to core B, is shown in
Fig. 4.52. According to the symbolic representation defined, if an "input"

Input ^ N^f^
Output

FIG. 4 . 5 2 . Schematic and symbolic representation of a single diode transfer loop

current is applied to winding N3, core A wiU be switched to state 1 (if it
is in state 1 at the time the input current is appUed, no effect is produced),
and if an "advance" current is appUed to either winding Noi or ÍV02,
core A wiU be switched to state 0 (if it is in state 0 already, no effect is
produced). The only condition for which the appUcation of an "advance"
current to core A can produce an effect on core Β is if at the time of
application, core A is in state 1 and core Β in state 0. Then, as a result
of the advance current being appUed to core A, core Β wiU be switched
to state 1. This occurs as foUows. The advance current, by definition,
switches core A to state 0. This induces a signal voltage F i in winding
Nu causing a transfer current U to flow in the transfer loop. If the diode
characteristics and the design of windings Λ̂ ι and Ν2 are proper, the trans­
fer current flowing through Λ̂ 2 will be sufficient to switch core Β to state
1. Additional receiving cores may be switched by connecting their input
windings in series with the transfer loop. To show why the advancing of
core Β produces no effect on A it is only necessary to consider the case
when Β is in state 1 and A in state 0. The current h wiU switch Β to

4.5. MAGNETIC CORE SYSTEMS OF CIRCUIT LOGIC 157

state 0 and induce a voltage in winding N2. This voltage produces a cur­
rent in the transfer loop tending to switch A to state 1. However, the cur­
rent is Umited to a value less than that required to switch A because of the
relatively high impedance of Ni relative to N2, and the nonUnearity of
the diode which causes it to present a higher impedance to smaUer input
signals. The reason why the appUcation of current on the "input" Une
of core A has no effect on core Β is that this current induces a voltage
across Λ̂ ι opposite in polarity to Vi (see Fig. 4.52), and for which the
diode presents a high impedance to the flow of current.

The spUt winding loop, shown in Fig. 4.53, aUows conditional trans-

Input ^
- Output

FIG. 4.53. Schematic and symboUc representation of a split winding transfer loop

fer between cores and permits logical operations upon isolated cores. It
is only necessary to consider the operation of this circuit for two initial
states of ^ , B. First, consider the case where A and Β are both in state 0.
When the advance current pulse hi is appUed, it divides into branch cur­
rents / i and I2. Since A is in state 0, winding Ni offers negUgible impe­
dance. Since h flows into a dot terminal and I2 into a nondot terminal
on equal windings of A, the net magnetizing force on A is nearly zero,
and does not change the state of ^4. If core A is in state 1 and Β in state
0 when the advance current is appUed, the 1 wiU be transferred from
A to B. By design, Ni is large relative to other impedances in the transfer
loop and h wiU be much smaUer than I2, The effect is that a transfer
current. It, equal to one half the difference of h and I2 flows through a
winding of N2 turns on core B, and sets Β to state 1. Branch current h
clears A to state 0. Information can be transferred from A to Β only
during the application of advance pulse / o i . At all other times one or the
other of the diodes wiU inhibit the flow of transfer current. A can be
switched back and forth between the 1 and 0 states during a sequence
of operations without affecting B.

158 4. SWITCHING AND STORAGE CIRCUITS

The spHt winding transfer loop is immune to the backward flow of
signals; the switching of the load core Β by other inputs cannot send
noise current back to core A. Therefore, a single transmitting core in a
spUt-winding transfer loop can switch as many as five or six receiving
cores simuhaneously. In general, this cannot be done with the single diode
loop, because when the receiving cores are later sensed they have an
additive effect for the backward flow of current.

The inhibit loop, shown in Fig. 4.54, is a special form of split-winding

Input

Input / j O ^

FIG. 4.54. Schematic and symbolic representation of an inhibit transfer loop

circuit interconnecting cores A and C as shown. This type of loop offers
a reliable method for conditionally inhibiting the transfer of information
from one core to another. If cores A and C are in the same state, no
effect will be produced on core Β when advance current loi is appUed,
since ¡2 = When A is in state 1 and C in state 0, 12 > h and the net
magnetizing force appUed to Β is adequate to set it to 1. Conversely,
when A is in state 0 and C in state 1, Β is set to 0. In all cases, A and C
wiU both be in state 0 after appUcation of / o i .

The inhibit loop permits the synthesis of certain logical operations
that might otherwise be difficult to reaUze. It also has the isolating ad­
vantages described for the spUt-winding transfer loop.

4.5.3. GATING CIRCUITS.

Magnetic core realizations of the most commonly used gating circuits
will be described next. We wiU consider first the operation of negation.
It may be obtained by a suitable choice of the inputs in Fig. 4.50(c).
For example, let the input on 4̂ be a timing pulse, ίχ, which uncondi-
tionaUy sets the core to state 1. If the signal to be negated, /?, appears

4.5. MAGNETIC CORE SYSTEMS OF CIRCUIT LOGIC 159

on line Β at time Í2 , the core will be set to state 0 (without producing
an output), and, therefore, the next shift pulse, ts, appearing on Une C
does not produce an output on Une D . Conversely, if 3. ρ pulse did not
occur at time t2 the appUcation of ts wiU produce an output on Une D.
Thus, D = pt^.

Two methods of realizing the OR function with single diode transfer
loops are shown in Figs. 4.55 and 4.56. The circuit in Fig. 4.55 can
be used when both transmitting cores are energized by the same advance
pulse, and that in Fig. 4.56 is required when A and C are energized by

FIG. 4.55. Magnetic core OR gate with
single advance pulse input

FIG. 4.56. Schematic and symbolic
representation of a magnetic core OR
gate with two advance pulse inputs

advance pulses occurring at different times. The number of inputs that
can be mixed into one receiving core is limited mainly by the additive
effects of 0 output voltages from transmitting cores. The OR function
can also be obtained by using the spUt-winding transfer loop, e.g., by
connecting the output windings Λ̂ ι of the two transmitting cores in series.

Two magnetic core AND circuits are shown in Fig. 4.57. The informa-

(a) (b)

FIG. 4.57. (a) Magnetic core AND gate formed from "negation" circuits, and
(b) magnetic core AND gate

160 4. SWITCHING AND STORAGE CIRCUITS

* Vorndran and Kaiser [1955].

tion pulses (which need not occur simultaneously) are designated by
q, r, and the clock pulses by tu Í2, ts. In Fig. 4.57(a) cores A and C

each perform a negation, and comprise an OR circuit which sends a signal
to Β at time ts only if at time Í2 neither q nor r were present. Core Β
also performs a negation and an output is obtained at time ti only if ρ
were present at time Í2 , and if neither A nor C had produced a signal at
the preceding time ts. The AND circuit of Fig. 4.57(b) uses the output
of one core A to provide the advance current pulse for a second core B.
This advance current exists only if ρ had occurred and can produce an
output from Β only if q had occurred. Clock pulse t^ is needed to clear
Β for the case where q occurs and ρ does not.

The operation of these core circuits is sequential even within a single
switching function unit, in contrast to the operation of diode logical
circuits. Therefore, in combining a number of units, it must be arranged
that information pulses originating in various units at different times,
arrive at a combining unit within a prescribed time interval. One method
of satisfying this requirement is to use delay cores, another is to postpone
the extraction of data from one or more of the originating units. The
first scheme requires extra cores, the second a greater variety of shift
(timing) pulses. However, the use of multiple timing sources does not
necessarily result in a proportional increase in the number of power amph-
fiers. In any large system a number of power amplifiers will be necessary.
If multiple timing sources are used, these amphfiers simply are distributed
differently than in single or double source systems. Some of the advan­
tages of magnetic core logic circuitry are low power and space consump­
tion, high reliability of operation and a long expected Ufe. Also, since
cores are low impedance devices they are relatively free from pick-up
and cross talk. The limitations of the magnetic core system of logic de­
scribed are its serial nature, its inflexibility for certain applications, and its
presently limited frequency of operation. The first of these Umitations may
be alleviated by use of multi-input magnetic core gates in conjunction with
transistor flip-flops as described in the section foUowing.

4.5.4. A MuLTi-iNPUT CORE GATE, TRANSISTOR FLIP-FLOP SYSTEM*

A schematic of a multi-input magnetic core gate is shown in Fig. 4.58.
The actual number of control windings on a core is variable. Whereas, in
the diode gates described in Section 4.2, the steady state output of each
gate was interrogated by a voltage clock pulse, in this arrangement a
current clock pulse is used to interrogate the state of magnetization of

4.5. MAGNETIC CORE SYSTEMS OF CIRCUIT LOGIC 161

Preparatory
pulse

-Ft+-=I ~. -Time

Main clock
pulse

Control windings

'---'"
Control windings

VOlt~JoutPutt pulse
I I I

I I I -Time

FIG. 4.58. A multi-input magnetic core gate showing the clock and
output waveforms

the core. The form of the current pulse applied to each core is also shown
in Fig. 4.58. The preparatory clock pulse applies a small positive magneto­
motive force to the core and the main clock pulse a large negative mag­
netomotive force. If there is no current in any of the control windings,
application of the composite clock pulse causes the magnetic state of the
core to move along a hysteresis loop to saturation, first in the positive
direction, then in the negative direction, and finally to be left at a point
of negative remanence. Whenever a current is applied to one of the
control windings, it is in the direction that produces a negative magneto­
motive force. Even if only one control winding has current applied to
it, the magnetic state of the core is sufficiently biased in the negative
direction to prevent switching of the core to a state of positive saturation
by the preparatory pulse. When current is present in more than one con­
trol winding, the core is biased even further in the negative direction.
When current is not present in any control winding~ the application of the
composite clock pulse causes a voltage to be induced in the control wind­
ings, and the output winding in the form of a small negative signal due
to the preparatory pulse, followed by a large positive signal due to the
main clock pulse. When current is present in one or more control wind­
ings, the voltage induced in these windings is essentially zero. If the
presence of current in a control winding is defined to represent 1 and the
presence of a voltage pulse in the output winding also represents 1, then
the arrangement shown in Fig. 4.58 acts as a multi-input NOR gate. An OR
gate may be formed by connecting the output windings of two or more
cores in series.

The currents in the cores may be controlled by vacuum tube or tran­
sistor flip-flops. A number of control windings, on different cores, can
be connected in series across the output of a single flip-flop, though the
voltage induced across these control windings by the flow of current in
other windings must be considered in the design of the flip-flop. Either

162 4. SWITCHING AND STORAGE CIRCUITS

a single output winding, or a number of them in series serve as inputs to
a set-reset flip-flop. Accordingly, the output windings are referred to as
trigger windings. When a 1 is produced on a trigger winding, the small
negative pulse is blocked by a series diode and the large positive pulse
used to trigger a flip-flop. When a 0 is produced on a trigger winding,
the output signal may be considered negligible for a single core. However,
when a 0 is produced on each of several trigger windings connected in
series, the effect is compounded. The total number that can be so con­
nected to a flip-flop input is limited by the voltage ratio of a 1 and a 0
on a trigger winding. Also, a clamping diode may be required on the
flip-flop input if a 1 signal can appear on several series-connected trigger
windings simultaneously. In both of the cases described, a larger number
of input trigger windings can be accommodated by separating them into
two or more series combinations.

The number of control windings per core is Umited by the wire size,
and, if a transistor flip-flop is used, the cutoff current of the output tran­
sistor. When all the control windings on a core are in the 0 state, the
magnetomotive force due to the sum of these currents must be consider­
ably less than that produced by a 1 on one control winding. Otherwise,
the core will be negatively biased to the point where appUcation of the
clock pulse wiU not switch it.

Though each control winding is functionaUy equivalent to a diode in a
diode gate, whether this represents a saving is questionable because of the
expense of forming these windings compared to the very low price of diodes
for frequencies under 250 Kc, the approximate limit of operation of the
core circuits. While the only gating power required is clock pulse power,
even at these frequencies there are problems in generating and transmitting
the large currents required. The system also suffers from inflexibility in
several respects. For example, because the loading on the gates is critical,
the actual load must be individually computed for each network, and a
change in one or more switching functions usuaUy necessitates a recompu-
tation of the loading. Also, if pyramiding is employed, in general more
than one clock period is required to generate a function (since only OR
combinations of gate outputs can be formed without the use of additional
gates) and, conversely, if all switching functions are to be formed in one
clock period, the savings of pyramiding cannot be reaUzed. Though the
system is flexible with respect to the choice or number of dc vohage levels,
because the flip-flop inputs and outputs are ac coupled through the
gate windings, the multi-input core gate did not come into any appreciable
use for logical circuitry because of its limitations compared to other types
of circuitry. For example, the transistor NOR circuits (section 4.4.2.3) are
comparable in cost, do not have the logical deñciencies described, and
permit a higher frequency of operation.

4.5. MAGNETIC CORE SYSTEMS OF CIRCUIT LOGIC 163

4.5.5. THE TRANSFLUXOR

The transfluxor* is a magnetic core device composed of a material
with a nearly rectangular hysteresis loop and having two or more aper­
tures. It is similar to other core devices in that its response to an input
signal is controlled by a setting pulse which it previously received and
stored. However, the process of generating an output in the transfluxor
does not affect the setting pulse, so a single setting pulse can be stored
and then used to control the device indefinitely. The transfluxor can be
used not only as an on-off switch, but also can be set to yield an output
at any desired level between "oft" and maximum "on".

The principles of operation and general properties of the transfluxor
will be described briefly with reference to a two-aperture unit as shown
in Fig. 4.59. The two circular apertures form three distinct legs in a mag-

Blocked Unblocked

FIG. 4.59. Schematic of a two-aperture transfluxor and symbolic representation
of blocked and unblocked states

netic circuit. The windings Wi, on leg 1 and Ws and WQ on leg 3 are shown,
for the sake of simpUcity, with single turns. Assume that a current pulse
is appUed to Wi of direction and magnitude such that there results a
clockwise flow of flux which saturates legs 2 and 3. Consider now the
effect of applying an ac current to w s , producing an alternating mmf
along a path surrounding the smaUer aperture. When this mmf has a
clockwise or counterclockwise sense, it wiU tend to produce an increase
in flux in leg 3 and a decrease in leg 2, and vice versa, respectively. In
neither case are increases in flux possible since the legs are already
saturated. Consequently, there can be no flux flow. When the transfluxor
is in this state, no vohage is induced in the output winding WQ, and the
transfluxor is said to be in a blocked state.

If there is appUed to Wi a current pulse of direction and magnitude
such that a counterclockwise mmf is generated intense enough to produce
a mmf in closer leg 2 larger than the coercive force but not large
enough to aUow the mmf in leg 3 to exceed the critical value, the satura­
tion of leg 2 wiU reverse but leg 3 wiU not be affected. In this condition,
the alternating mmf around the small aperture resulting from the ac cur-

* Rajchman and Lo [1956], [1955].

164 4. SWITCHING AND STORAGE CIRCUITS

rent in W:^ will produce a corresponding flux flow around the small aper­
ture. This flux flow, which may be thought of as a back-and-forth transfer
of flux between legs 2 and 3, will reverse indefinitely with each reversal of
phase in the ac current. The alternating flux flow induces a voltage in the
output winding Wo during this "unblocked" or "maximum set" state of the
transfluxor.

To summarize, the transfluxor is blocked when the directions of rema­
nent induction of the legs surrounding the smaller aperture are the same,
and unblocked when they are opposite. In the blocked state the magnetic
material around the small aperture provides essentially no coupling be­
tween the primary, >V3, and secondary, Wo, windings, while it provides a
relatively large coupling between these two windings in the unblocked
state.

A limit is imposed on the permissible amplitude of the ac by the fact
that, when in the blocked state, a sufficiently large ac in the phase tending
to produce counterclockwise flux flow could change the flux in leg 3 by
transferring flux to leg 1. This limit is increased by the use of unequal
hole diameters, making the flux path via legs 1 and 3 much longer than
via legs 2 and 3.

The driving (clockwise) pulses, which cannot unblock a blocked trans­
fluxor can be arbitrarily large. As a result, when the transfluxor is un­
blocked by proper setting, these pulses may not only provide the required
minimal reversing magnetizing force around the small aperture, but also
substantial power to deliver large output currents. The priming (counter­
clockwise) pulses must be of sufficient magnitude to provide the required
magnetizing force around the small aperture, but insufficient to provide
it around both apertures.

In the preceding description of the on-off operation of the transfluxor
a "maximum set" state was referred to. However, the transfluxor can also
be set to any level in a continuous range. Once set, it will deUver in­
definitely an output proportional to the setting.

When priming and driving, the flux in leg 1 is not affected by the
interchange of flux between legs 2 and 3, so there is no coupUng between
the input and output circuits. When setting, there is also no coupUng
between input and output circuits because no flux is changed in leg 3,
but only in legs 1 and 2. The same appUes when blocking occurs after
driving, rather than priming, since the drive pulse has already saturated
leg 3 in the direction of blocking and no further flux change is possible.

A hysteresis loop as rectangular as possible is desirable because:
(1) it lessens the undersirable interchange of flux in the blocked condition
due to imperfect saturation of legs 2 and 3; (2) it lessens the coupUng

4.5. M A G N E T I C CORE S Y S T E M S O F C I R C U I T LOGIC 165

Clear

After clear After set Á After set B

Set Set Prime
A θ and

drive

FIG. 4 . 6 0 . Schematic of a three-aperture transfluxor and symbolic representations
of different magnetic states

This device can be operated as a two-input sequential gate, i.e., an out­
put is produced if the two inputs / I , Β are applied in the order A, B, and
no output is produced if they are appUed in the order B, A or if one input
is absent. The operation is as foUows: After a clear pulse, the legs, 2, 3,
and 4 are saturated downward. The output flux path around the last aper­
ture via legs 3 and 4 is blocked and neither the prime nor the drive pulse
can produce any flux change. The flux path around the second aperture
via legs 2 and 3 is also blocked so that the signal Β cannot produce any
flux change. However, the flux path around the first aperture via legs 1
and 2 is not blocked and the signal A can reverse the direction of flux in
leg 2 by transfer of flux to leg I. li A were present and leg 2 were re­
versed, the flux path via legs 2 and 3 is unblocked, with the result that
the occurrence of Β can now reverse the flux of legs 2 and 3. This returns
leg 2 to its original downward direction, reverses leg 3 and unblocks
the flux path via legs 3 and 4. The output flux path is now imblocked.

between legs 1 and 3, providing better isolation of control and output
circuits; (3) it provides a sharper threshold for the setting current pulse,
thereby making the transfluxor more suitable for switching applications.

The transfluxor exercises control by means of the amount of flux
which can be transferred for an indefinitely long time between legs 2
and 3, and which can be set by a single pulse to any desired value in a
continuous range. It operates as if the output magnetic circuit consisted
of a conventional one-apertured core with the essential property that the
effective cross-sectional area of that core can be adjusted by a single set
pulse to any desired value from practically zero to a maximum value
equal to the physical cross-sectional area of its smallest leg.

The use of more than two apertures creates many new modes of
flux transfer and increases the kind and number of switching and storage
functions. Consider the three-apertnre transfluxor shown in Fig. 4.60.

166 4. SWITCHING AND STORAGE CIRCUITS

and a succession of priming and driving pulses will produce an output
indefinitely.

A five-aperture transfluxor is shown in Fig. 4.61. This device may be

Set i : :

SeiD

S e t ^

FIG. 4 . 6 1 . Schematic of a ñve-aperture transfluxor and symbolic representations
of blocked and unblocked output states

operated as a four-input AND gate. The occurrence, in any order, of all
four input signals is required to open the gate. The operation of the unit
is based on the fact that the output flux via legs 1, 2, 3, and 4 around the
central anerture can be blocked by any one of the four legs, and is un­
blocked only when the sense of flux saturation around the central hole is
the same in all legs. There are two unblocked states corresponding to
two senses of flux rotation around the central aperture. One of these
states may be eUminated by using one leg as a reference, yielding a three-
input gate.

4.6. Superconductive Switching Elements

Circuit elements still under development which show great promise
for computer applications are those based on the use of superconductive
materials. In metals not classified as superconductors the electrical resist­
ance drops as the temperature is lowered until a point is reached (in the
lew temperature region above absolute zero) where the resistance remains
constant as the temperature is lowered further. In a superconductor the
resistance in the low temperature area drops abruptly from a value that
varies between 10-^ and 10-^ of room temperature resistivity to a value
which, as far as has been determined, is equal to zero. The point at which
this occurs is referred to as the critical temperature, Tc, or superconductive
transition temperature.* Another important property of superconductors
is that the appHcation of a magnetic field greater than a critical value,

• There are 21 elements, as well as a number of alloys and compounds, that are
superconductors with transition temperatures ranging between 0°K and 17°K.

4.6. SUPERCONDUCTIVE SWITCHING ELEMENTS 167

destroys superconductivity. The value of He in the region O '̂K ^ Γ ^
is approximately equal to HQ [l - i T / r j ^] , where HQ is the critical mag­
netic field at Γ = 0°K. The critical magnetic field curves in Fig. 4.62

2 4 6
T e m p e r a t u r e ®K

FIG. 4 . 6 2 . Critical magnetic field, H^, curves for several superconductors

show that increasing the magnetic field lowers the transition temperature.
TTie area below each curve represents a region of superconductivity and
the area above a region of normal resistivity. For example, if lead is held
at a constant temperature of 5*K in a magnetic field of 200 oersteds, it
will display superconductivity, while if the applied field is increased to 600
oersteds the superconductivity will be destroyed. The existence of a super­
conductive transition temperature and a critical value of magnetic field
provides the nonlinearity required for switching. A superconducting switch­
ing element called a cryotron, invented by D. A. Buck, at M.I.T., is
based upon exploitation of these phenomena. The temperature of the
element is held constant and it is switched from a superconducting to a
normal state by application of a magnetic field greater than He- For each
superconductor, a choice of temperature about 0.2*Κ less than the zero
field transition temperature allows operation with small magnetic fields—
between 50 and 100 oersteds. For tantalum, this operating temperature
is about 4.2°K. The fact that this corresponds to the boiUng point of
heUum at a pressure of 1 atm., and therefore the temperature of most
storage tanks for liquid heUum, is one reason for the use of tantalum in
the early experiments.

168 4. SWITCHING AND STORAGE CIRCUITS

In an early experimental form, the cryotron consisted of a 1-in. strip
of 0.010 in. tantalum wire inside a single layer control winding of 0.003
in. insulated niobium wire (shown schematically in Fig. 4 .63(a)) . Current

(a) (c)

FIG. 4 . 6 3 . (a) Wire-wound cryotron, (b) crossed-film cryotron, (c) block diagram
of a cryotron

in the control winding creates a magnetic field which causes the central
wire, designated as the gate wire, to change from a superconducting to
a normal state. The control winding is a superconductor with a relatively
high transition temperature. Niobium was used for this reason and be­
cause of its good ductility and tensile strength. Because of its relatively
high value of critical field at the operating temperature, the control wind­
ing remains in a superconducting state at all times. Average power dis­
sipation per cryotron is about 10-* watts. A unique property of the cryo­
tron compared to vacuum tubes or semiconductors is that control is
independent of the sign of the control current and, therefore, when the
gate circuit is in its superconducting state, there may be current now
in either direction.

Before continuing with a description of the cryotron, two other im­
portant properties of superconductors will be described: (1) The Meiss­
ner effect, namely, because in the superconducting state the magnetic
induction is zero, there must be superficial currents which produce an
internal field that cancels the appUed field. (Actually the currents occupy
a thin surface layer and the magnetic induction decreases to zero within
a very small penetration depth which for most superconductors is of the
order of 10"^ cm), (2) If the amount of current a superconductor carries
exceeds a certain limit, the superconductivity will be destroyed. For con­
ductors whose dimensions are large compared to the penetration depth,
the value of this critical current, / c , is that which produces a magnetic
field. Hey at the surface. The variation of Ic with temperature is similar
to that of Ho.

The cryotron acts as a current ampUfier since the resistance of the
gate can be varied to control current. The condition for current gain is
that the amount of current in the control winding that produces a critical

4.6. SUPERCONDUCTIVE SWITCHING ELEMENTS 169

field is less than the amount of current in the gate circuit that destroys
superconductivity. When (4πη) > (2 / r) , η being the number of turns
per unit length of the control winding, and r the radius of the gate wire,
one element can be driven by another without intermediate current trans­
formation.

In pulse circuits, the gate current of one cryotron becomes the control
current of another. For this condition, the frequency at which the power
gain becomes unity is given by Rg/Lc, where Rg is the normal resistance of
the gate circuit, and Lc the inductance, of the control winding. Though Lc
and Rg are on different cryotrons, the L/R time constant (assuming all
cryotrons in a network have the same values of L and R) serves as a
convenient measure of potential operating speed. L/R is independent
of the cryotron's length, (for L and R each increase linearly with length),
and decreases as the fourth power of the diameter (for L decreases as the
square of the diameter, and R increases as the inverse square).

In practice the frequency of operation of the cryotron turns out to be
less than what would be expected from consideration of the L/R time
constant alone. Current through a gate normally conducting raises its
temperature (in some cases above Tc) and reduces the value of He.
Because the control winding acts as a thermal insulator, the thermal time
constant may be several hundred microseconds. Its relative importance
can be reduced by increasing the number of turns on the control winding.
This reduces the amount of control current required to produce a critical
magnetic field at the expense of increasing L and the L/R time constant.
Eddy current effects, which become relatively greater for smaller gate
diameters, impose a further limit on the speed obtainable with a wire-
wound cryotron. Magnetic flux, excluded from the gate wire in the
superconducting state, penetrates into the wire when the superconductivity
is destroyed by a magnetic field greater than He. The region of normal
conduction starts as a thin outer shell, and as the flux moves inward,
eddy currents are induced in this region. The heat generated by the eddy
currents retards the growth of the normal phase. A similar phenomenon
occurs in the normal to superconducting transition. Even with the smallest
wire practical, delays resulting from eddy currents limit the transition
speed to about a microsecond.

Various schemes have been proposed to increase the speed of the
wire-wound cryotron: Since resistivity in the normal state varies over
several powers of ten among various superconductors, an increase in
speed may be obtained by using alloys of greater resistivity. Another
scheme is based on the fact that the superconductive currents are within
a thin surface layer. Thus, removal of the core of the gate wire would
increase the resistance in the normal state (in proportion to the ratio of

170 4. SWITCHING AND STORAGE CIRCUITS

original to new cross-sectional area) without impairing operation in the
superconducting state. An equivalent arrangement would be to deposit a
thin layer of superconducting material on an insulating wire. However,
because of basic speed limitations, as well as difficult production prob­
lems encountered in miniaturization, further development of the wire-
wound cryotron has been discontinued. For faster switching, one of the
dimensions of the cryotron must be greatly reduced. An approach cur­
rently being investigated is the use of thin metallic films, deposited on a
glass substrate, for both the control and gate conductors. (Thin film
memory devices are described in Sections 5.3.6 and 5.3.7). The use of
stencils in the deposition permits construction of several complete circuits
at a time and, therefore, greater miniaturization and simpler fabrication.
It is estimated that about 1000 thin film cryotrons could be contained in a
cubic inch.

Films of lead and tin with thicknesses of 10-*^ cm or less are easily
evaporated. Tin is used for the gate and lead for the control conductor
because He is much less for tin (Fig. 4.62 shows that at 3**K these values
are 100 and 700 oersteds, respectively). In the crossed film cryotron
(shown schematically in Fig. 4.63(b)) a gain > 1 is achieved by using a
control strip much narrower than the gate strip. L/R time constants of
about 100 m/isec appear to be obtainable with this type of arrangement.

A disadvantage of tin is that because its zero field value of Tc (3.7'K,
see Fig. 4.62) is less than 4.2''K, the boiUng point of helium at at­
mospheric pressure, the heUum cryostat must be operated at a reduced
pressure. The use of tantalum instead would eliminate this diflBiculty.
However, suitable evaporated tantalum films are very difficult to produce
because of tantalum's high melting point and its excellent properties as a
getter. Films which have been produced thus far have exhibited anomalies
which, it is believed, are due to impurities introduced during evaporation.
For example, films formed at 10~^ mm Hg did not become superconduct­
ing even when cooled to 1.5*'K, and films produced at about 10-« mm Hg
became superconductive only when cooled to 1.6''K. For bulk tantalum,
the zero field value of Tc is about 4.4**K, as shown in Fig. 4.62. For this
reason, considerable effort is being expended on developing the technology
of producing improved thin films. At M.I.T., equipment is being devel­
oped to allow evaporation of films at a pressure of 10-^^ mm Hg.

Future developments will depend on a better understanding of the
phenomena of superconductivity, further data on the mechanism of super­
conducting circuits, and a study of the mechanism by which evaporative
films are formed and the problems of producing films with desired physical
properties. Until the various factors that influence the structure of the
film are better understood, it is difficult to tell whether observed super-

4.6, SUPERCONDUCTIVE SWITCHING ELEMENTS 1 7 1

conducting properties are representative of films in general or only of
those produced by a specific process. Also, the use of new alloys and
circuits that exploit the special characteristics of the thin film configura­
tion can lead to improved switching times.

A nip-flop can be formed from two cryotrons by placing each gate
circuit in series with the control winding on the other cryotron and con­
necting the two branches in parallel. If both branches are superconduc­
tive, the current divides equdly. However, if one is superconducting and
the other even partly in the normal state, all the current from the supply
flows in the superconducting branch. Figure 4.64 shows a block diagram

rC

0 Input
^supply

I Input

Input cryotrons

'supply

Η Flip-flop

I Output
'read

Output cryotrons

0 Output

FIG. 4.64, Cryotron flip-flop with input and output cryotrons

of a cryotron flip-flop with input and output circuits. A pulse appUed to
the control winding of one input cryotron drives that branch resistive,
eventuaUy causing aU the current to flow in the other branch. This repre­
sents one stable state. A pulse applied subsequently to the other input
cryotron estabUshes the opposite stable state. If a number of input cryo­
trons are connected with their gate circuits in series, they function as an
OR gate, and if connected with their gate circuits in paraUel, as an AND
gate. For each stable state of the flip-flop, one of the read-out cryotrons
wiU be resistive and the other superconductive. A read-out pulse, appUed
at the junction of the read-out cryotron gate circuits, chooses a path
accordingly.

4.7. Computing Elements for Gigacycle Operation
We wiU consider here briefly two types of circuits developed for

operation at Gc frequencies (10» One, the parametric oscülator, is

172 4. SWITCHING AND STORAGE CIRCUITS

based on a nonlinear circuit parameter, and is an example of a microwave
circuit operating within a frequency band not extending to zero. The other
is based on the negative resistance property of the tunnel diode and, like
most of the circuits described earlier, uses base-band signals, occupying
a band from zero (or near zero) to some upper limit.

In the phase locked subharmonic oscillator, energy is transferred by
a nonlinear element from a pump frequency to a lower frequency whose
relative phase represents the information. The nonlinear capacitance of a
special semiconductor diode, referred to as a microwave or parametric
diode, is used because of the diode's small size and suitability for opera­
tion at extremely high frequencies. The capacitive reactance is varied at
the pump frequency, which is an even multiple (usually two) of the char­
acteristic frequency of the tank circuit. The tank is controlled by injection
of a steering signal which excites oscillation in either a 0* or 180" phase.
These two phases represent the two values of a binary variable. Since the
rise time of a signal takes at least 10 cycles of the carrier frequency
an information rate of 1 Gc implies a fundamental frequency in excess
of 10 Gc. The tolerances necessary in the pump and signal circuits are
severe, and emphasis has shifted to tunnel diodes and thin film cryotrons.

The tunnel diode, so called because its operation is based on the
quantum mechanical tunnel effect (which describes how electrical charges
move through the device, see Esaki [1958]) is a two terminal device made
from a heavily doped semiconductor, i.e., one with impurity densities
10^ to 10^ that of conventional p-n junction diodes. The characteristic of
the tunnel diode which is exploited is the stable negative resistance that
appears over part of the volt-ampere operating region (see Fig. 5 .22(a)) .
The two regions on either side can be defined to represent the two binary
states. Power gain can be realized when switching from a low voltage state
to a high voltage state because a large change in output current can be ob­
tained by means of a smaU input trigger current that drives the operating
point over the maximum of the characteristic. One or two tunnel diodes
can serve as a threshold majority gate and single bit store, provided there
is suitable biasing and loading. Germanium tunnel diodes have been re­
ported with switching times less than 1 nanosec. This speed is attribut­
able to the fact that signals are transmitted within the diode by an electro­
magnetic field rather than the motion of charged carriers. There are other
advantages too. They are smaller than transistors, operate over a tempera­
ture range greater than that of germanium and silicon transistors com­
bined, and at nuclear radiation levels about two orders of magnitude
greater than practical with transistors. Because of its inherent simplicity
and low cost of fabrication it is potentially a low cost element.

4 . 8 . SPECIALIZED SWITCHING NETWORKS 1 7 3

To overcome the tuimel diode's bidirectional action in signal propa­
gation, an auxiliary transistor or tunnel rectifier may be used. One hybrid
circuit, a two-input NOR gate, uses a tunnel diode for threshold action and
current gain, and a transistor for isolation between signal channels. Because
gain is not sought from the transistor, it can be operated near its cutoff
frequency. The circuits are connected by matched microstrip transmission
lines. Each input signal is applied to a resistor, in the emitter circuit of the
isolation transistor, which approximates a matched termination and keeps
signal reflection to a minimum. The tunnel diode is coupled directly to the
transistor collector, and capacitively to a 500 Mc sine wave current source
used to retime and reshape all output signal waveforms. Because of phase
inversion in each gate, two forms of the circuit are used—one with a p-n-p
and one with an n-p-n transistor. In the absence of input signals, the diode
in each circuit switches on opposite half cycles of the sine wave. Thus, two
levels of logic can be performed during a full clock cycle.

At 1 Gc each operation takes 1 nanosec. It takes this much time for
electromagnetic energy to propagate 1 foot in free space. Thus, in
machines operating near this rate, propagation time becomes a Umiting
factor and the computing elements must be packed within a small space.
To fully exploit the potentiaUties of microwave computer elements re­
quires, among other things, the continued development and refinement of
means of interconnecting these elements, e.g., the use of low impedance
microstrip transmission lines and thin film conductors. With present low
impedances represented by tunnel diodes at microwave frequencies there
are parasitic inductances associated with the leads and as a result it may
be necessary to solder the diodes directly between the conductors of a
low impedance microstrip line. Parasitic oscillations at very low frequen­
cies can be produced if the impedance of the bias supply is not maintained
at a low enough level (dc instability).

4.8. Specialized Switching Networks

4 . 8 . 1 . TRANSLATIONAL NETWORKS

Translational networks are used most often to translate a coded rep­
resentation of data from one form to another in order to mechanize cer­
tain control functions. These networks are also referred to as switching
matrices or function tables, because the elements of the network are
often arranged schematically, or even physically, in an array resembling
a matrix or table. A translational network is commonly constructed almost
entirely from diodes and resistors.

174 4. SWITCHING AND STORAGE CIRCUITS

As Stated earlier, control signals are commonly obtained from the
value of code bits stored in a group of flip-flops. Translational networks
may be used to satisfy either of two basic types of requirements. In one,
it is required that the presence of each of a set of permissible values of
a code group causes one or more control lines to be energized. In the
other, it is required that the presence of a signal on a given Une causes two
or more other Unes to be energized. Translational networks satisfying
each of these requirements are often referred to as many-to-one and one-
to-many networks, respectively. In the general case, each of the permis­
sible values of a coded group of bits must cause more than one output line
to be energized. This caUs for a many-to-many switching network,
which, as wiU be shown later, can be constructed from a combination of
a many-to-one and a one-to-many network.

The many-to-one network, also referred to as a decoding network,
is devised so that for each combination of conditions on its input Unes,
only one of its output Unes is energized. For a given output Une to be
energized, aU input Unes to which it is connected must be energized. In
Fig. 4.65(a) is shown a schematic of a representative network, with two
input variables and four output Unes. Inspection of Fig. 4.65(a) shows

A

Β

• .
A
A
Β
Β

(α) (b)
FIG. 4 . 6 5 . Representations of a many-to-one rectangular switching matrix with

two input variables

that each of the output Unes Z>i through 2)4 corresponds to the output of
an AND gate. SpecificaUy, the output signals have the following values

Di ^ BÄ Di= BA

D2 = BA 2)4 = Β A

It is apparent then that a many-to-one switching network is nothing more
than an assemblage of AND gates. The utility of considering the assemblage
rather than the individual gates wiU be more apparent after the ensuing
discussion.

4.8. SPECULIZED SWITCHING NETWORKS 175

For purposes of convenience, a network of the type shown in Fig.
4.65(a) may be represented symbolically as in Fig. 4.65(b). In Fig.
4.65(b), the resistors have been omitted, and the diode connections have
been replaced by dots, with the understanding that all the dots on a verti­
cal line represent inputs to an AND gate. Figures 4.66, 4.67, and 4.68
show three of the different forms that a matrix with three input variables
can assume. Note that in Fig. 4.66 there are eight three-input AND gates,
and in Figs. 4.67 and 4.68, there are 12 two-input AND gates. The number
of diodes required in all three arrangements is the same. However, in
Fig. 4.66, there is equal loading of the input signals. In Fig. 4.67, there
is unequal loading of the input signals, for C and C appear as inputs to
many more AND gates than either A and Ä ox Β and E, In Fig. 4.68,
there is more balanced loading of the input signals. In both Fig. 4.67 and

A
A
Β
Β

A
A
Β
Β
C
C

C
C

FIG. 4.66. A many-to-one rectangular
switching matrix with three

input variables

FIG. 4.67. A many-to-one pyramidal
switching matrix

Fig. 4.68 use is made of pyramiding, i.e., the construction of complex

A
Β
Β

C
C

A
C
Q

Β
Β

FIG. 4.68. A many-to-one pyramidal switching matrix

176 4. SWITCHING AND STORAGE CIRCUITS

Boolean functions from simpler ones already available (see Section 4.2.5).
For example, in Fig. 4.67, the functions ABC and ABC are not formed
birectly from the elementary inputs A, 5 , C, and C, but, instead, by corn-
dining each of the inputs C and C with the output of the AND gate generat­
ing AS. The use of pyramiding does not provide a saving in diodes for
three input variables, but for more than three input variables the savings
in the number of diodes, compared to the rectangular matrix, increases.
Table 4.1 shows the number of diodes required for a rectangular matrix,
and also for a pyramidal matrix (assuming all minterms (logical prod­
ucts) of η variables are to be formed). In general, pyramidal arrange­
ments may be formed as follows. First of all, the minterms of two input
variables are formed. Each of these is combined with a third variable.
Each of the minterms of three input variables is combined with a fourth
variable, etc.

Neither the rectangular nor pyramidal matrix results in a translational
network with the minimum number of diodes if η is greater than three.
The minimum network can be obtained by the following procedure. First,
the full set of variables is separated into two groups (equal if the number
of variables is even and differing by one if odd). This partitioning process
is continued until each group contains either two or tíiree variables. The
number of diodes is the same whether a rectangular or pyramidal matrix
is used for each two and three variable group. The outputs of two groups
are combined by an array of two-input AND gates, the process being
repeated until all minterms have been formed. For large n, Üie number of
ways of combining the groups becomes large and, in general, different
combinations require different numbers of diodes. All possible combina­
tions must be considered to determine the network with the minimum
number of diodes. The form of matrix most economical of diodes for
four input variables is shown in Fig. 4.69. The column on the far right

β
8

C-

FIG. 4 . 6 9 . The most economical form of a four-input many-to-one switching matrix

4.8. SPECIALIZED SWITCHING NETWORKS 1 7 7

in Table 4.1 shows the minimum number of diodes required for a given
number of input variables.

TABLE 4 . 1 . Number of diodes, N, required for different forms of
translational networks

Nimiber of input
variables

η
2
3
4
5
6

Rectangular
matrix

Pyramidal
matrix

Minimum
network

Ν = , 1 (2 «) Ν = i n + s - 8 2n+i 2 " + 2 _ g
8 8 8

2 4 2 4 2 4
6 4 5 6 4 8
1 6 0 1 2 0 9 6
3 8 4 2 4 8 1 7 6

In the one-to-many network, also referred to as an encoding network,
each of several energizable input lines may be used to energize all the
output lines connected to it. These output signals can be used to cause a
group of operations to be executed elsewhere in a system. The schematic
of a one-to-many network with four input and five output lines is shown
in Fig. 4.70. The control functions to be performed by this network may
be expressed as follows

O1O2O3O4O5

/2

OI02030405

/ |

/2

FIG. 4 . 7 0 . Representations ot a one-to-many switching matrix with pyramiding

A signal on line h is to energize lines Oi, O2, O3

A signal on line I2 is to energize Unes Oi, O3, O5

A signal on line h is to energize Unes O2, O4, O5

A signal on line I4 is to energize lines O3, O4, O5

These relations can also be expressed by considering all the input signal
conditions that cause a particular output line to be energized. In this
particular case

178 4. SWITCHING AND STORAGE CIRCUITS

0 1 = / i - f h

0 2 = / i + /3

0 3 = / l + /2 + h

O, = h + h

= I2 + h + h

These relations show that a one-to-many network is simply an assemblage
of OR gates. Any of the forms of the many-to-one matrix can also be
used for the one-to-many matrix. It is only necessary to reverse the
orientation of all diodes and return the resistors to a voltage of opposite
polarity. Fig. 4.70 provides an example of pyramiding — O 3 being formed
from an OR combination of Oi and and O5 from an OR combination of
O4 and / 2 .

A many-to-many network can be readily constructed by using the
output Unes of a many-to-one network as inputs to a one-to-many net­
work. One appUcation of such a network in a digital computer would be
to control the execution of the elementary commands called for by an
instruction. A group of flip-flops can store the codes of various instruc­
tions, and a many-to-one network used to energize a unique output line
for each code. By using the output Unes of the many-to-one network as
the inputs to a one-to-many network, a set of control Unes can be ener­
gized for each instruction code. (See the discussion on microprogramming
in Chapter 7.)

A many-to-many network can also be used as a mathematical func­
tion table. In this case, the network is so constructed that when the code
of the argument is entered on the input Unes, the pattern of signals pro­
duced on the output Unes corresponds to a binary coded representation
of the function. However, this is a very expensive and impractical type of
mechanization for tables of appreciable size. Instead, tables of functions
are usuaUy stored in large capacity storage systems of the types described
in Chapter 5.

4.8.2. DISTRIBUTION AND COLLECTION NETWORKS

If a computer has both dynamic and static storage units, there must
be some means of converting from dynamic to static storage and vice
versa. The former process is referred to as distribution (or staticizing)
and the latter as coUection. Distribution and coUection are also referred
to as serial-to-paraUel and paraUel-to-serial conversion since information
is converted from a form in which there is access to only one bit at a
time to a form in which there is access to several bits at a time, and

4.8. SPECIALIZED SWITCHING NETWORKS 179

vice versa. A schematic of a distribution unit is shown in Fig. 4.71. Du
02, and D3 each represent a delay equal to that between successive bits.
The signal, 5, controls the gates Gi through G4 and is chosen to represent
the time at which the contents of the delay line, composed of the indi­
vidual delays, are to be sampled and transferred to the flip-flops, FFi
through FF4, Since information is advancing serially bit by bit from the
input through the delay line, it is clear that the information that is trans­
ferred to static storage will be determined by the time of occurrence of the
signal 5. The length of the delay line in unit pulse times must, of course,
equal the number of pulses to be staticized at a time.

A schematic of a collection unit is shown in Fig. 4.72. Information is

I

I E

input

<?2

I s

FIG. 4 . 7 1 . Schematic of a distribution unit

FF

^ 3

FIG. 4 .72 . Schematic of a collection unit

stored in the flip-flops. The signal S passes through the delay channel,
arriving sequentially at the inputs to gates Gi through G4. Thus, at sue-

180 4. SWITCHING AND STORAGE CIRCUITS

cessive times, a signal is entered onto the output line by each gate con­
nected to a flip-flop in the 1 state.

If the period between successive bits is more than a few /xsec, the
delay line becomes too large, and distribution and collection are accom­
plished by means of reading information from a dynamic store into a
shift register and stepping information from the register into the store,
respectively. The shift register combines the properties of storage and
unit delays. A description of various shift registers is provided next.

4.9. Shift Registers

Each stage of a shift register is built around a bistable element, to­
gether with control circuitry that, upon command, causes the contents of
each stage Ri to be transferred to stage Ä i + i . These elements may be
vacuum tube or transistor flip-flops, magnetic cores, ferroelectric cells, or
any other form of binary storage device. Shift registers are widely used
in computers for storage, shifting, delay, serial-to-parallel and parallel-to-
serial conversion, etc. If parallel input lines are provided, it can serve as a
parallel-to-serial conversion device. Parallel readout lines enable it to be
used as a serial-to-parallel converter.

The serial shift register serves principally to provide buffer storage,
accepting information when available and delivering it when desired. It
can also provide speed buffering by being pulsed at one rate when
receiving information and at another when delivering it. Whenever a shift
command is received, each stage is cleared and made to accept the previ­
ous contents of the preceding stage. If used simply as an external read-in
device, shift pulses will be received every time a new bit is to be entered.

Information is shifted down the register by pulsing all stages simul­
taneously, thus causing each stdred bit to advance simultaneously. The
information in each stage must be stored somewhere while the following
stage is being cleared. This intermediate storage may be by means of
capacitors, electromagnetic delay lines, or an auxiliary flip-flop register.
(Often the turnover time of the flip-flop itself provides an adequate delay.)
The use of an auxiliary flip-flop register, with appropriate gating, permits
bidirectional shifting. The operation of several types of shift registers will
now be described.

In the shift register shown in Fig. 4.73 the content of each bistable
storage element is shifted to the next higher order element when a shift
pulse is applied on the line indicated. The output of each Ri is connected
to the input of Ri^i by means of a gate which retains the state of Ri for
a short time after its contents have been altered, and passes the state of
Ri on to Ri^i,

4.9. SHIFT REGISTERS 181

Shift Clear Clear

r
Clear ^+1 Clear

Shift

FIG. 4.73. A logical arrangement for
a shift register

FIG. 4.74. A shift register with
inductive intermediate storage

mediate storage. A clear pulse is apphed to all stages, and causes any stage
in the 1 state to emit a pulse. This pulse, after being delayed, resets the
next higher order stage after a time greater than that necessary for it to
recover from the previous clear operation.

In the arrangement of Fig. 4.75 the shift register proper is comprised

Copy // into

, Clear

IT
AR.

Clear ri /| HAND

AND ^ + 1 AND

"Copy/iJ- into /j

FIG. 4.75. A high speed dc coupled shift register with flip-flop intermediate storage

of one group of storage elements, Ru while the storage elements, lu are
used for intermediate storage. A single shift operation is effected by ap­
plying command pulses to input lines 1, 2, 3, and 4, in that order. A
pulse on line 1 clears the intermediate storage register. The pulse on Une
2 copies any I's in the main shift register into the intermediate register.
The pulse on Une 3 clears the main shift register. The pulse on Une 4
causes the I's in the intermediate storage register to be copied into the
shift register one bit to the right of their original positions.

An alternate logical arrangement is one wherein gates are provided
for transferring O's as weU as I's between stages. Such an arrangement
is shown in Fig. 4.76. A pulse will pass through only one of the gates,

Figure 4.74 shows an arrangement using inductive delays for inter-

182 4. SWITCHING AND STORAGE CIRCUITS

Shift
; 3 0 G a t e

I Gate

Delay H'^+iH Delay

FIG. 4.76. Shift register with gates for transferring 0*s and Ts

depending on which state the corresponding bistable element is in. The
delays prevent a bistable element from being triggered before a satis­
factory signal is transmitted to the next higher order. Though shown in
the input Unes to the bistable elements, the delays could have been placed
in the output lines instead.

A shift register can also be formed from dynamic storage elements.
A typical arrangement is shown in Figure 4.77. AND and OR gates are

Element / Element / +1

Store
Shift

Dynamic
storage

Dynamic
storage

Dynamic
storage

Dynamic
storage

Feedbaci^
V pathy

Feedback\

Gatel • O R - Gate2 i— Gatel - O R - Gate2

FIG. 4.77. Shift register comprised of dynamic storage elements

inserted into the feedback path of each dynamic storage element as shown.
As long as a gate enabUng signal is maintained on the store Une, the
normal feedback path is maintained via gate number 2. To produce a
shift, the "store" signal is removed and a signal appUed to the "shift" Une.
The first action interrupts the feedback path via gate number 2, but aUows
the circulating pulse from stage / to pass through gate number 1 of stage
/ + 1, thereby effecting the shift. After the shift is executed, the "store"
signal is reappUed. For correct operation, the shift signal must be held
operative for one pulse time, and must be properly phased relative to
the clock pulse inputs to the dynamic storage elements.

In the shift registers described in the preceding paragraphs, the bi­
stable elements could have been either vacuum tubes or transistors.
When magnetic cores are used as the bistable element, other logical
arrangements are possible. The various magnetic core shift re^sters.

4.9. SHIFT REGISTERS 1 8 3

some of which are described next, differ principally in the nature of
their transfer loops and in the number of cores required per bit of
storage.

The arrangement in Fig. 4.78 requires two cores per bit. One set of

FIG. 4.78. Schematic of a two core per bit shift register with shimt diode
transfer loops

cores is used for storage, and the other to provide delays. A complete
shifting operation is performed by the successive appUcation of shift
current pulses, h and t2, to the windings shown. AppUcation of the h
signal to a core containing a 1 wiU induce a large voltage in the transfer
loop, as a result of which the magnetic state of the core to the right wiU
be changed from 0 to 1. AU cores to which the h pulse has been appUed
are in the 0 state and are ready to accept input signals from the inter­
mediate cores when the Í2 pulse is appUed. For serial input operation,
new information may be inserted into core A at any time between h
pulses. For paraUel input operation, the new information is placed in
alternate cores at a time when these cores are not otherwise pulsed,
and is then shifted out seriaUy by the alternate appUcation of pulses ti
and ^2. ParaUel readout is obtainable by the addition of a separate read­
out winding. This type of circuit is at present operable at rates up to
250 Kc. A circuit simUar to that of Fig. 4.78 may be obtained by the
use of single diode transfer loops (described in Section 4.5.2).

Figure 4.79 shows a shift register with three cores for every two bits.

Output

FIG. 4.79. A serial shift register using three cores per two bits and single
diode transfer loops

184 4. SWITCHING AND STORAGE CIRCUITS

If information is assumed initially to be in cores A and Β (and A' and B\
etc.), ti will transfer one bit from Β to C, t2 will transfer one bit from
A to B, and /a will transfer one bit from C to ^ ' at the same time that
new information is inserted into A. The technique of using η 4- 1 cores
and /i-hl advance pulses for every η bits may be extended indefinitely
if the economics of the situation warrants it, i.e., if it is desirable to save
cores and diodes at the expense of additional drivers.

A parallel shift register comprised of single diodes and split winding
transfer loops is represented in Fig. 4.80. Cores A, B, C, . , , constitute

l n p u t - * H

FIG. 4.80. A parallel shift register with single diode and split winding transfer loops

the shift register, and Mi, M 2 . . . are the output cores. Information is
inserted serially under control of h and / 2 . During the serial shift the
split-winding loops between the register cores and the output cores pre­
vent the transfer of information to the output. When the last bit of a
word of predetermined length is inserted into A, the preceding bits of
that word are in C, . . . The application of advance pulse ip will
transfer the information in parallel into the output cores.

A reversible shift register, synthesized by means of split-winding
transfer loops, is shown in Fig. 4.81. Information may be shifted from

FIG. 4.81, A reversible shift register with split winding transfer loops

left to right by means of pulses h and Í2, or from right to left by pulses

4.9. SHIFT REGISTERS 185

Í3 and t4. Reversible operation is possible because of the isolating, rever­
sible character of the spUt-winding transfer loop.

In the shift register shown in Fig. 4.82, temporary storage during the
readout operation is obtained not by the use of additional cores but by
condensers in RC delay networks. As shown, there is a shift winding on
each core, and all of these windings are connected in series. The appUca­
tion of the shift pulse saturates all cores in the direction chosen to
represent 0. This causes an output to be produced from each core which
had been saturated in the direction representing 1. This output charges
the condenser, which upon completion of the read-out operation dis­
charges through the succeeding core in such a direction as to record a 1.

The shift register shown in Fig. 4.83 consists of a number of tran-

Input o

Shift o

Input

Shift o

FIG. 4.82. A one core per bit serial
shift register

FIG. 4.83. A serial transistor-core
shift register

sistor-core combinations in each of which the core provides storage and
the transistor serves as a power ampUfier. The transistor is normaUy cut
off. When conducting it induces a positive magnetic field. If the core is
originaUy in a saturated state at the bottom of the hysteresis loop,
designating storage of a 1, the application of a smaU current pulse to
the shift winding produces a change of flux which in turn induces a
negative voltage at the base of the transistor. As a result, there is a flow
of current through the coUector and its associated winding. This current
shifts the state of magnetization of the core stiU further in the same
direction. This regenerative process continues until the core is shifted
to the saturated state representing 0. At saturation, the permeabiUty of
the core is low so that the gain around the feedback loop consisting of
the transistor and the two windings to which it is connected becomes
less than unity, and the transistor current is cut off. If the core were
originally in the 0 state, application of the shift pulse would have pro­
duced no effect since no change in flux would have been produced.

To set any core to the 1 state, current is appUed to the input winding
which causes a positive voltage at the base of the transistor which drives
the transistor into cut-off. The output of each stage is used to reset the
core in the foUowing stage. After appUcation of the shift pulse aU the

186 4. S W I T C H I N G A N D STORAGE C I R C U I T S

stages which previously stored a 1 change to a 0 and during the regener­
ation process described each of these stages supplies energy which after a
delay sets the succeeding stage to the 1 state.

The transistor-core shift register has three important advantages over
core-diode shift registers. First of all, it does not require a shift pulse
of predetermined amplitude and width, but only a small trigger pulse
which causes each stage to generate its own shift pulse. Second, in core-
diode shift registers the shift pulses are of large magnitude (since they
supply the total energy) and pass through all the cores. For cores with
nonsquare hysteresis loops, some output voltage is produced even by a
stage in the 0 state. As a result, the ratio of output for 1 to that for 0,
which may be considered a signal to noise ratio, is poor. In the transistor-
core shift register, a stage in the 0 state never generates a shift pulse
through its core. The third advantage relates to buffering between stages.
In the core-diode shift register, an undesirable feedback action can occur
because the series diode is so oriented that it passes current induced in
the input winding of the second core upon readout, when that core is in
the 1 state. This current will tend to set the first core to the 1 state. To
alleviate this problem, a number of devices have been used in core-diode
shift registers such as having a different number of turns in the input
and output windings, a nonsymmetric coupUng loop, or a diode shunted
across the input winding. However, these devices all lower the efficiency
and worsen the operating margins. In the transistor-core shift register
perfect buffering is obtained because the collector is cut off during the
read-in operation.

4.10. Auxiliary Circuits

In addition to their use in gating circuits and as the basic elements of
flip-flops, inverters are also useful for a number of miscellaneous auxiliary
functions calling for signal ampUfication. The vacuum tube cathode
follower and its counteφart, the transistor emitter follower, also finds
use not only as a switching element but for a number of applications
calling for a current ampUfier.

One or more members of a group of circuits referred to as trigger
circuits may be used in a digital computer system for the puφose of
generating discontinuous or impulsive output signals having either a
specified periodicity or time relation to input signals. Trigger circuits are
classified, according to the number of their absolutely stable states, as
foUows:

(1) Relaxation osciUator circuits, which continuaUy osciUate between
two quasi-stable states. Among the more common relaxation

4.10. AUXILIARY CIRCUITS 187

oscillators (which may be either free running or synchronized)
are the multivibrator and free-running blocking oscillator. The
multivibrator is not widely used in digital computers. The
blocking oscillator (useable from IKc to > IMc) is useful in
clock amplifying circuits. From a clock source, such as a timing
track on the surface of a magnetic drum or disk, it generates a
synchronized output of impulsive signals with sufl&cient power
to drive a large number of switching circuits.

(2) Single stable-state circuits which, upon being suitably triggered,
pass to a quasi-stable state in which they remain for a time
(determined by circuit parameters) before spontaneously return­
ing to their stable state. These circuits are used to replace input
signals that may be either intermittent or of varying or undesirable
shape and ampUtude by output pulses of standard shape and
amplitude. They are also used to produce an output pulse
suitably delayed with respect to the input. Among single stable-
state circuits are the delay multivibrator (one-shot delay circuit),
and the biased blocking oscillator. The one-shot delay circuit is
suitable as a delay unit because the duration of its quasi-stable
state is easily controlled over wide hmits, and because there are
points in the circuit where the potentials are steady except during
a transition state. It is useful, too, as a source of rectangular
pulses suitable for gating signals. The biased blocking oscillator
is used to generate pulses of short rise and fall times and narrow
width. It is stable in a quiescent state and brought to a quasi-
stable state of short duration by a suitable trigger input. In this
state a large oscillation is produced, usually lasting one period.

(3) Two stable-state circuits, which are switched from one stable
state to the other by a suitable trigger input signal. Flip-flops
are examples of such circuits, and they have been discussed imder
systems of circuit logic where they find their principal use.

The auxihary circuits mentioned so far were current and voltage
amplifiers used in conjunction with the switching network and special
circuits for generating timing signals with adequate power. Another area
in which special circuits are required is in the circuitry for gaining access
to the various locations in the main store. Because of the large capacity
of a main store, it is uneconomical to construct it from active storage
elements. As a rule, it is formed instead from less expensive passive
elements. A number of special circuits, described in Chapter 5, are re­
quired to gain access to a specified location in the main store and to record
or sense information.

188 4. SWITCHING AND STORAGE CIRCUITS

In addition to the auxiliary circuits that may be used in conjunction
with the arithmetic, control, and main storage units, others will generally
be required to couple the circuitry of the computer proper to various
input and output devices. These circuits are used principally to transform
signal levels between the computer and input-output devices. For example,
high level current sources, driven by low level circuits in the computer,
fnust be provided to drive output printers and other peripheral equipment.

LITERATURE

ELECTRONIC CIRCUITS (GENERAL)

Chance, B. et al [1949] Waveforms, Radiation Laboratory Series, 19, McGraw-Hill,
New York.

Hurley, R. B. [1958] Junction Transistor Electronics, John Wiley & Sons, New York.
Linvill, J. G. and Gibbons, J. F. [1961] Transistors and Active Circuits, McGraw-Hill,

New York.
Pullen, Κ. Α., Jr. [1961] Handbook of Transistor Circuit Design, Prentice-Hall,

Englewood Cliffs, N. J.
Zimmerman, H. J. and Mason, S. J. [1959] Electronic Circuit Theory, John Wiley

& Sons, New York.

DIODE GATING Cmcurrs

Brown, D . R. and Rochester, N. [1949] Rectifier networks for multiposition switch­
ing, Proc. IRE 37, 139-147.

Gluck, S. £., Gray, H. J., Leondes, C. T., and Rubinoff, Μ. [1953] The design of
logical OR-AND-OR pyramids for digital computers, Proc. IRE, 41, 1388-92.

Hussey, L. W. [1953] Semiconductor diode gates Bell System Tech, Jour. 32, 1137-
54.

Scobey, J. E., White, W. Α., and Salzberg, Β. [1956] Fast switching with junction
diodes (operating at reverse breakdown), Proc. IRE, 44, 1880-1881.

Yokelson, B. J. and Ulrich, W. [1955] Engineering multistage diode logic circuits,
Trans. Amer. Inst. Elec. Engrs. 74, (I) 466-475.

VACUUM TUBE CIRCUITS

Bay, Z. and Grisamore, N. T. [1956] High-speed ñip-ñops for the millimicrosecond
region, IRE Trans. El. Comp. 5, 121-25.

Brown, R. M. [1955] Some notes on logical binary counters, IRE Trans. El. Comp.
4, 67-69.

De Turk, J. E., Gamer, H. L., Kaufman, J., Bethel, H. W., and Hock, R. E. [1954]
Basic circuitry of the MIDAC and MIDSAC, Univ. of Michigan Rept.
No. 1942-2-T.

Elbourn, R. D. and Witt, R. P. [1953], [1955] Dynamic circuit techniques used in
SEAC and DYSEAC, Proc. IRE, 41, 1380-1387; Computer development
at the NBS, NBS Circular 551, Part 2, 27-38.

Haueter, R. C , Alexander, S. N., and Greenwald, S. [1953] SEAC, Proc. IRE, 41,
1300-1313.

LITERATURE 189

Johnson, R. F. and Ratz, Α. G. [1956] A graphical method for flip-flop design,
Trans. Amer. Inst. Elec. Engrs. 75, (I) , 52-56.

Meagher, R. E. and Nash, J. P. [1952] The ORDVAC, Proceedings of the Joint
AIEE-IRE Computer Conference held Dec. 1951, 37-43 (Pub. Feb. 1952)

Paivinen, J. O. and Auerbach, I. L. [1953] Design of triode flip-flops for long term
stability, IRE Trans. El Comp., 2, 14-26.

Pressman, R. [1953] How to design bistable multivibrators, Electronics, 26, 164-168.
Ritchie, D. K. [1953] The optimum dc design of flip-flops, Proc. IRE, 41, 1614-1617.
Robertson, J. E. [1956] Odd binary asynchronous counters, IRE Trans. EL Comp.,

5, 12-15.
Rosenheim, D. E. and Anderson, A. G. [1957] VHF pulse techniques and logical

circuitry, Proc. IRE, 45, 212-219.
Rubinoff, Μ. [1952] Notes on the design of Eccles-Jordan flip-flops. Trans. Amer.

Inst. Elec. Engrs., 71, (I) , 215-220.
Rubinoff, Μ. [1952] Further data on the design of Eccles-Jordan flip-flops, Elec.

Eng. 71, 905-10.
Sherertz, P. C. [1953] Electronic circuits of the NAREC computer, Proc. IRE, 41,

1313-1320.
Zimbel, Ν. [1954] Packaged logical circuitry for a 4-mc computer, IRE National

Convention Record, 2, Part 4, 133-139.

TRANSISTOR Cmcurrs

Angelí, J. B. and Keiper, F. P. [1953] Circuit applications of surface-barrier tran­
sistors, Proc. IRE, 41, 1709-1712.

Baker, R. H. [1958] High-speed graded base transistor, digital-circuit techniques,
IRE'AIEE Conference on Transistor and Solid State Circuits.

Baker, R. H. [1957] Boosting transistor switching speed. Electronics, 30, 190-193.
Barnes, R. C. M., Howells, G. A. Cooke-Yarborough, E. H., and Stephen, J. H.

[1956] Transistor arithmetic circuits for an inter-leaved-digit computer, Proc.
Inst. Elec. Engrs., 103 (B) Suppl. 3, 371-381.

Bashkow, T. R. [1955] D.C. graphical analysis of junction transistor flip-flops, AIEE
Transactions Paper No. 56-24.

Beter, R. H., Bradley, W. E., Brown, R. B., and Rubinoff, Μ. [1955] Surface-barrier
transistor switching circuits, IRE National Convention Record, 3, Part 4,
139-145.

Beter, R. H., et al. [1955] Direct coupled transistor circuits, Electronics, 28, 132-136.
Booth, G. W. and Bothwell, T. P. [1957] Basic logic circuits for computer applica­

tions, Electronics, 30, 196-200.
Booth, G. W. [1956] Logic circuits for a transistor digital computer, IRE Trans. El

Comp. 5, 132-138.
Bradley, W. E., et al [1953] The surface-barrier transistor, Proc. IRE, 41, 1702-1720.
Caldwell, S. H. [1959] Transistors in combinational switching circuits, Proceedings

of an International Symposium on the Theory of Switching (Pt. II) , pp. 138-
143, Harvard Univ. Press, Cambridge, Mass.

Campbell, C. M. Jr. [1958] New configurations in non-saturating complementary
current switching circuits, IRE-AIEE Conference on Transistor and Solid-State
Circuits.

Carroll, W. N. and Cooper, R. A. [1958] Ten megacycle transistorized pulse circuits
for computer application, IRE-AIEE Conference on Transistor and Solid-State
Circuits,

190 4. SWITCHING AND STORAGE CIRCUITS

Carlson, A. W. [1953] High speed transistor flip-flops. Communications Lab., Air
Force Cambridge Research Center Tech. Report 53-16.

Chao, S. C. [1959] A generalized resistor-transistor logic circuit and some applica
tions, IRE Trans. El. Comp., EC-8, 8-12.

Chaplin, G. B. B. [1954] The transistor regenerative amplifier as a computer element,
Proc. Inst. Elec. Engrs., 101, (III), 298-307.

Coblenz, A. and Owens, H. L. [1953] Equivalent transistor circuits and equations,
Electronics, 26, 156.

Coblenz, A. and Owens, H. L. [1953] Point-contact transistor operation. Electronics,
26, 158.

Cooke-Yarborough, E. H. [1954] A versatile transistor circuit, Proc. Inst. Elec,
Engrs., 101 (III) 281-287.

Domenico, R. J. [1957] Simulation of transistor switching circuits on the IBM 704,
IRE Trans. El. Comp., 6, 242-247.

Ebers, J. J. and Miller, S. L. [1955] Design of alloyed junction germanium tran
sistors for high speed switching, Bell System Tech. Jour., 34, 761-781.

Ebers, J. J. and Moll, J. L. [1954] Large signal behavior of junction transistors, Proc.
IRE, 42, 1761-1772.

Easley, J. W. [1958] Transistor characteristics for direct-coupled transistor logic cir­
cuits, IRE Trans. El. Comp., 7, 7-16.

Felker, J. H. [1955] Performance of TRADIC transistor digital computer, Proceed­
ings of the Eastern Joint Computer Conference, 1954, American Institute of
Electrical Engineers, New York, 46-49.

Giacoletto, L. J. [1953] Terminology and equations for linear active four-terminal
networks including transistors, RCA Review, 14, 28.

Harris, J. R. [1958] Direct-coupled transistor logic circuitry, IRE Trans. El. Comp.,
7, 2-6.

Henle, R. A. [1957] High speed transistor computer circuit design, Proceedings of
the Eastern Joint Computer Conference, 1956, American Institute of Electrical
Engineers, New York, 64-66.

Hunter, L. P. and Fleisher, H. [1952] Graphical analysis of some transistor switching
circuits, IBM Corp., Report No. 26.

Kudlich, R. A. [1955] A set of transistor circuits for asynchronous, direct-coupled
computers. Proceedings of the Western Joint Computer Conference, pp. 124-
129, March, 1955.

Leichner, G, H. [1957] Designing computer circuits with a computer, / . ACM, 4,
143-147.

Leichner, G. H. and Muerle, J. L. [1957] Computer circuits with 30 millimicrosecond
operation times, Rept. No. 77, Digital Computer Lab., University of Illinois.

Linvill, J. G. [1955] Non-saturating pulse circuits using two junction transistors,
Proc. IRE, 43, 826-834.

Marcovitz, M. W. and Seif, Ε. [1958] Analytical design of resistor-coupled tran­
sistor logical circuits, IRE Trans. El. Comp., EC-7, 109-119. (Corrections
on p. 324 of same volume).

Moll, J. L. [1955] Junction transistor electronics, Proc. IRE, 43, 1807-1819.
Moll, J. L., Tanenbaum, M., Goldey, J. M., and Holonyak, N. [1956] P-N-P-N

transistor switches, Proc. IRE, 44, 1174-1182.
Nelson, J. C. [1956] Speed independent counting circuits, Rept. No. 71, Digital

Computer Lab., University of Illinois.

L I T E R A T U R E 1 9 1

Pressman, A. 1. [1959] Design of Transistorized Circuits for Digital Computers,
Rider, New York.

Prom, G. J. and Crosby, R. L . [1956] Junction transistor switching circuits for
high-speed digital computer applications, IRE Trans, EL Comp., 5 , 192-196.

Rapp, A. K. and Wong, S. Y. [1956] Transistor flip-flops have high speed. Elec­
tronics, 29, 180-181.

Rowe, W. D. and Roger, G. H. [1957] Transistor NOR circuit design, Trans. Amer.
Inst. Elec. Engrs., 7 6 , (I) , 263-267.

Shea, R . F . [1957] Transistor Circuit Engineering, Wiley, New York.
Shockley, W., Sparks, M„ and Teal, G. K. [1951] P-N junction transistors, Phys.

Rev. 8 3 , 151.
Simkins, Q. W. [1958] Transistor resistor logic circuit analysis, IRE-AIEE Confer-

ence on Transistor and Solid-State Circuits.
Simkins, Q. W. and Vogelsong, J. H. [1956] Transistor amplifiers for use in a digital

computer, Proc. IRE, 44, 43-55.
Turner, R. J. [1954] Surface-barrier transistor measurements and applications, Tele-

Tech and Electronic Industries, 1 3 , 78.
Wallace, R. L . and Pietenpol, W. J. [1951] Some circuit properties and applications

of n-p-n transistors. Bell System Tech. Jour., 3 0 , 530.
Walsh, J. L . [1958] IBM current mode transistor logical circuits. Proceedings of

Western Joint Computer Conference.
Wamock, J. [1954] Junction transistor switching circuits, IRE-AIEE Conference

on Transistors.
White, E . A. [1953] Graphical Analysis of Transistor Binaries, Ballistic Research

Labs., Report No. 706.
Wüliams, F. C. and Chaplin, G. B. B. [1953] A method of designing transistor

trigger circuits, Proc. Inst. Elec. Engrs., 1 0 0 (II) , 228-248.
Wolfendale, E . , Morgan, L . P., and Stephenson, W. L . [1957] The junction tran­

sistor as a computing element. Electronic Engineering, 2% 2-7, 83-87, 136-139.
Yourke, H. S. [1957] Millimicrosecond transistor current switching circuits, IRE-

AIEE Conference on Transistor and Solid State Circuits.

MAGNETIC CORE LOGIC AND CONTROL CIRCUITS

Auerbach, I. L . and Dissen, S. B. [1955] Magnetic elements in arithmetic and con­
trol circuits. Electrical Engineering, 7 4 , 766-770.

Beyer, R. T., Miller, G. H., Sack, H. S., and Trischka, J. W. [1947] Special mag­
netic amplifiers and their use in computing circuits, Proc. IRE, 3 5 , 1375-82.

Bonn, T. H. [1959] Analysis of magnetic amplifier circuits. Proceedings of an
International Symposium on the Theory of Switching (Pt. II) , 149-160,
Harvard Univ. Press, Cambridge, Mass.

Bozorth, R. Μ. [1951] Ferromagnetism, Van Nostrand, New York,
Crane, H. D. [1959] A high speed logic system using magnetic elements and con­

necting wire only, Proc. IRE, 4 7 , 63-73.
Devenny, C. F. and Thompson, L . G., Ferromagnetic computer cores, Tele-tech

and Electronic Industries, 1 4 , 58-59, 84-94.
E . E . Staff, MIT, Magnetic Circuits and Transformers, Wiley, New York.
Guterman, S. S. and Carey, W. Μ., Jr. [1955] A transistor-magnetic core circuit;

A new device applied to digital computing techniques," IRE National Con­
vention Record, 3 , Part 4, 84-94.

192 4. SWITCHING AND STORAGE CIRCUITS

Guterman, S., Kodis, R. D,, and Ruhman, S., Circuits to perform logical and control
functions with magnetic cores, IRE National Convention Record, 2, Part 4,
124-32.

Guterman, S. [1955] Logical and control functions performed with magnetic cores,
Proc. IRE, 43, 291-98.

Karnaugh, M. [1955] Pulse-switching circuits using magnetic cores, Proc. IRE, 43,
570-584. (Includes a bibliography of 31 items.)

Kodis, R. D., Ruhman, S., and Wood, W. D. [1953] Magnetic shift register using
one core per bit, IRE National Convention Record, 1, Part 7, 38-42.

Loev, D., Miehle, W., Paivinen, J., and Wylen, J. [1956] Magnetic core circuits for
digital data-processing systems, Proc. IRE, 44, 154-62.

Miehle, W., Paivinen, J., Wylen, J. and Loev, D. [1955] Bimag circuits for digital
data-processing systems, IRE National Convention Record, 3, Part 4, 70-83.

Minnick, R. C. [1954] Magnetic switching circuits, / . Appl. Phys., 25, 479-485.
Newhouse, V. L. and Prywes, N. S. [1956] High speed shift registers using one

core per bit, IRE Trans. El. Comp., 5, 114-120.
Prywes, N. S. [1958] Diodeless magnetic shift registers utilizing transfluxors, IRE

Trans. El. Comp. EC-7, 316-324.
Rajchman, J. A. and Crane, H. D. [1957] Current steering in magnetic circuits,

IRE Trans. El. Comp. 6, 21-30.
Rajchman, J. A. and Lo, A. W. [1956] The transfluxor, Proc. IRE, 44, 321-332.
Rajchman, J. A. and Lo, A. W. [1955] The transfluxor—a magnetic gate with stored

variable setting, RCA Review, 16, 303-311.
Ramey, R. A. [1953] The single-core magnetic amplifier as a computer element,

Trans. Amer. Inst. Elec. Engrs., 72 (I) , 342-346.
Rosenfeld, J. L. [1958] Magnetic core pulse switching circuits for standard packages,

IRE Trans. El. Comp., EC-7, 223-228.
Sands, E. A. [1952] Behavior of rectangular hysteresis loop magnetic materials

under current pulse conditions, Proc. IRE, 40, 1246-1250.
Sands, E. A. [1953] An analysis of magnetic shift register operation, Proc. IRE, 41,

993-999.
Scarrott, G. G., Harwood, W. J. and Johnson, K. C. [1956] The design and use of

logical devices using saturable magnetic cores, Proc. Inst. Elec. Engrs., 103 (B) ,
Suppl. 2, 302-312.

Van Sant, O. J. [1954] Considerations for the selection of magnetic core materials
for digital computer elements, IRE National Convention Record, 2, Part 4,
109-113.

Vorndran, J. W. and Kaiser, H. R. [1955] Magnetic core-transistor logical system
for digital computers. Research Study No. 153, Hughes Aircraft Co.

Wang, A. Various articles regarding "Static magnetic storage and delay line" con­
tained in the Harvard Computation Laboratory Progress Report Nos. 2, 3, 4,
5, 6, 8, 10, Investigations for the Design of Digital Calculating Machinery,
1948, 1949, 1950.

Wang, A. [1951] Magnetic delay line storage, Proc. IRE, 39, 401-07.
Wang, A. and Woo, W. D. [1950] Static magnetic storage and delay line, / . Appl.

Phys., 21, 49-54.
Wylen, J. [1953] Pulse response characteristics of rectangular hysteresis loop ferro­

magnetic materials, Trans. Amer. Inst. Elec. Engrs., 72 (I) , 648-55.

LITERATURE 193

SUPERCONDUCTIVE CIRCUITS

Buck, D. A. [1956] The Cryotron—A superconductive computer component, Proc.
IRE, 44, 482-493.

Proceedings of Madison Conference on Low Temperature Physics, [1958] Univ. of
Wisconsin Press, Madison, Wisconsin.

Shoenberg, D. [1952] Superconductivity, 2nd Ed., Cambridge Univ. Press.

MICROWAVE Cmcurrs
Blattner, D. J. and Sterzer, F. [1959] Fast microwave logic circuits, IRE National

Convention Record, 7, Part 4, 252-258.
Lewis, W. D. [1959] Microwave logic. Proceedings of an International Symposium

on The Theory of Switching {Pt. II), 334-342, Harvard Univ. Press, Cam­
bridge, Mass.

Microwave techniques for computing systems (a collection of articles on logic
and circuitry for microwave computers) [1959] IRE Trans. El. Comp., EC-8,
262-307.

von Neumann, J. [1957] Nonlinear capacitance or inductance switching, amplifying,
and memory organs, U.S. Patent No. 2,815,488.

Sterzer, F. [1959] Microwave parametric subharmonic oscillator for digital com­
puting, Proc. IRE, 47, 1317-1324.

TUNNEL DIODE Cmcurrs

Akers, S. B. and Stabler, E. P. [1962] Logical design and implementation in a pumped
tunnel diode-transistor logic system, Gigacycle Computing Systems, AIEE Spe­
cial Publication S-136, 18-31.

Chow, W. F. [1960] Tunnel diode digital circuitry. Digest of Technical Papers of
IRE-AIEE International Solid State Circuits Conference, Univ. of Pa., 32-33.

Esaki, L. [1958] New phenomenon in narrow germanium p-n junctions, Physical
Review, 109, 603-604.

Lesk, I. Α., Holonyak, N., Jr., and Davidsohn, U. S. [1959] The tunnel d i o d e -
circuits and applications. Electronics, 32, 60-64.

Lewin, Μ. Η., Samusenko, Α. G. and Lo, Α. W. [1960] The tunnel diode as a
logic element. Digest of Technical Papers of IRE-AIEE International Solid
State Circuits Conference, Univ. of Pa., 10-11.

Neff, G. W., Butler, S. A. and Critchlow, D. L. [1960] Esaki (tunnel) diode logic
circuits. Digest of Technical Papers of IRE-AIEE International Solid State
Circuits Conference, Univ. of Pa., 16-17.

Peil, W. and Marolf, R. [1962] Computer circuitry for 500 Mc, Digest of Technical
Papers of IRE-AIEE International Solid State Circuits Conference, Univ. of Pa.

Rhoades, W. T. [1962] Piecewise-linear switching analysis of a bistable tunnel diode
logic circuit, Gigacycle Computing Systems, AIEE Special Publication S-136,
33-52.

Sims, R. C , Beck, E. R. and Kamm, V. C. [1961] A survey of tunnel diode digital
techniques, Proc. IRE, 49, 136-146.

5. Large Capacity Storage Systems

5.1. Introduction

This chapter provides an introduction to the subject of large capacity
storage systems. We shall loosely define "large capacity" to mean any­
where from several thousand to several million bits. A storage system in­
cludes not only the storage medium but also the means for gaining access
to specific locations in the store and for the recording and reading of
information.

Large capacity storage systems for digital computers may be used for
either internal or external storage functions. An internal store is used to
hold the program of instructions to be executed and also provides space
for the storage of intermediate and final results. An external store is used
for the preparation of a program and auxiliary data in a form suitable for
subsequent entry into a computer. External storage media are used also
for the maintenance of large files of programs and other input data as
well as for the storage of output data. Whether a specific type of storage
system is better suited for internal or external storage or can be used for
either will depend on a number of criteria. These will be considered in
the sections following.

Criteria important in the evaluation of large capacity storage systems
are: cost per bit, reliability, maintainability, physical size, power con­
sumption, etc. These will be considered in the descriptions, later in this
chapter, of specific storage systems. At this point we will comment, in
a general way, on four important distinguishing characteristics of storage
systems: namely, operating speed, volatility, erasability, and access time.

Operating speed refers to the rate at which information is transferred
into or out of the storage system. Once access has been gained to a
desired location in the store, the rate at which information is read out
will depend on the nature of the store. The operating speed of an internal
storage system need only be great enough to make the delay in recording
into and reading out of storage compatible with the time required' to
execute arithmetic and logical operations. Since a higher operating speed
increases the cost of a system, some compromise is usually reached be­
tween speed and cost. However, there are special situations where a
high price may be paid for a small increase in speed.

194

5.1. INTRODUCTION 195

Volatility, in reference to a storage medium is used to indicate whether
power must be continually or periodically supplied to retain information
previously stored. A volatile storage medium requires the application of
power while a nonvolatile one does not. Examples of nonvolatile storage
media are punched cards, punched tape, magnetic tape, the magnetic sur­
face of a revolving drum or disk. Examples of volatile storage are the
electrical charge on the surface of a cathode-ray storage tube, and the pulses
recirculated in an acoustic delay line. If power were not applied to restore
the charges on a cathode-ray tube, they would gradually leak off. The
pulses recirculated through an acoustic delay line become attenuated and
distorted in shape and therefore power must be appUed to ampUfy and
reshape these pulses. Thus, volatile storage systems, whether of the static
or dynamic type, require that the stored information be periodically re­
generated. The required frequency of the regeneration cycle for a particular
system depends on the rate at which information degenerates in that
system.

ErasabiUty is another important characteristic of a storage medium. It
is essential for an internal storage system but not necessarily for an ex­
ternal one. Storage in the form of punched paper cards or tape or photo­
graphic storage is not erasable while electrical phenomena such as mag­
netic dipoles, electrical charges, and vohage pulses are.

Access time, i.e., the time required to gain access to an item in storage,
is one of the most important figures of merit of a large capacity storage
system, because it Umits the over-aU speed of computation within a com­
puter. The access time of a particular storage system wiU depend on the
means employed to select items from storage. Primarily, the storage selec­
tion scheme depends on whether information is stored in a spatial or
temporal pattern or in a combination of both. TheoreticaUy, there is no
basic difference since the location of stored information, like any other
location, may be determined by specifying coordinates (in space and/or
time) referred to a specific frame of reference. We will consider next the
nature of both "time domain" and "space domain" storage.

Space domain or static storage refers to storage systems in which each
storage element permanently occupies a specified physical location, and
there is equal accessibiUty, at aU times, to any of the elements in the
store. Examples of static storage elements are relays, flip-flop circuits,
cathode-ray tubes, magnetic cores. Nonvolatility, a low cost per bit plus a
fast switching time make magnetic cores especially suitable for the main
store of a high speed computer. Access may be gained to a particular one or
group of storage elements by means of a switching network referred to
as a selection network. This network selects a particular storage element,
or group of elements, when it receives the coordinates assigned to the

196 5. LARGE CAPACITY STORAGE SYSTEMS

* In magnetic core storage systems, the selection problem may be simplified by the
use of magnetic core selection switches. See Section 5.3.2.4 and references under
Magnetic Core Storage at the end of this chapter.

particular element in the system. There is no problem of resolution or
drift in the locating system as in time domain storage systems. The logical
nature of such a selection network will now be described. Assume, first
of all, that there is a transducer, associated with the address of each
storage location in the memory. Whenever it is required to read out of
the memory, it is only necessary to cause the output of a specified trans­
ducer to be read. Further, an arbitrary address, i.e., a set of coordinates,
may be assigned to each item in the store. Then, to select a particular
item from the store, it is only necessary to insert the address of the re­
quired item into a register. If the store has η addresses, then the register
must have at least ρ binary places, where ρ is an integer greater than or
equal to log2A2. The contents of this register can be used to control the
selection of any address in the store by means of a many-to-one switching
network. The Boolean expression for the output of this network is of
the form

/ = AiTx + A2T2 + . . . + A^T^ (5-1)

where each At represents a particular one of the 2^ states of the address
register. It is apparent from Eq. (5-1) that when the address register
holds the address, Au i.e., when Ai is true, the output of the network is
simply Ti, the output of the specified transducer. It is also evident that
the complexity of the switching network depends on the number of storage
elements in the system.

To provide for the entry of information into any of the η locations
of the store, η signals of the form

Ti = AJ (5-2)

must be formed, where / represents the information to be recorded.
Since, in the basic general puφose type of computer, access is provided to
only one store address at a time, only the transducer corresponding
to the A i which is currently true will receive the signal to be recorded.

If the switching network* is formed from diode gating circuits, appre­
ciable savings may be reaUzed by the use of pyramiding and minimum net­
works (described in Chapter 4) .

In static stores containing elements whose states must be periodically
regenerated (like the charged spots on cathode-ray tubes or the magnetic
states of the cores in certain core storage systems) time is consumed not
only in acquiring access to a particular item in storage, but also in

5.1. INTRODUCTION 197

regenerating information that otherwise would be lost by gradual deteriora­
tion and/or the process of interrogating the state of the elements.

Time domain or dynamic storage refers to storage systems in which
there is access to a particular storage location only at specified times.
The stored items pass a stationary transducer or set of transducers sequen­
tially. To select a particular item, for reading or recording purposes, the
time at which it will be accessible to one or more transducers must be
specified. The access time to a particular item increases with the number
of items (all other factors remaining constant) since more items must
pass a transducer before a particular item is reached. An increase in the
number of items does not, however, necessarily increase the complexity
of the selection switching network. In a dynamic storage system the av­
erage time required to extract an item from the store is important. This
average access time is simply one-half the maximum access time.

There are two principal types of dynamic storage systems. In one,
information is stored by means of a carrier propagated and recirculated
through a stationary delay medium, e.g., an acoustic wave propagated
through a path of mercury (see Section 5.6). In the other, information
is stored on a recording surface which is rotated to provide each station­
ary transducer with access to storage locations along a track; this type
of store allowing two modes of operation—one in which storage loca­
tions (sectors) are assigned specific addresses, as in a static store, and
another in which information is dynamically stored in a delay line
formed by placement of a record and a read transducer along a single
track. In the first type of delay Une, the total delay between successive
appearances of the same item of information is determined by the velocity
of propagation of the signals through the medium and the length of the
path from the input to the output transducer; in the latter type by the
angular velocity of the rotating medium and the angular separation of the
input and output transducers. Access is gained to a specific item, for either
recording or reading, by energizing a gate to an input or output trans­
ducer, respectively, at the proper time.

Dynamic storage systems may further be classified as synchronous or
asynchronous, depending on whether the relative speed of the stored data
with respect to the transducer stations is constant or not. Magnetic drum
and disk systems are considered synchronous, even though the angular
rotation rates are not constant, because the stored data is referenced with
respect to a clock recorded on one of the tracks (see Chapter 7) . Within
certain temperature limits ultrasonic delay lines provide a delay which is
practically constant. Magnetostrictive delay lines provide an essentially
constant delay over a considerably wider range of temperature. A mag­
netic tape storage system is considered asynchronous because of the
relatively large fluctuations in speed of the moving tape.

198 5. LARGE CAPACITY STORAGE SYSTEMS

Synchronous and asynchronous storage systems each call for a different
type of selection scheme. Two fundamental ways of locating an item in a
synchronous store are as follows: In one scheme, a marker pulse received
from the storage system (or some other specified "start" signal) is used
to open a gate so that clock pulses can be entered into a so-called pulse
position counter. After a count has been reached equal to the number
of bits in a word of storage, the counter is reset and simultaneously
causes a pulse to be entered in a word counter. At any given time, the
contents of the two counters indicate the word as well as the particular
bit position in that word that is currently accessible. Therefore, to per­
form an operation on the contents of any particular storage location, it is
only necessary to enter the address of that location in a register, and to
provide logical circuitry that detects a coincidence between the contents
of the register and the current contents of the word counter. In the second
scheme, tags indicating the address of each word in the store are also
stored, usually in a separate address line. Logical circuitry is provided to
detect a coincidence between the address currently being read from the
address Une and that placed in the address register. This scheme of selec­
tion is particularly useful in magnetic drum or disk storage systems where
the nonvolatility of recorded data allows the contents of an address line to
be permanently recorded. Regardless of which scheme is used, it is usually
desirable to search for and indicate the address of the succeeding word
rather than the current one, in order to allow certain preparatory opera­
tions to be performed. In the first scheme this is accompUshed by placing
in the address register a number one less than the address actually sought.
In the second scheme, the address tags are so placed that the tag read
from the address line during any given word time is the address of the
next word to be available from the main store.

The most convenient way of selecting an item in a magnetic tape
store is by searching for a tag or address associated with each unit or
block of data. The size of this block is based on the characteristics of the
tape transport control mechanism (see Section 7.5.6 and A. 1.3).

In a dynamic storage system both a static and a dynamic selection
network may be desirable. As an example, consider a magnetic drum or
disk memory with a single transducer associated with each channel. Here
a static selection scheme is used to connect a particular read/record head
to a common ampHfier circuit, and a dynamic selection scheme to define
the time interval during which the connection is made. Head selection
networks are described further in Sections 5.2.6 and 7.6.3.

In the sections following, there are descriptions of various types of
storage systems, each based on the exploitation of a particular physical

5.2. DYNAMIC MAGNETIC STORAGE 199

property or properties of specific materials. Most of the space is given
to storage media based on magnetic phenomena because they now dominate
the field. Practically all high speed memories are being built from ferrite
cores (and to a much lesser extent, from multi-aperture devices). For
medium speed, the magnetic drum (or disk) memory is dominant. The
most versatile, and widely used combination input-output and auxiliary
storage medium is magnetic tape. Promising new high speed memories mag­
netic in nature are superconductive devices (for about 1 to possibly 100
million bit capacities) and thin fibn devices (for capacities up to perhaps a
million bits). For smaller capacities (about 10,000 to 100,000 bits) but
very high speeds the tunnel-diode store is promising. The apertured
ferrite plate and twistor are finding limited use, and their future is
doubtful. The cathode ray tube memory is described because it was
the first important high-speed memory and is still operational in many
machines. The mercury delay line is included principally for historical
reasons. Other types of delay lines and the diode-capacitor memory are
included because of their usefulness in special though limited applications.
The ferroelectric memory is included simply as a matter of general interest
even though its development has not been completed and its potential
advantages overshadowed by other memories developed subsequently.

5.2. Dynamic Magnetic Storage

In a dynamic type of magnetic storage system, information is recorded
by means of a transducer which induces magnetic dipoles in a moving
magnetic surface. Sensing of the recorded dipoles is facilitated by rela­
tive motion between the magnetic surface and á read transducer. (In a
static magnetic storage system no mechanical motion is involved, record­
ing and sensing each being accomplished by applying an electromagnetic
force to separate, magnetically alterable elements.

Recorcüng of binary data on a magnetic surface is based on the same
magnetic phenomenon, namely magnetic hysteresis, used for the recording
of data in magnetic cores. In Fig. 4.48 the hysteresis loop of a typical
magnetic recording medium is shown. If a positive magnetizing force is
applied of sufficient amplitude to bring the medium to the point B^, then
even after the magnetizing force has been completely removed, a residual
flux density, + Br, will remain. A similar set of events occurs after the
application and removal of a magnetizing force of opposite polarity. If
the applied magnetomotive forces are great enough to cause saturation
of a cell on the magnetic surface, the residual fluxes Br and - Br are
practically independent of the previous condition of the magnetic surface.
These residual fluxes may be used to indicate the recording of a 1 or 0.

200 5. LARGE CAPACITY STORAGE SYSTEMS

5.2.1. THE RECORDING TRANSDUCER

The transducer used for recording or sensing information on a mag­
netic surface is referred to as a magnetic head. Conventional head designs
consist of a core of magnetic material around which are wound several
turns of wire. In earlier head designs, the cores were usually formed from
laminations of a metal like Permalloy or mu-metal. Heads, as shown in
Fig. 5.1, are now usually formed from two ferrite pieces by joining them
in such a way that a usable gap is formed, as shown in the figure. Wires can
be conveniently wrapped around one or both of the pieces before they are
joined. The head on the right in Fig. 5.1 simplifies the wire wrappmg

FIG. 5.1. Magnetic head designs

operation since it is done on the straight I section. It also allows closer
spacing between heads, an important consideration in forming a short
delay Une. Ferrites are used because of their low eddy current losses and
high permeabiUties in the megacycle region. If a core is of high permea­
biUty, the flux set up by passing a current through the coil wiU largely be
confined to the core material. The flux will fringe around the minute gap
(a typical value being 0.0005 in.), and if the gap is placed suflSciently
close to a magnetic surface, the fringing flux penetrates this surface in
completing its path from one side of the gap to the other (see Fig. 5.2).

R e c o r d i n g f l u x
r e c o r d i n g
nned ium

FIG. 5.2. Recording flux pattern for recording on a magnetizable surface

If the magnetic field is sufficiently strong and the gap is sufficiently close
to the magnetic surface, a smaU but usable magnetic dipole wiU be induced
in the surface in the region of the gap. The polarity of this dipole is de­
termined by the direction of current flow in the head winding. The mag­
netic head is placed as close to the surface as mechanical considerations

5.2. DYNAMIC MAGNETIC STORAGE 201

1 2 3 4 Head spacing in lO"^ in.

FIG. 5.3. Read voltage variation with head spacing

Often, a metallic nonmagnetic shim is placed in the gap in order to
generate (from eddy currents) mmf's that oppose the main flux. As a
result more flux is forced out of the gap. Within limits, the leakage
flux may also be increased by a greater gap length with only slight de­
gradation of maximum recording density obtainable if flux can be reversed
rapidly relative to the speed of the medium.

Recording current may be reduced by an increased number of turns
(although a limit is imposed by frequency response requirements, the
resonant frequency being lowered by more turns), and by using a head
whose magnetic reluctance Ί{ is less. Since % = Ι/μΑ, where / is the length
of the mean path of the flux, A the cross sectional area, and μ the permea­
bility of the material through which the flux passes, a longer gap length
(where μ is low) means a larger value of %

A convenient way to apply recording current in either of two direc­
tions is by means of a center tapped winding. Current applied to one half
of the winding produces a flux opposite in sense to that produced by
current applied to the other half. In a head used for reading only, the
gap length should be small to reduce the magnetic reluctance (thereby
increasing flux through the head) and to permit high density recording. A
head with a single winding may be used for both recording and reading, the
winding being switched to a record or read amplifier as needed. Usually,
a combination record-read head has separate windings for these functions;
also, its gap length is determined by the reading requirement. To prevent
large signal pick-up from a record winding from entering a read amplifier,
there should be adequate separation and/or shielding between record and
read windings (on the same or different heads).

will allow, because of the rapid attenuation of the flux density away from
the gap. The nature of this attenuation is shown in Fig. 5.3.

2 0 2 5 . LARGE CAPACITY STORAGE SYSTEMS

5.2 .2 . THE READING PROCESS

It has been shown how binary data may be recorded by appUcation
of a recording current of sufficient ampUtude to saturate a magnetic sur­
face in either of two polarities. The polarity of the recorded dipole must
subsequently be sensed by the reading process. UsuaUy this is done by
some type of phase detection system. In these systems the reading process
is dependent on relative motion between the head and the residual flux
patterns from the surface. (Static sensing schemes, referenced in the
literature cited at the end of this chapter, are not, as a rule, suitable
for digital computer applications). This causes a magnetomotive force to be
induced in the head winding proportional to the rate of change of the
flux, resulting in a smaU but useable voltage signal. Figure 5 .4 shows

Time - ^ y i / ^ T i m e

(a) (b)

FIG. 5.4. Read voltage waveforms from induced positive (a) and negative poles (b)

the nature of these read voltage signals. The extent of the period in which
the flux entering the read head is at a maximum value determines the
width of the interval within the dashed Unes. The recording waveform is
usually such that this interval is smaU compared to the width of the read
waveform. The sensing process is classified as nondestructive because the
recorded information is not altered by it. Information recorded on a mag­
netic surface is considered nonvolatile because it is retained without
periodic regeneration, and even when power is removed from the system
(provided transient signals produced by the removal do not generate
appreciable currents in the heads).

5 . 2 . 3 . EFFICIENCY OF STORAGE

When a magnetic surface is used for data storage, it is usuaUy desirable
to be able to record as many bits per unit of area as possible. One may
consider the question of the density of stored information obtainable,
referred to as packing density, in terms of a linear and transverse recording
density. The Unear recording density is the number of pulses recorded per
Unear inch in any channel, and the transverse density is the number of
channels recorded per inch in a direction perpendicular to the channels.

The Unear recording density is a function of the width of the gap be­
tween the pole faces of the head's magnetic core. When the wavelength

5.2^ DYNAMIC MAGNETIC STORAGE 203

* This expression is based on an assumption of uniform magnetization throughout
the thickness of the medium. If the thickness is large compared to the gap length,
the recording field does not penetrate uniformly through the medium and the
expression is not vaUd.

λ of the recorded signal is equal to the gap length g there is a zero out­
put. The gap length g is optimum when it is equal to ηλ/2 (where η is an
mteger), the output signal being attenuated for gap lengths on either side of
these points (see Section 5.2.4.). Transverse recording density is Umited
primarUy by the compactness of the heads and the tolerance to which they
can be positioned.

5.2.4. THE MEMORY TRANSFER FUNCTION

The memory transfer function of a magnetic recording system is de­
fined as the ratio of output voltage from the read head to input current
to the record head. If the recording current were held constant, the
memory transfer function would exhibit a 6 db/octave rise with frequency
for a head whose output was proportional to the rate of change of flux,
provided no other phenomena entered. Experimental results show that
this is approximately the case at relatively low frequencies (up to about
a few kUocycles). However, for higher frequencies the response faUs
away from the 6 db/octave rise and eventuaUy decreases with frequency.
This deviation, considered as a loss, is a result of the foUowing contribu­
ting factors: spacmg loss, thickness loss, gap loss, head loss, and self-
demagnetization (see WaUace [1951]; also Hong [1958], Miyata and
Härtel [1959], Hoagland and Bacon [1960] and Came [1961]).

Spacing loss, resulting from separation of the head and record­
ing medium has been shown experimentally to be approximately equal
to 55 d/k db, where d is the spacing between head and magnetic surface
and λ the recorded wavelength (λ being a function of the recording fre­
quency and speed of the medium). Factors which may cause the spacing
to be increased erraticaUy are: (1) foreign matter on or defects in the
recording surface, (2) accumulation of static charge on the recording
surface, (3) erratic movement of the recording surface away from the
head. In magnetic drum recording (Section 5.2.6) the latter phenomenon,
referred to as runout, results from any eccentricity in the path described
by the moving surface. In magnetic disk recording (Section 5.2.7) it is
much less pronounced, and may result from flexing of the disk.

The thickness loss (in db) has been esthnated to be 20 logio[(27r8A) /
(1-exp (-2πδ/λ))]*db, where δ is the thickness of the recording medium.

2 0 4 5 . LARGE CAPACITY STORAGE SYSTEMS

At low frequencies, for which λ > > δ, the read voltage is propor­
tional to δ and to the frequency. At higher frequencies, for which λ < < δ,
the response is independent of the thickness since the limited penetration
into the medium makes its thickness unimportant.

The nature of the gap loss can be visualized by noting that if the
gap length is approximately equal to one wavelength, there is essentially
no field produced to magnetize the medium. The gap loss has been esti­
mated to be 2 0 logio [(7rg/A)/sin db, where g is the effective gap
(which is generally smaller than the actual gap in the head).

Eddy current and other losses within the heads are in accordance
with the established behavior of magnetic circuits and will not be con­
sidered explicitly.

The phenomenon of self demagnetization appears in magnetic record­
ing as a result of the fact that adjacent small magnetic dipoles exert a
torque upon each other upon leaving the magnetic field of the record head,
the torques tending to return the dipoles to a random state. The retentivity
of the magnetic medium tends to hold them in the magnetized state, but
experiments show that self-demagnetization increases rapidly once very
short wavelengths are encountered. Figures of merit such as the ratio
H/B are generally used to assess the effect of self demagnetization on a
particular storage medium.

5 . 2 . 5 . MAGNETIC RECORDING CODING TECHNIQUES

A number of techniques have been developed for translating a se­
quence of binary signals, in the form of a sequence of voltage or current
levels or pulses, to a sequence of recording current signals suitable to
actuate a recording head. The particular recording technique employed
determines the procedures best suited for correctly interpreting the recorded
flux patterns. This will be brought out in the ensuing parts of this section.

Each magnetic recording coding technique falls into one of two broad
categories. In one, referred to as the "return to zero," or R Z system, the
recording waveform is always returned to zero amplitude before generation
of the waveform for the next bit position. In the non-return-to-zero or
N R Z system the recording waveform is not returned and held at zero
amplitude after each bit.

Techniques for erasing stored data also fall into two categories. In
the ac method, the medium is returned to a nonmagnetized state by the
application of high frequency ac signals to an erase head winding. In the
dc method, the medium is saturated in one direction corresponding to
that defined to represent 0 by the application of a large amplitude dc
signal, or by a permanent magnet placed close to the recording surface.

5.2. DYNAMIC MAGNETIC STORAGE 205

5.2.5,1. RZ Recording

The return to zero or RZ method of recording can assume any one of
a number of alternate forms. In the three-level form, a pulse of current is
appUed to the magnetic head in either one of two directions, according
to whether a 1 or a 0 is to be recorded. For each bit recorded, the
medium is saturated in one direction or the other. The recording current is
always returned to zero between the recording of individual bits.

In an early form of two level RZ recording, a separate erase head is
used to saturate the medium in a direction defined to represent 0, and a
pulse is applied to the record head only when the medium is to be saturated
in a direction representing 1. A head arrangement for this scheme of
recording is shown in Fig. 5.5. After passing the read head, each cell

other data other data

Data to be
recirculated '^'^"

FIG. 5.5. A head arrangement for two-level RZ recording

is returned to the 0 state. This allows either a 1 or a 0 to be recorded in
any cell, by the application or nonapplication of a current pulse, re­
spectively, regardless of the state of tiie cell before it passed the erase
head. Whenever it is desired to recirculate information already recorded,
the output of the read head is coupled through appropriate switching
circuitry, to the current amplifier that drives the record head.

The three level system has the feature that a distinct signal is pro­
duced within each cell (thereby allowing the absence of a read signal
from a cell to be used as a definite indication of a malfunction). Because
of this characteristic, it does not require a dc amplifier in the read circuit
(which is required in a two level system for response to a series of O's
that may occur in the recorded information pattern).

The graph in Fig. 5.6(a) relates, for a particular sequence of bits,
the recorded flux density, φ, that would pass through a reading head as
a function of time. Figure 5.6(b) shows the output voltage of the head,
which is proportional to the derivative of this flux. The patterns in Figs.
5.6(a) and (b) assume relatively small recording densities, i.e., a rela-

206 5. LARGE CAPACITY STORAGE SYSTEMS

lively large spacing between recorded bits. Beyond a certain recording
density, the results of interaction between adjacent recorded cells becomes
noticeable as shown in Figs. 5.6(c) and (d) . Note that the flux density
returns to zero between adjacent cells only when there is a transition from
a 1 to a 0 or vice versa, so the output voltage waveforms depend not only

(c)

1 0 0 1 1 0

I 0 0 0 I 0 I I I

(e)

(h)

(i) -

()) • J L L i

FIG. 5.6. Read waveforms in RZ recording for various recording densities,

on the recording in individual cells, but on the particular sequence re­
corded. When the recording density is increased still further, tíie effects
of interaction become more pronounced as shown in Figs. 5.6(e), (f),
and (g). Though the various output voltage waveforms in Figs. 5.6(b),
(d) , (e) , (f), and (g) appear markedly different, still they all possess
one characteristic, by means of which a 1 can be distinguished from a

5.2. DYNAMIC MAGNETIC STORAGE 207

0. For a 1 the output signal is going negative in the second half of
a cell, for a 0 it is going positive. Therefore, if the output vohage
waveform is differentiated, a signal will be produced which will be negative
in the center of each cell where a 1 is recorded, and positive where a 0
is recorded. Differentiation of the signal in Fig. 5.6(g) is shown in Fig.
5.6(h). After amplification, inversion, and clipping, the output signal
would appear as shown in Fig. 5.6(i). If it is then appUed to a coincidence
gate with clock pulses tuned to occur at the center of each ceU, the final
result would be as shown in Fig. 5.6(j).

A disadvantage of the differentiating technique is that it attenuates
the read signal. As a result, additional ampUfication, which also amplifies
pulses due to noise sources, must be introduced.

If the recording density is very higji and a long sequence of either Vs
or O's is recorded, the smaU ripple signal resulting from the RZ nature of
the recording, may not be adequate to produce a satisfactory output
signal. Schemes for correctly interpreting the read waveform at high
recording densities are generaUy complex and critical in operation.

5.2.5.2. NRZ Recording

The non return to zero, or NRZ method of recording is somewhat
similar to the two-level form of RZ recording using dc erasing. How­
ever, there are two principal differences. First of aU, recording current
is appUed for the recording of both O's and I's. Secondly, the recording
current is appUed for the fuU width of a ceU so that there is no return to
a reference zero state of saturation between ceUs. As a result, the medium
is contmuously magnetized to saturation in either of two directions, and
reversals of direction occur only when there is a transition from a 1 to
a 0 or vice versa.

The nature of the record current and the read voltage are indicated
in Figs. 5.7(a) and (b) . It is evident that in reading, a positive pulse
indicates a transition from 0 to 1 and a negative pulse a transition from
1 to 0. A precise indication of the end of individual bit positions can be
provided by pulses from a separate clock channel. The original waveform
may be obtained from the read waveform by causing the positive pulses
to trigger a read flip-flop to an "on" state, and the negative pulses to
reset it, generating tiie waveform shown in Fig. 5.7(c).

Comparison of Fig. 5.7(b) with Fig. 5.6(b), and consideration of
the nature of the record current waveform, shows that the NRZ system
theoreticaUy aUows an information rate twice that obtainable with RZ
recording. A Umiting factor in both cases is the distance along the re­
cording surface within which a transition can be made between states of

208 5 . LARGE CAPACITY STORAGE SYSTEMS

(a)

(b)

(c)

1 0 0 1 I 0 I 0 I 0 0 0 0 0 I I I I

(d)

(e)

(f) I . I

FIG. 5.7. Record and read waveforms in NRZ recording

positive and negative saturation. In RZ recording the frequency of flux
reversals is independent of the information pattern, while in NRZ recording
it is a maximum for a sequence of alternating I's and O's. However, even
in this case NRZ recording calls for only half as many flux reversals and,
therefore, only half the pulse repetition rate. The NRZ system has a
greater duty cycle than the RZ system, since currents must flow through
the recording heads in one direction or the other continuously. However,
a compensating factor results from the fact that the actual pulse frequency
at the recording head is reduced by one-half, compared to the RZ system.
This allows a greater number of turns of wire to be used in the head, and
thereby reduces the amplitude of the driving current that must be supplied
to it to produce a specified flux density.

Referring to Fig. 5.7(b) one sees that there is a separation be­
tween the trailing edge of a positive pulse and the leading edge of the
negative pulse. As the recording density is increased, a point will be
reached at which the shoulder separating the two disappears. Beyond this
point, the read voltage amplitude diminishes rapidly due to demagnetization
effects in the recording medium as a result of interference between di­
poles in adjacent cells. Of course, RZ recording is also limited (and at a
lower information rate) by demagnetization effects.

Let us here delineate the principal advantages and limitations of
both the RZ and NRZ recording techniques. First, RZ recording is sub­
ject to noise that appears because old information is not erased in the
interval between adjacent pulses; while transformer coupling cannot be
used in NRZ recording because current does always flow through the
head winding. At low bit densities RZ recording allows use of a narrow
band-pass read amplifier, while NRZ recording requires a wide band
amplifier because of the low frequencies represented by uninterrupted
streams of O's or I's and the high frequency presented by alternate I's

5.2. DYNAMIC MAGNETIC STORAGE 209

and O's. At higher bit densities, because of flux spreading and self­
demagnetization a wide band amplifier is also required with RZ recording.
Such an amplifier has a worse signal-to-noise ratio than a narrow band
amplifier. If a wide band amplifier is not used, the read amplifier's out­
put will vary appreciably with the frequencies presented by the informa­
tion pattern, making it difficult to set a reliable threshold for signal dis­
crimination. At high densities, an uninterrupted string of 1's or O's also
tends to cause flux saturation in a head, and, as a result, near zero values
for induced voltage swings.

A so-called return-to-bias system is like RZ recording in that the
direction of current is reversed between write 1 pulses (being returned
not to zero amplitude, as in RZ recording, but to an opposite polarity
that saturates the medium in a direction defined to represent 0) and like
NRZ recording in that current is never returned and held at zero ampli­
tude. Because uninterrupted streams of O's are possible, it too requires a dc
read amplifier. Many of the difficulties described here may be alleviated
by phase modulation recording, described in Section 5.2.5.3.

5.2.5.3. Phase Modulation Recording

The distinguishing characteristic of the phase modulation system of
recording is that two current signals, of equal duration and opposite
polarity, are used for the recording of each bit. These signals may be
either the RZ or the NRZ type, Le., either current pulses or states may
be used. Consideration of Figs. 5.8(a) and (b) shows that at higher

o 0 0

(0) 0 • d. 010 10 I n
DID ID I 0, D,D I

I I I I I I

(b) 1J1JIJLf
I I J I
I I I I

(c)

FIG. 5.8. Record and read waveforms in Ferranti phase modulation recording

210 5. LARGE CAPACITY STORAGE SYSTEMS

recording densities there will be little difference between the RZ and NRZ
current waveforms, although the duty cycle of the NRZ system is slightly
higher. On the other hand, the NRZ system is slightly superior in writmg
over previously recorded information. (The upper dashed lines define the
boundaries of cells and the lower ones define the centers.)

By the use of two polarities per bit one is assured that regardless
of the information pattern there will be at least one flux reversal over
the interval of two adjacent cells. This scheme also restricts the band­
width requirements to the octave between the information rate and twice
this frequency. Because of this narrow band pass, a higher signal-to-
noise ratio is obtainable from the read amplifier. The output voltage
waveform, in Fig. 5.8(c), shows either a positive or negative peak near
the center of each cell, according to whether a 1 or 0 was recorded, this
information being derived from the direction of the zero crossover. To
recover the recorded information this waveform is sampled by pulses
timed to occur at the center of each cell. An important feature of the phase
modulation system is that the timing pulses may be derived from the sig­
nificant zero crossings of the waveform itself. (Various schemes may be
used to reject the nonsignificant zero-crossing that occurs between cells
of like content).

Because this type of recording is phase (rather than amplitude)
sensitive, the threshold level setting and signal interpretation problem
is avoided. Even small amplitude signals will be detected as long as the
noise pulse is significantly less than the signal. With amplitude sen­
sitive systems an error can result from either a weak signal or large noise
pulse alone. In phase modulation recording the signal-to-noise ratio must
be very low for the zero crossing point to be shifted enough to result in
misinterpretation of the recorded waveform.

As indicated in Fig. 5.8(c), there is an increase in peak amplitude
in going between two cells not holding like data (i.e., from 0 to 1 or 1
to 0) . By using a read system in which a flip-flop is triggered only in
the event of a change signal, the demagnetization effects in the recording
medium may be made negligible.

Variation of read voltage amplitude with recording density for phase
modulation recording on a disk surface with three types of magnetic coat­
ing is shown in Fig. 5.9. (Plating thicknesses are a few tens of micro-
inches, the oxide thickness in the 200 to 500 microinch range, the head
characteristics as follows: a ΥΛ mil read-write gap, a Hi-Mu 80 laminated
core structure with a 40 turn winding, inductance of about 25 microhen­
ries). An extremely thin coating results in less self-demagnetization (which,
for short wavelengths decreases sharply as thickness is reduced), greater
resolution and less head trailing effect (i.e., demagnetization of the medium

5.2. DYNAMIC MAGNETIC STORAGE 211

600 800
PULSES PER INCH

FIG. 5.9. Read voltage variation with recording density for three types of magnetic
coatings (Courtesy of Remington-Rand UNIVAC; Jacoby, M. [1962])

Still within the field of the head when record current polarity is reversed).
A high ratio of coercivity to remanence also reduces self-demagnetization,
and it is important that the hysteresis loop be rectangular to reduce the
trailing effect and self-demagnetization (see Miyata and Härtel [1959]).

5.2.6. MAGNETIC DRUM STORAGE

At present, magnetic drums and disks (described in the section follow­
ing) provide the most economical storage of large amounts of data (see
Table 5.1) for medium speed storage applications. Drums are used both
as the main store of medium speed computers and the auxiliary store of
high speed computers. A block diagram of a dynamic magnetic storage

Record
head

Current
amplifier

Switching Sync.
network FF

FIG. 5.10. Record-read system for one channel of a dynamic magnetic store

system, essentially the same circuitwise for a drum or a disk system is
shown in Fig. 5.10. In either case, there is a metalUc surface coated with
a magnetizable medium, a motor for driving the surface, a set of read

212 5. LARGE CAPACITY STORAGE SYSTEMS

and record heads, and circuitry as indicated. Usually the medium consists
either of a magnetic oxide dispersion that has been sprayed onto the sur­
face and burnished after hardening; or a magnetic material or compound
that has been plated onto the surface (see Fig 5.9). The plated surface
is superior to the oxide surface magnetically and also mechanically, for
it produces a harder, less abrasive surface. As indicated in the discussion
on recording techniques, the signals read off the surface are not of suitable
ampUtude or shape to be used by the sequential switching networks of
a computer. Therefore, circuitry is provided to amplify the read signals
and convert them to proper shape.

One of the most difficult problems in the design of a magnetic drum
storage unit is to maintain a smaU clearance between the magnetic surface
and the read and record heads. No more than a smaU clearance, 0.0002-
0.0001 in., can be aUowed if a large recording flux density, needed for
saturation of the medium, is to be produced without "excessive" record
currents and read amplifier gain. Saturation of the medium with less re­
cord current reduces circuitry, power consumption, the traiUng effect of
the head and improves resolution. There must be Umited variation in this
clearance during operation. Variations in this spacing stem from two
principal sources, namely mechanical and temperature effects. Any ec­
centricity in the drum surface wiU cause cyclic variations in the clearance
between a fixed head and the surface of the drum. The variation in the
path described by the surface of the drum is referred to as "run out." It
may be reduced to less than 1 mil by use of a cyUnder that has been
dynamically balanced and turned on its own bearings. (A slight variation
in drum diameter from one end of the cyUnder to the other can be com­
pensated for by the mitial setting of the heads.) Other sources of spacing
variation are vibrations and the mechanical deformation that takes place
when the drum is rotated at high angular velocities. If the drum and the
structure supporting the heads do not have the same temperature coeffi­
cient of expansion, the changes in dimensions occurring from temperature
deviations from the norm wiU alter the set clearance between the drum
and its heads. To circumvent this problem, air supported head mounts have
been developed whose compliance maintains a minute head to surface spac­
ing. In the hydrodynamic type, the lift is produced by the film of air
circulated by the rotating surface while in the less widely used hydrostatic
type an external air supply ejects compressed air under the head.

Information on the drum surface is recorded along several distinct
tracks. Each track is defined by the imaginary line traced by a head as
the magnetic surface passes beneath it. The number of tracks per inch of
axial length may vary, but currently may be anywhere from 20 to 80.

5.2. DYNAMIC MAGNETIC STORAGE 213

The width of the track is determined by the width of the head core. Though
a wider track results in less storage capacity, it results in a larger read
signal and reduces errors that might arise from flaws along a narrow
track. There are many ways in which information may be arranged
within the tracks. There may be parallel access to all tracks, or to several
parts of a particular track, or there may be access to only one of several
tracks at a given time. For the former cases, there are separate record
and/or read amplifiers for each track or for each head, whereas in the
latter case, only one record and one read ampUfier plus appropriate selec­
tion circuitry might be used for the entire memory.

Access is gained to the various items of stored information by the
same motion that is utiUzed for sensing. The drum angular velocity
in different designs varies over a wide range (see Table 5.1). The maxi­
mum velocity is limited by the drum's moment of inertia, and hence, its
physical dimensions. In static address dynamic storage systems (see page
197), if there is only one head per track, the maximum access time is the
period of one revolution. The use of more heads (and associated circuitry)
per track can reduce this figure. It may also be reduced by programming
techniques like minimum access coding and address interlacing (see Sec­
tion 7.5.4). If a track is used as a delay line, access time may be improved
by less separation between record and read heads (implying additional
head pairs to secure the same amount of storage).

In early static address systems for stored program arithmetic com­
puters, a read and/or a record ampUfier was suppUed for each head. This
is an uneconomical procedure since the mode of operation of these ma­
chines is such that only one position of the memory is consulted at any
given time. An alternative is to use only one record and one read ampUfier
and cause either of them to be connected to the head desired. The con­
nection is made by a selection matrix which causes a path to be estabUshed
between the desired head and the input Unes of the read ampUfier or
output Unes of the record ampUfier. If the speed requirements of a machine
are suflSciently low, then the switching delay introduced by a relay network
can be tolerated. For medium and high speed machines, electronic circuits
are used which permit power switching at high speed. These selection
circuits may be comprised of vacuum tubes or transistors or combinations
of these elements with magnetic core switches. The switching network
is controlled by the track (or head) part of an instruction's address which
is held (with the sector number) in an address register. (See Section
7.5). For a description of a head selection switch formed from transistors
and diodes and capable of selecting one out of a 100 heads, see Seader
[1958].

214 5. LARGE CAPACITY STORAGE SYSTEMS

5.2.7. MAGNETIC DISK STORAGE

There are various applications where the use of one or more magnetic
disks, usually in the form of stainless steel or magnetically plated alumi­
num, may be preferable to a magnetic drum. One of the principal
advantages of a magnetic disk store is that it provides a large amount of
magnetic surface in a relatively small volume. If the disks are rigid, the
problems of run-out associated with a magnetic drum type of store are
alleviated. Even with relatively flexible disks, proper spacing between
heads and disks can be maintained with less severe mechanical tolerances
in manufacturing and less extensive maintenance procedures. Maintenance
of a constant separation between the heads and the recording surface is
usually achieved by use of an air bearing (see Section 5.2.6).

Single magnetic disk stores with capacities of from 100 to 500 kilobits
have been produced which are competitive with drum stores such as those
listed in Table 5.1. However, magnetic disks are gaining more extensive
application in multi-disk units of several hundred megabits capacity, re­
ferred to as mass storage units, intended primarily for information retrieval
systems. One of the earliest of these, designed at the National Bureau of
Standards, (Rabinow [1953]) was to have 588 disks of 20 inch diameter
and a bank of 128 heads. The capacity of this unit using a recording density
of 100 bits/inch would be a quarter billion bits. The IBM-RAMAC disk
file (Noyes [1957]) was the first operational multi-disk unit to be widely
used with digital computers. It contains 50 disks so mounted as to rotate
about a vertical axis. There are 100 tracks per side, each track having a
capacity of 500, 8-bit alphanumeric characters. The disks, 24 in. in dia­
meter and 0.1 in. thick, are of aluminum coated with iron oxide. The density
of recording on the inside track is about 100 bits per inch and on the
outer track about 55 bits per inch. The access mechanism, of which there
may be one or more, positions a pair of heads to any track on any disk.
These heads are mounted in a pair of arms which can be moved
vertically to the level of any disk and then radially to straddle it. The
average access time is 0.5 sec, the maximum 0.75 sec. Head spacing is
maintained by an air bearing produced from tiny air jets in an annular
manifold surrounding the magnetic elements. A 0.001-in. spacing is
maintamed despite any axial run-out in the disk. Reduced precision in
radially positioning the heads is obtained by using an erase head that
erases a wider track than the following write gap records. Thus, no
magnetically disturbed track edges contribute noise to a newly recorded
track which might not coincide precisely with the track previously written.
The accuracy required in positioning a head along a track is reduced by
use of a self-clocldng system rather than a timing track. (See Seader [1957]

t.n~N

TABLE
5.1.

C
haracteristics

of
R

otating
M

agnetic
Stores

D
iam

eter
Latency

C
apacity

'"
D

rum
Stores

(inches)
T

racks
tim

e
(m

s)
(kilobits)

~~0
5

625
f-4

B
ryant

512-A
5

240
enu

Ferranti
1009

10
144

10
432

.....f-4~
Librascope

L
G

P-30
6.5

64
17

131
Z~-<~u

M
ax.

head
.....

T
racks/

Z
ones/

positioning
Latencyh

C
apacity

~
M

ulti-D
isk

D
iam

eter
<

M
ass

Storage
U

nits
(inches)

surface
surface

tim
e

(m
s)

tim
e

(m
s)

(m
egabits)

Z~~
B

ryant
4000

(24
disks)

39
768

6
100

67
720

V
')

IB
M

1301-2
(50

disks)
24

250
1

177
33

392

Telex
II

(64
disks)

31
256

2
150

50
617

216 5. LARGE CAPACITY STORAGE SYSTEMS

The maximum time required to locate an item in storage is the sum of
the maximum head positioning time and the latency time (the latter being
defined as the period of one revolution). In a rotating memory with fixed
heads the access time is some fraction of the latency time, depending
on the number of heads per track and techniques for addressing informa­
tion (see Section 7.5.4.). If constant frequency recording is used, the outer
tracks will have a lower recording density than the inner one, so for im­
proved utilization of storage capability, a large disk is usually divided
into two or more zones, each operating at a different frequency and with
the maximum pulse density on the innermost track of each zone. In earlier
units, as cited above, the positioning arm moved axially as well as radi­
ally, presenting a severe mechanical design problem and resulting in a
relatively long access time. In most current units a separate positioning
arm for each disk holds as many heads as there are zones on both sides of
a disk, and positions heads along tracks within a specified zone.

Present mass storage units, such as listed in Table 5.1, have capa­
cities near one billion bits, with pulse densities averaging about 400 ppi
(pulses per inch), and average access time per positioner under 100 ms.
These capabilities can be increased greatly: advanced recording systems
will permit a several fold increase in recording density, improved posi­
tioning systems can extend the number of tracks per inch, from the present
average figure of about 50, by another order of magnitude, and positioning
time can be reduced by use of several independent positioners.

5.3. Static Magnetic Storage

5.3.1. MAGNETIC CORE STORAGE

Magnetic core storage devices are based on the use of materials ex­
hibiting hysteresis loops which are practically rectangular. These materials
include nickel iron alloys, molybdenum permalloys, and ferrites. Three
basic ways these cores may be fabricated are: (1) from thin ribbons of
a metallic material wound into a toroidal core, (2) from powdered metals
sintered in toroidal form, and (3) from ferrites molded in toroidal form.
Both metallic ribbons and ferrites are available that exhibit nearly rect­
angular hysteresis loops (similar to the loop shown in Fig. 4.48). The
metallic cores offer the advantage (in relatively small capacity storage
appHcations) of a lower coercive force. However, the ferrite cores have
a faster switching action, are lower in cost and lend themselves to mass
production. A typical ferrite core has an outside diameter of 0.050 in.,
an inside diameter of 0.030 in., and is 0.015 in. along its axis. For any
given material, switching current requirements decrease linearly with the

5.3. STATIC MAGNETIC STORAGE 217

diameter (since the flux path is along a circumference). Because a ferrite
core is brittle, the ratio i.d./o.d. for small cores is held to about .60 to
.75, adversely affecting hysteresis loop squareness.

For memory applications, the core material should satisfy the follow­
ing requirements: 1) time required for switching (i.e., flux reversal) should
be small to allow higher data rates; 2) effective incremental permeabiUty
at the positive and negative residual flux points should be smaU so that
a partially disturbed core (see sections following) produces no effective
output; 3) reduction of residual flux caused by repeated interrogating
current should be smaU to lessen the probability of eventually losing
recorded information. Materials whose loops exhibit a greater degree of
rectangularity are better in aU these respects. If a memory core is to
be selected by coincident currents (see Section 5.3.2) it is important (for
positive, reUable switching action) that the hysteresis loop have a square
knee.

The switching time τ (in seconds) is deñned by Eq. (5.3)

r = SJiH-H,) (5-3)

where Η is the applied magnetomotive force (in oersteds). He the coercive
force of the material (the value of Η where the hysteresis loop crosses
the Η axis) and the switching constant. In coincident current operation,
Η cannot exceed 2Hc, In practice Η is chosen ^ 1,5 He for optimum
discrimination between fuU and half excitation. For a wide variety of
ferrites and metals, S«, does not vary significantly, but the coercive force.
He, can be varied considerably by changes in composition and heat treat­
ment. For faster operation, materials with a larger He are used, and
higher drive currents are required.

Magnetic cores exhibit the foUowing characteristics pertinent to their
use in a large capacity storage system. First of all, they provide non-
volatiUty of stored data. Once a core has been set to a particular state,
it wiU remain in that state untU a disturbing force of proper sign and
ampUtude is applied. For example, if the power supply is cut off deUber-
ately or accidentally, information in the cores wiU not be altered except
if the transients are large enough to disturb the cores' remanent states.
Also regeneration circuits do not have to be provided to prevent the loss
of information resulting from a process of gradual degradation (as, e.g.,
in an electrostatic storage system, where the charge graduaUy leaks off
unless periodically restored). However, the read-out process is essentially
destructive in nature and as a result, either regeneration circuitry or a spe-

2 1 8 5 . LARGE CAPACITY STORAGE SYSTEMS

cial nondestructive read-out scheme must be provided (see Section
5 . 3 . 2 . 5) . The switching time is fast, of the order of a microsecond.

5 . 3 . 2 . COINCIDENT CURRENT CORE ARRAYS

The coincident current type of memory depends on a two-level ampli­
tude discrimination scheme for core selection. Cores with a rectangular
hysteresis loop are arranged in two dimensional arrays, as shown in
Fig. 5 . 1 1 . To record or regenerate a bit of information in a single core,

Read or clear

Write or restore

restore

Sense
winding

FIG. 5.11. Coincident current magnetic core storage array, showing directions of
current flow for read or clear, and write or restore operations

a pulse of current of magnitude /m/2 is applied simultaneously to the
row and column wire threading that core. Im is chosen of such magnitude
that the magnetizing force Hm it produces is adequate to switch a core,
whereas Im/2 is not. Therefore, the core at the intersection of the energized
X and y lines will be switched, whereas all other cores along the same
X and Y lines are only partially disturbed.

The read-out process is similar to the recording scheme. Interrogation
pulses both of the same polarity are applied to the selected X and Y lines.
If the application of these pulses causes the core to be switched, a
voltage pulse will be induced in the read-out winding. For example,
assume that the interrogation pulse is chosen of such polarity as to pro­
duce a negative magnetizing force. Then if the core is in state — Br,
(Fig. 4 . 4 8) the interrogation pulses produce no effect, whereas if it were
in state + Br, a switching action would be effected. Thus the state of
the core prior to interrogation can be inferred from the effect of inter­
rogation. After interrogation, the state of the cores before interrogation
is restored by means of circuits actuated by the read-out signal.

5.3. STATIC MAGNETIC STORAGE 219

The whole array is threaded by a single read-out wire, referred to
as a sense winding. A voltage pulse will appear on this sense winding
only when the interrogation of a selected core causes that core to switch
from one state of saturation to the other. For minimum coupling between
the drive and sense windings, they should be placed at right angles to one
another. This would result in no flux leakage and a relatively small
capacitance between the wires. Though the diagonal pattern provides some
coupling because of the 45" relationship between the wires, it is still
satisfactory while easier to fabricate. Note that in any row or colunm,
the direction of the magnetically induced voltages due to a partial selection
is opposite in alternate cores so that opposing induced voltages cancel each
other, allowing the signal from the selected core to dominate.

Each of the straight wires used for driving and sensing effectively pass
a single turn through each core. The large currents needed to produce an
adequate magnetomotive force can be obtained from saturable transformer
or diode decoding matrices. Multiple turns would reduce current require­
ments, but would make the array more costly and diflScult to fabricate and
decrease the operating speed.

In the writing and interrogating scheme described, current pulses must
be generated in two directions, one for recording and one for sensing. If this
is not convenient, two sets of wires may be used. Also, if the hysteresis
loop of the core is far from ideal, it is desirable for improved reliabiUty
of operation to have a ratio greater than two between the current in the
selected core and the largest current in any nonselected core. For example,
a selection ratio of 3 to 1 can be obtained in either of the following ways:
A current of l^/l is sent through the X and Y Une of the core to be
selected, as before, but in addition all other selection windings are driven
with currents of - 7,^/6. Thus the net current in all cores except the
selected one is 7^/3 or - 7^/3. Another scheme providing a 3 to 1
selection ratio makes use of an extra winding passing through all cores,
and requires simpler driving current circuitry. A current ll^ß is appUed
to the X and Y line of the core to be selected, and an opposing current
- 7^/3 is passed through the additional winding. Thus is appUed to
the selected core and either IJZ or - 7^/3 to aU others. In both of these
schemes the directions of aU appUed currents are reversed during read-out.
Also the opposing currents are appUed just prior to the selecting currents
and maintained until the selecting currents have been removed.

There are certain disadvantages to the coincident current selection
technique: Restriction of the magnitude of the appUed mmf produces a
Umitation in switching speed and aUows only small tolerances in the am-
pUtude of the drive current. Also, the less than ideal rectangularity of

220 5. LARGE CAPACITY STORAGE SYSTEMS

the hysteresis loop limits the permissible size of an array (see Section
5.3.2.2).

5.5.2.7. Selection of a Word at a Time

In a high speed computer a better balance can be achieved between
time spent in arithmetic operations and in data transfer to and from the
memory if there is parallel access to all bits of a word. One way to accom­
plish this is to provide as many two-dimensional arrays as there are bits in
a word. Then each word is addressable simply by its X, Y coordinates, and
a particular Ζ plane is always associated with a particular significant place
in a word. A particular configuration which has been found to be prac­
tical is arranged as follows: Each two-dimensional array has a set of X
and Y windings and a current of Im/2 can be applied to any X and Y
winding at a time. Corresponding X and Y windings in each plane are
connected in series. For each XY plane, there is a separate Ζ drive wind­
ing (designated as an inhibit winding) which passes through all cores in
the plane, and, also, a separate sense winding. The operation is as follows:
since corresponding X and Y windings in different planes are connected
in series, application of drive current to a particular XY address causes
a 1 to be recorded in the corresponding positions of all planes. There­
fore, to allow a recording of I's in some XY planes and O's in others, an
opposing current, - Im/2 is applied to the Ζ drive winding in all XY
planes in which a 0 is to be recorded. In reading, the directions of the
applied XY currents are reversed and the Ζ winding is not used. The indi­
vidual bits of the word are read from the sense windings.

Though the inhibit and sense windings are not used simultaneously,
it is not practical to replace them with a single winding for the following
reasons: First of all, in order to cancel induced signals that are unwanted,
the sense winding passes through alternate cores in opposite directions
(see Fig. 5.11). The inhibit winding must pass through all cores in the
same direction relative to the X and Y drive windings. Also, there would
be a problem in isolating the large voltage applied to the inhibit winding
from the corresponding sense amplifier. If not isolated, the amplifier
would be driven to saturation and could not recover in time to respond
to the small amplitude of the read-out signals.

Some important parameters of a core storage system are the simplicity
of the wiring configuration, the selection ratio, and the number of drive
lines. A more complex core selection system (see Section 5.3.2.4) can
reduce the number of drive lines, e.g., a quadruple-coincident selection
system for a 4096 bit storage plane can be built requiring only 64 drive
lines compared to 256 unidirectional lines for a two-dimensional selection

5.3. STATIC MAGNETIC STORAGE 221

system. However, the use of more dimensions in the selection system
within the array means more wires, a smaller selection ratio, and passage
of each driving current through more cores.

5.5.2.2. Disturb Signals

We will review here various unwanted signals that are generated dur­
ing the operation of a coincident current memory because of less than
ideal rectangularity of the cores' hysteresis loops and other causes. First
of all, we note that only moderate rectangularity is suflBcient to prevent
demagnetization due to the cumulative effect of successive half amplitude
signals. A more serious problem is that voltages induced in the sense
winding by all the half excited cores on the selected lines are ciunulative
and may swamp the desired read-out signal. (The effects of disturb volt­
ages induced directly from the drive windings may be essentially eliminated
by threading the sense winding in such a way that there is an equal
number of positive and negative ñux linkages.

As an example, consider a selection ratio of one-half. In this case,
whenever a core is selected by application of Im, a half selection current
of Im/2 is appUed to aU other cores in the row and column intersecting
the core. If a half select read signal is applied to a core containing a 1,
the state of the core is changed from 1 to Ir. If a half select write signal
is appUed to a core containing a 0, the state of the core is changed from 0
to 0 ;̂. The resultant states are referred to as disturbed 1 and disturbed 0
states, respectively. When half select signals are appUed alternately in
the write and read directions, minor hysteresis loops are traversed as
shown in Fig. 5.12 (a) . Since the difference between the first and successive

R9ad

(Write 0)

Sense voltage

Time -
(a) (b)

FIG. 5.12 (a) Minor hysteresis loops from half-select signals, (b) strobing
of sense voltage.

222 5. LARGE CAPACITY STORAGE SYSTEMS

minor loop traversals is usually small, it is assumed here that each core
arrives at a stable minor hysteresis loop after several half select signals.
The output flux obtained in reading a core in a disturbed 1 state is less
than that from a core in an undisturbed 1 state, and when a core in a
disturbed 0 state is read, an unwanted signal is produced by the process
of restoring the undisturbed 0 state.

In reading, a partially selected core (operating in a symmetrical
coincident current loop) will not produce the same small disturb signal
when in the 1 remanent state as in the 0 remanent state. Earlier it was
stated that to reduce the effects of disturb voltages, the sense winding
should Unk all partially selected cores in a way that equahzes the number
of positive and negative core linkages. However, there is a pattern of
information along the selected X and Y lines for which the difference
signal (commonly referred to as delta noise) is a maximum. The pattern
(and its complement) yielding the maximum deha noise is called the worst
storage pattern.

A technique used to alleviate the delta noise problem is to apply
after each read or write operation a demagnetizing half excitation referred
to as a post-write-disturb pulse. This tends to equahze the reversible flux
changes for the two remanent states during subsequent half excitations,
by carrying all cores to either the Ir or 0^ state. The diagonal sense wind­
ing pattern effectively cancels voltages induced from the unselected cores
except for the voltage differences caused by the relatively small difference
in slope between the left hand portions of the 1 and 0 minor hysteresis
loops.

The most frequently used method to discriminate against disturb volt­
ages is to time strobe the output voltage. This technique is effective be­
cause the reversible flux changes on half excited cores occur faster than
the kreversible flux changes on the selected core. Fig. 5.12 (b) shows
sampUng of the sense hne voltage after the waveform on the left (represent­
ing a worst combination of half-select and delta noise voltages) has
decayed.

The rectangularity and uniformity of present day ferrite cores is such
that an array much larger than 64 x 64 cannot be operated reUably with a
single sense winding. For larger arrays, the problem of disturb voltages
can be solved by spHtting the sense winding (see Best [1957]).

5.5.2.5. Core Storage Cycle

Let us review briefly the nature of writing and reading in a core
storage array in which each bit of a word is read simultaneously from cor­
responding positions of all XY planes. To write, a drive current - 1^/2

5.3. STATIC MAGNETIC STORAGE 223

is applied to a selected row and column in all planes, simultaneously with
the application of an opposing current 7^/2 through the inhibit winding
in all XY planes where a 0 is to be recorded in the selected position.
Thus, writing is essentially a "write 1" process. To read, a drive current
Im/2 is applied to the selected row and column in a direction opposite
to that for writing. Thus reading is essentially a "write 0" operation and
previously recorded I's are detected by inspecting the sense winding at
the time when the cores switched from 1 to 0 are developing their maxi­
mum output voltage. This mode of operation makes it desirable to estab­
lish an operational sequence in which each write operation is preceded
by a read operation regardless of whether a word is to be written into or
read from the memory. This is because when writing, the preceding read
(write 0) operation clears the word, and when reading a subsequent write
operation (write 1) is needed to restore those cores switched from 1 to 0
by the read operation. Other routine operations necessary to the con­
sultation of the memory in a particular system may be included in an
over-all operational sequence referred to as a core storage cycle. For
example, after the write operation, a post-write-disturb pulse may be
applied to all cores (through the inhibit windings). During this period,
the addressing circuits can be set to the address of the storage location to
be consulted in the cycle following.

The cycle time of a random access memory depends on several factors:
1) time for address decoding, 2) transmission time along write and read
lines, 3) switching time of a memory element (e.g., Eq. (5-3)) , 4) time
before reading to allow decay of a large signal pick-up by a sense winding
during writing (even after measures to reduce pick-up and its effect on
the sense ampUfier), 5) delays in sense ampUfication circuits.

5324, Memory Drive Systems

In an η X η coincident current array, the problem of switching into
cores is reduced to that of switching into 2n channels. Two many-to-one
diode matrix switches (described in Chapter 4) could be used for this
purpose, the output of one switch driving the X Unes and the output of the
other driving the Y lines. Since two driver circuits are required per Une
to obtain current flow in two directions, 4Λ drivers are required. In some
of the early core memories, there were two tubes and two one-turn wind­
ings at each line to provide the two polarities of drive. Each tube suppUed
a current of about 0.5 amps. In present large arrays, the number of cur­
rent drivers is often reduced by the use of sets of external switching cores
to drive the storage array. Also, joint use of coincident currents, diode mat­
rices, and magnetic core matrices all contribute to an efficient selection
system for a large array.)

224 5. LARGE CAPACITY STORAGE SYSTEMS

An important fact entering into the design of a magnetic core switch
is that it is only necessary for a single switch core to be driven to one
state, while all others can be in the opposite state. For example, before
energizing currents are applied to the core switch, all cores are in the
same remanent state and after they are applied only one of them is
switched. This is in contrast to the coincident-current memory matrix where
the cores can be in any pattern of positive and negative remanent states.

The first type of magnetic switch we will consider is the biased co­
incident current switch shown in Fig. 5.13. All cores are biased by a

Y Selection lines

DC bios line

X Selection

lines

FIG. 5 . 1 3 . Biased coincident-current magnetic core switch

direct current which is equal in magnitude and opposite in sign to the
excitation of a row or column line. Simultaneous excitation of both a
row and column multitum line switches the core. At the termination of
the row and column drives, the dc bias restores the selected core to its
initial state. Each core of the array has an output winding (not shown
in Fig. 5.13) coupled to a row of the memory array. A similar switch
has output windings coupled to the columns of the memory arrays. The
switch provides part of the address decoding, both polarities of output,
and a better impedance match to the output of the drivers. The latter
capability results from the fact that several turns can easily be provided
on the switch cores because they are larger than the memory cores and
only a relatively small number of them are required. For example, only

5.3. STATIC MAGNETIC STORAGE 225

an 8 X 8 switch array is required to drive the X (or Y) lines of a 64 X 64
memory array. A switch similar to the one in Fig. 5.13 is the anticoin-
cident current switch. It has no bias hne, so a selection is made by first
sending reset current through all X lines except the one containing the
core to be selected. Then, current in the set direction is applied to the
Y line containing that core. To reset, the Y line current is termi­
nated and reset current applied to the X line containing the selected core.

We will consider next a multicoincidence magnetic switch. Figure
5.14(a) shows a switch of this type with three inputs and eight outputs.
In this figure and also Fig. 5.14(b) the mirror system of notation for
magnetic core circuits is employed to indicate the location and polarity
of the windings: The cores are represented by the dark horizontal lines,
and the various drive lines by the vertical lines. A short diagonal line at
the intersection of a core and wire indicates that a particular drive wind­
ing is present on that core. The convention is to consider the current in a
wire as a beam of light. The core will be driven to a set or reset state
in accordance with whether the diagonal line, considered as a mirror,
reñects the beam to the left or right. The operation is as follows: The
output signals of the flip-flops holding the Ζ (or F) address control a
set of drivers. After all cores of the switch have been reset by application
of a current through the restoring winding, current is applied to one
winding of each input pair according to whether the corresponding flip-
flop is in the 1 or 0 state. For every combination of states of the flip-
flops, one core will have all windings driving it toward the set state

mm

-c:

- c
Output
windings

-cr

Drivers

Address
register

(a)

7-

64
54

3^k
2^

nt
Set Reset

Output
windings

Address
register

(b)

FIG. 5 . 1 4 . (a) Multicoincidence magnetic core switch, (b) biased multicoincidence
magnetic core switch

226 5. LARGE CAPACITY STORAGE SYSTEMS

while others will have some windings driving them toward the set state
and some toward the reset state. The number of turns of the reset winding
is k - I times that on the set windings where k is the number of binary
positions QO so only the selected core is set. Since all of the driver cur­
rents are additive on the selected switch-core, in a larger matrix the
drivers can supply less current to each winding. Also, a larger number of
series windings will be driven by each driver.

In Fig. 5.14(b) another form of magnetic switch referred to as a
biased multicoincidence switch is shown. In this case, the X (or Y)
address flip-flops control a set of bias drivers. The magnitude of the
current generated by any bias driver is adequate to switch any core it
affects to the state N. For each address in the flip-flops, one and only
one switch core will receive no bias current. For example, if the flip-
flops hold Oil (binary three) a bias current is applied to each switch
core except number three. After a particular core has been selected (by
not having a negative, biasing current appUed to it), the next step is as
follows: A pulse of current is applied to aU switch cores by the set driver
in such a direction as to drive each of them to positive saturation if they
were initially unbiased. However, since only the selected core has no
initial bias, it is the only one actually driven to a state of positive satura­
tion. Switching of the selected core induces a voltage in its output winding
which may be used as an Z or y drive signal for the storage array. The
selected switch core is returned to its initial state by appUcation of current
from the reset driver.

When the number of windings per switch-core, or the number of
windings connected in series becomes greater than desirable, these fig­
ures may be reduced by doing some preselection with the aid of diode
switching networks.

5.5.2.5 Nondestructive Readout

Before describing certain schemes for sensing the state of a mag­
netic core without altering it (in order to avoid the necessity of re­
storing it) we will review some basic characteristics of ferromagnetic
materials. Such materials usually have smaU regions (about .1 mm in
length) called domains in which all electron spins are aUgned. (There
are also cases where domains do not form, the magnetization changing
direction in a continuous manner). Regions separating domains with dif­
ferent alignments are known as domain walls. When an external magnetic
field is applied, domains similarly aligned grow, extending their walls
and reducing adjacent domains. Domain rotation, i.e. rotation of the
magnetic moments of all domains, may also occur (though this happens
more frequently in fields of higher intensity).

5.3. STATIC MAGNETIC STORAGE 227

Nondestructive readout based on the phenomenon of elastic motion of
domain walls is described by Newhouse [1957]. A magnetizing force much
greater than the coercive force can be applied without causing switching
if it is applied for only a brief interval (about .1 f t sec) . During this
period walls can be moved only short distances, within their elastic limit,
and the movement is reversed when the force is removed. The readout
voltage varies by a ratio of about three to one, depending on the core's
remanent state, and the peak output is about 15% of that produced by
switching. The reversible flux change may also be aided by two other
processes: (1) temporary coherent rotation over a small angle within
domains, (2) temporary domain reversals around imperfections in the
material.

In quadrature field methods, readout is by means of a magnetic field
orthogonal to the remanent flux (which is m a ckcular path around the
core). Since sensing is based on rotation of magnetic moments rather than
domain wall motion, the state of the core is inferred from the polarity
rather than the ampUtude of the readout voltage. The readout rate can be
very high because the magnetic moments can rotate within the readout
pulse's rise time. Wiring an array of elements as in Fig. 5.15 (a) is
diflBcult; it is also difficult to produce cores with holes as shown in Fig.
5.15 (b) . Though the FLUXLOK scheme, shown in Fig. 5.15 (c) , re-
quh-es more ampere turns for driving than the scheme of Fig. 5.15 (b) ,
it uses a standard core, and the readout solenoid is relatively easy to wke.
In the FLUXLOK system, the opposing circular mmf's set up in the core
cancel one another, leaving its remanent state essentially unaffected. The
magnetic moments are rotated slightly; but when the disturbing field is
removed, realign to their original orientation. The output waveform has a
positive and a negative pulse at the leading and trailing edge (whose
interval is defined by the interrogating pulse), respectively, or vice versa,
depending on the initial orientation of the circular flux.

In the RF sensing method (Widrow [1954]) a burst of RF current of
one frequency is appUed to a selected coordinate of an array and another
frequency to a selected coordinate (using the same windings employed in
writing). The output voltage produced by each core at the intersection
has a difference frequency component. Its phase for the two possible
residual flux states of the core differs by 180°. The cores are not switched
because the frequencies (in the region of 6 Mc) are so high that there is
not time in a half cycle for a permanent change, and current in the oppo­
site direction during the next half cycle restores any temporary change.
Because of its complexity and critical operation, this technique has found
Uttle appUcation.

The so-called 0-flux method (Olsson [I960]) is based on possible

228 5. LARGE CAPACITY STORAGE SYSTEMS

Sense Une Sense line Sense Line

(a) (b) (c)

FIG. 5.15. Nondestructive sensing arrangements for magnetic core storage

use of the demagnetized (0-flux) state of a core to represent one of the
two binary states. It allows a readout frequency comparable to that of
conventional (destructive) readout schemes with lower readout currents
(less than 100 ma for an .080 inch core of low coercivity).

Since reliability of operation is a prime consideration, evaluation
of a sensing method must take into account such items as the squareness
and uniformity of cores that are acceptable, the amount and complexity
of circuits required and the output signal-to-noise ratio. Readout methods
producing relatively low signal-to-noise ratios are better suited for a word
organized memory (Section 5.3.2.6), where no half-activated cores are in
series with an activated core on a sense line to contribute disturb signals.

5.5.2.6. The Word Organized Memory

We will now describe a magnetic core storage arrangement (see Fig.
5.16) somewhat different from those considered in the preceding sections.

Sense lines

External

switch
Word I

address'

lines ,

Read
drivers Write drivers

External

sv(/itch

Write
drivers

FIG. 5.16. Linear selection: word organized magnetic core storage array

5.3. STATIC MAGNETIC STORAGE 229

The operation of this array, whose selection scheme is called "word-selec­
tion" or "Hnear-selection," is as follows: First of all, switching is
performed external to the array itself. Secondly, each row corresponds to
a word. To read a word, the selected row is driven with a pulse of suffi­
cient ampUtude to switch aU cores in the row to positive saturation. This
causes voltages to be induced on aU column windings where the cores of
the interrogated row were at a state of negative remanence. To write or
rewrite a word, a current half the ampUtude required for switching is
appUed to the selected row in the direction opposite to that for reading,
i.e., one producing a negative mmf. Simultaneously, write currents of the
same ampUtude are applied to those columns in which the cores of the
selected word are to be driven to a state of negative saturation. This
results in a switching action where those columns intersect the selected row.

Because read-out is by external word addressing and involves no
current coincidence, the read-out Unes are free of disturb signals from
cores of other words. Extraneous signals on the read-out Unes occur only
as a resuh of the minor flux changes of those cores on the selected row
which are driven further into saturation and these are easily distinguish­
able from a major flux change. In contrast to coincident-current operation,
the less than ideal squareness of the hysteresis loop does not limit the
permissible size of the array. The read-out signal is clean and simpler to
detect, there is no hmitation on the magnitude of drive current that can
be appUed, as with internal coincident current selection, and because of
the large tolerances, the driving circuits can be simpler, too. By increasing
this current, the read-out switching speed can be increased to the Umit
imposed by the characteristics of the external switch and the heating of
the memory cores should they be switched at the high repetition rates
possible with the short switching time. Since the write operation does
depend on current coincidence, the writing currents and hence the speed
of writing are limited accordingly.

To summarize briefly, in coincident-current memories half-select
currents are critical in amplitude and waveshape, the core material must
have a high squareness ratio (since this affects the sum of half-select
voltages), the cores must be selected for uniformity (to improve noise
rejection by canceUation effects) and the sense amplifier design is critical
because of high level noise from partially disturbed cores. In word or­
ganized memories these requirements are greatly relaxed; in particular, the
greater tolerance on drive current allows reliable operation over a wider
temperature range despite a temperature coefficient of coercivity of .5 to
.7%/C° for ferrite core materials. On the other hand, above the region of
10,000 bits or so, a word-organized memory requires considerably more
associated semiconductor elements for addressing, writing and sensing

230 5. LARGE CAPACITY STORAGE SYSTEMS

FIG. 5.17. Section of apertured ferrite plate

(about five times as much for a 100,000 bit memory and about ten times
as much for a million bit memory).

5.3.3. THE APERTURED FERRITE PLATE

Production of magnetic core assemblies similar to those described in
Section 5.3.2 involve complex assembly operations if the total number of
bits is very large. This is because of the difficulties involved in threading
wires through the tiny ferrite cores. The ferrite plate storage system,
originated at RCA, is composed of thin (0.020 in. in prototype models)
plates molded, with a regular array of holes, from a rectangular hysteresis
loop ferrite (see Fig. 5.17). It combines the relatively high density of
storage sites of a continuous medium with the high access rates of indi­
vidual cells: These ceUs are defined by the apertures, for, by applying a
magnetic field that produces either a clockwise or counterclockwise flow
of magnetic flux in the small area of material surrounding each aperture,
a bit can be stored in terms of the direction of remanent magnetization
about each aperture. With a center-to-center spacing of the holes greater
than twice the hole diameter, the interaction between holes is negligible.
In a standard 1 6 x 1 6 array in which the plate is less than an inch square
the holes are 0.025 in. in diameter with 0.050 in. between centers. About
300 ma are required for switching; the switching time is around 1.5 /xsec.

Apertured ferrite plates can be operated either as a coincident-current
or word organized memory. The "word select" type is used almost ex­
clusively because it is less dependent on the uniformity of cells on a
plate, in addition to its other advantages. (For a description of both types,
see Rajchman [1957]. In the "word select," memory, a stack of plates
can be driven by an external switch which energizes the selected word loca­
tion without half-exciting other locations. The address selecting switch,
too, can be made of a stack of plates, and can be set in register with
the storage stack. An address selecting conductor, simply a straight

5.3. STATIC MAGNETIC STORAGE 231

wire, is passed through each set of apertures in register. The switch stack
is threaded, also, by X and Y selection windings.

To summarize, the apertured ferrite plate is more economical to
fabricate and test than a corresponding number of cores, and the assembly
and wiring of plates into a large memory is considerably simpler than the
fabrication of a magnetic core assembly. An important problem still to be
solved in the development of this type of memory is the production of
plates with more uniform characteristics.

5.3.4. THE TRANSFLUXOR ARRAY

The blocked and unblocked remanent conditions of a transfluxor
(see Chapter 4) may be used for binary storage in a random access store
with coincident current selection. (See Fig. 5.18.) Coincident-current write
pulses, applied simultaneously to the windings unking leg 1 (Fig. 4.59) in
a selected row and column, set the selected transfluxor to either a blocked
or unblocked state. For read-out, a pair of pulses, one in the prime and one
in the drive direction, is applied to each read line. If the transfluxor is
unblocked, fluxes in legs 2 and 3 reverse back-and-forth and return to
their initial state. If it is blocked, they remain in their initial state. These
flux reversals induce voltages on the sense winding.

In a coincident-current core memory the half-select currents must be
precisely controlled since they must not switch a core. A coincident-
current transfluxor array can be operated by biasing the small hole to
saturation, applying a drive current to one Une to overcome the bias
(without switching) and to the other to cause switching. Since these
drive currents can be larger than in a coincident-current core memory,
switching can be faster. Because the drive current can vary over a
wider range, operation is less temperature sensitive. Present coincident-
current transfluxor memories can operate from - 1 0 ° C to H-65°C with
cycle times of 6 to 10 /xsecs and with a maximum of about 4096 bits per
sense winding. A word-select transfluxor memory can operate from — 55°C
to -f 100°C with cycle times of about 1 /xsec.

The nondestructive nature of the readout process in a transfluxor
memory simpUfies the readout circuits because there is no need to activate
write circuits for selective restoring. A program can be read from memory
with less chance of accidental erasure and, in certain appUcations requiring
high speed reading only of a semi-permanent electrically alterable memory,
the write circuits can be disconnected and removed, once the program has
been loaded. Another potential advantage of a transfluxor memory is that
write and read operations could be done simultaneously at two addresses.

In some respects the transfluxor memory does not compare as favorably
with a core memory, e.g. its windings are more complex and difficult to

232 5. LARGE CAPACITY STORAGE SYSTEMS

assemble, it is larger, transfluxors are more difficult to produce and
test, and the drive system (write and read circuitry) is more complex.

5.3.5. THE TV^ISTOR

The action of the twistor storage element is based on the fact that a
torsion applied to a magnetic wire shifts the preferred direction of mag­
netization into a helical path inclined 45° from the axis. Figure 5.19

Write address lines
1

Read address lines

Sense
winding

FIG. 5 . 1 8 . A coincident-current transfluxor storage array

Solenoid

Insulated
coppery
wire
(0.003 in. D)

"^T Permalloy ôpe
(0.004 in. wide,
0.0025 in. thick)

(a)

Β

1

J
Bias

(b)

FIG. 5 . 1 9 . Twistor storage element: (a) physical form and (b) hysteresis loop
showing bias due to open magnetic structure

shows one form of the twistor storage element. It consists of an insulated
nonmagnetic wire on which there is wound a magnetic wire or ribbon in
the form of a helix, at an angle of 45* to the axis of the nonmagnetic wire.
There is also a solenoid about the central wire. Coincident application
of a current to the solenoid and central wire can produce a magnetic
field whose lines of flux follow the path through the helical wire and from
its ends join through the space around the element. Because of the

5.3. STATIC MAGNETIC STORAGE 233

anisotropy produced by its longitudinal tension, the magnetic wire exhibits
a hysteresis loop that is markedly rectangular. Also, because of the open
magnetic structure there is a bias in the loop (see Fig. 5.19), proportional
to the magnitude of the ambient magnetic field.

The form of twistor first reported was simply a twisted magnetic
wire with a solenoid about it. Lines of strain produced by the twist yielded
an anisotropy producmg an easy direction of magnetization. The twistor
action was obtained by application of current through both the magnetic
wire and the solenoid. The advantage of the form of twistor shown in
Fig. 5.19 is that the tension in the magnetic wire is permanently set as
it is machine wrapped, allowing elements with uniform properties to be
obtained, while the amount of twist in the simpler twistor is not as easily
controlled.

A memory array of twistor wires is shown in Fig. 5.20. It is designed

1 Read amplifiers

External

switch

— 1 ~

I I 1 1 1 1
1 1 1 1 1 1
1 1 T 1 1 1

External

switch

-| '

External

switch

— 1 ~

-]i
External

switch

-| '

External

switch

— 1 ~

External

switch

-| '

External

switch

— 1 ~

Î ^Qfl 10 U •

External

switch

-| '

External

switch

— 1 ~ Ö Η a Ö Β

External

switch

-| '
1

Read
drivers

Write drivers Write
drivers

1
Read

drivers
Write

drivers

FIG. 5.20. Word organized twistor storage array

for linear selection. Insulated copper wires wound with magnetic wire or
permalloy tape are embedded in parallel lines, spaced ten to the inch,
between two sheets of plastic. Similar plastic strips with embedded ribbons
of copper wire are placed about the twistor sheets to provide the word
selection solenoids. Writing is by current coincidence, a pulse being applied
to a selected word solenoid and to the twistor wires corresponding to the
columns of the word in which I's are to be stored. The speed of switching
may be improved by use of a bias solenoid placed about the entire array.
Direct current through this solenoid biases the hysteresis loop even farther
to the left, thus allowing a greater half select current to be applied without
causing switching. For read-out, the appropriate word solenoid is pulsed
so as to change stored I's to O's, thereby generating a read-out signal
in the central wire. This signal is of good amplitude because of the

234 5. LARGE CAPACITY STORAGE SYSTEMS

• See Shevel, W. L., Jr. [1959] Observations of rotational switching in ferrites,
IBM Jour., 3, 93-95, which reports three mechanisms of flux reversal in ferrite
cores: domain wall motion, incoherent and coherent rotation. The switching
threshold for incoherent rotation is two to five times greater than for domain wall
motion, and for coherent rotation about ten times greater.

number of turns of the magnetic wire. In the twistors previously mag­
netized in the 0 state, small reversible flux changes are produced whose
radial component is opposite in sign to that of the irreversible change.
The solenoid current is of the order of amperes, and the central wire
current tenths of an ampere. The read-out signal is about 15 mv and the
storage cycle time about 6 /tsec.

A major disadvantage of the twistor memory is that, because of the
open magnetic structures, it can be affected by ambient magnetic fields.
However, the bias solenoid, placed about the entire array to permit faster
switching, also yields some control over the ambient magnetic field. The
principle advantages claimed for the twistor memory are a lower cost per
bit and operation over a wide range of temperatures.

5.3.6. MAGNETIC THIN F I L M STORAGE ELEMENTS

One of the newest magnetic elements suitable for large capacity, high­
speed storage systems is the magnetic film element. An array of memory
elements is formed by distinct islands of a magnetic material vacuum
deposited on a flat glass substrate. The deposition is made on a heated
glass substrate in the presence of a dc magnetic field in the plane of the
substrate so that each element assumes a preferred magnetic axis in the
direction of the applied field. This establishes two stable states of mag­
netization (both parallel to the preferred direction). The film exhibits a
square hysteresis loop in the preferred direction and an almost linear
loop in the transverse direction. The squareness of the hysteresis loop can
be worsened by the demagnetizing field due to free poles at the edges of
the film. This effect is negligible, however, provided the ratio of film
diameter to thickness is very large, e.g., the diameter must not be much
less than 4 mm for a thickness of 2(X)0 A°.

In the thin film element, utilization is made of a different phenomenon
than usually* associated with the switching of ferrite cores. A reversal
of magnetization is produced not by sequential rotation of the atomic
magnetic moments, in the form of moving ferromagnetic domain walls,
but by simultaneous rotation of all atomic magnetic moments (coherent
rotation). This permits faster switching with moderate driving current.
Also, because of the favorable surface to volume ratio of thin films, high

5.3. STATIC MAGNETIC STORAGE 235

repetition rates, which produce excess heating in core memories, are
obtainable. A practical difficulty in this respect results from the fact that
because of the air return flux path, the elements cannot be too closely
spaced nor their diameter too small. As a result, the physical size of the
array makes the propagation time of the driving signal greater than the
switching time of the element.

A desirable feature of the thin fihn coincident current array is that it
allows the conductors for the row, column, and inhibit drives to be made
by printed circuit techniques. Conventional coincident current operation
is obtainable by having these conductors run parallel to each other in the
proximity of each element so that the effects of the currents are alge­
braically additive. The printed windings can be placed on both sides of the
glass to minimize current requirements and the inductance of the drive
lines. Because the read output signal is relatively low, the sense winding
is placed close for maximum coupling, and perpendicular to the drive
conductors to minimize noise pick-up. Instead of thin glass or glass
epoxy sheets to carry the printed circuit wiring, it may be possible to
vacuum deposit the necessary insulation between the Unes as weU as the
lines themselves.

Because the flux return paths are through air, there must be adequate
shielding from external fields. Deha flux effects, which occur as the result
of a smaU rotation of partiaUy selected elements, can be canceUed by
positioning the sense windings at the proper angle to the preferred direc­
tion of magnetization. The major noise problems result from unbalanced
mutual coupUng between drive Unes and sense wires and capacitive
coupUng between a selected drive line and sense Une. The former problem
results from random errors in registration of the etched circuit wiring.
However, present printed circuit wiring techniques are adequate to reduce
this source of error to the point where strobing of the output signal reduces
both noise contributions to the point where over-aU signal-to-noise ratio
is adequate.

As noted earUer, the squareness of the hysteresis loop depends, within
Umits, on a large ratio of diameter to thickness of the film. At the same
time, the read-out signal is proportional to both thickness and diameter.
Thus, one can do some trading of storage density for magnitude of signal
output. Of course, a great reduction in spot size increases the problems
of wiring. In fact, storage has been demonstrated at densities of 10,000
per square inch with 0.005 in. spots, but the utiUzation of such high densi­
ties depends on the development of practical wiring techniques in addi­
tion to solution of other problems.

An experimental memory composed of thin film elements is in opera­
tion as part of the TX-2 computer at the Lincoln Laboratory of MIT.

236 5. LARGE CAPACITY STORAGE SYSTEMS

Each element is a circular deposit of Permalloy (82% nickel, 18% iron)
film, 1.6 mm in diameter and 750 A thick. There is a 2.5 mm separation
between centers of these elements which are on a flat glass substrate 0.1
mm thick. While successful operation has been demonstrated with a read-
write cycle time of only 0.4 /xsec, the experimental unit is operated with
an 0.8 /isec cycle which is consistent with the speed of the arithmetic
unit. The writing current required is about 150 ma. and the output signal
is about 1 mv.

The magnetic film array offers a switching time about ten times faster
than ferrite cores (although a good part of this gain is offset by delays in
the additional amplifier circuits required for its low level output signals),
simple fabrication of large arrays, greater economy resulting from lower
power dissipation and simpler fabrication, and operation over a wider
range of temperatures than ferrite cores. An evaluation of these advantages
in the light of problems such as production of uniform elements, reliability,
and cost awaits further development.

5.3.7. Superconductive Element Storage

In Section 4.6, there is a description of a superconductive circuit
element, the cryotron, which may be either wire wound or vacuum de­
posited. However, as stated in Section 4.6, thin film devices are required
for greater speed and ease of fabrication. A coincident current circuit
can be formed by having two or more control conductors on an element
so oriented that the net magnetic field that acts on the gate is due to the
sum of the currents on the drive lines. A storage array can then be
formed by placing cryotron flip-flops at the intersection of row and column
drive Unes. PrincipaUy because of fabrication difficulties, the use of this
type of memory has been restricted thus far.

Subsequent to the introduction of the cryotron, the use of a persistent
current in a superconducting ring was suggested as a memory device.
Such currents can be maintained for years, and the two possible directions
of current offer the two stable states of a binary storage element. A per­
sistent supercurrent element reported by IBM is based on the principle
of trapping flux in a superconducting film. In an experimental form, a
thin superconducting film formed by vacuum deposition, serves as a flux
barrier between drive windings on one side and a sense winding on the
other when the appUed drive current is below a critical value. Below this
value, it is presumed that the flux Unes are forced along the film surface,
inducing circulating currents. Above the critical value, the film is forced
into a normal conductive state, permitting flux lines to penetrate and Unk
a part of the film. The induced currents that opposed the field now decay,

5.3. STATIC MAGNETIC STORAGE 237

Insulator

Drive line

Insulator

Hard superconducting^"^^^JÍ^ superconducting
film cross bar

(a) (b)

FIG. 5.21. Persistent-supercurrent thin film storage cell: (a) physical form,
(b) path of circulating currents

construction is that the magnetic field of the persistent current is greatly
localized. Also, it provides the features of the experimental cell while
enabling better control over fabrication and the important parameters.
The hole (about 3mm diameter) which need not be round, serves the
function of the imperfections in the experimental cell. The over-all con­
figuration is designed to trap flux in a doughnut pattern. A "hard"
superconducting film (i.e., one having a high critical field) of lead sup­
ports and is in electrical contact with a thin crossbar of "soft" (i.e., low
critical field) superconductive film. The crossbar (800 A thick by
0.125 mm wide) is relatively "soft" because it is thinner than the sheet.
The drive and sense lines, which are also strips of deposited lead, are
placed parallel to the crossbar, the drive line above and the sense line
below the sheet. Lines of force produced by current in the drive line are
tightly coupled to the crossbar. The separation of the drive and sense
lines by the superconducting film eliminates the delta noise problem of
core memories (produced by the difference between half-select voltages),
provided the crossbar is not driven to normal conduction, and the drive
line, crossbar, and sense line are accurately aligned. The rise time, which
is determined by the rate of transition from the superconducting to normal
state and the fall time, determined by the L/R ratio of the cell, have an

and after removal of the drive current the flux is apparently trapped in
imperfections in the film.

A form of persistent current device which has been brought to an
advanced state of development by IBM is shown in Fig. 5.21(a). In this
form, two circulating rings of current are formed by means of the hole
and crossbar, as shown in Fig. 5.21(b). A principal advantage of this

238 5. LARGE CAPACITY STORAGE SYSTEMS

upper limit of about 10 nanosec. The drive current is less than 150 ma.
Selection can be by coincident current or other techniques. An array of
memory elements including X, 7 , and Ζ drive lines and sense line can be
constructed as a unit from multiple layers of evaporated materials.

The advantages offered by this type of cell are: a sharp switching
threshold, a high switching speed, high signal-to-noise ratios since the
switching time of the cells is much less than the rise time of the drivers,
low drive requirements, isolation of drive and sense circuits, and non­
destructive read-out. However, a number of problems remain to be
solved: (1) Additional data is necessary on the physical properties of
thin films and the mechanism by which they are formed. Multilayer
fabrication techniques must be developed to provide adequate control
of the important parameters. (2) In the area of improving storage density,
it is likely that the hole diameter can be reduced to 1mm (allowing about
100 cells/in.2) and that about 20 layers of cells can be provided per inch—
thus allowing from 10® to 10^ bits/ft.^. However, the problems of assem­
bling so great a number of elements in a small volume are considerable.
(3) There are the problems of operation in a Uquid heUum environment.
Helium is evaporated as a result of the energy dissipated in switching the
cells and also as a result of heat conduction along the wires from the
cryostat to other parts of the computer. Actually a great number of switch­
ing operations and a large number of leads can be tolerated with a moderate
consumption of heUum; the switching of 10^^ cells/sec. and the conduction
of heat along 10,000 3-ft. leads each dissipates 1 watt for a total evapora­
tion of 4 htres of helium per hour.

A continuous plane type of superconductive film memory (Burns et al
[1961] is relatively easy to fabricate because no holes are required in
the superconducting plane and its shielding action allows ΛΓ, Y selection
schemes without delta noise. Because memory cells, switching elements and
connections can all be produced simultaneously by batch fabrication, very
high capacity (10 to 100 milhon bits) memories with cycle times in the
region of 5 /¿sec may be economically producible.

5.4. Tunnel-Diode Storage

The tunnel diode (see Section 4.7 also) is a unique device in that it
exhibits a negative resistance characteristic in the gigacycle area. Two
unconditionally stable states, A and B, estabhshed on a load line by a
voltage source VB and a series resistor R are shown in Fig. 5.22 (a) .
Switching between these stable states can be effected by a single pulse or
coincident pulses of proper polarity and ampUtude. For example, switching
from state A Xo Β can be effected by a total increment of current Δ/.

If the equiUbrium state of a tunnel diode in the circuit of Fig. 5.22 (a)

5.4. TUNNEL-DIODE STORAGE 239

is sensed by applying a large voltage or current pulse, the readout process
will be destructive since the initial state is inferred from whether a switch­
ing action occurs. In Fig. 5.22 (b) , a nonlinear backward diode (whose
characteristic curve is the dashed line in Fig. 5.22 (a)) is used to allow
nondestructive readout. Fig. 5.22 (c) illustrates a word organized array of
such circuits. To read, a negative pulse is applied to the word line only, while
the digit lines are held near a zero reference potential. If a tunnel diode is
at A, the back bias across diode D is overcome (although current through
the tunnel diode is not adequate to switch it) and a negative pulse appears
at point d. If a tunnel diode is initially at B, there is no output at d. (Use of
backward diodes to couple tunnel diodes to sense amplifiers also reduces
attenuation of the readout signal.) Writing can be done by coincident word
and digit pulses.

While magnetic memories may be extended to cycle thnes of 1 /xsec to
100 nanosec, cycle times of 100 to 10 nanosec are obtainable from a tunnel
diode memory. There are certain Umitations, however. It is inherently
volatile, requiring dc holding power. The drivers must supply large power
for short periods, although the drive power per bit (about 2 mw) is smaU
and the drive circuits simple compared to requirements of other storage
devices operating at these high rates. Present estimates are that considera­
tions of power consumption, drive circuitry, reliability and cost wiU limit
the useful capacities of tunnel diode memories to about 4000 to 100,000
bits.

Word η c

•i

(0) (b)
Digit I Digit 2

(c)

Digit η

FIG. 5.22. (a) Tunnel-diode characteristic curve, (b) three-element memory
cell, (c) linear array of three-element cells.

5.5. Cathode-Ray Tube Storage

There are a number of storage systems in which binary data is stored
in the form of the presence or absence of a specified amount of electrical
charge on the face of a conventional type of cathode-ray tube. A 5-inch
cathode-ray tube, the size normally used, accommodates a 32 X 32 array
of spots. These tubes provided an interim solution to the high speed internal

240 5. LARGE CAPACITY STORAGE SYSTEMS

storage problem, providing an access time of 12 to 25 /itsec. However,
they are no longer being incorporated into new systems, having been
completely displaced by magnetic core storage systems.

In all cathode-ray tube storage systems, two principles were commonly
used to retain the stored data for any desired time interval, namely:
(1) direct use of the secondary emission characteristics of the dielectric
storage surface, (2) regeneration of each bit after read-out. The Williams
storage system, also known as the interfering periphery or surface re­
distribution system, is the form of cathode-ray tube storage most widely
used and is described next.

The Williams system utilizes a commercial type cathode-ray tube,
together with a metallic collector screen or plate placed over the outside
face of the tube, as indicated schematically in Fig. 5.23. If the inner screen

^ 0
Electron Deflection

gun ρ ates Screen

Glass

Metal screen
or plate

Dielectric target
(phosptior coating)

FIG. 5.23. Simplified schematic of cathode-ray storage tube

is bombarded by an electron beam, secondary electrons will be emitted.
The variation of the secondary emission coefficient, γ, (for a Pi type of
phosphor screen) as a function of the potential of the surface is shown
in Fig. 5.24. There is a drop in γ at point b because of the increased

2 0 0 0 V Surface potential

FIG. 5.24. Variation of secondary emission coefficient, γ, of a
type of phosphor surface

ability of the surface at higher potentials to recapture electrons liberated
from the surface by the incident beam. If the accelerating potential is
suflScient to produce a ratio greater than 1, a potential well will be formed
at some point on the screen, as indicated in Fig. 5.25. The slight negative

5.5. CATHODE-RAY TUBE STORAGE 241

Potential

\ r r = radial distance
along surface

Center of fronn ÖQ.
beam incidence,/>0

FIG. 5.25. Potential well formed by γ > 1

potential mounds are caused by some of the secondary electrons landing
in the vicinity, and are useful in serving as barriers which reduce inter­
action between wells. The size of the well is approximately proportional
to the diameter of the beam. If the beam is removed after producing a
well, the potential distribution will remain for some time. If a metal
screen is placed near the target, a small signal will be detected at the
time this well is formed. This is essentially capacitive pick-up, the
target and outer screen acting as plates of a capacitor and the screen repro­
ducing the potential variations of the target.

For binary storage, two different patterns must be stored, one of
which is used as a reading pattern. If the reading pattern is different from
the stored pattern, the stored pattern will be lost and changed to the
reading pattern. This change produces a total change of charge on the
tube face, which is detected by the capacitive action of the external
screen. Three of the several storage pattern systems based on this mode
of operation are described next.

(1) The interrupted double spot system operates as follows: If,
after a well is dug, the electron beam is cut off and displaced
sHghtly, the distribution of Fig. 5.26(a) results. Since the second

Potential Potential

F 0

+
(a) (b)

FIG. 5.26. Potential wells formed for storage of a 1 in (a) interrupted
double spot, and (b) dot-dash storage schemes

well is formed in the vicinity of the first, secondary electrons
emitted from the second well will tend to fill up the first well.
This forms the basis for a binary storage system. The first well
is formed for each entry. If a 1 is to be stored, a second well

242 5. LARGE C A P A C I T Y S T O R A G E S Y S T E M S

is formed; if a 0 is to be stored, a second well is not formed.
Read-out is accomplished as follows: The first well position
is interrogated by the beam. If a second well had been formed,
(i.e., a 1 stored), it would have caused filling of the first, and
the interrogating beam would remove this fill, thereby producing
an output signal. If a 0 had been stored, the interrogating beam
would produce no filling and, therefore, no output signal.

(2) The dot-dash system is similar except for the fact that the beam
is not interrupted during movement. When the beam is slightly
displaced, the secondary electrons emitted from the new position
partially cancel the positive charge of the first spot, as shown,
in Fig. 5.26(b). When the interrogating beam is directed to the
first position, a large negative charging signal, or a smaller one,
will be detected at the external plate, depending on whether a 0
or 1, respectively, is stored.

(3) The focus-defocus system differs from the interrupted double
spot system in that the beam is left stationary and defocused
after the original well is formed if a 1 is to be stored. The
enlargement of the beam caused by defocusing causes electrons
to be scattered over a wide area, filling the original deep well.

Because of the destructive nature of the read process, means must
be provided to restore the contents of a storage cell after it is read, and
this restoring operation is made a part of the storage cycle. Also, because
of the volatility of the stored data (due to charge leakage), circuits are
provided that scan and regenerate the contents of the raster, row by row.
This regeneration is accomplished during specified cycles set aside for
this purpose.

Specially constructed tubes are usually used for two important reasons.
First, the beam diameter intercepting all storage positions must be very
small or else there will be too much interaction between adjacent cells.
Secondly, in tubes not specifically designed for computer applications,
blemishes on the target surface may result in the presence of areas with
relatively poor secondary emission characteristics.

An important parameter of cathode-ray tube storage systems is the
"read-around" ratio. It is the number of times that a given cell can be
interrogated in succession without destroying the contents of an adjacent
cell. It determines the frequency at which the contents of all cells must
be regenerated. A high "read-around" ratio is desirable to reduce the
ratio of time spent in regenerating to the time spent in computing. How­
ever, improvement in the "read-around" ratio is obtained at the cost of
reducing the storage capacity of a given tube.

A number of special forms of cathode-ray tubes were also developed

5.6. D Y N A M I C D E L A Y L I N E S T O R A G E 243

for use in digital computer storage systems: the barrier grid storage tube,
the holding gun tube, and the selectron. None of these ever came into
widespread use, however, for two principal reasons: a relatively high
cost of manufacture and the introduction of magnetic core storage systems,
which supplanted all types of cathode-ray tube storage systems. Therefore,
they are not described here, but are referred to in the bibliography of
this chapter.

5.6. Dynamic Delay Line Storage

In Section 5.2, Dynamic Magnetic Storage, it was shown how a re­
circulating delay line could be formed by directing information from the
output of a read head to the input of a record head placed along the
same track. In such a delay line each bit is recorded in a particular area
of the medium and the medium itself is moved. In the delay lines to be
described in this section, the pulses to be stored are propagated from a
transmitter to a receiver via a stationary medium. Since it takes time to
propagate the energy, the pulses in transit between the source and
receiver can be considered to be stored in the medium. Delay line stores
have been built in which the propagation of energy may be by means of
electrical, acoustic, electromagnetic, piezoelectric, or magnetrostrictive
phenomena. By repetitively reintroducing the signals into the delay
medium, in synchronism with a time reference pulse, the temporal lo­
cation of a particular item of information can always be specified, as­
suming the delay is held constant. Because any delay medium has limited
bandwidth characteristics, causing distortion of the propagated pulses,
circuitry must be provided to reshape the pulses and preserve the proper
time relationships. The pulses are amphfied, gated, and reintroduced into
the delay media by means of these circuits.

The operation of a delay line as a djmamic information storing device
is as follows: A temporal serial binary information pattern (pulse-
no pulse) is fed into one end of a path consisting principally of the delay
element. As a result, the temporal serial also becomes a spatial serial
pattern (if one could inspect the entire contents of the Une at any given
time, and if the Une had a capacity of η bits, one would see the last η
bits that had been inserted into the Une). Recirculation of information
patterns is provided by closing the loop, from the end of the delay Une
back to the beginning, by means of the transducers, ampUfiers, and
gating circuits.

An important criterion of delay lines for use as a large capacity
store is the amount of delay provided by a unit length of path. The rate
of propagation in the delay medium should be suflSciently slow to aUow

2 4 4 5 , LARGE CAPACITY STORAGE SYSTEMS

a large number of pulses of the input information to be stored in a
physically practical length of line. The memory capacity of such Hues is
proportional to the length of hne and the repetition rate of the apphed
signals. Some disadvantages of the electric, acoustic and magnetostrictive
delay hne stores are an access time that increases with the length of a
line, and duplication of circuits required when information is stored in
several Unes to obtain a certain combination of capacity and access time.

5 . 6 . 1 . ELECTRICAL DELAY LINES

An electrical transmission Une formed from either lumped or distribu­
ted elements of inductance and capacitance may be used as a delay Une.
The number of bits that can be stored in the Une depends not only on the
magnitude of the delay and the repetition rate of the appUed pulses, but
also on the rise time characteristic of the Une. This is because an amount
of delay at least equal to the sum of the rise and fall times of a pulse
is required for each pulse to be stored, and the rise time characteristic of
any type of Une is proportional to its length. Therefore, increasing (de­
creasing) the length of the hne proportionately increases (decreases) the
amount of delay so that the number of pulses that can be stored remains
essentiaUy constant. The maximum number of pulses that can be stored
in available lumped and distributed constant lines is about 3 0 and 1 5 ,
respectively. The length of line chosen would be determined by the wave­
form of the pulses to be stored. Because the rate of propagation along an
electrical transmission Une is high, a considerable length of Une is re­
quired to obtain miUiseconds of delay. Therefore, electrical lines are not
practical except for short delays, e.g., less than 5 0 /xsec. These are suitable
as one-word registers in dynamic serial-type computers operating at mega­
cycle repetition rates, but are inefficient for a memory of large capacity.

Electrical delay lines greatly attenuate the input signal but introduce
only negligible losses at the input or output. Conversely, acoustic delay
Unes, which are described next, produce Uttle attenuation in the medium,
but a large amount of attenuation is introduced in the coupUng between
the Une and the input and output transducers.

5 . 6 . 2 . ACOUSTIC DELAY LINES

The relatively slow velocity of propagation of an acoustic wave com­
pared to an electric wave permits a greater delay to be obtained from
a physicaUy short Une. Radiofrequency signals are transformed by an
appropriate transducer into an acoustic signal. The acoustic wave is then
propagated through an appropriate medium untU it reaches a receiving

5.6. DYNAMIC DELAY LINE STORAGE 245

transducer which converts the acoustic signal back to an electrical one.
In an acoustic delay line storage system the delay medium of Fig. 5.27

Delay medium

Transducer
Driver"! Q i

Transducer
0 2 Wide band

amplifier

Pulse
reshaperl -Clock pulses ^^j^g 0

OR

i
Gate I

Gate 2

Write I

Gate 3

Read out

FIG. 5.27. Block diagram of an acoustic delay line store

would be an acoustic transmission line terminated at each end by a
piezoelectric crystal. An electrical signal at A causes vibration of the
crystal Qu and this disturbance is propagated down the acoustic line
setting the crystal Q2 into vibration, thereby generating an electrical signal
at point B. Pulses received at Q2 have to be reshaped because attenuation
and dispersion, caused by transmission through the line, broadens and
otherwise distorts the original pulse applied at öi- Regeneration is ac­
complished by using the amplified distorted signal to gate a clock pulse
which is then recirculated instead of the distorted signal. New data is
introduced into the line as follows: If a 1 is to be recorded, it is sent
directly to the input of gate 2; if there is akeady a 1 recorded in this
position (i.e., a signal is arriving from the amplifier via gate 1), the
operation is merely redundant. If a 0 is to be recorded, gate 1 is inhibited.
Information can be read out at any time by application of a read-out
gating signal to gate 3.

Important parameters of an acoustic medium are: velocity of propa­
gation, acoustic impedance, temperature coefladent of velocity, attenua­
tion/unit length, signal frequency for which attenuation is a minimum,
bandwidth characteristics, and phase distortion. Quartz, even though not
the most efficient electric-acoustic transducer, is used because its acoustic
impedance comes closest to matching the available media, and it has a
small value of capacitance, thereby reducing the driving power required.
For a quartz transducer, the most desirable acoustic media are (in order):

246 5. LARGE CAPACITY STORAGE SYSTEMS

(1) zero temperature coefficient glass, (2) impurity-free fused quartz,
(3) homogeneous magnesium alloys, (4) impurity-free mercury.

5.6.2.7. The Mercury Delay Line
One of the most widely used acoustic delay lines in the very early

years of digital computer development consisted of a mercury transmission
medium and quartz crystal transducers. For example, the BINAC had a
tank of 18 separate delay lines, each storing 32 words of 36 bits, and
the first UNIVAC had 100 delay lines, each storing 10 words of 91 bits.
Mercury has a relatively low velocity of propagation, a good acoustic
impedance match to quartz and freedom from unwanted modes of sound
transmission found in solid media.

Mercury delay lines may be of two general types. In the single path
type, the acoustic signal traverses the medium once, from transmitting
crystal to receiving crystal. In the multiple reflection type the signal is
reflected back and forth through the medium before reaching the receiving
crystal, thereby effectively lengthening the delay path. A disadvantage of
the latter system is that it requires critically machined parts.

The factors that limit the length of delay line used are: (1) The
over-all attenuation and wave front dispersion that can be tolerated before
the signal to noise (including reflections) ratio falls below a usable level
(usually 10). (2) The access time required in the computer. The majority
of delay lines have a delay of about 350 / isec. The limitation on the pulse
repetition rate that may be used is not the acoustic line, but the electronic
circuitry. Most computers using mercury delay line stores operate in the
range of 1-4 mc.

There are many problems associated with a mercury delay line:
(1) Unless the mercury is free from all contamination, a mismatch
results at the crystal surface causing serious reflections. Long time stability
is also a problem since mercury is an almost universal solvent. Best results
are obtained from triple distilled mercury, and containers of borosilicate
glass or stainless steel. (2) The quartz transducers must make extremely
good contact with the mercury. The voltage output of the line is pro­
portional to the deformation of the crystals, and air bubbles or contamina­
tion on the crystal surfaces would damp this vibration, resulting in a
very large over-all loss of energy. The normal attenuation at each trans­
ducer is about 25 db. This accounts for most of the loss in the line, the
attenuation through the mercury being only a few decibels per foot.
(3) The mercury tank requires temperature control, since the velocity of
propagation of an acoustic wave is directly proportional to the density of
the medium which, in turn, is a function of temperature. These tempera-

5.6. DYNAMIC DELAY LINE STORAGE 247

ture regulating systems are fairly complex, consume a good deal of
electronic circuitry and space, and add appreciably to the expense of a
system. There are also problems associated with reflections in the lines,
and with the external adjustments required to produce the desked total
delay. A mercury delay Une is thermaUy unstable and susceptible to
mechanical shock, leakage, and contamination.

Mercury provides the foUowing advantages compared to soUd trans­
mission media: (1) It is a stable liquid which can be matched to trans­
ducers such as quartz crystals. SoUds generaUy present problems in
coupUng to suitable transducers. (2) It supports only longitudinal-com­
pression and surface waves, the latter being suppressed when the Uquid is
enclosed in a tank. SoUds generally support shear waves. (3) Careful
distiUation provides uniform characteristics. There are no localized strains
to cause spurious patterns.

5.6.2,2. The Fused Quartz Delay Line

A delay Une can be constructed using a rod of fused quartz as the
delay medium, and quartz crystals as the transmitting and receiving trans­
ducers. Though both shear and compressional waves can be transmitted
through the medium, the shear mode is preferable because its rate of
propagation is less, thereby yielding a longer time delay for a given length
of material. However, even in the shear mode, the velocity of propagation
through fused quartz is almost three times as great as in mercury, and
rods long enough for large delays are impractical. However, a long delay
can be obtained in a practical form by use of a shape which causes the
transmitted wave to be internally reflected several times before it reaches
the receiving transducer. The multiple reflection Une consists of a flat plate
whose sides form a polygon. A typical plate might be formed from a
fused quartz blank about 8 in. in diameter and 1/2 in. thick. The lengths
and angles of the sides of the polygon are chosen to provide the desired
multiple reflection path from the input transducer, which is bonded to one
side, to the output transducer bonded to another side. A delay of about
1000 /Asec can be obtained from an 8-in. diameter blank. The production
of the multiple reflection line is a precision process that includes machining,
grinding, and poUshing of the facets. The blank must be of high purity
to eUminate spurious reflections from air bubbles and foreign particles.
The input and output transducers may be either ac or Y cut quartz crystals.

The fused quartz Une is superior to the mercury Une in that it has a
higher signal to noise ratio, a temperature coefficient of velocity only about
one thbrd that of mercury, a better impedance match to quartz crystal

248 5. LARGE CAPACITY STORAGE SYSTEMS

Transnnit t ing
coi l

h ä -

Rece iv ing
coil

FIG. 5.28. Schematic of a magnetostrictive delay line

* Blackburn, J. F. (ed.) [1949] M.LT. Radiation Lab. Series, Vol. 17, McGraw-Hill,
New York. (Also, see Huntington et al. [1948].)

transducers, and better mechanical stability. On the other hand, it is
difficult to produce high purity blanks, and the reflecting surfaces in
multiple reflection lines require high precision machining.

Fused quartz has the lowest attenuation figure of solid materials
suitable at high frequencies. In the shear mode of transmission the atten­
uation is about .08 db/ft per megacycle and in the longitudinal mode it is
.05 db/ft per megacycle. This compares to about 1.8 db/ft at 15 mega­
cycles for mercury in a .3 cm inner diameter tube (based on the expression
for attenuation in a tube of mercury; .054 //d*, where / is the frequency
in megacycles and d the inner diameter of the tube in inches). The shear
mode of transmission is the one principally used in quartz delay Unes
because it is not subject to mode conversion upon reflection (which can
cause spurious pulses) and beam spreading is less, yielding an improved
signal-to-noise ratio. The velocity at 20°C for fused quartz is about 150
inches/msec in the shear mode (233 in the longitudinal mode) compared
to 57 inches/msec for mercury.

5.6.3 MAGNETOSTRICTIVE DELAY LINES

The magnetostrictive delay Une is based upon the magnetostrictive
effect exhibited by certain materials. When a magnetizing force is appUed
to such a material, it exhibits a change in length. The reverse effect also
occurs, i.e., a stress applied to such a material produces a change in its
magnetic state. (Specifically, when tension is applied to a wire, the ferro­
magnetic domains align themselves in a direction away from the wire
axis.) This change may be detected by the change in magnetization that
occurs when a magnetic field is applied. The delay is obtained from
the time required to propagate the stress wave disturbance along a length
of wire, rod, or similar configuration of a material possessing magneto­
strictive properties and having a high remanence. The amount of delay
depends on the length and physical properties of the material.

Permanent

Magnetostr ict ive wire Li^,,^^)J j ~

5.6. DYNAMIC DELAY LINE STORAGE 249

A schematic of a magnetostrictive delay hne is shown in Fig. 5.28.
When a pulse of current is applied to the transmitting coil, a contraction
of the wire immediately inside the coil takes place. This causes a stress
wave to be propagated along the hne in both directions. To reduce re­
flections at both ends, damping pads of a suitable material, such as synthe­
tic rubber, are clamped about the wire at both ends. Also, the parts of the
line between each coil and the nearest end are annealed to provide added
attenuation. At the vicinity of the receiving coil, there is a remanent
magnetic dipole as the result of a polarizing field induced by a permanent
magnet. The arrival of the stress wave at the region of R changes the
permeabiUty of the whe, momentarily disturbing the induced dipoles and
the field cutting R. Thus, after a given delay, a voltage pulse is induced
in the receiving coU as the result of a current pulse being appUed to the
transmitting coU.

The input current step produces a pulse in the output coU at the
times of its leading and trailing edges, as shown in Fig. 5.29(a). The

m . I I

(a) (b)

FIG. 5 . 2 9 . Resolution of output voltage pulses as a function of width of the
input waveform in a magnetostrictive delay line

time interval, t, between the positive and negative peaks of this pulse is
determined by the geometry of the coil. To obtain a symmetrical voltage
output pulse and a maximum packing of bits, the width of the input cur­
rent pulse is made equal to t. The length of the transducer coils must be
accurately determined to match the input pulse. If low levels of current
and voltage are to be employed, the efficiency of the transducers should
be high. It can be improved by the use of ferrite core materials to direct
aU flux into the wire and to sharply define the edges of the field.

The stress wave may be transmitted either in a longitudinal or torsional
mode. On Unes of appreciable length (say, greater than one foot) the
wire is coUed to provide convenient packaging. For coUed lines of ap­
preciable length, transmission in the torsional mode offers the advantages
of a substantiaUy reduced velocity of propagation and reduced dispersion.
A mode conversion can be made near the entry and end-points of the

250 5. LARGE CAPACITY STORAGE SYSTEMS

to t ransmit t ing coil

f rom receiv ing coil

1
Current

ampl i f i e r C"
Synchronizer[-#- | Squorer

Ampl i f ie r

' C l o c k
Input Output

FIG. 5 . 3 0 . Regenerative loop for a magnetostrictive delay line

and retime the output pulses each time they circulate through the delay
line. The squaring circuit produces an output of fixed amplitude inde­
pendent, within limits, of the input amplitude, and also biases off spurious
signals due to unavoidable reflections from the terminations of the delay
Une. The synchronizer causes the recirculating pulses to be kept in
synchronism with a master clock. The delay of the line is adjusted so
that data pulses arrive back midway between two adjacent clock pulses.
This provides a safety margin of half a bit period in either direction
to allow for variation of delay with temperature, and also for variation
of clock frequency. The current amplifier converts the synchronized
voltage pulses into the current pulses required at the input coil.

Read-out coils may be placed at appropriate positions along the line.
For computer storage, a number of delay lines can be assembled to pro­
vide either serial or parallel operation. For serial operation, all the bits of
a word would be stored on a single delay line. For parallel operation,
each bit of a word would be stored at corresponding time positions on
different lines.

Some typical parameters of a magnetostrictive delay line are minimum

line, and the line between need not be of a magnetostrictive material. By
the use of other materials, such as copper or phosphor bronze, in which
the velocity of propagation is less than in nickel, the length of line for a
given delay may be reduced. When nonferromagnetic materials are used
either for a better velocity of propagation, temperature coeflScient of
velocity, etc., magnetic end pieces must be provided. This can be done
either by brazing short pieces of nickel to the ends of the line, or by nickel
plating a short length of the wire at each end. Taps may be provided as
required on lines using the longitudinal mode with negligible attenuation.
At present, lines using the torsional mode can be tapped only in the
short longitudinal mode section at each end.

Figure 5.30 shows a block diagram of the circuitry used to regenerate

5.7. DIODE CAPACITOR STORAGE 251

bit rates of 100 kc and maximum bit rates of 500 kc to 1 mc. The L40
delay hne package of Ferranti Electric, Inc. provides a maximum delay
of about 5000 /tsec which, at a bit rate of 500 kc will store about 2500 bits.

5.7. Diode-Capacitor Storage

A 10,000 bit diode-capacitor memory built at the National Bureau
of Standards for its SEAC computer stores binary information as the
charge on a capacitor. The state of each element is defined by the sign
of its charge. TTiis system has a relatively high random access rate com­
pared to acoustic delay line and cathode-ray tube stores. The basic cir­
cuit for a storage element of the array is shown in the dashed enclosure
of Fig. 5.31(a). The points Oi, O 2 , . . . On are used for both reading and
recording. The two diodes associated with each storage capacitor act as
a squeezer, connecting the capacitor to the read or record circuit when
one of these operations is called for. During holding, i.e., between read
and record operations, the two diodes are each back-biased so that only
minute currents can now into or out of the capacitor.

The contents of a particular word, /, are read as follows: Points, Oi,
bi are forced to ground potential. As a result, one diode in each of the
η pairs within a word conducts, producing voltages across the associated
resistors. If the initial charge on a capacitor produced a drop of — 2 volts
across it, when the squeeze is applied a pulse of - 2 volts amplitude
appears at the corresponding output point, decaying with a time constant
RC. If the capacitor had been charged to + 2 volts, a pulse of -h 2 volts
would appear at the output. The positive and negative pulses are inter­
preted as the values 1 and 0, respectively. Regeneration is required after
a read-out operation, because the capacitor is partially discharged.

To record in a particular word, each point Oi, O 2 . . . On is forced
to the desired voltage, either + 2 or - 2 volts, while the diodes are being
squeezed, i.e., while the diode bus lines are at zero potential. When the
diodes are returned to their normal voltages, +4 and - 4 volts, each presents
a high impedance. Therefore, the charge on the capacitor cannot readily
leak off, and will be unaffected by later changes at the corresponding out­
put point, provided the absolute magnitude of the voltage at the output
point does not exceed 2 volts.

A gating amplifier is needed at each output point to sense the polarity
there during read-out, and to force Oi to the desired polarity during a
recording operation. As shown in Fig. 5.31(a), a single gating amplifier
serves the same bit on each of many words. A particular word is selected
by squeezing the proper pair of buses to zero voltage, while holding all
the other pairs at their normal value of + 4 and - 4 volts. Each bit of a

2 5 2 5 . LARGE CAPACITY STORAGE SYSTEMS

Bit no. 2

Word I Word 2 Word 3

Bit no. I

Η

Output Ο2 Gating
amplifier 2|

Output 0,

(a)

Gating
amplifier I

- l o v "

. + I 0V
- l O V

(b)

FIG. 5.31. Diode capacitor storage array, (a) , and transformer AND
gate selection matrix, (b)

word is accessible simultaneously at the gating amplifiers. A write operation
in a particular word does not disturb the others since all diodes in all
other words remain backward biased.

A selection matrix suitable for use with the diode-capacitor store is
shown in Fig. 5.31(b). Its advantage here over a diode matrix is that it
does not draw a large amount of standby power. However, it does require
more input drivers than does a diode matrix. Normally the X and Y
buses are held at —10 and +10 volts, respectively. This puts a backward
bias on each diode so effectively no current flows through any transformer
primary. If either one X bus is raised to 4-10 volts, or one Y bus is lowered
to —10 volts, there would still be no current flow. However, if each of
these operations is initiated simultaneously, one transformer at the inter­
section of the two buses will conduct. As a result, the transformer secon­
daries will apply a squeeze to the buses in the selected word.

The finite forward conductance of the diodes reduces the ampUtude
of the output pulse, and increases the time to charge the capacitor ade­
quately during recording. However, the effect of finite diode back resis­
tance is critical. During the holding operation, relatively long times wiU
elapse, and even minute currents through the diodes could result in no

5.8. FERROELECTRIC STORAGE 253

charge being left on a capacitor, or even a reversal in the sign of the
charge. Thus the diode back resistance determines the maximum per­
missible time interval for a holding operation. To maintain the stored
information, regeneration must be provided at periods less than this
interval. This regeneration cycle is controlled by the memory control
circuits which cause the contents of each cell to be read and re-recorded.

Though the cycle time of the NBS memory using junction diodes is
10 /isec, Kaufman [1959] describes a memory used to assess the difficulty
of reducing cycle time for a 1000 bit plane to 10 nanosec, by using ex­
tremely fast diodes.

5.8. Ferroelectric Storage

Ferroelectrics are crystalline materials which have a permanent elec­
tric dipole moment, and in which the plot of polarization produced by
varying the intensity of an applied electric field, exhibits a hysteresis
loop similar to that of a ferromagnetic material. This hysteresis occurs
because the dipole moment is reversible. Corresponding to the saturation
and remanence of magnetic induction or flux density in a ferromagnetic
material is the saturation and remanence of electric charge in a ferro­
electric material. The use of the term ferroelectric does not imply that
such materials contain any iron, but only that they are analogous, in the
way described, to ferromagnetic materials. Among the ferroelectric ma­
terials are barium titanate, triglycine sulphate, potassium dihydrogen
phosphate, and Rochelle salt. Single crystals of a ferroelectric show a
particularly square hysteresis loop, as indicated in Fig. 5.32(a) which
shows the shape of the hysteresis loop for barium titanate using a 50 ^
vohage. Barium titanate has been investigated most extensively because of
its relatively short switching time (about 1 μscc), high saturation polariza­
tion and high Curie temperature of 120°C which allows operation over a
wide practical temperature range.

The construction of a ferroelectric memory ceh, shown schematically
in Fig. 5.32(b) is similar to that of a capacitor. However, as indicated
in Fig. 5.32(a), the ferroelectric material exhibits an almost square hyster­
esis characteristic instead of the linear relationship between voltage and
charge that exists over the operating range of a capacitor. If a positive
field intensity greater than Ei is applied, and then reduced to zero, a
charge remains. Similarly, if a negative field intensity greater than
-El is apphed and then reduced to zero, a charge -Pr remains. The
applied electric field intensity is equal to the appUed voltage, v, divided
by the crystal thickness. The dynamic capacitance, C/, of the ferroelectric
storage element is equal to the ratio of change in polarization per unit
volume to the change in the appUed field. The capacitance can be shown

254 5. LARGE CAPACITY STORAGE SYSTEMS

Polarization, Z7

c

^ Applied electric
field intensity, i f

(a)

Storage pulse
f o r i I T
Read-out - ^
pulse ^ ±

(c)

Conductors

Ferroelectric
material

(b)

X - 1 Stored

I j w O Stored

FIG. 5.32. Ferroelectric storage, (a) polarization hysteresis curve,
(b) storage cell, (c) read-out circuit

to be equal to the area of the ferroelectric crystal used times dP/dV.
The storage element may be considered as a device with two stable

states, corresponding to + P , . and -Pr. If it is in state + P r and a positive
pulse of voltage is applied, the peak output voltage will be small since
the change in polarization from + P r to point c is small. A typical read-out
circuit is shown in Fig. 5.32(c). Its output capacitance is chosen so that
it has a relatively high capacitance compared to Q , so a low output voltage
can also be explained by the fact that the capacitance, Q , of the storage
element is low between +Pr and point c. If the storage element is in state
-Pr and a positive pulse is applied, the output voltage will be much
higher since the change in polarization from state -Pr to c is large; also
the capacitance of the storage element between —Pr and point c is much
larger than the capacitance of the output capacitor. A 1 is stored by
the application of a negative pulse at the input terminal. Read-out is
obtained by means of a positive voltage pulse. If the cell contains a 1,
i.e., is at state, - P r , a large charging current passes through R producing
a large output signal as shown. If the cell contains a 0, i.e., is at state
+ Pr, application of the read-out pulse produces a small charging current
through R and a negligible output signal. The rectifier prevents storage
pulses from appearing at the output.

Because several independent sets of electrodes can be placed on the
same crystal and satisfactory operation obtained without appreciable cross­
talk between adjacent cells, a ferroelectric storage array can be constructed
as shown in Fig. 5.33. On the two surfaces of a ferroelectric crystal, e.g..

5.8, FERROELECTRIC STORAGE 255

Lower ·
conductors

/ i >3 · · Upper conductors

Ferroelectric crystal

FIG. 5.33. Section of a ferroelectric storage array

barium titanate, conducting bars are vacuum deposited, the conductors on
opposite sides running perpendicular to one another as shown. The con­
ductor widths and spacings may range from 0.2 mm to 0.1 mm, and the
crystal thickness is in the same range. A particular cell is selected by
energizing the appropriate X and Y conductors. Switching can be accom­
plished with pulses of 10 volts ampUtude and a few microseconds dura­
tion. Signal-to-noise ratios of about 10 to 1 can be obtained. A selection
matrix for use with the memory can also be constructed from ferro­
electric elements. A serious problem is that the writing of information into
one part of the store causes partial voltages to be impressed upon un-
selected elements in the store. Even if the polarization of the unselected
sections is only partiaUy reversed by these voltages, the effect of many
write operations is cumulative and may completely reverse unselected ceUs.
One way of overcoming the lack of a definite coercive field is to use a
diode at each ceU to provide a bias which can only be overcome by simul­
taneous appUcation of X and Y select voltages. However, this is an
imeconomic procedure. Another system suggested is to deposit on one
side of the crystal, before deposition of the electrodes, a semiconducting
layer. This provides a nonlinear element at each ceU in an economic way.

At high field strengths (about 5 kv/cm) required for short switching
tunes, if an appUed pulse does not cause switching, another pulse can
be appUed subsequently (as much as 10 min. later) to complete the
switching. Also, there is no threshold field strength below which no
switching occurs, so whatever field strength is applied, reversal wiU occur
provided there is sufficient time for it. The variation of coercive field with
speed of switching in single crystal barium titanate is evidenced by the
fact that for a 50 cycle/sec hysteresis loop, the coercive field is about
twice that for a 1 cycle/sec loop. The coercive field, as a function of fre­
quency, increases up to the point where heating effects cause a decrease.
This indicates the maximum frequency at which the crystal can be oper­
ated. For a practical ceU volume (0.1 mm^ by 0.1 mm thick) operation is
attainable to about 100 kc before heating effects become noticeable.

256 5. LARGE CAPACITY STORAGE SYSTEMS

The principal advantages of the ferroelectric memory are: (1) it is
voltage operated requiring current only of the order of a few milliamps,
and small power consumption; (2) it provides a good density of storage,
a practical 20 x 20 array being obtainable from a crystal surface 1 in.^
and 0.004 in. thick with 0.004 in. conductor widths (100,000 bits/in.^
not counting volume for wiring, connections, etc.)

The major difficulties in the utilization of ferroelectric storage elements
are the following: (1) With present techniques, it is difficult to grow
large single crystals of good quality. This limits the amount of storage
on a single crystal surface to about a 32 X 32 array. (2) Operation above
a critical frequency causes a decrease in the coercive field as a result of
heating effects, and may result in permanent damage to the ferroelectric
properties. This limits the access time to about 10 /xsec. The useful com­
puting speed is limited further by the need for regeneration to prevent
switching by the cumulative effect of successive partial disturb pulses.

Possibilities remain to be explored towards developing a material
with a well defined coercive field. For example, impurities may be intro­
duced into the crystal lattice in such a way that a permanently polarized
surface layer is produced. In this case, the switching energy would be
determined not by the energy to produce new domain walls, but to move
existing ones. There is also the possibiUty that switching could be pro­
duced with lower energy by coherent rotation of the polarization if suffi­
ciently small single domain particles were used. Another possible develop­
ment is the use of thin evaporated films of ferroelectric material. Barium
titanate has already been produced in this form.

LITERATURE

GENERAL REFERENCES

BeU, P. R . , Forbes, G. D . , and MacNichols, E. F., Jr. [1949] "Storage Tubes," in
Waveforms, Radiation Laboratory Series No. 19, McGraw-Hill, New York.

Barkan, H. E. [1961] Advances in magnetism and magnetic materials, Electro-
Technology, 67, No. 2, 80-88

Begun, S. J. [1955] Magnetic Recording, Rinehart, New York.
Bozorth, R. M. [1956] Ferromagnetism, Van Nostrand, New York.
Clapp, L. C. [1961] High speed optical computers and quantum transition memory

devices, Proc. Western Joint Computer Conference, 475-489.
Hershberg, P. I. [1962] Ferromagnetic domains, Electro-Technology, 69, No. 1,

72-82.
Jaynes, E. T. [1953] Ferroelectricity, Princeton Univ. Press, Princeton, N. J.
Kittel, C. [1949] Physical theory of ferromagnetic domains, Rvw. of Modern

Physics, 21, 541-583.
Kittel, C. and Gait, J. K. [1956] Ferromagnetic domain theory, in Solid State Physics,

3, Academic Press, New York.

LITERATURE 257

Knoll, Μ. and Kazan, B. [1952] Storage Tubes and Their Basic Principles, Wiley,
New York.

von Laue, Μ. [1952] Theory of Superconductivity, Academic Press, New York.
Rajchman, J. A. [1961] Computer memories—a survey of the state of the art,

Proc. IRE, 49, 104-127 (includes bibliography of 96 entries).
Shoenberg, D. [1952] Superconductivity (2nd ed.), Cambridge Univ. Press, Cam­

bridge, England.
Staff of Cresap, McCormick and Paget [1962] Random access devices for medium to

large computers, Control Engrg., 9, No. 4, 131-137.
Swanson, J. A. [1960] Physical versus logical coupling in memory systems, IBM J.

Research and Develop. 4, 305-310.
Several authors [1962] A collection of articles on superconductive phenomena, IBM

J. Research and Develop. 6, 3-125.

MAGNETIC HEAD DESIGN

Brower, D. F. [1955] A one turn magnetic reading and recording head for computer
use, IRE National Convention Record, Pt. 4, 95-100.

Clark, D . L. and Merrill, L. L. [1947] Field measurements on magnetic recording
heads, Proc. IRE, 35, 1575.

Fan, G. J. [1961] A study of the playback process of a magnetic ring head, IBM J.
Research and Develop., 5, 321-325.

Hoagland, A. S. [1956a] Magnetic recording head design, Proc. Western Joint
Computer Conference, 26-31.

Hoagland, A, S. [1956b] Magnetic data recording theory: head design, Trans. Amer.
Inst. Elec. Engrs., Pt. I„ 75, 506-512.

Hoagland, A. S. [1958] High resolution magnetic recording structures, IBM J.
Research and Develop., 2, 91-104.

MAGNETIC RECORDING TECHNIQUES

Eadie, D. [1953] EDV AC drum memory phase system of magnetic recording, Elec.
Eng., 72, 590-595.

Fuller, H. W., Husman, P. Α., and Keiner, R. C. [1954] Techniques for increasing
storage density of magnetic drum systems, Proc. Eastern Joint Computer
Conference, 16-21.

Hoagland, A. S. [1955] A logical reading system for nonretum-to-zero magnetic
recording, IRE Trans. El. Comp., EC-4, 93-95.

Hoagland, A. S. and Bacon, G. C. [1960] High density digital magnetic recording
techniques, IRE Trans. El. Comp., 9, 2-11.

Jacoby, M. [1962] A critical study of mass storage devices and techniques with
emphasis on design and criteria, Proc. IRE-PGMIL National Winter Convention
on Military Electronics, 165-179.

Lubkin, S. [1954] An improved reading system for magnetically recorded digital
data, IRE Trans. El. Comp., EC-3, 22-25.

Miyata, J. J. and Härtel, R. R. [1959] The recording and reproduction of signals
on magnetic medium using saturation type recording, IRE Trans. El. Comp.,
EC.8, 159-169.

Potter, J. T. and Michel, P. C. [1952] High-density digital recording system, IRE
Trans. El. Comp., EC-1, 60-72.

Stephen, J. H. and Cooke-Yarborough, E. H. [1956] An interleaved-digit magnetic-

258 5. LARGE CAPACITY STORAGE SYSTEMS

drum store for a transistor digital computer, Proc. Inst. Elec. Engrs. (London),
103, Pt. B, Supplement 3, Convention on Digital-Computer Techniques, 382-389.

Wallace, R. L., Jr. [1951] Reproduction of magnetically recorded signals, Bell Syst.
Tech. J., 30, 1145-1173.

Williams, F. C. and Kilburn, T. [1952] Universal high-speed digital-computers: a
magnetic store, Proc. Inst. Elec. Engrs. (London), 99, Pt. B, 94-106.

MAGNETIC D R U M STORAGE

Alrich, J. C. [1955] Engineering description of the ElectroData digital computer,
IRE Trans. El. Comp., EC-4, 1-10.

Bivans, E. W. [1955] Synchronizing magnetic drum storage speed, Electronics, 28,
140-141.

Booth, A. D. [1960] High speed track selection for a magnetic drum store, Elec­
tronic Engrg., 32, 209-211

Carne, Ε. Β. [1961] Magnetic memory drum design, AlEE Trans., Pt. 1, 79, 749-756.
Clayden, D. O., Page, L. J., and Osborne, C. F. [1956] The magnetic storage drum

on the Ace Pilot model, Proc. Inst. Elec. Engrs. (London), 103, Pt. B, Supple­
ment 3, Convention on Digital-Computer Techniques, 509-514.

Cohen, A. A. [1950] Magnetic drum storage for digital information processing sys­
tems, MTAC, 4, 31-39.

Hollander, G. H. [1961] Drum organization for strobe addressing, IRE Trans. El.
Comp., 10, 722-729.

Hong, K. [1958] Magnetic drum components for high storage density, AIEE Trans.,
Pt. 1, 77, 667-672.

Hughes, E. S., Jr. [1954] The IBM magnetic drum calculator Type 650; engineering
and design considerations, Proc. Western AIEE-IRE-ACM Computer Con­
ference, 140-154.

May, M., Miller, G. P., Howard, R. A. and Shifrin, G. A. [1959] A high speed,
small size magnetic drum memory unit for subminiature digital computers,
Proc. 1959 Eastern Joint Computer Conference, 191-199.

McGuigan, J. H. [1953] Combined reading and writing on a magnetic drum, Proc.
IRE, 41, 1438-1444.

Merry, I. W. and Maudsley, B. G. [1956] The magnetic-drum store of the com­
puter Pegasus, Proc. Inst. Elec. Engrs. (London), 103, Pt. B, Supplement 2,
Convention on Digital-Computer Techniques, 197-202.

Schaffer, R. R. [1960] A magnetic drum with a one megabit storage. Electronic
Industries, 19, No. 3, 114-117.

Seader, L. D. [1958] Magnetic-recording-head selection switch, IBM J. Research
and Develop., 2, 36-42.

Williams, F. C. and West, J. C. [1951] Position synchronization of a rotating drum,
Proc. Inst. Elec. Engrs. (London), 98, Pt. 2, 29-34.

MAGNETIC DISK STORAGE

Hoagland, A. S. [1961] A high track-density servo-access system for magnetic re­
cording disk storage, IBM J. Research and Develop., 5, 287-296.

Noyes, Τ. and Dickinson, W. E. [1956] Engineering design of a magnetic-disk
random-access memory, Proc. Western Joint Computer Conference, 42-44.

Noyes, Τ. [1957] The random-access memory accounting machine: II. The magnetic-
disk, random-access memory, IBM J. Research and Develop., 1, 72-75.

LITERATURE 259

Pearson, R. Τ. [1961] The development of the flexible-disk magnetic recorder, Proc.
IRE, 49, 164-174.

Rabinow, J. [1953] The notched-disc memory, Elec. Eng., 71, 745-749.
Seader, L. D. [1957] A self clocking system for information transfer, IBM J.

Research and Develop., 1, 181-184.

STATIC SENSING

Chapín, D. M. [1949] A sensitive magnetometer for very small areas, Rev. Sei.
Instr., 20, 945-946.

Hageman, D. H. A. [1951] A head for static reading of magnetic recording, M. S.
Thesis, Dept. of Electrical Engineering, MIT.

Kilbum, T., Hoffman, G. R., and Wolstenholme, P. [1956] Reading of magnetic
records by reluctance variation, Proc. Inst. Elec. Engrs. (London), 103, Pt. B,
Supplement 2, Convention on Digital-Computer Techniques, 333-336.

Rubens, S. M. [1951] Static reading of magnetically stored digital information.
Report PX'29501, Contract NObsr-42001, Engineering Research Associates, St.
Paul, Minn., 25 pp.

MAGNETIC CORE MEMORIES AND SWITCHES

Aiken, Wang, and Woo [1948] Static magnetic recording. Harvard Computation
Laboratory Progress Report No. 1, Investigations for the Design of Digital
Calculating Machinery.

Alexander, M. Α., Rosenberg, M., and Stuart-Williams, R. [1956] Ferrite-core
memory is fast and reliable, Electronics, 29, 158-161.

Auerbach, I. L. [1952] A static magnetic memory system for the Eniac, Proc. ACM
Convention, 213-222, Pittsburgh.

Bartik, W. J. and Bonn, T. H. [1956] A small coincident-current magnetic memory,
IRE Trans. El. Comp. EC-5, 73-78.

Best, R. L. [1957] Memory units in the Lincoln TX-2, Proc. Western Joint Computer
Conference, 160-167.

Blachman, N. M. [1956] On the wiring of two-dimensional multiple-coincidence
magnetic memories, IRE Trans. El. Comp., EC-5, 19-21.

Brown, D. R. and Albers-Schoenberg, E. [1953] Ferrites speed digital computers,
Electronics, 26, 146-149.

Carter, I. P. V. [1960] A new core switch for magnetic matrix stores and other
purposes, IRE Trans. El. Comp., 9, 176-191.

Chien, R. T. [1960] A class of optimal noiseless load-sharing matrix switches, IBM
J. Research and Develop., 4, 414-417.

Christopherson, W. A. [1961] Matrix switch and drive system for a low-cost mag­
netic-core memory, IRE Trans. El. Comp., 10, 238-246.

Constantine, G., Jr., [1960] New developments in load-sharing matrix switches, IBM
J. Research and Develop., 4, 418-422.

Di Nolfo, R. S. [1954] Multi-coordinate selection systems for magnetic core storage,
M.S. Thesis, MIT.

Forrester, J. W. [1951] Digital information storage in three dimensions using mag­
netic cores, / . Appl. Phys., 22, 44-48.

Foss, E. D. and Partridge, R. S. [1957] A 32,000-word magnetic core memory,
IBM J. Research and Develop., 1, 102-109.

Haynes, M. K. [1952] Multidimensional magnetic memory selection systems, IRE
Trans. El. Comp., EC-1, 25-32.

260 5. LARGE CAPACITY STORAGE SYSTEMS

Hunter, L. P. and Bauer, E. W. [1956] High-speed coincident-flux magnetic storage
principles, J. Appl. Phys., 27, 1257-1261.

Karnaugh, M. [1959] Magnetic selectors, Annals of the Computation Lab., 3 0 ,
186-191, Harvard Univ. Press., Cambridge, Mass.

Lehman, M. [1961] Serial matrix storage systems, IRE Trans. El. Comp., 1 0 , 247-252.
Marcus, M. P. [1959] Doubling the efficiency of the load-sharing matrix switch, IBM

J. Research and Develop., 3 , 194-196.
Menyuk, N. and Goodenough, J. G. [1955] Magnetic materials for digital com­

puter components, I—a theory of flux reversal in polycrystalline ferromagnetics,
J. Appl. Phys., 26, 8-18.

Minnick, R. C, [1959] Simultaneous access matrix storage systems, in Proceedings
of an International Symposium on the Theory of Switching (Pt. II) , pp. 144-
148, Harvard Univ. Press, Cambridge, Mass.

Minnick, R. C. and Ashenhurst, R. L. [1955] Multiple-coincidence magnetic storage
systems, J. Appl Phys., 26, 575-579.

Papian, W. N. [1953] The MIT magnetic-core memory, Proc. Eastern Joint Com­
puter Conference, 37-42.

Papian, W. N. [1955] New ferrite-core memory uses pulse transformers, Electronics,
28, 194-197.

Raffel, J. I. [1954] Switch for register selection in a magnetic-core memory, M.S.
Thesis, Dept. of Electrical Engineering, MIT.

Raffel, J. and Bradspies, S. [1955] Experiments on a three-core cell for high-speed
memories, IRE National Convention Record, Pt. 4, 64-69.

Rajchman, J. A. [1953] A myriabit magnetic-core matrix memory, Proc. IRE, 4 1 ,
1407-1420.

Robinson, A. Α., Newhouse, V. L., Friedman, M. J., Bindon, D. G. and Carter,
I.P.V. [1956] A digital store using a magnetic core matrix, Proc. Inst. Elec.
Engrs. (London), 1 0 3 , Pt. B, Supplement 2, Convention on Digital-Computer
Techniques, 295-301.

Schlaeppi, H. P. and Carter, I. P. V. [1960] Submicrosecond core memories using
multiple coincidence, IRE Trans. El Comp., 9 , 192-198.

Straley, R., Heuer, Α., Kane, Β., and Tkach, G., [1960] Miniature memory plane for
extreme environmental conditions, / . Appl. Physics, 3 1 , 126s-128s.

Stuart-Williams, R. [1961] Magnetic cores, characteristics and applications. Auto.
Control 1 5 , No. 7, 37-43.

Vogl, N. G., Jr. [1961] A new load-sharing matrix switch. Digest of Technical Papers,
1961 Infi Solid State Circuits Conference, 104-105.

Weisz, R. S. and Rosenberg, M. [1961] Wide temperature range coincident current
core memories, Proc. Western Joint Computer Conference, 207-214.

Younker, E. L. [1957] A transistor-driven magnetic-core memory, IRE Trans. El
Comp., EC-6, 14-20.

NONDESTRUCTIVE READ-OUT OF CORES

Buck, D. A. and Frank, W. I. [1954] Nondestructive sensing of magnetic cores,
Trans. Amer. Inst. Elec. Engrs., Pt. I, 72, 822-830.

Kiseda, J. R., Petersen, H. E., Seelbach, W. C. and Teig, Μ. [1961] A magnetic
associative memory, IBM J. Research and Develop., 5 , 106-121,

Olsson, J. K. A. [1960] A method of storing binary information in ferrite memory
cores with nondestructive readout, Solid-State Physics in Electronics and Tele­
com., 404-410, Academic Press, New York.

LITERATURE 261

Papoulis, A. [1954] The nondestructive read-out of magnetic cores, Proc. IRE, 42,
1283-1288.

Shevel, W. L., Jr. and Gutwin, O. A. [1960] Partial switching, nondestructive-readout
storage systems. Digest of Technical Papers, 1960 Infi. Solid State Circuits
Conf., 62-63.

Tillman, R. M. [1960] Fluxlok—A nondestructive, random-access, electrically alter­
able, high-speed memory technique using standard ferrite cores, IRE Trans. El.
Comp., 9, 323-328.

Thorensen, R. and Arsenault, W. R. [1955] A new nondestructive read for mag­
netic cores, Proc. Western Joint Computer Conference, 111-116.

Widrow, B. [1954] A radio-frequency nondestructive read-out for magnetic-core
memories, IRE Trans. El. Comp., EC-3, 12-15.

ApERTURED FERRITE PLATE

Kaufman, M. M. and Newhouse, V. L. [1958] Operating range of a memory using
two ferrite plate apertures per bit, J. Appl. Phys., 29, 487-488.

Rajchman, J. A. [1957] Ferrite apertured plate for random access memory, Proc.
IRE, 45, 325-334.

Rumble, W. G. and Warren, C. S. [1958] Coincident current applications of ferrite
apertured plates, IRE Wescon Convention Record, Pt. 4, 62-65.

MULTI-APERTURE DEVICES

Abbott, H. W. and Suran, J. J. [1957] Temperature characteristics of the transfluxor,
IRE Trans. Electron Devices, 4, 113-119.

Hammel, D. G., Morgan, W. L. and Sidnam, R. D. [1959] A multiload transfluxor
memory, Proc. Western Joint Computer Conference, 14-21.

Rajchman, J. A. and Lo, A. W. [1955] The transfluxor—a magnetic gate with variable
setting, RCA Review, 16, 303-311.

Rajchman, J. A. and Lo, A. W. [1956] The transfluxor, Proc. IRE, 44, 321-332.
Vinal, A. W. [1961] The development of a multi-aperture reluctance switch, Proc.

Western Joint Computer Conference, 443-474.
Wanlass, C. L. and Wanlass, S. D. [1959] BIAX high speed magnetic computer ele­

ment, 1959 WESCON Convention Record, Pt. 4, 40-54.

TWISTORS

Bobeck, A. H. [1957] A new storage element suitable for large sized memory arrays
—the twistor. Bell Syst. Tech. J., 36, 1319-1340.

De Buske, J. J., Janik, J. Jr., and Simons, B. H. [1959] A card changeable non­
destructive readout twistor store, Proc. Western Joint Computer Conference,
41-46.

Looney, D. H. [1959] A twistor matrix memory for semipermanent information,
Proc. Western Joint Computer Conference, 36-41.

Preston, K., Jr. and Simkins, Q. W. [1959] Twistor buffer-store, IRE-AIEE Solid-
State Circuits Conference, Philadelphia.

MAGNETIC FILM STORAGE

Bittmann, Ε. Ε. [1959a] Thin film memories, IRE Trans. El. Comp., EC-8, 92-97.
Bittmann, Ε. Ε. [1959b] Using thin films in high speed memories. Electronics, 32,

55-57.

262 5. LARGE CAPACITY STORAGE SYSTEMS

Blois, M. S., Jr. [1955] Preparation of thin films and their properties, / . Appl. Phys.,
26, 975-980.

Dietrich, W. and Proebster, W. E. [1959] Millimicrosecond magnetization reversal
in thin magnetic films, IBM J. Research and Develop., 3j 375-376.

Dietrich, W., Proebster, W. E., and Wolf, P. [1960] Nanosecond switching in thin
magnetic films, IBM J. Research and Develop., 4, 189-196.

Meier, D. A. [1959] A millimicrosecond magnetic switching and storage element,
J. Appl. Phys., 30, Supplement, 45S-46S.

Petschauer, R. J. and Turnquist, R. D. [1961] A nondestructive readout film mem­
ory, Proc. Western Joint Computer Conference, 411-25.

Pohm, A. V. and Rubens, S. V. [1956] A compact coincident-current memory, Proc.
Eastern Joint Computer Conference, 120-123.

Pohm, A. V. [1960] Magnetic film memories, a survey, IRE Trans. El. Comp., 9,
308-314.

Raffel, J. [1959] Operating characteristics of a thin-film memory, / . Appl. Phys., 30,
Supplement, 60s-61s.

Raffel, J. I., Crowther, T. S., Anderson, H. A. and Herndon, T. O. [1961] Magnetic
film memory design, Proc. IRE, 49, 155-164.

Smith, D. O. [1958] Static and dynamic behavior of thin Permalloy films, / . Appl.
Phys., 29, 264-273.

SUPERCONDUCTING STORAGE

Buck, D. A. [1956] The cryotron—a superconductive computer component, Proc.
IRE, 44, 482-493.

Burns, L. L., Jr., Alphonse, G. W. and Leek, G. W. [1961] Coincident-current super­
conductive memory, IRE Trans. El. Comp., 10, 438-446

Crittenden, E. C , Cooper, J. N. and Schmidlin, F. W. [1960] The "persistor"—a
superconducting memory element, Proc. IRE, 48, 1233-1246.

Crowe, J. W. [1957] Trapped-flux superconducting memory, IBM J. Research
Develop., 1, 294-303.

Davies, P. M. [1962] A superconductive associative memory, Proc. AFIPS Spring
Joint Computer Conference, 79-88.

Garwin, R. L. [1957] An analysis of the operation of a persistent-supercurrent
memory cell, IBM J. Research and Develop., 1, 304-308.

Newhouse, V. L. [1961] Superconductive circuits for computing machines, Electro-
Technology, 67, No. 4, 78-89.

Newhouse, V. L, and Fruin, R. E. [1962] A cryogenic data addressed memory, Proc.
AFIPS Spring Joint Computer Conference, 89-99.

Newhouse, V. L., Bremer, J. W., Edwards, H. H. [1960] An improved film cryotron
and its application to digital computers, Proc. IRE, 48, 1395-1404.

Rhoderick, Ε. Η. [1959] Superconducting computer elements, Brit. J. Appl. Phys.,
10, 193-198.

Rosin, R. F. [1962] An organization of an associative cryogenic computer, Proc.
AFIPS Spring Joint Computer Conference, 203-212.

Seeber, R. R. [1960] Associative self-sorting memory, Proc. 1960 Eastern Joint
Computer Conference, 179-187.

Seeber, R. R. and Lindquist, A. B. [1962] Associative memory with ordered retrieval,
IBM J. Research and Develop., 6, 126-136.

LITERATURE 263

Smallman, C. R., Slade, A. E., Cohen, M. L. [1960] Thin-film cryotrons, Proc, IRE,
48, 1562-1582.

TUNNEL -DlODE STORAGE

Beck, E. R., Savitt, D. A. and Whiteside, A. E. [1961] Tunnel diode storage using
current sensing, Proc. Western Joint Computer Conference, 427*442.

Berry, D. L. and Fisch, Ε. Α. [1961] High-speed tunnel-diode memory. Digest of
Technical Papers, 1961 Int'L Solid State Circuits Con f., 112-113.

Chaplin, G. B. B. and Thompson, P. M. [1961] A fast word organized tunnel-diode
memory using voltage mode selection. Digest of Technical Papers, 1961 Infi
Solid State Circuits Conference, 40-41.

ELECTROSTATIC STORAGE
W i L L U M S TUBES

Eckert, J. P., Jr., Lukoff, H., and Smoliar, G. [1950] A dynamically regenerated
electrostatic memory system, Proc. IRE, 38, 498-510.

Edwards, D. B. G. [1956] The design and operation of a parallel-type cathode-ray
tube storage system, Proc. Inst. Elec. Engrs. (London), 103,, Pt. B, Supplement
2, Convention on Digital-Computer Techniques, 319-326.

Graham, M. [1956] An improved method for Williams storage, IRE Trans. El.
Comp., EC-5, 140.

Haeff, A. V. [1947] A memory tube, Electronics, 20, 80-83.
Kilbum, T. [1953] Universal high-speed digital computers: a decimal storage system,

Proc. Inst. Elec. Engrs. (London), Pt. 2, 100, 513-522.
Logue, J. C , Brenneman, A. E., and Koelsch, A. C. [1953] Engineering experience

in the design and operation of a large-scale electrostatic memory, IRE National
Convention Record, Pt. 7, 21-29.

Williams, F. C. and Kilbum, T. [1949], [1950] A storage system for use with
binary-digital computing machines, Proc. Inst. Elec. Engrs. (London), 96, Pt. 2,
183-202, Pt. 3, 77-100, 97, Pt. 4, 453-454.

Williams, F. C , Kilbum, T., Litting, C. N. W., Edwards, D. B. G., and Hoffman,
G. R. [1953] Recent advances in cathode-ray storage, Proc. Inst. Elec. Engrs.
(London) Pt. 2, 100, 523-543.

Wong, S. Y. [1955] High-density Williams storage, IRE Trans. El. Comp., 4,
156-158.

BARRIER-GRID TUBES

DeLano, R. B., Jr. [1954] A large-capacity storage tube for digital computer appli­
cations, IRE National Convention Record, Pt. 3, 125-130.

Graham, M., Miller, G. L., Pate, H. R, and Spinrad, R. [1959] The design of a
large electrostatic memory, IRE Trans. El. Comp., 8, 479-485.

Hiñes, Μ. Ε., Chruney, Μ., and McCarthy, J. A. [1955] Digital memory in barrier-
grid storage tubes Bell Syst. Tech. J., 34, 1241-1264.

HOLDING-GUN TUBES

Dodd, S. H., Klemperer, H., and Youtz, P. [1950] Electrostatic storage tube, Elec.
Eng., 69, 990-995.

264 5. L A R G E C A P A C I T Y S T O R A G E S Y S T E M S

THE SELECTRON

Rajchman, J. A. [1951] The selective electrostatic storage tube, RCA Rev., 1 2 ,
53-97.

DIODE-CAPACITOR STORAGE

Conway, A. C. [1959] A fast random-access diode-capacitor store using transistors,
Proc. lEE, Pt. B., 1 0 6 , Suppl. 16, 657-662.

Kaufman, Μ. Μ. [1959] Millimicrosecond diode-capacitor memory, Proc. Natl. Elec­
tronics Conf., 1 5 , 215-225, Natl. Electronics Conf. Inc., Chicago.

Holt, A. W. [1952], [1953] An experimental rapid access memory using diodes and
capacitors, Proc. of ACM Toronto Meeting, 133-141; NBS Electronic Computer
Lab. Report, 133-141.

Slutz, R. J., Holt, A. W., Witt, R. P., and Friedman, D. C. [1955] Diode-capacitor
memory, NBS Circular 551, Computer Development at the NBS, 102-107.

LUMPED AND DISTRIBUTED CONSTANT DELAY LINES

Anderson, J. R. [1953] Electrical delay lines for digital computer applications,
IRE Trans. El. Comp., E C - 2 , 5-13

Brillouin, L . N. [1948] Electromagnetic delay lines. Proc. Symp. on Large-Scale
Digital Calculating Machinery, 1947, 110-124, Harvard Univ. Press.

Scarrott, G. G., Harwood, W. J., and Johnson, K. C. [1956] Electromagnetic delay
networks for digital storage, Proc. Inst. Elec. Engrs. (London), 1 0 3 , Pt. B,
Supplement 3, Convention on Digital-Computer Techniques, 476-482.

ACOUSTIC DELAY LINE STORAGE

Arenberg, D. L . [1948] Ultrasonic solid delay lines, / . Acoust. Soc. Am., 2 0 , 1-26.
Arenberg, D. L . [1954] Ultrasonic delay lines, IRE National Convention Record,

Pt. 6, 63-72.
Auerbach, L L. , Eckert, J. P., Jr., Shaw, R. F., and Sheppard, C. B. [1949] Mercury

delay line memory using a pulse rate of several megacycles, Proc. IRE, 3 7 ,
855-861.

Beveridge, H. N. and Keith, W. W. [1952] Piezoelectric transducers for ultrasonic
delay lines, Proc. IRE, 4 0 , 828-835.

Emslie, A. G., Huntington, H. B., Shapiro, H., and Benfield, A. E. [1948] Ultra­
sonic delay lines, / . Franklin Inst., Pt. II, 2 4 5 , 101-115.

Fagen, Μ. D. [1951] Performance of ultrasonic vitreous silica delay lines, Proc.
Natl. Electronics Conference, 7 , 380-389.

Huntington, H. B., Emslie, A. G., and Hughes, V. W. [1948] Ultrasonic delay lines,
J. Franklin Inst., Pt. I, 2 4 5 , 1-24.

Mapleton, R. A. [1952] Elastic wave propagation in solid media, J. Appl. Phys., 2 3 ,
1346-1354.

May, J. E. [1954] Characteristics of ultrasonic delay lines using quartz and barium
titanate ceramic transducers, / . Acoust. Soc. Am., 2 6 , 347-355.

Mebs, R. W., Darr, J. H., Grimsley, J. D. [1953] Metal ultrasonic delay lines, NBS
Tech. News Bull., J. Research NBS, 5 1 , 209.

Newman, E. Α., Clayden, D. O. and Wright, M. A. [1953] Mercury delay line
storage system of the ACE pilot model electronic computer, Proc. Inst. Elec.
Engrs. (London), Pt. 2, 1 0 0 , 445-452.

Pennell, E. S. [1952] Vitreous silica for ultrasonic delay line applications, Proc.
Natl. Electronics Conference, 8, 799-810.

LITERATURE 265

Ryan, R. D. [1955] A mercury delay line storage unit, / . Brit. IRE, 15, 419-427.
Spaeth, D. A„ Rogers, T. F., and Johnson, S. J. [1954] Wide-band large dynamic

range fused-quartz delay lines for increased capacity high-speed computer
memories, IRE National Convention Record, Pt. 6, 73-76.

MAGNETOSTRICTIVE DELAY LINES

Beck, R. M. [1960] A high-speed serial general-purpose computer using magneto­
strictive delay line storage, Proc. I960 Eastern Joint Computer Conference, 283-
297.

Bradbury, E. H. [1951] Magnetostrictive delay line, Elec. Commun., 28, 46-53.
Chaplin, G. B. B., Hayes, R. E., and Owens, A. R. [1955] A transistor digital fast

multiplier with magnetostrictive storage, Proc. Inst. Elec. Engrs. (London), Pt. B,
102, 412-425.

Fairclough, J. W. [1956] A sonic delay-line storage unit for a digital computer,
Proc. Inst. Elec. Engrs. (London), 103, Pt. B, Supplement 3, Convention on
Digital-Computer Techniques, 491-496.

Robbins, R. C. and Millership, R. [1954] Applications of magnetostrictive delay
lines, Proc. Symp. on Automatic Digital Computation, National Physical Lab­
oratory, 1953, 199-212, London.

Rothbart, A. and Brown, A. J. [1962] What designers should know about magneto­
strictive delay lines, Electronics, 35, No. 15, 55-59.

Rothbart, A. and Brown, A. J. [1962] How to Specify Magnetostrictive delay lines,
Electronics, 35, No. 20, 54-57.

Scarrott, G. G. and Naylor, R. [1956] Wire-type acoustic delay lines for digital
storage, Proc. Inst. Elec. Engrs. (London), 103, Pt. B, Supplement 3, Conven­
tion on Digital-Computer Techniques, 497-508.

Williams, R. C. [1959] Theory of magnetostrictive delay lines for pulse and con­
tinuous wave transmission, IRE Trans. Ultrasonics Engrg., 7, 16-38.

FERROELECTRIC STORAGE

Anderson, J. R. [1952] Ferroelectric storage elements for digital computers and
switching systems, Elec. Eng., 71, 916-922; also. Bell Telephone Laboratories
Monograph 2014.

Anderson, J. R. [1956] A new type of ferroelectric shift register, IRE Trans. El.
Comp., 5, 184-191.

Buck, D. A. [1952] Ferroelectrics for digital information storage and switching,
M. S. Thesis, E. E. Dept., MIT.

Campbell, D. S. [1957] Barium titanate and its use as a memory store, / . Brit. IRE,
17, 385-395.

Prutton, M. [1959] Ferroelectrics and computer storage, / . Brit. IRE, 19, 93-102.
Pulvari, C. F. and McDuffie, G. E. Jr., [1958] Scanners for ferroelectric memory

capacitors, IRE Trans. El. Comp., EC-7, 34-40.
Pulvari, C. F. [1955] Memory matrix using ferroelectric condensers as bistable

elements, J. ACM, 2, 169-185.

PHOTOGRAPHIC STORAGE

King, G. W., Brown, G. W., and Ridenour, L. N. [1953] Photographic techniques
for information storage, Proc. IRE, 41, 1421-1428.

Lovell, C. A. [1958] High-speed, high-capacity photographic memory, Proc. 1958
Eastern Joint Computer Conf., 34-38.

6. Arithmetic Operations

In Section 6.1 a number of the schemes which have been devised to
perform certain elementary operations in a digital computer are described,
namely, counting, generation of pulse patterns, addition, subtraction,
multiplication, and division.

Section 6.2 describes certain basic procedures of numerical analysis,
which can be used either directly as the basis for mechanization or in­
directly as the basis for constructing programs by means of which op­
erations for the extraction of roots and the generation of trigonometric
functions may be performed.

Techniques for scaling a problem, i.e., taking measures to assure
that the values of all variables generated in the course of computing will
be within the bounds of the machine's capacity are described in Section
6 . 3 .

Section 6.4 describes certain schemes that have been devised for
converting numbers from binary to decimal notation and vice versa.
These schemes are used principally to allow information in decimal form
to be entered into or brought out of a binary digital computer.

6.1. Algorithms and Logical Designs for Mechanization of Basic
Arithmetic Operations

6 . 1 . 1 . COUNTING

6 . 1 . 1 . 1 . Counting with Set-Reset Flip-flops

Each of η flip-flops in a collection can be assigned one of the weights
2 ^ - ^ . . . 2^, 2S 2^ and so interconnected that signals that appear serially
from a source S cycle the flip-flops through 2" states starting with zero and
ending with 2'»-^ (in binary representation), and after state 2*»-̂ reset the
counter to zero. The flip-flop input signals can be modified to allow re­
setting to zero at other times, e.g., for clearing prior to counting, or after
reaching the value 9 if straight binary-coded decimal representation (see
Table 6.8, Section 6 . 1 . 3 . 1) is to be used.

As an example, a counter comprised of three set-reset type flip-flops
will be described. Table 6.1 shows the successive states of each flip-flop.

2 6 6

6.1. MECHANIZATION OF OPERATIONS 267

As ^2 ^ 1 Time

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

The nature of the signals required at the inputs to each flip-flop may be
determined by inspection of the table, for an input signal to a particular
flip-flop must be supplied only when the state of that flip-flop must
change to represent the next count. The input requirements of each flip-
flop will be considered in turn. Flip-flop Ai (representing the least sig­
nificant bit of the count) must change from one state to the other each
time a signal from S appears, i.e., if the flip-flop is in state Ai, the next
signal from 5 must set the flip-flop to state Αχ and vice versa.
Therefore

αχ = AiS αχ = Αχ3

The second flip-flop A2 changes from state 0 to 1, i.e., from A2 to A2
upon receipt of a signal from 5 only if the state A2AX existed prior to
receipt of the signal. It changes from 1 to 0, i.e., from A2 to A2 only if
the preceding state was A2A1. Therefore

0 2 ~ Α2Αχ5 ¿ 2 ~ Α2Αχ8

Similarly

¿73 = A2A2AXS äi = ΑιΑ2Αχ5.

The six required input signals to the three flip-flops may be formed by
a diode gating network as shown in Fig. 6.1(a). Note that the technique
of pyramiding, described in Chapter 4, is employed in the forming of
this network. If, instead of set-reset flip-flops, single-input flip-flops are
used, only three input signals are required, namely

Ci = S C2 = Ci5 C3 = C2C1S.

This results in a simpler gating network, as shown in Fig. 6,1(b).

TABLE 6.1. Successive states of a three stage binary counter

268 6. ARITHMETIC OPERATIONS

" 3

^2

(a)

i
C2 Tí

(b)

FIG. 6 . 1 . Diode gating network for generating input signals to a three stage binary
counter composed of (a) R-S flip-flops, (b) Τ flip-flops

6.1.1.2. Bistable Counter Circuits

The circuit shown in Fig. 6.2(a) is similar to the complement type

Carry output

r
Input -χ

Counter

Counter
I
Counter Η Counter

Pulse input

(b)

FIG. 6.2. (a) A bistable counter circuit, (b) Cascading of circuits to form a
multistage counter

of static flip-flop. Successive pulses (in this case, negative) on the input
line cause first one amplifier and then the other to be nonconducting.
The counter is said to be in the 1 or 0 state depending on which am-
phfier is conducting. Upon application of the input pulse both amplifiers

6.1. MECHANIZATION OF OPERATIONS 269

are cut off. After the applied pulse has died away, the circuit becomes
quiescent with the previously nonconducting amplifier now conducting
and vice versa. The carry output of the circuit is simply the output of
the amplifier which produces a negative pulse when the counter changes
from the 1 to 0 state. A positive pulse appears on the carry output lead
when the state of the circuit changes from 0 to 1, but this has no effect
v/hen used as the input to another bistable counter.

6.1.1.3. Multistage Counters

6.1.1.3.1. CONNECTION OF BISTABLE COUNTER CIRCUITS IN CASCADE.
A multistage counter can be formed by connecting bistable counter cir­
cuits in cascade, as shown in Fig. 6.2(b). Such circuits produce a count
by summing and storing a unitary weighted pulse stream input. Pulses
can be applied to the input at intervals not less than the operating time
of one stage. The inputs can be synchronous or not. The time required
to assume a new steady state depends on the length of carry propagation.
For an η stage counter the maximum time is nd, where d is the interval
from when an input waveform to a stage reaches a critical value to when
the output waveform of that stage reaches a critical value.

6.1.1.3.2. MULTISTAGE COUNTERS WITH ANTICIPATORY CARRY. In­
spection of the counting process in the binary number system shows that
upon the addition of an increment 2-»», any columnar bit changes (from
1 to 0 or 0 to 1) only if all less significant bits contain 1. Therefore,
upon receipt of an input pulse t, the condition for any stage B< of a
counter to change is provided by the signal

bi = Bi-iBi-2 . . . ^0^·

If one were to mechanize the circuit directly from such equations, diffi­
culties would occur, for a counter having a large number of stages, because
of the many terms involved in the AND gate inputs to the more significant
stages. The circuit shown in Fig. 6.3(a) alleviates this condition at the
cost of a slight decrease in speed. It operates as follows: The current
count is stored in a group of bistable counter circuits. Upon receipt of
an input pulse the first stage may generate a carry. This carry is propa­
gated through a series of gates, each of which is controlled by the state
of a bistable counter circuit. The carry propagation is stopped by the
first counter circuit in the 0 state. It takes less time to propagate a
carry through a gate than to trigger a counter circuit. Therefore, each
counter circuit can be triggered by the counter circuit in the next less

270 6. ARITHMETIC OPERATIONS

Carry propagation gates

_ A N D . A N D

1 1 1
Pulse input

Counter Counter Counter
Pulse input

(a)

Carry

Bz By

ANDj-igz^zH^yPn | A N D [- S | B \ HAND

Count command

(b)

FIG. 6.3. Multistage counters with a two-input/stage carry propagation line,
(a) using bistable counter circuits, (b) using R-S flip-flops

significant position only after it has served the function of passing a
carry to the succeeding stage. The maximum time to reach the steady
state is dependent on the speed of the carry propagation circuit.

The counter shown in Fig. 6.3(b) utihzes set-reset flip-flops. Its
operation is based on the fact that any stage Bi should change from 0 to 1
or 1 to 0 in accordance with the following equations

bi = BiBi^i . . .

bi = BiBi^i . . . ^0^·

Upon presentation of an input pulse t, a carry is propagated from the
least significant end of the counter until it reaches a stage in the 0 state.
The duration of the count command signal must be greater than the
propagation time of the maximum carry chain. Each stage that receives
a carry signal is caused to change state after it has served the function
of passing a carry to the succeeding stage. The maximum time to reach
the steady state is dependent on the speed of the carry propagation circuit.

6.1. MECHANIZATION OF OPERATIONS 271

6.1.1.4. Dynamic Binary Counters

Let us consider how a counter may be constructed from a number of
trigger type dynamic flip-flops of the type shown in Fig. 3.16(b). The
input-output equation for the least significant stage Ai is simple since
the least significant bit alternates between 0 and 1 with each input pulse.
Any other stage should change state when there is a transition in the
preceding stage from 1 to 0. This transition is recognized by sensing
the present output of a stage and its output one pulse period earUer.
Accordingly, the input-output relations for a two-stage coimter would be

(^i),+i = (A,),T + {A,),T

{A2)in = iÄ2)i [iA,UÄi)i^i] + (^2).[(^i).(^i)i+i]
where Ai, A2 represent the first and second stages, respectively. The term
{Ä2)iiAi)i(A\)i^i states that if the second stage is in the 0 state and
stage one is changmg from 1 to 0, stage two should change from 0 to 1.
The term (A2)i[{Ai)i(Ai)i^i] states that if A2 is in the 1 state, it
should not change to 0 untU stage one changes from 1 to 0. Note that the
expression for (^ 2) i + i is of the same form as (^ i) i + i .

With the arrangement shown in Fig. 6.4 a new accumulated coimt

Unit
delay

— ^ I 1 Ai(Ai('\AkZ...A\Tx

FIG. 6.4. Typical stage of a dynamic binary counter

is provided after only one pulse period. Each stage employs a trigger
type of dynamic flip-flop as before. However, there is a difference in the
input-output expression for each stage. In this case, each stage changes
state whenever aU the preceding stages are on and a count pulse Ί is
applied. A significant difference in the two counters is that m the latter
the number of variables in the inputs to the OR gate increases as the
number of stages in the counter increases. This is not so in the case of
the former counter.

6.1.1.5. Use of a Multibit Delay Line as a Counter

An n-bit number stored in a delay Une can be changed by a single
positive or negative increment at a time by means of a simple logical
scheme. The scheme is based on the special nature of the change which

272 6. ARITHMETIC OPERATIONS

can occur when 2-** is added to or subtracted from a number. When
2-»* is added to a binary number, starting from the least significant bit
each 1 in a sequence of I's will be changed to 0, and the first 0 that is
encountered will be changed to a 1, at which point the process stops,
i.e., the more significant bits will be left unchanged. For example

.011001111 Original number

.000000001 - f 2 - ^

.011010000 Sum

This simple operation can be mechanized as follows: Assume that the
bits of the original number appear serially, being represented by succes­
sive states of a flip-flop A. The only equipment required to add 2"^ to
this number is another flip-flop Β and a simple combinational circuit.
The flip-flop Β will always be set to the 1 state prior to the addition
process, and will be set to the 0 state by the first 0 that appears in the
original number, i.e., by the signal Ä, The correct sum may be formed
by an exclusive OR (i.e., a sum modulo 2) gate having the input variables
A, B. The arrangement is shown in Fig. 6.5. The actual process that

Β

Timing
signal

Exclusive
j q O R

AB^AB
Arithmetic sum

FIG. 6.5. Logical arrangement for serial addition of a single increment

takes place is indicated by the successive states A, Β

.011001111 Successive states of A

.000011111 Successive states of Β

.011010000 Α^Λ-ΑΒ
The algorithm for subtraction of a single increment states that each se­
quence of O's in the given number is changed to a sequence of I's, and
that the first 1 encountered is changed to a 0 at which point the process
stops. By a simple modification, the above circuitry may also be used for
subtraction of a single increment. The combinational circuit remains
the same, but it is necessary to alter the 0 set input signal to the flip-flop
B, Before either operation takes place, a signal Ρ or indicating an addi-

6.1. MECHANIZATION OF OPERATIONS 273

tion or subtraction, respectively, is provided, and the 0 set input signal to
the flip-flop Β becomes ÄP + AP, Therefore, during subtraction, the
flip-flop Β will be set to 1 initially as before, but now it will be set to the 0
state by the first 1 that appears in the original number A , The normal
and the mechanized pseudo-operation for subtraction are illustrated below

.011001100 Original number

.000000001 - 2 -

.011001011 Difiference

.011001100

.000000111
Successive states of A
Successive states of Β

.011001011 ΑΕΛ-ΑΒ

Three-state arrangement:

Flip-Flop A\

ä=B

Flip-Flop B:
b^C
b^C

FUp-Flop C:
c^A

Sequence of States:

Flip-Flop A:
a = CÄ
ä = CA

Flip-Flop Β:
b = A
b = A

Flip-Flop C:
c = Β

(a)

c Β A
0 0 1
1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0

Information flow

Sequence of States:

C
1
1
0
1
0
0
1

Β
1
o
1
o
o
1
1

A
O
1
O
O
1
1
1

HC BHAH

Information flow

(b)

FIO. 6.6 Three-stage pattern generators

274 6. ARITHMETIC OPERATIONS

6.LL6. Pattern Generators

If a group of flip-flops is to be used solely for the function of generat­
ing a number of distinguishable states (which are used to control other
operations), it is not necessary that the states change in the same sequence
as would a counting device. By eliminating the restriction, a saving can
be effected in the number of gating elements required to generate the
flip-flop input signals. Strictly speaking, it is not necessary that a counting
device change states in a sequence of successively greater binary number
representations, since it is possible to translate from any code to another.
However, it is simpler to perform conventional arithmetic operations on
the outputs of such counters.

Figure 6.6 shows the input equations for a three stage pattern genera­
tor, composed of RTST flip-flops (Section 3.7.1, Fig. 3.14(d)) . If R-S
flip-flops are used, the input equations to flip-flop A in Fig. 6.6(a) would be

a =^ BÄ ä = ΒΑ.
This circuit arrangement has the characteristic that the configuration 000
is not used. If the circuit should ever get into this state, it could not
normally leave it. This possibility may be avoided by altering the input
equation a to

a = BÄ + CB.

The term CS has no effect other than to move the circuit from state 000
to 001.

A slightly different arrangement is shown in Fig. 6.6(b). It also has
the characteristic that the configuration 000 is not used and represents a
stalled state. To provide for getting out of this state, the input equation a
is changed as follows

a = CÄ + CE.
In addition to generating control signals of the form f(A, B, C) ,

circuits of this type can also be used to generate cycles of sequential
pulse patterns. For example, in Fig. 6.6(b) the A output of flip-flop A
generates the pattern 0100111.

6.1. MECHANIZATION OF OPERATIONS 275

FIG. 6.7. A pattern generator formed from a magnetic shift register
with end-around shift

A pattern generator can also be based on a shift register. For example,
a magnetic shift register such as that shown schematically in Figure 6.7
could be used. (The basic operation of such registers is described in Sec­
tion 4.9). By using only an end-around feedback, as in Figure 6.7, a
pattern once inserted will be propagated so long as shift pulses are applied
to ti and / 2 . The length of this pattern is n, where η is the number of
stages. By tapping off at various points, e.g., at ei and €2, one can obtain
the same sequential pattern with various displacements in time. Longer
sequences (up to 2*»-^) can be obtained by feeding back signals from
intermediate points and combining these with the end-around feedback
by means of an OR gate or other logic.

6.1.2. BINARY ADDITION

6.7.2.7. Serial Binary Adders

The addition of two binary numbers, represented by ^ 1 . . . ^n, and
Bi . . . Bn, is accomplished by the generation of sum Si and carry d bits
respectively, as shown in Table 6.2, where Ci_i indicates the carry bit
produced in the preceding bit column! For example, in the decimal sys­
tem, the addition of 6 and 7 produces a sum of 3 (modulo 10) and a
carry of 1, so the answer is 13.
Several methods of addition are known. They fall into two classes, namely
those in which the number of I's in corresponding bit positions of the ad­
dends and the generated carry pulse trains are counted, and those in which
logical operations are built up to obey the addition table.

6.1.2.1.1. ADDITION BY COUNTING. Addition may be performed
either by a digital or analog summation of increments. In the digital
method, pulses representing corresponding bits of Ai, Bi, and d-i are
arranged to occur at slightly different times and are counted by a two

276 6. ARITHMETIC OPERATIONS

Number of Ts S^
C<_i mA^,B^,C^_J^ (carry) (sum)

0 0 0

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1

1 1 0

1 1 1

1 0 1

2 1 0

3 1 1

stage binary counter. Then the sum and carry bits are obtained from in­
spection of the states of the first and second stages, respectively. After­
wards, the counter is reset to zero pending the arrival of the next bits of
the input numbers and the generated carry. The timing of the signals
involved m this method is indicated in Fig. 6.8. The Ci_i pulse is

θ
Reset
pulses

I bit period

FIG. 6 . 8 . Relative timing of signals to a sum and carry producing counter

counted first so that the output pulse, which may occur at the same time
as the reset pulse, can follow the input pulses as closely as possible.
Even so, sufficient time to count two pulses must elapse between the first
of the inputs and the output signals. This delay in operation is unavoidable
with an adder of this type and may usually be considered a serious dis­
advantage.

In the analog technique, the input pulse trains are arranged to occur
simultaneously. The amplitudes of these signals are added, and the number
of I's deduced from the level of the combined signal. Thus the output is
available almost immediately (except for delays inherent in the natural

TABLE 6 . 2 .

C,
Bi

0 0 o

6.1. MECHANIZATION OF OPERATIONS 277

time constants of any electrical circuit). A block diagram of a type of
level discriminating adder is shown in Fig. 6.9(a). The sum of the ampU-

β Amplitude
adder

Delay

I-level
discriminator

2-level
discriminator!

3-level
discnminotorj

Carry

(a)

S u m

G

Amplitude
adder # 1

Amplitude
adder # 2

Delay
1

A Β C¡-\ A Β C¡-\

(b)

FIG. 6.9. Level discriminating adders

tudes of the pulse trains Bu Q - i is apphed to three discriminators of
levels 1, 2, and 3, respectively. Each produces an output pulse if the
corresponding number of inputs is 1. An improved and simpler form of
level discriminating adder, shown in Fig. 6.9(b), is based on the fact that
the sum bit may be obtained by subtracting twice the value of the carry
bit from the number of Ts in Ai, B^ and Ci_i. The output of amphtude
adder No. 1 is of the opposite sign to the inputs, and its level is limited so
that the same output is produced from two or three I's; there is no
output for a single 1 input. The output, after being delayed and
restored to the original polarity, is designated Ci_i. The amphtude adder
No. 2 gives an output pulse when / !{+ ßi -h Ci_i - Id = 1, smce Q
is of opposite sign to Au Bi, and Q - i , and these pulses form the sum bits.

Neither level discriminating adder produces a correct answer until the
input pulses have aU reached their standard amplitudes. Normally,
spurious results may be avoided by suppressing the output of the adder
until the input pulses have reached their final amplitude. To make the
levels sufficiently distinct, the permissible variation in the nominal amph-
tudes of the input and Q pulses are usuaUy held to within ± 5 % . Though

2 7 8 6. ARITHMETIC OPERATIONS

this analog adding circuit requires a higher precision of operation than
digital circuits, the precision is well within the capabilities of the state of
the art.

6 . 1 . 2 . 1 , 2 . ADDITION BY USE OF LOGICAL OPERATIONS. If a circuit is
to be used only to add any single power of two to an arbitrary number,
then a simplification is possible over the circuit required to add two
arbitrary numbers. Consider Example 6 .1

Example 6.1
η 7 6 5 4 3 2 1 0
^ = 0 1 0 1 1 0 1 1
23 = 0 0 0 0 1 0 0 0

5^ = 0 1 1 0 0 0 1 1 5^ = Sum (modulo 2) of (A, 2«, C^+j)
= 0 0 1 1 0 0 0 0 C^ = carry bit from the (i - l) t h order.

Since 2^ and d can never be 1 at the same time, the adder circuit re­
quired will never have to deal with three input signals simultaneously,
but only two. A schematic of such a circuit is shown in Fig. 6 . 1 0 . Since
2^ and the delayed carry can never be 1 simultaneously, their logical sum
may be thought of as a conventional single binary input signal, and is
represented in Fig. 6 . 1 0 by B. A circuit that accepts two binary inputs,

7 ^

Exclusive
OR

AND

I bit
delay

-S^AB ^AB

-C^AB

FIG. 6.10. A half-adder

A, Β and produces the output signals S and C as shown in Fig. 6 . 1 0 is
termed a half-adder. The term half-adder derives from the fact that a
full adder can be constructed from two half-adders. This can easily be
demonstrated. First, consider the equations for the sum and carry of an
adder with arbitrary inputs, A^ B^ These equations can be obtained from
Table 6 .2 by noting the set of values of Au B^ and Ci_i for which St
and Ci, respectively are 1

Si = AiBid^i + AiBid^i + AiBid^i + AiBiCi (6 - 1)

Ci = AiBiCi^i + AiBiCi.i + AiBid^i + AiEid^i. (6-2)

6.1. MECHANIZATION OF OPERATIONS 279

When the outputs S and C of one half-adder are used as inputs to another
half-adder as shown in Fig. 6.11, equivalent expressions for Si and Ci
result

Ai
Br

Exclusive]
OR

AND I bit
delay

Exclusive]
OR

AND

-Si

1
O R h ^ /
IT

FIG. 6.11. An adder comprised of two half-adders

5, = (^A,Bi -h AiB^j Ci.x + (AiEi + AiB^ C,>i.

Ci = AiBi -h {AiEi + ÄiBd Ci.i
In the adder of Fig. 6.11 it is assumed that corresponding bits of the
two addends arrive simultaneously. Both Ai and S< must pass through
two half-adders, whereas Ci_i passes only through one. The one bit
delay is required to store C, till the bits of A and S in the next more
significant place arrive, at which time it is added to them. If the two
addends do not arrive simultaneously, the modification shown in Fig.
6.12 may be used. For example, its use would be indicated if the adder

Exclusive
OR

AND

Br

I bit
delay

Exclusive]
OR

AND

FIG. 6.12. An adder suitable for use with a recirculating type of main store

were to be included in the regenerative loop of a circulating type of
storage unit. In this case, the input A i from the main store will usually
arrive slightly earlier than the external input Bi which passes through
gating circuits before reaching the adder.

The sum and carry of two serial binary inputs may be generated

280 6. ARITHMETIC OPERATIONS

without recourse to half-adders by straightforward mechanization of the
expressions in Eq. (6-1) and (6-2). Each equation can be mechanized
by means of four three-input AND gates whose outputs are combined in
a four-input OR gate. There is an additional requirement which, though
not shown explicitly, is implied by these equations. A delay must be
provided at the output of the combinational circuit that mechanizes Eq.
(6-2) so that the carry produced at time t - 1 can be combined with the
bits of the addends appearing at time /. Actually Eq. (6-2) would not be
mechanized directly because it is a redundant form. This is shown by the
following algebraic manipulation which leads to the simplified expression
for Ci given by Eq. (6-3)

Ci = ÄiBiCi^i + AiSid^i + AiBid^i + AiBiCi.1 (6-2)

= B,Ci^i(Ai + Ad + AiBid^i + AiBid^i

= Bid^i + Aißid^i + AiBid-i

= d M + Aißd + AiBid-i

= d-Mi + Bd + AiB,d-i

= Ald-i + C - i ^ i) + d-iBi

= AlB, + d-i) + d-iBi

= A,Bi + Aid-i + d-iBi, (6-3)

Equation (6-3), d = AÍBÍ 4- Aid-i + d-iBu could have been obtained
directly from consideration of the binary addition process, by noting that
a carry is produced whenever any two of the inputs are equal to 1,
regardless of the value of the third input.

Since the output of a switching circuit can, in general, be used as the
input to a number of points, it is economical, wherever possible, to con­
struct required functions by incorporating and modifying simpler functions
already formed. Therefore, it would be desirable to form the network for
mechanization of Eq. (6-1) by means of an addition to the network for
mechanizing Eq. (6-3). One way this could be realized would be to
utilize the following expression

Si = d{Ai + Bi + d-i) + AiBid-v (6-4)

Comparison of column 9 with column 4 in Table 6.3 shows that Eqs.
(6-1) and (6-4) are equivalent.

6.1. MECHANIZATION OF OPERATIONS 281

TABLE 6.3. Truth Table for Generation of S,; = C,(A, + B, + C,_I) + A,B,Ci_l

2 3 4 5 6 7 8 9

Ai Bi C,-l C, Ci (Ai+Bi+Ci-l) C,;(A,+B,+C,-l) A,BiCi-l 5,

0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 0 1
0 1 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 1 0 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 0 1 1

Figure 6.13 shows a schematic of an adder which produces the sum and

Ai
8i
Ai
Ci-I
8;
Ci-I

Ci-I

c,.

FIG. 6.13. An adder based on mechanization of the equations:

Ci = AiB, + AiCi-1 + Ci-IBi ,
S, = C,(Ai + Bi + Ci-l) + AiBiCi-l

carry in accordance with Eqs. (6-3) and (6-4). A comparison of the
mechanizations of Si by means of Eqs. (6-1) and (6-4) shows the
following. Mechanization of Eq. (6-1) calls for four three-input AND

gates and one four-input OR gate. Mechanization of Eq. (6.4) calls for
one three-input and one two-input AND gate, one three-input and one two­
input OR gate, and an inverter. While the latter arrangement requires
fewer gating elements (10 compared to 16) it calls for a three level
OR-AND-OR circuit, compared to a two level circuit for the former.

In all the adders based on logical operations which have been described
thus far, a simple delay element was employed to cause the carry from
one order to be combined with the addend bits of the next more significant
order. In other adders, advantage may be taken of the fact that a flip-

282 6. ARITHMETIC OPERATIONS

flop's inherent delay in switching and its storage capability can be used
to delay and store a carry. Figure 6.14 shows three different adders

CC

fír\ 1

C -
Ai-

Exclusive
O R

Exclusive
OR

(a)

^ 4 Ä N D

CC i i

Bi

A-3 A N D
C ^ —
^ A N D

?η]ΑΝΡ|-*ρ
O R h - ^

CC
Ü

A N D NOR

AiBi

(b)

c C c — A N D

-|0R C A N D NOR
• O R I — 5 /

I a n h U J n o r U P —

(c)

FIG. 6.14. Three adders utilizing a carry flip-ñop

in which the required delay of the carry is obtained by use of a flip-flop.
At each bit time, the output of the carry flip-flop will indicate whether a
carry was produced by the next less significant order. For a set-reset type
of flip-flop the input signals to the carry flip-flop are

c = AiBi c = AiBi.

The states C and C indicate that a carry was or was not produced during

6.1. MECHANIZATION OF OPERATIONS 283

the preceding bit time. The input equations to the flip-flop are derived
by observing the following. Since the carry at the beginning of an addi­
tion is 0, the flip-flop is set initially to state C, When AÍBÍ has the value
1, a carry must be produced, so the carry flip-flop is set to state C. If a
carry is produced in one position, it will be produced in the next more
signiñcant one unless the case AÍBÍ occurs. In other words, the cases
Ai!Bi and AÍBÍ produce a carry signal if and only if there has been a
carry from the preceding position. Therefore, if AÍBÍ or AÍBÍ occur, the
state of the carry flip-flop is correct and need not be altered. When AÍBÍ

occurs, a carry cannot be produced so the carry flip-flop must be reset
to state C.

The three arrangements shown in Fig. 6.14 differ in the nature of the
logical circuits used in conjunction with the carry flip-flop C. Fig. 6.14(a)
uses only AND and EXCLUSIVE OR circuits; Fig. 6.14(b) uses only AND and
OR circuits; Fig. 6.14(c) uses AND, NOR, and OR circuits, and would be
useful in the case where the complement of A and Β were not available
as an input to the adder. Any of a number of shnilar arrangements can
be speciñed. The one chosen will depend on the types of logical building
blocks one chooses to use, restrictions imposed on the maximum level
of gating circuits, and the form in which the bits of the addends are
available. The building blocks chosen will, in turn, depend on a number
of factors: the frequency of operation, the relative reliability and cost of
combinations of specified building blocks for a given application, the size
and power requirements of different building blocks, etc.

Each of the adders described in this section can be differentiated from
preceding switching networks in that for every combination of input
variables there are two distinct output signals, namely, the sum and the
carry. Such a circuit is considered a multiple output switching network.
The classification is arbitrary, since both the sum and carry may be
generated separately, i.e., by two single output switching networks. How­
ever, the important point is that by considering the adder circuit as a
unit, i.e., a multiple output switching network, certain duplications of
circuitry may be avoided (e.g., see Eq. (6-4) and the discussion preceding
it) since often the same terms or factors may be required as part of
both output functions.

It should be emphasized at this point that, while block diagrams some­
times serve as a convenience, they are not necessary to describe logical
configurations. If suitable symbols have been provided for all switching
and storage elements, all sequential circuits may be described logically
by means of Boolean algebraic equations that describe the input-output
relations in these circuits. The indicated uses for block diagrams and
logical equations will be considered in more detail in Chapter 7.

284 6. ARITHMETIC OPERATIONS

6,1.2.2. Use of a Delay Line for Augend-Sum Storage

In the scheme for serial addition shown in Fig. 6.15, it is assumed

I Timing pulses

From

external store A

Delay line ^ -

Timing pulses

FIG. 6 . 1 5 . A serial adder utilizing a delay line for augend-sum storage

that the number Bi . . . JS« is stored in a delay Une storage device of
length nD, where D indicates a unit delay, and that the bits Ai . . . An come
from an external store. The bits on each input Une are represented by
pulses. The gates 1 and 2 wiU not pass incident bits Αχ . . . An nor carry
bits, except at times prescribed by the arrival of suitable timing pulses.
This enables any particular number to be selected from the external
store and added to that already contained in the delay line. The clear
pulses are apphed when it is desired to erase the contents of the delay
line. If they are appUed during the time interval when there is an input
on A, then the contents of the delay Une Β are replaced by the input on
Une A, since the arithmetic sum /4 + 0 is formed by the adder and
entered into delay Une Β. This is effectively the same as if the contents
of the delay Une were fbrst cleared and then the input on A added, except
that it saves the time required to separately clear the delay line.

6.1.2.3. Use of a Shift Register for Augend-Sum Storage

One or both inputs as weU as the output of a serial adder may be
stored in a circulating memory. However, the use of a shift register for
at least one of the two numbers permits the sum to be stored for further
manipulation if desired. In this way it can serve as an accumulator, since
as the bits of the augend are read into the adder, room is provided for
the sum bits.

In Fig. 6.16, the bits of one number Bi . . . Bn are stored in a static
register, the contents of which can be shifted, one bit at a time, to the
right on receipt of clock pulses if the signal for a shift is present on the
Une marked "shift." Nothing occurs except when the shift gates 1 througji
n-1 and the gates s, c are pulsed. Then the sum is produced by the adder

6.1. MECHANIZATION OF OPERATIONS 285

Shift

Si

Clear 4Sh

From external store
> í L j

Adder
S u m , 5 /

FIG. 6 . 1 6 . A serial adder utilizing a shift register for augend-sum storage

bit by bit upon receipt of successive clock pulses. Each bit of the sum
is successively shifted into flip-flop Βχ and the carry for the next stage, if
any, is entered into the carry flip-flop C. The carry flip-flop is cleared prior
to an addition.

The scheme of Fig. 6.17 is a variation of the arrangement in Fig. 6.16.

Shift

From
external store

ΊΟ
H 3

1

FIG. 6 . 1 7 . An alternate logical scheme for serial addition utilizing a shift register
for augend-sum storage

It is based on considering the sum and carry in terms of the variables Bi
and Ci_i, as described in Table 6.4. From Table 6.4, it is evident that if
Ai = Ci, then the sum and carry are simply Β i and Ci_i, respectively;
it A i ^ Ci they are Bi and Bi respectively. In Fig. 6.17, the flip-flop A
receives the bits of one addend Ai , . , An from an external store, and
flip-flop C stores the carry bits. Upon receipt of shift pulses, the contents
of the Β register are shifted right and the output of Bn is sent either directly
via gate 1 or inverted via gate 2 into Βχ, Concurrently, the output of Bn
is sent directly to C via gate 3, when gate 2 is actuated, i.e., it A C,

286 6. ARITHMETIC OPERATIONS

TABLE 6.4.

Ai C'_I B, Sum Carry

0 0 0 o =B, o = Ci-l
0 0 1 1 = B, o = Ci-l
1 1 0 o = B. 1 = C,-l
1 1 1 1 = B, 1 = C,-l
1 0 0 1 = B, 0= B,
1 0 1 o =B, 1 = B,
0 1 0 1 = B, o =B,
0 1 1 o =B, 1 = B,

6.1.2.4. A Serial Accumulator

The arrangement shown in Fig. 6.18 indicates how bistable counter

FIG. 6.18. A serial accumulator

circuits can be utilized to form an accumulator. The circuits intercon­
necting the counters do not function as logical OR gates, but only as
buffers, since there is never a signal on both inputs simultaneously. The
bits of the incident number, Al " .. At" are applied to each stage sequen­
tially. Each counter accomplishes two functions. First, upon receipt of an
input signal it adopts a state representing the value of the sum bit for that
stage. Secondly, it produces an output signal if there is a carry. Before
an incident bit is applied to the input of any stage, time must be allowed
for any carry produced in the next less significant stage to have passed the
succeeding stage.

6.1.2.5. Parallel Binary Adders

In a parallel adder all the bits of a word are accepted by a static
register at the same time. There are as many sets of input lines as there
are bits, and an adding circuit is associated with each bit. To allow the
description of some specific parallel adders, certain assumptions will
be made. Assume that the addend is stored in flip-flops A" the augend

6.1. MECHANIZATION OF OPERATIONS 287

Time/ Time / + 1

Bi Ci-1 Ci Bi
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The result is: bi = A.d-i + Aid-i. The combinational circuit for C,
is formed from an expression which states the set of values of Ai, Bi, d^u
for which the variable d has the value 1. One form for this expression
is

d = AiPi + Aid-i + Bid-.i

Since there is no carry in the least signiñcant place, i.e., Co = 0, the
expression for Ci is simply d = ΑχΒι,

If the input equations to the flip-flops Bi are examined, it is apparent
that each 6. is a function of Ci_i (or Ct_i) which, in turn, is a function
of -^1 . . . Ai^i, Bi . . . From this it is evident that if the input equa­
tions to a flip-flop Bi were made an explicit function ot Ai,., Ai, Bi.,, Bi,
there would, in general, be so many terms that the corresponding gating
circuit would be unpractical to construct. One solution is to insert some
power amplifying device, e.g., a cathode or emitter follower, for each d
and Ci, Even so, a long time would be required for the transients to die out
after a new addend and augend appear in the A and Β registers. The maxi­
mum length of this transient will determine the maximum time interval
from arrival of the operands until the sum is available and ¿t can be made
to operate. The duration of this transient is proportional to the number
of bits in each operand. The transient may be eliminated by storing the
bit-by-bit sum in Bi, the carry in Ai, and then proceeding in the next

in flip-flops Bi, and that it is desired to store the sum in the flip-flops B<,
(flip-flops Ai, Bi are assumed to be of the trigger or complement type).
The input equations to the flip-flops Bi may be derived by noting in
Table 6.5 the states of Ai and Q - i at time t, for those cases where there
is to be a change in Bt at time t + 1.

TABLE 6.5.

288 6. ARITHMETIC OPERATIONS

bit time as if ^ i and Β i still contained an addend and an augend. Each
step may then be considered as a half-addition. The addition of 11 and
6 would be as shown in Example 6.2.

Example 6.2

Decimal number Contents of A^, B^ Clock period

11
6

17

01011
00110 Bi

01101
1 ^i

01001 Bi
1 ^i

00001 Bi
1 ^i

10001 Bi
00000 ^i

The truth table for the half adder is shown in Example 6.3.

Example 6.3

Time/ Time t + 1

A, B, A, B,

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

2

3

4

s

1

6.1. MECHANIZATION OF OPERATIONS 289

* See Burks, Goldstine, and von Neumann. "Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument. Princeton Institute for Advanced
Study, 1947.

From Example 6.3 the foUowing difference equations may be derived

(Bdt^i = (Α,Β, + Ä.Bdt

(Adt+i = (A.Bdt^
Input equations to the flip-flops Ai, Β ι that wiU cause these relations to
be satisfied are

bi = Ai

Qi - AiBi

These input equations are derived from the preceding truth table by
noting the states of both At and Β ι at time t which lead to a change
in A i and B^, respectively, at time ii+i.

The end of the addition is indicated when aU Ai = 0, i.e., there are
no more carries. The maximum time for an addition is, in terms of clock
periods, equal to the number of bits in the operands, and requires the
same time as a serial adder. The average time, however, is less for a
series of additions on operands that may be considered random numbers.
The average number of successive carries that wiU occur in the addition
of two 40-bit numbers containing random bits is ^ 4.6.* Although its
logic is simple, this adder is not very efficient when the large number of
components that has been added for a shght decrease in the time required
for an addition is considered.

We wiU now consider a parallel adder in which the maximum and
average addition times are reduced further by means of a more complex
logic. The operation of this adder is based on considering each operand
as n/2 adjacent groups of two bits each (where η = the total number of
bits in each operand). The first step in the addition process consists of
storing the sum (modulo 2) of the operands within each two-bit group
in the two A flip-flops within each group. Also, each odd-numbered
(i.e., less significant) Β flip-flop in a group of two, is set to 1 if the less
significant two-bit group produces a carry. Each even-numbered Β flip-
flop is reset to 0. Then the process is continued with a series of half-
additions. The logical sequence from time ί to ί - f 1 is described in Table
6.6.

290 6. ARITHMETIC OPERATIONS

TABLE 6.6 Successive states of flip-flops in a parallel adder

Timet Time t+ 1

A, A'+l B, B'+l Ai A'+l B'+2 B'+l

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0
0 1 1 0 1 1 0 0
0 1 1 1 1 0 1 0
1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0
1 1 0 0 1 1 0 0
1 1 0 1 1 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 0

From Table 6.6 the following equations may be derived

(A i)t+l = (AiBi + A i.8i)t

(A i+1)t+l = Ai+l(AiBiBi+l + AiBiBi+1 + A iBiB i+l + A iB iBt"+l)

+ Ai+l(Ai8iBi+l + A iBiBi+1 + A iBiBi+1 + A iB iB i+1)

(Bi+2)t+l = (A i+1 Bi+1)t + [AiB i (A i+l + B i+1)]t

(Bi+1)t+l = o.
If the flip-flops Ai, 81, are of the set-reset type, the input equations that
cause these relations to be satisfied are

bi+2 = A i+1Bi+1 + A iB i(A i+1 + Bi+l)

hi+2 = (Ai + Hi) (A i+l + Bi+1) + A i+1Bi+1

hi+1 = 1 b i+1 = 0

6.1. MECHANIZATION OF OPERATIONS 291

These input equations indicate that it would be appropriate to use two-
input (set-reset) flip-flops for the Bi and single-input (trigger) flip-flops
for the Ai. The maximum time for an addition is, in terms of clock periods,
equal to n/2 where η is the number of bits in each operand. The average
time is considerably lower. The end of an addition is indicated by all
odd-numbered Bi being equal to zero. The maximum time may be reduced
to n/x clock periods by dividing each operand into groups of χ bits each.
However, the formulation for the carry becomes more involved as χ
increases. The arithmetic process is clarified in Example 6.4.

Example 6.4

Decimal
equivalent

11 0 1 0 1 1
6 0 0 1 1 0 Bi

13 0 1 1 0 1
4 0 0 1 0 0 Bi

1 0 0 0 0 1 Ai
16 1 0 0 0 0 Bi

17 1 0 0 0 1
0 0 0 0 0 0 Bi

Clock
period

1

2

3

4

6.1.2.6. A Parallel Adder with Carry Flip-flops

This discussion on parallel adders will be concluded with a description
of a parallel binary adder which can readily be modified to serve as a
parallel decimal adder (as described in Section 6.1.3.2). As in Section
6.1.2.5, assume that the addend is stored in flip-flops Ai, the augend in
flip-flops Bi, and that their sum will be stored in flip-flops Bi. It is also
assumed that there is one carry flip-flop d after every fourth bit of the
operands. More frequent carry flip-flops would reduce only slightly the
number of gating elements required, at the cost of increasing the time
required for an addition. The Bi flip-flops are assumed to be of the single
input complement type and the Q flip-flops of the set-reset type.

The mode of operation of this adder may be outlined as follows:
(1) Upon the arrival of the initiating clock pulse ίο there is an input
signal to each Bi flip-flop if the corresponding Ai flip-flop is in the 1 state.
For example, for the first group of four bits (Bo, ^ i , Β 2, Β ζ)

(bo)t=o — ^oto (6 ι) ί=ο = Alto

292 6. ARITHMETIC OPERATIONS

This step actually consists of forming the sum (modulo 2) in each column
and, for the time being, ignoring the generation and propagation of any
carries. (2) Upon the arrival of the next clock pulse h, each flip-flop Bi
receives an input signal if the original addend and augend are such that
a carry would have been propagated to stage Bi from B Í _ I , where both
Bi and Bi-i are within a given group of four bits. A carry can be propa­
gated to a given stage only if: (a) both operands are 1 in the preceding
stage, in which case the value of the operands in less significant places
is of no consequence; or (b) there is an uninterrupted sequence of less
significant columns in which the value of at least one of the operands
is 1, immediately followed by a lesser significant column in which both
operands have the value 1. The Boolean algebraic statement of the
original conditions capable of producing carry input signals (bi)c to the
flip-flops Bi are, for the first group of four bits (Bo, Bi, B2, B^)

(Ol), = AoBoh

(b2)c = [ΑιΒχ + (ΑιΒχ + ÄiB{)AoBo]to (6-5)

(¿ 3) c = [A2B2 + (A2B2 + Α2Β2)ΑχΒχ

+ {A2B2 + Ä2B2) (ΑχΒι + ÄMAoBoVo.
Remember that at time h, the Bi flip-flops no longer contain the original
augend, for each Bi flip-flop was set to its complementary state wherever
the corresponding A i flip-flop was in the 1 state. However, this presents
no problem since at h the A i still contain the original addend, and to
express the input signals to the Bi flip-flops at time h, it is only necessary
to complement the value of the Bi as given in Eqs. (6-5) wherever the
corresponding ^4i is in the 1 state, and to replace to by ti. The input
equations bi at time t = 1 are, accordingly

(^i)i-i = AoBoti

{biii^i = [ΑχΒχ + (^1^1 + ΑχΒΜΜι

= {ΑιΒχ + Bi^o^o)^! = ^i^i^i + ΒιΦύΐ'ΐ

(bz)t^i = IA2B2 + (A2B2 + Ä2B2)AiBi (6-6)

+ {A2B2 + Ä2B2) {ΑχΒχ + ΑΙΒ{)ΑΜ\

= (Α2Β2 + B2B1A1 + B2BiBoAo)ti

(3) Upon arrival of clock pulse ti each carry flip-flop is to be set if a
carry would be propagated out of a given group of four bits upon addition

6.1. MECHANIZATION OF OPERATIONS 293

of the original addend and augend bits. The conditions for the propagation
of a carry to a given stage were stated in item (2) . The set signal for the
first carry flip-flop C 3 is

(C 3) i - 1 = (^ 3 ^ 3 + B^2A2 + B^B2BrAi + B^B2BiBoAo)tx

= A^B^ti + 5 3 (^ 3) ^ - 1 .

(4) Up to this point each group of four adjacent bhs has been considered
almost as if it were isolated from the others. The carry flip-flops, Ci+3,
provide the necessary links. In general, the carry produced by one group
of four bits may affect both the sum and carry bits in more significant
places. Accordingly, additions must be made to the Bu Bt+i, 5 (4 .2 ,

and Ci+3 flip-flop input equations for all groups except the least
significant one. Therefore, for / = 4, 8, 12 . . . (Λ — 3) , where η = 39 for
an assumed register of 40 bits (and where Í2/10 designates the interval
from the appearance of Í2 through tio) the flip-flop input equations are:

bi = AiíQ + C , - i í 2 n o

bi+i = Ai+iíQ + AiBiti + BiCi-it2fio

bi+2 = Ai+lh + + ^t+l(*i+l)i-l

6i+3 = Ai+:ito + Ai+2Bi+2h + -öi+2(*t+2)<-i (6-7)

-h Bi+2Bi+iBiCi-it2fio

d+i = Ai+^Bi+^ti -f Bi+2Bi+2Bi+iBrCi^it2iio

where ^2/10 represents the logical sum of Í2 through ho. Flip-flops C 3 , C 7 ,
C i i , . . . C35 are reset by ^2, , . , ho, respectively.
The end of the addition process is indicated by sensing completion of all
carries, i.e., by detecting the condition €^€η€η€ΐ5 . , , Cishín-
This permits an addition to be performed in an asynchronous manner.
For a large number of additions this aUows an average time for addition
which is considerably less than that required for synchronous operation,
where a maximum time interval must be assigned for each addition. The
speed of addition could be increased further if fewer carry flip-flops were
used. However, this would be very costly in the number of additional gating
elements required. If more carry flip-flops were used, the speed would be
decreased appreciably while the number of gating elements required would
be reduced only shghtly.

294 6. ARITHMETIC OPERATIONS

6.7.2.7. Parallel Adders with Full Length Anticipatory Carry Chains

The adder shown in Fig. 6.19, becomes operative upon application of

Carry, C

H O R
A N D

OR Η

Inv

Counter
/izC-^/izC

UzO

A N D

Add

Carry, C

H A N D

Counter[-{ÄND

Τ
Add

FIG. 6.19. A parallel adder with bistable counter storage and an anticipatory
carry chain

an "add" command, simultaneously applied to the inputs of all stages.
The flip-flops Ai may comprise either a buffer register or a shift register
with serial or parallel read-in. Carry pulses generated in each stage are
propagated only through gates. The accumulator is comprised of a set of
bistable counters Bi, Each Bi is triggered only after a carry has passed
that stage (assuming a carry is propagated to it) . The maximum time to
produce the sum is dependent on the speed of the carry propagation
circuit.

For a fast addition operation in a parallel computer, carry pulses
should be passed through as few gates and other circuits as possible.
Also, these gates and other circuits should be fast operating. The adder
shown in Fig. 6.20 operates in two major steps: First, carries are gen-

^ 2 h

Carry

Sum

^ a k A N D

Carry
— E Z

-Bz Sum
Cz

5 | - A N D

A\

/ I

FIG. 6.20. A parallel adder with flip-flop storage and an anticipatory carry chain

6.1. M E C H A N I Z A T I O N O F O P E R A T I O N S 295

erated and propagated through carry gates from less to more significant
stages; as a carry pulse reaches any particular stage it is also stored by
means of a carry ñip-ñop C. Secondly, when all carries have been propa­
gated, a pulse Í2 is applied to all Bi input gates simultaneously, as a result
of which the arithmetic sum of A and Β is stored in B. The maximum
time to produce the sum is dependent on the speed of the carry propaga­
tion circuitry.

6.7.2.5. A Parallel Adder with a Fast Carry

Even though, in a parallel adder, the addends are applied simul­
taneously to all stages, there will be a delay before the most significant
stage of the adder assumes its final value, because of the serial nature
of carry propagation. Most synchronous computers employ carry circuits in
which the full length carry time must be allowed in each addition. The
required time interval is provided by a separate timing device, with a
safety margin to allow for tolerances in both the carry circuit and timing
device. By using the carry circuit to time its own fuU length carry time,
an improvement may be effected in the timing reliability of the carry
system.

A significant decrease in the time required for carry propagation
can be achieved if advantage is taken of the fact that on the average
the length of a one's carry sequence is only a small fraction of the maxi­
mum sequence (being 4.6 stages in a 40 bit addition).

A simple carry circuit is shown in Fig. 6.21(a). It cannot provide its
own tuning because of the carry interruptions and starts caused by
columns where AB and AB exist, respectively. The arrangement shown
in Fig. 6.21(b) provides for two carry lines into and out of each stage.

^outHOR

A N D

(α)

íT'out—iÖR

^°out—iÖR

(b)

FIG. 6.21. (a) A simple carry circuit, (b) A circuit to propagate 0 and 1 carries

296 6. ARITHMETIC OPERATIONS

As a result, the cross coupUng shown in Fig. 6.21(b) may be eliminated,
and it becomes apparent now that there are, in general, places within
an n-stage addition operation where the sum and carry bits may be formed
independently of information in preceding bit places. In constructing an
adder* based on this observation, the state of the carry Unes should be

* Gilchrist, B., Pomerene, J. H., and Wong, S. Y. [1955], Fast carry logic for digital
computers, IRE Trans. El. Computers, 4, 133-136.

One line C^ corresponds to the usual carry Une. The other Une C^, has a
signal when there is no carry from the next less significant stage. By pro­
viding for 0 carries as weU as 1 carries through the use of separate carry
chains, there results a circuit that can provide its own timing. At the
beginning of an addition, both carry Unes are off. This condition wiU be
met if both carry inputs to the least significant stage are held off. The
carry propagation is begun by applying a signal to the Une of the least
significant stage. This carry wiU then proceed down the 0 chain until it
reaches a stage where /IB is 1, at which point the carry switches over to
the 1 chain. Similarly, it will proceed down the 1 chain until it reaches
a stage where ÄB is 1. Finally, it wiU emerge from the most significant
stage as either a or O to signal the end of the n-stage carry. The
carry wiU always pass seriaUy through aU η stages.

If the truth table for the formation of a carry is arranged as shown in
Table 6.7, it becomes apparent that if either AB or ÄB exists,
independent of du

TABLE 6.7. Truth table for carry generation

Cin A B Cout

0 0 1 0 }0 1 0 0 = em1 0 1 1
1 1 0 1
0 0 Q 0

} = AB
1 0 0 0
0 1 1 1
1 1 1 1

6.1. MECHANIZATION OF OPERATIONS 297

* In the (8-4-2-1) code (1100), the binary equivalent of 12, is not deñned.

viewed as off or 1 for O and off or 0 for C^. Both carry hnes are off at
the start of an addition. This is enforced for the interior stages by an
exphcit paraUel inhibition on the lines or by operating on the AB and ÄB
inputs. Carries are begun by releasing the inhibitions on aU stages, includ­
ing the selected carry into the least significant stage. At this time, carry
sequences wiU arise from the selected input carry, and from every interior
stage having AB or AB. Thus the serial aspect of the carry is restricted
to sequences of stages for which A B.

Feeding the C^ut and C^out Unes in each stage to the input of an OR

gate, and the output of aU such OR gates to an n-input AND gate, permits
a carryless determination of the equality of two addends, this mode being
obtained by not releasing the paraUel carry inhibitions. In this case, an
output is obtained from the carry completion gate if, and only if, two
addends are equal. (Other comparators are described in Section 6.1.4.3).

6.1.3. DECIMAL ADDITION

6.1.3.L Serial Decimal Adders

When designing a decimal adder, one must choose first of aU a binary
code group to represent each decimal digit. Any decimal digit can be
represented by the states of a group of four or more bistable elements.
A number so represented is said to be in a binary-coded decimal form.
There are many forms of binary-coded decimal representation, differing
in the number of bits per group (usuaUy four or five) and the weights
assigned to each position in the group. A total of 70 weighted four-bit
codes, including those with negative weights have been found. The most
obvious binary-coded decimal representation is referred to as the straight
binary, or (8-4-2-1), decimal code. It is shown in Table 6.8. In this code,
the representation of 694 is

6 9 4
(0110) (1001) (0100).

Whenever binary-coded decimals are operated upon, attention must be
paid to the fact that each group is distinct. For example, consider the
binary-coded decimal representation of 694. If it were multiplied by two,
simply by a single shift left, there would result

(0110) (1001) (0100). X 10. = (1100)* (0010) (1000). = ^ 2 8
The error in the result arises from neglecting the fact that, if the operation

298 6. ARITHMETIC OPERATIONS

8 4 2 1
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

on a particular binary-coded decimal digit produces a number greater
than nine, a carry is produced which must be added to the next most
significant digit, and the digit producing the carry must also be adjusted.
Table 6.9 shows that a multiplication by two can be accomplished by
a shift left operation only if a digit is ^ 4.

TABLE 6.9.

2 X 0000 — 0000 = 0
2 X 0001 = 0010 = 2
2 X 0010 = 0100 = 4
2 X 0 0 1 1 = 0110 = 6
2 X 0100 = 1000 = 8
2 X 0101 = 1 0000 = 1 0
2 X 0110 = 1 0010 = 1 2
2 X Ol l i = 1 0100 = 1 4
2 X 1000 = 1 0110 = 1 6
2 X 1001 1 1000 = 1 8

The use of binary-coded decimals can relieve the user from the task
of converting numbers from decimal to binary representation prior to
inserting them into a machine, and of converting the binary output of the
machine. For example, ten numerical keys can be provided on an input
device, so wired that when the operator presses any one of them the
corresponding binary-coded decimal signal is inserted into the machine.

TABLE 6.8. The straight binary decimal code

Decimal (8-4-2-1) Decimal code

6.1. MECHANIZATION OF OPERATIONS 299

Similarly, each of the ten binary-coded decimal signals can be used to trip,
say, a corresponding numerical key in an output typewriter. If the internal
arithmetic units of the computer operate in the binary system, binary-
coded decimal inputs to the machine must be converted to true binary
numbers before being operated upon by the arithmetic unit. In Section 6.4
the subject of conversion between binary and binary-coded decimal rep­
resentation is considered in more detail.

Though there are many binary-coded decimal representations, in
practice the choice is usually confined to one of a small set of four and
five bit codes. In the discussion following, only four-bit decimal codes will
be considered.

Assuming a particular code has been chosen, the general approach
for testing its suitability in an adder is to form a truth table. In this case,
there would be 200 input conditions, corresponding to all possible combina­
tions of values of the two addends and the carry from the preceding stage.
For each possible input combination, the value of five output bits will be
defined, namely, the four bits of the sum digit and the carry bit. A simpler
procedure may be used for certain special choices of the four bit code.
Two of the most commonly used codes will be described next.

In the straight binary decimal code, four binary places are assigned
weights of 1, 2, 4, and 8 respectively. A decimal adder to operate on
these decimal code groups can be formed from a binary adder with the
following simple modification. When the sum digit produced in any decimal
place is ten or greater, indicating that a carry must be propagated from
one code group to the next, the carry must be generated and the sum
digit itself corrected to yield a value less than ten.

Another commonly used four bit decimal code is referred to as the
excess-three code. It is a nonweighted code wherein each dechnal digit d
is represented by a code group which, if interpreted as a conventional
binary number would represent d +3, This is shown in Table 6.10.

The excess-three code has certain useful properties. First of all, it is
self-complementing, i.e., the nine's complement (see Section 6.1.4.2.3.)
can be obtained simply by interchanging ones and zeros. Also, because
there is at least one 1 in the representation of each digit, the conditions
of zero or no digit can be readily distinguished. Another advantage is
that a carry bit occurs automatically out of the most significant position.
This follows because, if the sum of two decimal numbers is ^ 10, the
sum of their excess-three code representation must be ^ 16. However,
it is necessary to correct the sum digit whether or not there is an over­
flow. Specifically, if the sum digit is ^ 16, three must be added to it,
(smce the sum does not have an excess-three bias), if it is < 16, three

300 6. ARITHMETIC OPERATIONS

Decimal Binary excess-three

0 0011
1 0100
2 0101
3 0110
4 Ol l i
5 1000
6 1001
7 1010
8 1011
9 1100

must be subtracted (since an excess three has been added twice). This
necessitates additional storage elements for storing the sum of each excess-
three code group, so that it may be corrected. FinaDy, since for every
entry in Table 6.10 there is another entry where the I's and O's are inter­
changed, a decoder used to obtain a 1 out of 10 representation will place
equal loading on both outputs of the flip-flops holding the excess-three code.

The logical design of a serial excess-three code decimal adder will
now be described. Assume that the bits of the two addends appear serially
at successive bit times t in two flip-flops, A, B. Successive sum and carry
bits are produced and stored in flip-flops S and C respectively. The times
at which the least significant bits of each code group appear in A, Β will
be indicated by a timing signal Four additional flip-flops 5i, 52, S3, S4,
are provided in which to form the corrected sum. These flip-flops actually
serve two distinct purposes. First, they act as a shift register to which suc­
cessive values formed in 5 are sent, and also as a correction register in
which the corrected simi of each code group is formed. When the cor­
rected sum is formed, these flip-flops again act as a shift register, trans­
mitting their contents back to the main storage unit. At time h any given
code group will be stored in flip-flops 5, Si, S2, Ss. This number must be
corrected according to the value of flip-flop C at time ti. However, the
corrected value must be placed in flip-flops 5i, 52, 53, 54, since at the next
bit time 5 must be used to store the sum bit of the next two bits appearing
in flip-flops A, B, The configurations to be assumed by the flip-flops 5i,52,
53, 54 are shown in Table 6.11.

TABLE 6.10

If Si, S2, 53, S4 are two-input RS-T flip-flops, their input equations are

51 = (5253^ + SC)ti + St'i

si = (SC + S2S^C)h + Sil

52 = iSiC + (S1S3 + 5i.?3)C]ri + 5ifi

= (SiC + SiS^ + SiS^Qh + 5iii

52 = [(5.7153 + 51^3)^ + 5iC]ii + Sih (6-8)

^3 = [(S + S2)C + S2C]ti + 52Í1

'̂3 = l(S + S2)C + S2C]ti + S2Í1

54 = (S^C + S^Qti + S^t'i = .?3/ι + 53Í1

54 = (53^ + 530^1 + .?3Íi = 53Í1 + S^t'i.

6.1. MECHANIZATION OF OPERATIONS 301

TABLE 6.11.

Time 14 Time 11
S S1 S2 Sg SI S2 S3 S4

Subtract 3
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 1 0

C=O 1 0 1 0 0 1 1 1
1 0 1 1 1 0 0 0
1 1 0 0 1 0 0 1
1 1 0 1 1 0 1 0
1 1 1 0 1 0 1 1
1 1 1 1 1 1 0 0

Add 3

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0

C = 1 0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

302 6. ARITHMETIC OPERATIONS

In these equations the terms associated with indicate the input signals
required for the correction operation, and the other terms cause the flip-
flops to act as a shift register at all other times, i.e., when ti is true.

6.132. Parallel Decimal Adders

Parallel decimal adders are more complex. The carry propagation
time is the important factor as in other parallel adders. A greater variety of
decimal parallel adders is possible than in the case of binary adders
since combination series-parallel adders may be designed. For example,
each digit may be represented bv four bits in parallel while successive
digits are operated upon serially, or all the digits may be operated upon
in parallel while the bits comprising the binary representation of each
digit are operated upon serially.

As an example of a decimal parallel adder, let us consider a relatively
simple decimal adder employing the excess-three code and operating in
a manner similar to the binary parallel adder described in Section 6.1.2.6.
As stated there, an advantage of having a carry flip-flop after every fourth
bit in the binary adder is that decimal operation can then be obtained
with only a small amount of additional equipment.

To yield correct excess-three code decimal representation, the binary
sums formed at time h must be modified, +3 being added to each stage if
it generates a carry and - 3 if it does not. This can be done by appending
the signals, b^y ba+i, ¿¿+2, ba+s in Eqs. (6-9) to the expressions for bu

bi+2, öi+3, respectively, in Eqs. (6-7).

bä = t2

ba+i = BaCd+it2 + BdCä+it2 (6-9)

bd+2 = (Bd+i + B¡)CMt2 + (Bd+i + Bä)CMh

bd+z = Bd+2Bd+\Cd+3t2 + Bd+2BdCd+lt2

+ Bd^2Bd-\-iCd+yt2 + Bd+2BdCd+zt2»

Eqs. (6-7) must be modified further: ^2/10 replaced throughout by fa/n, the
term Bi+^ Bi^2 Q-i /3/11, indicating a stage has the value 9 and there is
a carry from the preceding stage, substituted for Bi+2 ßi+i C<_i ^2/10
in Ci+3, and appended to the logic of bi^i, &»+2 and &Í+3. The carry flip-
flops are reset by t s , U, ... h u respectively, and in the carry comple­
tion sensing logic, Í2/11 is replaced by Í3/12.

6.1.3.3. Parallel Accumulators with Automatic Carry Propagation

If an accumulator's design is such that it utihzes a step-by-step

6.1. MECHANIZATION OF OPERATIONS 303

carry process in arriving at a result, its operating speed would not be ade­
quate for a parallel machine. The speed may be increased by arrangements
wherein a carry produced in any stage is automatically propagated to
higher order stages. There are two widely used methods in mechanizing
such operation. In one, the operation is under the control of two input
commands, an "add" and a "carry" command which are appUed in
sequence to all stages simultaneously. In the other, the operation is
initiated and completed simply by the application of an "add" command
to all stages shnultaneously. In the descriptions that follow, A i refers to
the bistable elements of an addend register, and Bi refers to the bistable
counter circuits of the accumulator.

The circuit shown in Fig. 6.22(a) functions as foUows. Operation is

Bi

Gate 3

Delayk^/HOR

G a t e i t z f '
Af

Carry'pulse

Delay

(a)

Gate I [— 4

Add pulse

B,

I—I Gate 3

T j

Gate2

D e l a y h ^ / H O R l I p i ^ g g ^
}—Bf HGatelh-A-

Delay — Gate4

(b)
Add pulse

Carry pulse

FIG. 6.22. Typical stage of a parallel accumulator. (Either one but not both
delay units may be required in these two arrangements.)

begun by application of the "add" pulse. In each stage in which /ij is 1,
the corresponding Β i is triggered. If Β i is 0 after being triggered, and A i
is 1, this indicates that a carry should be propagated to the next more
significant stage. Therefore, when the carry command pulse is appUed,
gate 2 aUows it to pass through a stage where a condition for a carry

304 6. ARITHMETIC OPERATIONS

propagation has been met. If the next more significant stage of the ac­
cumulator holds a 1, the carry is allowed to pass through via gate 3. It
passes through successive gates until a stage is reached where the accumu­
lator holds a 0. The delay element is included only if it is essential to
insure that a carry does not pass through a stage where it should not.
This could occur if a carry from a preceding stage arrived at the next
more significant stage of the accumulator before it changed from 1 to 0.

The circuit shown in Fig. 6.22(b) produces a faster propagation of
the carry. It differs from the arrangement of Fig. 6.22(a) mainly in that
there is no command pulse input to gate 2. As a result, the condition
BiAi produces a steady state signal that is applied to gates 3 and 4 of
the next more significant stage before application of the "carry" command.
If the next more significant stage of the accumulator holds a 1, the steady
state signal is passed through to the stages beyond via gate 3. After time
has been allowed for the steady state signal to pass through the maximum
possible number of stages, the "carry" command is applied to gate 4.
This causes Bi to be triggered in each stage to which a signal was trans­
mitted from a preceding stage.

6.1.3.3.1. ACCUMULATORS WITH SEPARATE CARRY STORAGE. If it
is difficult to obtain signals from the addend register for carry purposes
after the addend has been entered into the accmnulator, a carry storage
device may be incorporated in each stage. The carry flip-flop d is set
to 1 whenever Bi changes from 1 to 0.

One arrangement utihzing a carry flip-flop is almost identical to that
shown in Fig. 6.22(a). The only change, outside of the addition of d,
is the replacement of the signal BÍAÍ at the input to gate 2 by the signal
Ci. Another arrangement is similar to that of Fig. 6.22(b). The only
change, outside of the addition of d, is the elimination of gate 2 and the
substitution of the signal d as the lower input to the OR gate.

In Fig. 6.23 two types of accumulators are depicted. Circuitry common
to both is in the center of the figure while that peculiar to circuit
(a) and (b) is shown in dashed enclosures. In circuit (a) the addend
is entered upon application of the "add" command. Upon application of
the "carry" command pulse, Bi is triggered if the next less significant
stage produced a carry as indicated by the signal d-i- If Bi held a 1
just prior to receiving a carry, it changes to 0 and causes the signal d
to be produced. The signal d is sent to the next more significant stage
to which the "carry" command has already been appUed, and a pulse is
passed via gate 4 to trigger Bi+i. The carries will be propagated as far
as necessary, provided the carry command signal is appUed for a sufficient
period. This method, though generaUy not as rapid as the preceding two.

6.1. MECHANIZATION OF OPERATIONS 305

(a)

OR

Η Gate 3

1
Ci

Gate2[rg^

Carry

(b)

Bi

Η OR

(a)
I 1

^ Gate I \-Ai

Gate 4

Add pulse [_ j

FIG. 6.23. Typical stage of a parallel accumulator

has the advantage of requiring fewer components and no delay elements
because of the manner in which the carries are propagated. The principles
of the arrangement just described can be adapted to the carry propagation
method of Fig. 6.22(a) to gain an important advantage. The resulting
arrangement is circuit (b) in Fig. 6.23. The addend is entered as usual.
WTien the "carry" command signal is activated, a carry signal is trans­
mitted to the next more significant stage via gate 2, if the condition
AiBi exists. A pulse will also be sent to the next more significant stage
if a carry pulse from the next less significant stage arrives. This is because
a carry from the next less significant stage would trigger Bi from 1 to 0,
thereby causing a pulse to be transmitted to gate 3. The advantage
of this accumulator is that no pulse or steady-state signal has to pass
through more than one stage of gates.

6.1.3.3.2. ACCUMULATORS WITH NO "CARRY" COMMAND INPUTS. Fig­
ure 6.24 illustrates a simple form of accumulator requiring no carry com­
mand. When any Β i changes from 1 to 0, a pulse is sent to the next more sig­
nificant stage via a delay. Operation is slow because in the carry propa­
gation circuit, all the delays are in series. The arrangement of Fig. 6.25
is faster because a delay Di is introduced only in the stage where a carry
originates. Operation is as follows: The addend is entered in the usual
manner. If Bi is caused to change from 1 to 0, a pulse is applied to gate
3 which allows the "add" pulse to pass to the next more significant stage,
via delay element Di, (which allows Bi+i to recover in the event it was

306 6. ARITHMETIC OPERATIONS

Deloyj
B,

Bi

OR
Gate f—/ ! /

Add pulse

FIG. 6 . 2 4 . Typical stage of a parallel accumulator with no carry command input

Gate 2

\Bi

Bi

OR
r

^ 3 1 Gafel J ' ^ 3 Gafel

Add pulse

FIG. 6.25. Typical stage of a parallel accuinulator with no carry command input

triggered upon application of the "add" command). A delay element D3
may be necessary if the switching time of a Bi is appreciable. A carry
from the next less significant stage will pass without delay via gate 2
through any stage where a Β i has been triggered to 1. If a Bi is triggered
from 1 to 0 upon receipt of a carry from the next less significant stage,
another pulse will not pass via gate 3 because the "add" pulse will no
longer be present. Delay D2 is a short delay introduced to insure that the
carry pulse does not switch B< before the carry itself can pass through
gate 2. If the inherent switching delay of Bi were large enough, D2 would
not be required.

The arrangement in Fig. 6.26 allows the carry signals to be generated
before the addend is entered into the accumulator. In each stage the
signal for a carry, + y4iC<_i-f ß A - i) , is produced by a set of
AND and OR gates, which form the equivalent expression + Bi)Ci_i
+ /ii^i]. In the other accumulators that have been described, each Β i was
triggered twice if A i were 1 and there was also a carry from the next less

6.1. MECHANIZATION OF OPERATIONS 307

OR
Λ 5/

Gate

Γ
Inverter - [A N D

h υκ
Add pulse

FIG. 6.26. Typical stage of a parallel accumulator with no carry conmiand input

significant stage. This produced no net effect on B(. The arrangement of
Fig. 6.26 causes Bi to be triggered only if either of these events, but not
both, occurs, i.e., by the signal Aid-i + ^ i C i . In Fig. 6.26, an equiva­
lent expression, (Ai + C Í _ I) ^ ¿ C Í - I , is formed. If this type of accumulator
is modified to function as a subtractor, a carry signal from the highest
stage can be used to indicate whether the sign of the difference will be
positive or negative. In a trial-and-error division process (see Section
6.1.6.1.1), the subtraction can be prevented from taking place if an indica-
cation is provided of a negative difference.

The accxmiulators with automatic carry propagation which have been
described in this section do not have means for indicating the end of
carry propagation. A multi-input AND gate for sensing a carry in any
stage could be used with some of them, but is more suited for step-by-step
carry systems. The arrangement of Fig. 6.21(b) has a fast carry propa­
gation circuit which can readily be provided with means to yield a signal
when the carry process is completed. The sum is entered into the ac­
cumulator by application of an add pulse to the input gates, as shown in
Fig. 6.27. This pulse causes each Bi to be triggered if (/4C^,„ + ÄC\n)
is 1. Note that this corresponds to a conventional half-adder sum signal:
(AC + AC),

Í1
Bi

OR Gate Gate

Gate

Add pulse

FIG. 6.27. Typical stage of ao accumulator with a 0 and 1 carry propagation circuit

308 6. ARITHMETIC OPERATIONS

6.1.4. THE REPRESENTATION OF NEGATIVE NUMBERS AND THE
SUBTRACTION PROCESS

In a digital computer provision is made for representation of negative
as well as positive numbers by using one of the following two schemes.
One of these schemes is commonly encountered in everyday usage of
numbers. It uses a common grouping of symbols to represent a given
magnitude, and a special symbol to indicate whether the value is positive
or negative. In other words, each number is represented in terms of an
absolute value plus a sign, e.g., + 703, - 703. The other method of
representation relies on the use of a so-called complementary number
system. The nature of complementary numbers, as w êll as a description
of the merits of absolute and complementary representation in a digital
computer will be described in the sections following.

6J4,L Representation of a Negative Number by an Absolute Value
Plus Sign

In this representation, a negative number is distinguished from a
positive one by an arbitrary symbol (usually, but not necessarily) pre­
ceding the number. For example, either of the following absolute value
plus sign designations could be employed

Designation 1 Designation 2
0.11 = + 3 / 4 1.11 = + 3 / 4
1.11 = - 3 / 4 0.11 = - 3 / 4

Because of its wide everyday use, this type of representation in a computer
simpUfies the preparation of input data, as well as the visual interpretation
of output data and data stored in the computer. Also, it simplifies multi­
plication and division in a machine. To obtain the correct sign for a
product or quotient, only a simple circuit is required to compare the signs
of the operands, yielding a positive value for the sign if they are alike,
and a negative value if different, (see the discussion of comparators in
Section 6.1.4.3). For addition, operations are more complex than with
complementary representation. If the signs are alike, addition is performed
normally, but if they are different, subtraction must be performed, with
means to insure that the smaller absolute value is subtracted from the
larger, and that the correct sign is attached to the result. Negative quan­
tities must be in complemented form before being sent to an adder. If the
result of an operation is negative, and, therefore, in complement form it
must be uncomplemented before it is stored, and the correct sign bit
attached. However, complements may be avoided completely by using
a subtractor when the signs of the operands are not alike.

6.1. MECHANIZATION OF OPERATIONS 309

The input-output relations for a full subtractor are shown in Table 6.13.

In Table 6.13, d-i represents the borrow produced in the less significant
binary place and Ci is the borrow resulting from the combination of
Ct_i, the minuend Ai and the subtrahend Bi. The equations for the differ­
ence and borrow bits are

Di = AiBiCi-i + ÄiBiCi-i + AiBid-i + AiBid-i

Ci = AiBiCi-x + AiBiCi^i + AiBiCi^x + AiBiCi^i (6-10)

= AiBi + AiCi^i + BiCi-\.

These equations are similar to Equations (6-1) and (6-2) and show
that the sum for an adder and the difference for a subtractor are of the
same form. In reference to the production of a negative result by a

Just as there are half-adders, there are also half-subtractors. The input-
output relations for a half-subtractor are shown in Table 6.12. The minu­
end, subtrahend, difference, and borrow bits are represented by Ai, Bi,
Di, and Ci, respectively.

TABLE 6.12. Truth table for a half-subtractor

A, B, D;, C,

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

TABLE 6.13. Truth table for a full subtractor

A, B, C'_l D, C,

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

310 6. ARITHMETIC OPERATIONS

subtractor, it should be remarked that a negative result appears in com­
plementary form. However, it is possible to use the subtractor itself as a
complementer, by subtracting the number to be complemented from zero.
In passing, note that a subtractor may be considered more fundamental
than an adder, since an addition may be performed by two subtractions,
e.g., (A+B) = A - (0 - Ä) .

6.1.4.2. Representation of a Negative Number by a Complement

There are two important complementary representations of a negative
number. One is referred to as the radix complement and the other as the
(radix - 1) complement. In the decimal system these are known as the
true (or ten's) complement and the nine's complement, respectively. In
the binary system, they are the true (or two's) complement, and the one's
complement, respectively. Complements in the binary system only will be
discussed here. Similar statements apply to the decimal system.

The use of complements to represent negative numbers makes it
unnecessary to build into a computing machine the abihty to both add
and subtract. Actually, a subtraction takes place when a complement is
formed, but the advantage derives from the fact that the forming of a
complement is easier to mechanize than a subtraction.

6.1.4.2.1. Two's COMPLEMENT REPRESENTATION. Complementary
representation of negative numbers is similar to the notation used for
handhng logarithms of numbers less than 1. The two's complement of a
number is obtained by subtracting the number from 2. An easy way to
mechanize this operation is to interchange aU I's and O's and add 1 to
the least significant binary place. For example

7/16 = 0.0111

Interchanging I's and O's 1.1000

Adding 1 in the least
significant place 1

Result 1.1001 = - 7 / 1 6

Any two binary numbers may be added (replacing negative numbers
by their two's complement) if the following two rules, analogous to those
in the decimal system are used. First, discard any carry into the two's
(2^) column, smce M1-M2 = Λίι + (2 - M2) - 2. Secondly, if there
is a 1 in the one's (2®) column, the sum is interpreted as a negative num­
ber and its magnitude is obtained by taking its two's complement. Because
of the latter rule, the digit in the one's (i.e., 2^) column is referred to as
the sign digit. Example 6.5 illustrates the use of these rules

6 . 1 . MECHANIZATION OF OPERATIONS 3 1 1

Example 6.5

Binary number

0.0100
0.1001

Decimal equivalent

4 /16
9 /16

Carry
into 21
column is
discarded

0.1101

0.0100
1.0111

1.1011

1.1100
1.0111

1 I 1.0011

I
I 1.1100
I 0.1001

13/16

4/16
- 9 /16

- 5/16

- 4 /16
- 9 /16

- 13/16

- 4 /16
9 /16

1 I 0.0101 5/16

When the bit to the left of the binary point is used to indicate the
sign of a number jc the range of numbers within the machine is restricted
to the interval - 2 ° ^ ;c < 2 ° . Machines of this type are accordingly
referred to as fractional machines.

6 . 1 . 4 . 2 . 2 . ONE'S COMPLEMENT REPRESENTATION. The one's com­
plement of a number is formed by interchanging all ones and zeros. This
is easily mechanized since each bit can be altered v/ithout reference to
other bits. Addition or subtraction can be executed as above, with the
following exception: whenever an overflow bit is produced at the most
significant end, this bit must be added in at the least significant end.
Consider the addition of two negative numbers, — 4 / 1 6 and — 9 / 1 6 ,
as in Example 6 .6 .

Example 6.6

Decimal representation

Addend

Addend

- 4/16

- 9/16

One*s complement representation

I 1.1011

I 1.0110

Result of
addition

End around
carry

Sum

- 13/16

- 13/16

1 I 1.0001

I-
1.0010

312 6. ARITHMETIC OPERATIONS

In case of an overflow in subtraction, an end-around borrow would be
subtracted from the difference. When a positive sum is obtained in adding
a positive number to a negative one, a carry is generated in the highest
order. This carry indicates a change in sign from the previous balance
and must be added to the lowest order to restore the true indication of
the sum, in one's complement form.

The advantage of the one's complement is that conversion to the
true number is so simple. This is important if the results of a computation
are to be displayed, and to facilitate certain schemes of multiplication and
division. The one's complement is used in several parallel binary machines.
An objection to it is that representation of zero is not unique. Two rep­
resentations of zero may occur, namely, the normally encountered one,
0.000 . . . 0 (sometimes referred to as "plus zero") and 1.111 . . . 1
(referred to as "minus zero"). Whenever subtraction of two Uke quanti­
ties occurs in a subtractive accumulator, "plus zero" is produced and when
a number and its I's complement are added in an additive accumulator,
a "minus zero" is produced. It is possible for either form to be produced
in any system. For example, the rounded-off product of two very small
quantities can result in either a "plus zero" or "minus zero" depending on
whether the signs of the factors are ahke or opposite, respectively. In any
case, the machine design should be such that the progranuner need not
distinguish between the two forms of zero in the use of conditional test
instructions.

Factors that influence the final choice in the representation of negative
numbers include: (1) The machine's facihties for complementing. (2) The
expected relative frequencies of the different arithmetic operations. (3) The
relative convenience and need of examining numbers in storage for ser­
vicing the computer. (4) The form of numbers to be transmitted to the
computer from external inputs, and the form in which output quantities
must appear.

6.1.4.2.3. SUBTRACTION OF BINARY CODED DECIMALS. Subtraction
of one binary coded decimal, du from another, ¿ 2 , may be accomplished
by adding the ten's complement of di, i.e., (10»»-di) to ¿2- Whenever
di ^ ¿ 2 , indicating a positive or zero remainder, a carry into the 10*»
column is produced. This carry is discarded so that the net effect of the
operation is as follows

¿ 2 + (1 0 « - d i) - W = ¿ 2 - ^ 1 .

If di > ¿ 2 , indicating a negative remainder, no carry into the 10« column
is produced. Therefore, the result of the operation is

d 2 + (1 0 ' » - d i) = 1 0 « - (d i - d 2) .

6.1. MECHANIZATION OF OPERATIONS 313

Example 6J

Decimal Binary-coded decimal
00 0000 0000

- 2 3 Ol l i 0110 Nine's complement of 23

1—1000 1010
' > 1 End-around borrow

1000 1001
0110 0110 Correction

23 0010 0011

The result 0010 0011 is the correct difference: 00 - (- 2 3) = 23.

The correction term is required because, when using a subtractor, the

The absence of a carry into the 10»» column can be used to indicate that
the difference is negative and in complementary form. If the minuend is
negative, the addition of the complement of the subtrahend would produce
(10»» - di) + (10»» - di). If the carry into the 10»» column is discarded,
the difference is 10* - (di + ¿2) indicating a negative result.

An advantage of the nine's complement over the ten's complement is
that conversion between it and true representation is more straigjitforward.
The use of the nine's complement requires an end-around carry, but
this is a negligible comphcation in parallel systems and not always a
serious one in serial systems. If the nine's complement of di is added
to ¿2, the result is ¿2 + (10~ - 1) - di. Whenever di < ¿2, indicating a
positive or zero remainder, a carry is produced which is then added in
end-around fashion to the least significant digit. The difference then is
equal to [d2 + (10" - 1) - d j] - 10« -h 1 = ¿2 - di. If di ^ ¿2, no
carry is produced so the resuh of the operation is (10*» - 1) - (di - ¿2).
As in the ten's complement system, the absence of a carry into the 10»»
column is used to indicate that the difference is negative and in com­
plementary form.

In the nine's complement system, addition of a number and its comple­
ment produces the minus representation of zero, as in any (radix - 1)
system. To obtain the difference of two hke numbers directly as a plus
zero, a subtractor may be used. To add, the nine's complement of a number
is subtracted, and to subtract, the number itself is subtracted. When a sub­
tractor is used, end-around borrows rather than carries must be con­
sidered. Example 6.7 iUustrates the addition of 23 to 0 in a subtractor.

314 6. ARITHMETIC OPERATIONS

difference must be corrected by subtracting six from each decimal code
group where a borrow has been produced out of the column, as shown
in Example 6.8, also.

Example 6.8

Decimal
2
5

Binary-coded decimal
0010
0101

1101
0110 Correction

Difference (-) 3 (1) Olli

The result, (1) O l l i , represents the correct difference, —3, in ten's comple­
ment form.

Whenever a straight binary-coded decimal number is subtracted from
another each four-bit decimal group that produces a borrow must be cor­
rected by subtracting six from it, and the difference then would be in the
form of a (10'*)'s complement, which is referred to simply as a ten's com­
plement. In Example 6.9, this process is illustrated for the case of two
three-digit binary-coded decimals. (The difference could be obtained in
nine's complement form by use of an end-around borrow).

Example 6.9

Decimal
257

- 4 6 5

Binary-coded decimal
0010 0101
0100 0110

1101
0110

— 208 (-) Olli

n i l
0110

1001

Olli
0101

0010

0010

Correction

The result, (-) 792, represents the ten's complement of the correct dif­
ference, 208.

Of the 70 weighted four-bit codes, referred to in Section 6.1.2.1., 18
including the commonly used (2, 4, 2, 1) code are self-complementing,
i.e., the nine's complement can be obtained simply by interchanging I's
and O's. A disadvantage of the (8, 4, 2, 1) code is that it is not self-
complementing: interchanging I's and O's yields the 15's complement. To
obtain the nine's complement, either of the following methods can be
used: adding 6 to the (8, 4, 2, 1) representation and then inverting.

6.1. M E C H A N I Z A T I O N O F O P E R A T I O N S 315

C8 = (d2 + d4 + dg)
These relations may be obtained by considering the truth table for the
nine's complement (C8C4C2C1) as a function of the table defining the values
of the binary-coded decimals {d^d^d2di). This scheme of conversion im­
plies that the bits of the binary-coded decimal must be available in a
parallel representation, for otherwise the functions C4 and c% could not
be obtained.

6,1 A,3, Comparators

A commonly encountered requirement in general purpose computers
and data processing systems is a test for the relative magnitudes of two
numbers, a and b. Three cases are possible: 0 = 6, α < 6, or α > ¿.
If the absolute values of both numbers are presented serially, least signifi­
cant bit first, the three cases can be distinguished by means of two flip-
ñops as follows. Assume there are two R-S type flip-flops, Fi and F2, both
of which are reset to 0 prior to the comparison. The successive bits of
each number are referred to as A and B, Whenever ÄB occurs, Ρχ is set
to 1. Whenever AB occurs, Ρχ is reset to 0 and F2 is set to 1. If each bit
of a is equal to each bit of 6, i.e., only the cases AB or ÄB occur, neither
Fl nor F2 is ever set to 1. To summarize, the input equations to Fi and F2
are

fx ^ÄB / 2 = AB

fx^ R + AB / 2 =

At the end of the comparison process, one of the following three condi­
tions will exist

or inverting first and then adding 10 to the result. In the latter case, the
carry out of the eight's column is discarded, and effectively subtracts 16
from the result. That both of these procedures yield the nine's comple­
ment of the digit d may be seen as follows

15 - (d + 6) = (15 - d) + 10 - 16 = 9 - d.

The nine's complement may also be generated by means of a simple
logical network that produces the bits q of the complement digit in
accordance with the following equations

c\ = di

C2 = di

C4 = ^2^/4 + ^ 2 ^ 4

316 6. A R I T H M E T I C O P E R A T I O N S

Ifa = F1F2 = 1

I f f l > ¿ , = 1

lía <b, Fl = 1.

If it is only desired to distinguish between one of these cases and the
other two, only one flip-flop is required. For example, whether A > B,
OT A ^ Β can be determined by a single flip-flop, F, with the following
input equations

f=AB f= AB + R.

If F is 1 at the end of a word, it implies that A > B, and if F = I, A ^ B.
Another flip-flop, G, can be used to distinguish A < Β from A = Β by
testing for A = Β

g = AE + ÄB g = R,

If G = 1 at the end of the comparison, it implies that A B,
With dynamic flip-flops, a test tor A ^ Β ov A < Β may be per­

formed as follows. A dynamic set-reset flip-flop F is initially set to 1 by
a pulse S. The flip-flop stays in this condition unless ÄB occurs. Once
put in the 0 condition it stays there unless AB occurs. Since, if the flip-
flop is on, agreements, i.e., AB + ÄB, keep it on, it cannot distinguish
between A > Β or A = B. At the end of the comparison process, F indi­
cates A ^ B, and F indicates A < B. The input-output relation is

Fi^i = S + AB + ÍAB + ÄB)Fi.

A similar circuit could be used to indicate whether ^ ^ B, or ^ > B.
A test for equahty may be performed as follows: A flip-flop, G, is initially
set to 1 by a pulse, 5. The input G(AB + ÄB) causes the 1 state to be
maintained as long as corresponding bits in A and Β are equal. The first
disagreement will interrupt regeneration of the 1 state which cannot then
be attained regardless of agreement of subsequent bits. At the end of the
comparison process, G = 1 indicates a = b, and G = 1 indicates a 9^ b.
The input-output relation is

Gi^i =S + (AB + ÄE)Gi.

6.1.5. M U L T I P L I C A T I O N

In number systems other than the binary, multiplication is normally
performed by: (1) Inspecting each digit of the multiplier in sequence
and adding the multiplicand into the partial product a number of times
corresponding to the multipUer digit. (2) Shifting the partial product by
one digit place upon the completion of operation (1) . Multiplication in

6.1. MECHANIZATION OF OPERATIONS 317

0 1

0 0 0

1 0 1

There are a number of factors which must be taken into consideration
when providing for multipUcation by a single programmed instruction,
e.g., the number of components that wiU be required, the maximum and
average specified execution times (in an asynchronous system) or the
standard execution time (in a synchronous system), round off procedures,
the way in which negative numbers are to be treated, etc. Some of these
items are considered briefly in the paragraphs foUowing.

Multiplication is an operation consisting essentiaUy of many additions.
These may be performed slowly by successive additions in a single adder
circuit, quickly by simultaneous additions in a large number of adders,
or at an intermediate speed using an intermediate number of adders. The
size of a multipUer increases with its speed and usuaUy a compromise
must be made in its design between speed and size, taking into considera­
tion the size of the remainder of the computer.

As a general rule, the speed specified for a multiplication should be
arrived at after considering the speed of execution of elementary opera­
tions (e.g., add, subtract, information transfers) and the estimated rela­
tive frequencies of multiplications and elementary operations in the class
of problems to be solved by the computer. Since in general there wiU be
considerably more additions than multiplications in programs chosen
randomly, it is usually not economical to reduce the time required for a
multiplication to below, say, k times the time required for an addition
(where k is the ratio of additions or subtractions to multipUcations).
This is not a hard and fast rule, but caUs attention to the fact that when
considering increased complexity in equipment, the point of diminishing
returns should not be overlooked, considering both the economics of the
design and reUability of performance.

The product of two n-bit numbers may have as many as 2n significant
bits. Therefore, if fuU accuracy is required, provision must be made not
only to form the fuU In bit product in the multiplier, but also means
must be provided so that it may be transferred to and stored in the
memory. In those cases where it is neither convenient nor necessary for

the binary system is simpUfied because, since a multiplier digit can only
have the values 0 or 1, the number of additions between shifts wiU not
vary. The binary multipUcation table is shown in Table 6.14.

TABLE 6 . 1 4 . Binary multipUcation table

318 6. ARITHMETIC OPERATIONS

the fuU 2n bit product to be retained, means must be provided for roundmg
off the product. Since the operands entering into a muhiphcation are
obtained from n-bit capacity storage ceUs, and since the products formed
must also be returned to these cells, it is convenient to round products to η
binary places. It is desirable that any round-off procedure adopted pro­
duce a mean error of zero, and also a relatively smaU mean deviation. In
other words, the errors introduced by the rounding process should cancel
out over a large number of round-offs, and the maximum error introduced
by one round-off operation should be relatively small. The production of
a mean error of zero in round-off procedures depends upon the assump­
tion that the remainders (i.e., the η least significant bits of a 2n bit
product) can be considered to be random numbers. There are programs
in which this assumption is not valid. The subject of round-oft procedures
is considered in more detail in Chapter 9.

If each number is represented in terms of an absolute value plus a
sign, no difficulty is introduced when one or both of the factors is nega­
tive. The sign bits are merely ignored during the multiplication process,
and the correct sign bit appended to the product in accordance with a
simple comparison procedure which indicates whether the factors are
of hke or opposite sign. If negative numbers are stored in a one's com­
plement form, they may readily be converted to a signed form before
entering the multipUer. However, the signs of the operands must be
known prior to multiphcation, and in a serial computer this may cause
a difficulty since least significant bits usuaUy appear first. A negative
product would be converted to its one's complement form before being
transferred to other parts of the machine. If negative numbers are in a
two's complement form, the complexity of conversion to a signed form
usuaUy leads to consideration of special multiphcation methods that
operate directly on numbers in this form. Three such methods are de­
scribed in Section 6.1.5.1.6.

Another consideration that influences the design of a multipUer is
whether there is a requirement for either or both of the operands to be
available in the multiplier, after generation of the product, for use by the
programmer.

6.7.5./. Binary Multiplication

A commonly used method of performing multiphcation consists of
repeated addition of the multiplicand into appropriate orders of an accu­
mulator. This simple process is applicable whether the operands are pre­
sented in serial or parallel. A description of multiplication by both serial
and paraUel accumulation is presented m the sections foUowing.

6.1. MECHANIZATION OF OPERATIONS 319

Example 6.10

64 ¿3 ¿2 h

1 1 1 1

64 ¿3 ¿2 ^1

h h h h

Ρ2βΡ25Ρ24Ρ23Ρ22Ρ21

¿4 ¿>3 02 bx

h h h h

P48Pá7PéQPá6Pá^4ZPé2 Pel

There are, basically, two ways of controlling the addition of the
partial products to the contents of the accumulator so that they are
entered in the proper orders. One is to cause the partial products to be
shifted before entry into the accumulator. The other is to always enter the
partial products into the same order of the accumulator, and to shift the
accumulated sum before entry of the next partial product. Although shift­
ing is a relative term, as a matter of convenience we shall refer to the
first scheme as shifting of the partial products, and the second as shifting
of the accumulated sum. Each scheme will now be described in more
detail.

In the scheme for shifting of the partial products, as many distinct
timing signals are provided as there are orders in the multipUer, a one-to-
one correspondence being established between a timing signal and an
order of the multiplier. Each partial product is channelled to the appro­
priate orders of the accumulator by means of a group of gates controlled
by these timing signals. The nature of these gates is indicated, for the
case of a four-bit multiplier, by Eq. (6-11).

6.1.5.1.1. MULTIPLICATION BY PARALLEL ACCUMULATION. Wherever
a multiplier bit is 1, a partial product must be added, appropriately shifted,
to the accumulated sum of the preceding partial products. For example,
consider a multiplicand represented by ¿4 h ¿2^1 and a multiplier
04 03 02 01 = 1111. The first partial product is ¿4 h 62 fti and the second,
third, and fourth partial products are obtained by the process indicated
in Example 6.10.

320 6. ARITHMETIC OPERATIONS

Γτ = 5304

fe ~ SsBs "I" 52^4

''5 — 53^2 + 52B3 + S 1 B 4

U = SzBx + 52^2 + 5ΊΒ3 + S0J54 (6-11)

Γ2 — SiBi + 5oB2

In Eq. (6-11) η represents the 1 input to the /th stage of the accumu­
lator, Si a line on which a timing pulse appears signalling that the /th
bit of the multipHer is to be inspected and the /th partial product added,
and Bi represents the /th bit of the multipUcand. The number of terms in
Eq. (6-11), and hence the amount of circuitry required, is a function of
the number of bits in the operands. The number of AND gates equals the
product of the number of bits in each operand, and the number of OR
gate inputs is two less than this number.

An alternate way of shifting the partial products is indicated by Eq.
(6-12)

Γ7 = S2S1B4

re = 52(.?i54 + SiB^)

rs = S2S1B4 + S2(SiB^ + 51^2) (6-12)

Γ4 = S2{SiB4 + SiB^) + S2(SiB2 + SiBi)

Γ3 = S2{SiB^ + S1B2) + S2S1B1

Γ2 = 52(SiB2 + SiB^)

ri = S2S1B1,
Here there is no individual timing control Une for each shift command.
Instead, an indication of the proper shift is provided by a binary-coded
signal appearing simultaneously on a number of control Unes. For
example, the two control lines Si, ^2 can provide the signals .?2^i» S2S1,52.?i,
and 52^1, indicating shifts of 0, 1, 2, and 3 binary orders, respectively.
For practical lengths of the operands, this arrangement requires fewer
components than the preceding one. However, if the equations are mechan­
ized in the form shown, multi-level gates are required and if they are
expanded more gating elements are required.

In the scheme for shifting the accumulated sum, assume that there
is available an accumulator each stage of which can, upon command.

6.1. M E C H A N I Z A T I O N O F O P E R A T I O N S 321

shift its contents one bit to the right. Assume also that the bits of the
multiplicand B n . . . B2B1 are always entered into the same orders of the
accumulator, as shown in Fig. 6.28. The multiplication process is then as

Bn

/?9 W /?.

Bz B\

Accumulator Register

FIG. 6 . 2 8 . A shifting accumulator

follows: Each multiplier bit is examined in succession, and the multipli­
cand is added into the orders shown whenever the multiplier bit is equal
to 1. After each sum is produced, the contents of the accumulator are
shifted right. Note that after entry of the first partial product into the
accumulator, the least significant bit of the product is determined, and
that, in general, after entry of the /th partial product the /th order bit in
the product is determined. Therefore, the lowest η orders of the accumu­
lator are not required for summation, but need only provide the functions
of storage and shifting. Stage 2n + 1 is needed to temporarily store carries
from stage In, The advantages of shifting in the accumulator are now
apparent. First, far less combinational circuitry is required, e.g., in Fig. 6.28
the 1 input to an R-S flip-flop Ri is Äi+iS, where 5 is the shift command.
Secondly, less equipment is required for addition, the number of accumu­
lating orders being reduced from In to n + 1. The arrangement shown
in Fig. 6.28 has another important feature in that the η least significant
orders of the accumulator can be used to store the multiplier before the
multiplication process begins. Each thne the accumulated sum of the
partial products is shifted to the right, so is the multiplier. Therefore,
the addition of the partial products can be under control of the multiplier
bit in the least significant stage of the accumulator. At the completion of
the process the multiplier has been lost, but by that time it is no longer
needed. If needed subsequently in some other operation it can be obtained
from the position in storage from which it was copied into the accumulator.

6.1.5.1.2. M U L T I P L I C A T I O N B Y SERIAL A C C U M U L A T I O N . In a serial
computer, the registers for storage of the operands and product can be
either of the static or delay line type. In the latter case, shifts of informa­
tion must be relative to standard tuning signals, and may be produced

322 6. ARITHMETIC OPERATIONS

by the msertion of extra delays in the circulation path. A static storage
register could be used in a serial mode by causing the bits to be sensed
in sequence, automatically returning to the first bit in the sequence after
the last bit has been sensed. In both cases, a zero reference timing signal
is provided at the time the first bit of a number is to be read.

A particular scheme for serial multiphcation using delay hne registers
is shown in Fig. 6.29. At the end of the multiplication, one n-bit delay

Multiplier storage

T í
/Vbit delay ^ I Inv

Λ A

A

Multiplicand storage
TAj'—' TAi

Λ/bit lit delay ^ 2 [-j^^

Gate I

Delay

Bi
Gate 3

H G a t e Z M
W

Carry

Adder

AM

High orders of product

Accumulated
sum Gate 4

/Vbit delayi«^3 H G a t e S H O R H ^ b i t delay

τ

Low orders of product

FIG. 6.29. A serial binary multiplier with delay line storage

holds the high order bits of the product and another the low order bits.
The multiphcation process is as follows: First it is assumed that the oper­
ands have been entered into their respective circulating registers in phase,
i.e., corresponding orders of the two numbers are read or recorded at the
same time. Upon appUcation of the multiplication command signal M, a
one bit delay is inserted into the recirculation loop of the multiphcand.
A timing signal Γ, which lasts one bit period, and reappears after a
period of η + 1 bits, is used to define the times at which successive bits of
the multipUer are inspected. Whenever a multipUer bit is 1, the flip-flop A
is set to state A, aUowing the bits of the multiphcand to pass via gate 3
to the adder. Because of the additional one bit delay in the multiplicand
recirculation loop, the bits of the multiphcand wUl become shifted one bit
with respect to their original timed presentation each time the loop is
traversed. This has the desired effect of causing a partial product to be
always automaticaUy and correctly shifted with respect to the accumulated
sum. The least si¿iificant bit of the current accumulated sum always

6.1. MECHANIZATION OF OPERATIONS 323

appears at the output of delay no. 3 at time T, Future additions of partial
products have no effect on tíiis bit so it is sent to delay no. 4 via gate
no. 5. Delay no. 4 stores and recirculates the n/2 low order bits of the
product. Note that this arrangement is analagous to the multiplication
procedure using a static shift register where an adder was also used only
in conjunction with the upper half of the register. Since each shift, addi­
tion operation requires η pulse periods, the whole process is completed
after pulse periods. At that time gate 3 is closed and the most significant
half of the product can be read from delay no. 3.

Certain necessary details such as means for entering the operands,
starting and stopping the multiplication process, rounding off and with­
drawing the product have been omitted from the preceding descriptions
for the sake of brevity, since there are a great many possible ways of
achieving these functions. As far as round-off and storage of the
product is concerned, the following comments are pertinent. First, each
machine usually only has provisions for numbers of a fixed word length
both in the main store and operand register of the arithmetic unit. Nor­
mally this is adequate, for one is usually interested in retaining only the
most significant half of the product, even though the lower order bits are
sometimes useful as, for example, in interpolation programs. However,
there may be a requirement for temporary storage of the highest order
bit of the least significant half of the product to accomplish a particular
round-off procedure. Also, if a round-off scheme is used wherein an addi­
tion is made to the most significant bit to be dropped or the least signifi­
cant bit to be retained, an additional time of η bit periods is required to
produce the rounded product. (See Chapter 9 for a description of round­
off procedures.)

6.1.5.1.3. SERIAL-PARALLEL MULTIPLIERS. In a serial machine the
summing of the partial products is done successively by a single adding
circuit. The time required to sum the partial products may be reduced
by using several adders. The arrangement shown in Fig. 6.30 makes
use of η — 1 adders and is referred to as a serial-parallel multiplier,

Multiplier: An A^ A\

ANDhi9,
Product

FIG. 6.30. A serial-parallel binary multiplier

324 6. ARITHMETIC OPERATIONS

since one operand, B ^ . . . Ä2B1, is presented in parallel and the other,
An... A2A1, is applied serially. It is one of the fastest types of mul­
tipliers. The question of which operand is the multiplier and which the
multiplicand is arbitrary. For the purpose of explanation it will be assumed
that /4n . . . 2^1 is the multiplier. If .4i = 1 the AND gates allow
the multiplicand to pass through and the least significant bit of the multi­
plicand appears at the output of adder no. 1 as the least significant bit
of the product. The other bits of the multiplicand must traverse a delay
equal to the period between the appearance of successive bits of the
multiplier. The chain of adders and delays is referred to as a multiplier
chain. The delays in the chain serve to store each accumulated sum until
the next partial product can be added, and also to shift it so that the
partial product is added to the correct orders. For example, when A2
appears, B 4 , B 3 , and B2 of the first partial product will arrive at the inputs
to adders no. 3, 2, and 1 , respectively, li A2 = 1 , then B 3 , B2, and Bi
will also be applied to adders no. 3, 2, and 1, respectively. Note that Bi
of the first partial product, which is the first bit of the product, has already
been transmitted out of the multiplier, and that the B 4 just entered is not
required until the time of arrival of the next multiplier bit. Then it will be
added to a newly entered B 3 , provided ^ 3 = 1 . The time required for a
multiplication is a number of bit periods equal to the sum of the bits in
the product.

The arrangement of alternate adding and delay circuits has an advan­
tage in that the number of delay circuits required is small, and also
that the delay inherent in each adding circuit can be compensated by a
corresponding deficiency in the delay of the following delay circuit. An
aperiodic form of delay circuit may be used which deUvers its output pulse
at the beginning of a bit period even if the input pulse occurs late in
the preceding bit period. An interesting feature of this arrangement is
that the amount of equipment required is determined by the number of
bits in the multiplicand and is independent of the length of the multiplier.
However, both operands are normally of the same length.

An interesting variation of the serial-parallel multiplier is employed
in the University of Manchester computer. It makes use of the fact that
the amount of equipment in a serial-parallel multiplier is dependent only
on the number of bits in the operand arbitrarily termed the multiplicand.
To save equipment, the multiplier of the University of Manchester com­
puter is designed to accommodate only η/I bits of the multiplicand at a
thne. This necessitates breaking the multiplication process mto two major
cycles and doubles the time required for multiplication. In the first cycle,
the n/2 least significant bits of the multiplicand, and in the second cycle,
the n/2 most significant bits, are used to control the output of the AND
gates. The bits of the multiplier are applied as before. Each "half-product"
is entered into an accumulator. The number of delay circuits between each

6.1. MECHANIZATION OF OPERATIONS 325

Example 6.11

h h h h h h h h
Β 1 1 1 0 1 1

IB 1 1 1 0 1 1 0
3B 1 0 1 1 0 0 0 1

Since ^ = 10 11 01
^2^41 = 01 = 1
^ 4 ^ 3 = 11 = 3
A^A^ = 10 = 2

gate of the multiplier chain and the output of the chain is correct during the
formation of the first half-product, but for the second half-product there
are in each case n/1 too few delays. This is corrected by adding the second
half-product to the n/1 most significant bits of the number in the accumu­
lator, which is equivalent to shifting the second half-product by n/1 places.

Four or five word periods are required, in the University of Manchester
computer, to execute simple instructions. This includes one word period
for looking up an instruction, one for transferring it to the control unit,
one for looking up the operand, and one or two for the actual execution.
The multiplication process just described requires only 14 word periods,
including look up of the multiplication instruction, extraction of both
factors from storage, and adding the product to, or subtracting it from,
the contents of the accumulator. A word consists of 20 bits of information
(which may be used as an instruction or a number) plus a four-bit blank
space. Since the clock rate of the computer is 100 kc, the word period
is 240 /isec. Addition of a 40-bit number to the accumulator takes
1.2 msec, and addition of the product of two 40-bit numbers to the
accumulator requires 3.36 msec (a speed slow by present standards). The
high cost of a low ratio of multiplication to addition time is apparent from
the fact that nearly one fourth of the vacuum tubes in the computer are in
the multiplier.

In Fig. 6.31 there appears another scheme for reducing the equipment
in a serial-parallel multiplier. One operand, B, is appUed seriaUy on the
Une shown. The quantities IB and 35 are obtained from it by means of
a delay unit and an adder as shown. The bits of the multipUer are grouped
in pairs. Each pair can take on any one of four values, namely 0, 1, 2,
and 3. Accordingly, either zero, B, IB, or 3J5 is added to the adder
associated with each pair. Since the quantities applied to adjacent adders
in the multiplier chain are separated by a quaternary order, which is
equivalent to two binary orders, two-bit delays, 2D, are inserted between
adjacent adders. To illustrate how this multipUer operates, the multi­
pUcation of β = 111011 by ^ = 101101 wiU be described: The least
and most significant bit of Β appear at time ii and ίβ, respectively. The
bits of B, IB, and 3B appear as shown in the timing chart. Example 6.11.

326 6. ARITHMETIC OPERATIONS

~
-0co
.~.....----+-.."

:e.-:;
~

<

Therefore, B, 3B, and 2B are entered in adders no. 1, 2, and 3, respec­
tively. The product is obtained by summing these quantities as follows

111011
10110001

1110110

101001011111
The correctness of this result is readily verified.

6.1. MECHANIZATION OF OPERATIONS 327

The time required for muhiphcation using the scheme of Fig. 6.31 is
about the same as for the scheme of Fig. 6.30. Comparison of the two
arrangements shows that for a large number of bits in the operands, the
saving essentially consists of replacing each of several adders with three
three-input AND gates. By grouping the bits of the muhipher in even
larger groups, and also operating on a group of the multiphcand simul­
taneously, the tune for multiphcation can be reduced further still. How­
ever, a substantial amount of additional equipment is then required.

Shift OR

OR
3

ORCS:

GateO

Shift

OR

Switching
network

Accumulator

Sum modulo 2

to inputs of /4/.|

-Ai
-Ri

•cj.

^ / Mujtiplicand_register

FIG. 6.32. Typical stage of an asynchronous binary multiplier

6.1.5.1.4. A N ASYNCHRONOUS MULTIPLIER. The asynchronous mul­
tipUer depicted in Fig. 6.32 is basically the asynchronous adder of Fig.
6.21(b) with auxihary circuits. One of its important features consists of.
sending the bits of the accumulated sum directly to the next lower stage,
thereby eliminating the conunand and tune required for a separate shiftmg
operation.

Whenever the multipUer bit is a 1, indicating that the contents of the
multiphcand register are to be added to the accumulator, a pulse is
apphed to the no-carry input of the least significant stage. This pulse
passes in succession through aU stages. The actual path foUowed is
determined by the current contents of the accumulator and of the multi­
plicand register. The switchmg network, composed of AND and OR gates,
has four output Unes labeled 0, 1, 2, 3. Only one of these is activated
at a time, and m accordance with the number of the inputs Ri, and

328 6. ARITHMETIC OPERATIONS

Ci - 1 which have the value 1. If the total of these inputs is 2 or 3, a
carry is sent to the next more significant stage. If the total of these inputs
is 1 or 3, the value of their sum (modulo 2) is 1, otherwise it is o. The
value of this sum is sent directly to the next less significant stage of t11e
accumulator. Small delays may be necessary in either the input or output
lines of the bistable elements of the accumulator if the delay in the action
of each of these elements is not sufficient in itself.

Whenever the multiplier bit is a 0, indicating that the only operation
to be performed is that of shifting the contents of the accumulator, a
pulse is applied to the shift input line of the least significant stage. This
pulse is propagated to the next stage via either gate 0 or gate 1 and an
OR gate, as shown in Fig. 6.32. In any stage except the least significant
one, the output of either gate 1 or gate 0 is also fed back via one of the
three-input OR gates to the input of the bistable element in the next less
significant stage of the accumulator, thereby effecting the shift operation.

The completion of either an add and shift, or a shift operation alone,
can be sensed by combining in an OR gate the outputs of gate 1, gate 0,
and the switching network in the most significant stage. This signal, in
turn, can be used to initiate the next operation. It is not always necessary,
however, to await completion of one operation before starting the next.
It is actually possible to initiate a new operation as soon as the effects
of the precec1ng one have subsided in the least significant stage.

6.1.5.1.5. A SIMULTANEOUS MULTIPLIER. In a so-called simultaneous
multiplier, steady state signals representing the operands are applied
simultaneously, and after the decay of transients, signals representing the
product are available at the output lines. To see how a multiplier of this
type can be formed, consider the multiplication of a four-bit multiplicand,
a4aSQ2Ql, by a four-bit multiplier, q4bsb2bl, shown in Example 6.12

Example 6.12

a4 a a a 2 a I
b4 bab2 bI

a4 bI aabl a2 bI al bl
a4 b 2 aa b 2 Q2 b 2 QI b2

Q4 ba Qaba Q2 ba QI ba
a4 b 4 Qg b4 Q2 b 4 Q1 b4

When a multiplication is performed by a step by step procedure as in

6.1. MECHANIZATION OF OPERATIONS 329

the accumulation method, never more than two aibj terms plus a possible
carry from a less significant order have to be added in any order at any
given time. In simultaneous multiplication, the maximum number of
entries in any particular order depends on both the length of the operands
and their value. For example, for n = 4, the maximum number of aibj
terms occurs in the order that generates P4 and is equal to 4. If at, a2, ag,
bt , b2, and bg each have the value 1 then two carries will be produced in
the order where Pg is generated, so that a total of six entries must be added
to produce P4.

If we employ only two and three-input adders, the sum of six entries
can be obtained by the use of two three-input and one two-input adders.
The maximum number of inputs for each column can be obtained by
assuming all bits of both operands equal 1. The maximum number of
entries in each order (which is equal to the number of aibJ terms plus
the maximum number of carries from the next lower order) as well as
the maximum number of carries that can be generated by each order,
for n = 4, is shown in Fig. 6.33. The total equipment required consists

02b ,
o,b2

03b , Sum

°2 b2
Sum

Max.
Pa P7 Ps Ps P4 . P3 P2 P,=o,b,

entries/column I 3 5 6 6 4 2
Max. carries

generated 0 2 3 3 2 0
per column

FIG. 6.33. A simultaneous binary multiplier

of a ,two-input AND gate for the mechanization of each aibJ term plus
whatever adders are required to produce each Pi. Figure 6.33 indicates
a particular interconnection of adders. However, any of a number of
other arrangements could have been chosen. Note, too, that the two
two-input adders in column P7 and the OR gate in column P8 are actually
equivalent to the three-input adder of Fig. 6.12 with the deletion of the

3 3 0 6 . ARITHMETIC OPERATIONS

Example 6.13

X + 0.1001 9 /16
y - f 0.0111 7 /16

1001
1001

1001

0.00111111 63/256

If the multipUer digit is 1, the multiphcand is added mto the partial
product and the resuU shifted one place to the right. If the multipUer
digit is 0 , only the shift is required.

* Goldstine, H. H. and von Neumann, J. [1947] Planning and Coding of Problems
for an Electronic Computing Instrument, Institute for Advanced Study, Princeton,
N J . (U.S. Army Ordnance Contract W-36-034 ord 7481).

one-bit delay feedback path. The thne required for a multiphcation de­
pends on the number of gates and adders through which the input signals
must pass before reaching the output. A reasonable estimate can be ob­
tained by determining the longest path which any input may have to trav­
erse. The price of high speed in this type of multiplier is the great number
of components required for practical lengths of the operands, this number
pyramiding as the operand length is increased.

6 . 1 . 5 . 1 . 6 . MULTIPLIERS FOR OPERATING ON NEOATrvE NUMBERS
IN Two's COMPLEMENT FORM. In this section three different schemes
are described which can be used m mechanizmg multipliers that can
operate directly on operands expressed in a two's complement form.
In the first of these, a pseudo-product is formed, and a particular correc­
tion is apphed to it, in accordance with which of the operands is negative
(all such corrections are referred to as end point corrections). The
second scheme does not require such end point corrections. Instead, the
normal multiphcation algorithm is amended to compensate for negative
operands, as the succeeding partial products are formed. The third scheme
utihzes an algorithm for multiphcation that is independent of the signs
of the operands. Each of these schemes wiU now be described in detail.

In the first scheme*, multiphcation is always performed as if both
numbers were positive. Then corrections are apphed to the result if one
or both operands is negative. Consider first the multiphcation of two
positive numbers, as shown in Example 6 . 1 3 .

6.1. MECHANIZATION OF OPERATIONS 331

Consider next the case of a positive multiplicand and a negative
multipUer, as shown in Example 6.14.

Example 6.14

0.1001
1.1001

1001
0

0
1001

0.01010001
1.0111

1.11000001

X
(2-y)

9/16
7/16

(x-xy)
— X

-xy - 63/256

Note, first of aU, that the multipUcand is not multipUed by the sign digit
of y. This is equivalent to multiplying JC by (2 - y) - 1 = x — xy. In
order to obtain the correct product, i.e., - xy, - χ must be added to
X — xy. Therefore, if on inspection the sign digit of y is found to be 1,
indicating that y is negative, the complement of χ is added to the product
X- xy already obtained to produce the correct product, — xy.

Now consider the case of a negative multipUcand and a positive multi­
pUer, as shown in Example 6.15.

Example 6,15

X — 1.0111
0.0111

Ol l i
Ol l i

O l l i
10000

0.10110001
1.0001

1.11000001

(2-χ)
y

- 9 / 1 6
7/16

Sign only of χ

Final correction

- xy - 63/256

If the sign digit of χ is not included in the multipUcation, the product
(1 - x)y is produced. To obtain the correct product, i.e., - xy, -y must
be added to (I — x)y. However, in many computing machines, once a

332 6. ARITHMETIC OPERATIONS

Example 6.16

X - 1.0111 2-x - 9 / 1 6
y - 1.1001 2-y - 7 / 1 6

Ol l i
10000 (a)

10000 (b)
O l l i

0.10011111
1.0001 (c)

1.10101111 xy-x
0.1001 +x

0.00111111 xy 63/256

Here the sign digit of neither χ nor y is included ui the multiphcation,
producing an uncorrected product equal to: (1 - x)(l —y) = 1 - x-y
-xy. By adding the sign digit of χ wherever y = 0, (lines (a) , (b)) ,
plus the term 1.0001 (line (c)) , the complement of - y , i.e., + y is
added to the product. Note that smce y is negative, its complement would
contain a 0 in the sign digit, but by writing the correction term with a 1

digit of the multiplier has been examined it is shifted to the right and lost,
i.e., no storage is provided for it in the arithmetic unit, for reasons of
economy. However, even though y is not available at the end of the
process for correcting the product, a procedure may be used whereby the
necessary correction is accomplished as the partial product is being built
up. This procedure is as foUows: (1) Where y = 0, 1 is added to the
uncorrected product. This 1 may automaticaUy be added in the correct
place if only the sign digit of χ is added to the partial product when y = 0.
This sign digit occupies a position in the product of the same order as the
digit of y which was 0, and controlled its addition into the product. Since
it is desired to correct the partial product by the complement of y, 0
should be added to the partial product where y = 1, and 1 where y = 0,
except for the least significant place. The sign digit of χ during any addi­
tion is entered into an order of the product equivalent to that of the digit of
y which controlled its addition into the product. (2) Since the operation is
halted before the sign of y is examined, a 1 in the sign position and a 1 in
the units position is added to the partial product as a final correction.
Inspection of the preceding example shows that the sum of the correc­
tions added is equal to 1.1001, which is the complement of y = 0.0111.

Finally, there is the case of two negative operands, shown in Example
6.16.

6.1. MECHANIZATION OF OPERATIONS 3 3 3

in the sign digit, the extra 1 in the product l - x - y + xy, is also cor­
rected for. This is due to the fact that, since all carries beyond the sign
are neglected, adding 1 is equivalent to subtracting 1. For example

0.0100
1.0000

V4

1.0100 = - %

The process is completed by adding the complement of — x, i.e., + x.
We will consider now the second scheme. Again, multiplication is

normal if both multiplier and multipUcand are positive. If either one or
both are negative, the normal multiplication algorithm is amended as
follows: (1) If only the multiplier is negative, then upon reaching the sign
columnar position in the multiplier, add the complement of the multipli­
cand into the partial product instead of the value of the multiplicand
(which would normally be done upon detection of a 1 in a columnar posi­
tion of the multiplier). (2) If only the multiplicand is negative, whenever
a 1 is detected in the multiplier, in addition to adding the multiplicand to
the partial product, add the value of the sign digit of the multiplicand to
all columnar positions of the partial product, extending through the sign
position. For the case where both multipUer and multipUcand are negative,
the multiplication algorithm includes both of these procedures. Specific
examples iUustrating this method are shown in Example 6.17.

Example 6.17

Multiplicand
Multiplier

13/16
11/16

0.1101
0.1011

01101
01101

00000
01101

00000

0.10001111 = 143/256

Multiplicand
Multiplier

13/16
11/16

1.0011
0.1011

111110011
11110011
0000000
110011
00000

1.01110001 = - 143/256

Multiplicand
Multiplier

0.1101
1.0101

01101
00000

01101
00000

10011

13/16
11/16

Multiplicand
Multiplier

1.0011
1.0101

111110011
00000000
1110011
000000
01101

13/16
11/16

1.01110001 = - 143/256 0.10001111 = 143/256

334 6. ARITHMETIC OPERATIONS

Value of successive
multiplier bits Operation

For / ^ 0:

0 0 The current partial product is shifted one bit to the right.
0 1 The multiplicand is added to the partial product, and then

the new partial product is shifted one bit to the right.
1 0 The two's complement of the multiplicand is added to the

partial product and then the new partial product is shifted
one bit to the right.

1 1 The current partial product is shifted one bit to the right.

For i = 0:

0 0 Do nothing.
0 1 Add the multiplicand to the partial product.
1 0 Add the two's complement of the multiplicand to the

partial product.
1 1 Do nothing.

The Steps in the multipUcation o f - 13/16 = 1.0011 b y - 11/16 = 1.0101

•Booth, A. D. [1951] A signed binary multiplication technique, Quart. Journ.
Mech. and Applied Math, IV, Pt. 2, 236-40.

We will consider next a multiplication scheme that is independent of
the signs of the operands. It is described in a paper by A. D. Booth.*
At first glance, this scheme appears to be far removed from any of the well
known methods of multiplication. Briefly, successive addends in the par­
tial product are produced in accordance with the values of successive pairs
of bits in the multipUer. Starting with the least significant bit, each bit in
the multiplier is compared with the bit lying to the right of it (the bit
lying to the right of the least significant bit is always considered to be
zero). Each pair of bits can assume four different configurations. The
operation performed in buUding up the partial product is determined
according to which configuration exists at each step. If the bits of the
multiplier are designated by ÜQMI a2 as . . . an and the bits of the multipli­
cand r by Γο.Γι Γ2 / " a . . . r„, the algorithm for multipUcation may be stated as
in Table 6.15.

TABLE 6.15. Rules of multiplication based on values of successive pairs of bits
in the multiplier: ÖQ-aiag^a · · · ^η·

6.1. MECHANIZATION OF OPERATIONS 335

 1
 1

 1 1
 1 1

 1 1 1
 1 1 1

The product 0.10001111 = 143/256 appears on the bottom line. Two
points should be noted in the procedure for producing the product. First,
during the addition of addends to the partial products, that part of the
partial product which is in the shift register is left undisturbed. Second,
during a shift operation, the value of the sign bit in the accumulator
remains imchanged.

6.7.5.2. Decimal Multiplication

Most stored program digital computers operate in the binary system
internally. Usually, information is entered and read out in a binary-coded
decimal form. Input and output conversion programs are used to
effect the transition from binary-coded decimal to binary and vice versa,
respectively. In some machines, especially those for business applications,
it may be desirable for the machine to operate internally in the binary-

are shown in Example 6.18. It is assumed that the product is formed in
an accumulator, the left half of which only can form sums, and both
parts of which can shift their contents to the right.

Example 6.18

Contents of accumulator

Left half Right half

2-r 0 1 0 1
Shifted sum 0 0 1 0

r 1 0 0 1 1
Sum 1 1 0 0 1

Shifted sum 1 1 1 0 0

2-r 0 1 1 0 1
Sum 0 1 0 0 1

Shifted sum 0 0 1 0 0

r 1 0 0 1 1
Sum 1 0 1 1 1

Shifted sum 1 1 0 1 1

2-r 0 0

Sum 0 0 0 0

336 6. ARITHMETIC OPERATIONS

coded decimal system. Then data can be entered and read out without
conversion. Decimal multipliers generally are more complex than binary
multipUers and there are a great number of schemes on which such mul­
tipliers can be based. However, only a few of them will be described here.

6.1.5.2.1. MULTIPLICATION BY REPEATED ADDITION. In this
scheme, the digits of the multiplier are inspected in sequence, and each
partial product is formed by adding the multiplicand a number of times
equal to the multiplier digit. A convenient way of controlling the
process is to shift each digit of the multipUer into a decimal counter.
If the number in the counter is not 0, the multipUcand is entered into
an accumulator, and 1 is subtracted from the contents of the counter.
This process is repeated until the counter contains 0. Then the next more
significant digit is entered into the counter. Whenever a new multipUer bit
is placed in the counter, a signal is also produced which causes the next
partial product to be appropriately shifted when added to the accumulated
sum.

One way of lessening the time required to produce the product is to
use a subtractor as weU as an adder. Then, the partial products caUed for
by multiplier digits 6 through 9 can be obtained by subtracting the multi­
pUcand a number of times equal to the ten's complement of the multipUer
digit and then adding 1 to the multipUer digit in the next higher order.
This scheme reduces the number of operations required, on the average,
to generate the product. For example, consider the multiplication of some
number, M, by 28. Instead of adding Μ eight times, and then adding lOM
twice (a total of ten operations), Μ would be subtracted twice, and lOM
would be added three times (a total of only five operations).

Another way to increase the speed of a repeated addition process is to
generate double the multipUcand. If both 2M and Μ are made available,
the generation of any multiple of M, from 2 through 9, can be made
with fewer additions than if only Μ were used to build up the partial
product. Generating 2M from Af, when Μ is expressed as a straight binary-
coded decimal, is relatively simple. The value of each order in the doubled
digit and the carry can be obtained by relatively simple logical circuits,
each of which generates the value of a particular order in 2d from the
logical sum of aU values of d that produce it. For example, from Table
6.16, the values of d that produce a 1 in the D 2 4 position of 2d are given
by the Boolean equation D24 = Di^Di^DiiDn + D14D12D12D11. A doubler
can thus be formed from simple combinational circuits that produce the
values of D 2 5 , D 2 4 , D23, D 2 2 . The case of D21 is trivial since it is always
equal to 0.

6.1. MECHANIZATION OF OPERATIONS 337

0000 0000 0000
0001 0010 0101
0010 0100 1 0000
0011 0110 1 0101
0100 1000 10 0000
0101 1 0000 10 0101
0110 1 0010 11 0000
Ol l i 1 0100 11 0101
1000 1 0110 100 0000
1001 1 1000 100 0101

The generation of multiples other than the second and fifth mtroduces
compUcations. This is because carries added into any given order may
affect the value of the carry to be added to the next higher order. Such a
situation cannot occur with doubUng or quintupUng, for the sum of any
left and right hand part of 2d or of 5d cannot exceed 9. This is shown m
Table 6.16.

If one provides two doublers and a quintupler any multiple may be
formed as needed with only one addition operation by causing these
units to be connected in various ways under control of the multipUer digit.
The output of one doubler is used as an input to the other, thereby generat­
ing the fourth multiple. All multiples from 2 through 9 can be obtained by
combining the multiplicand B, and the outputs of the doubler, 2B, the
quadrupler (i.e., the two cascaded doublers), 4ö, and the quintupler, SB,
as shown in Example 6.19.

Another multiple that is relatively easy to generate is the fifth. Inspec­
tion of Table 6.16 shows that the value of the least significant bit of d
can be used to indicate whether the right hand part of 5d is 0 or 5, and
the other three bits of d correspond to the left hand part of 5d, i.e., to
the value of the carry. Another way of producing the fifth multiple is to
first divide d by 2 and then multiply the result by 10. The division by 2
is accompHshed simply by a shift to the right. If d is odd, there is a carry
to the next lower order digit. The carry always has the value 5, and is
added to the lower order after the latter has been divided by 2. Finally,
the multiplication by 10 is accompUshed by a shift of one digit to the left.

TABLE 6.16. Second and fifth multiples of the
straight binary-coded decimal

d 2d 5d

^ 1 4 ^ 1 3 ^ 1 2 ^ 1 1 ^ 2 5 ^ 2 4 ^ 2 3 ^ 2 2 ^ 2 1

338 6. A R I T H M E T I C O P E R A T I O N S

Example 6.19

Multiple desired Required inputs to adder
Β Β

IB _
3B IB, Β
AB _
SB _
6ß 5B, Β or 4B, 2B
7B 5B, 2B
8B 4Β, 4B
9B 5B. 4B

Any of the schemes that have been described for generating multiples
can be combined. The average number of operations per multiplier digit
shown below is approximate for schemes using subtraction only in that
any carry beyond the most significant digit is neglected. (Also, in determin­
ing this figure for such schemes the carry to the next higher order may be
neglected because its effect over all values of a digit cancels out.

Addition only 4.5
Addition and subtraction ^ 2.5
Addition and doubhng 2.5
Addition and quintuphng 2.5
Addition, subtraction, and doublmg 1.5
Addition, subtraction, doublmg and quintupling ^ 1.3
N-tupUng (simultaneous generation of all multiples) 0.9

6.1.5.2.2. A S E R I A L - P A R A L L E L M U L T I P L I E R . Serial-parallel bmary
multipliers are described in Section 6.1.5.1.3. An arrangement for
handling numbers expressed in a decimal code is considerably more
comphcated. A particular one is shown in Fig. 6.34. It is assumed
that the individual bits of each digit in both operands appear in
parallel. Accordingly, each heavy Ime m Fig. 6.34 actuaUy represents
four hnes. The digits, Ai, of the muhipher are presented in paraUel, and
the digits of the multiphcand appear seriaUy. It is assumed, also, that all
nine multiples of the multiplicand are available from some type of iV-tupler
arrangement. The proper multiple of the multiplicand, corresponding to
the value of a muhipher digit, is channeled into a decimal adder via a
40-input, four-output many-to-one function table controlled by the mul-
tipher digit. The inputs to each table consist of four hnes carrying the bits
of the muhipher digit, Ai, and 36 lines carrying the nme possible multiples

6 . 1 . MECHANIZATION OF OPERATIONS 3 3 9

Muitiplicand.B

Carry Carry

FIG. 6.34. A serial-parallel decimal multiplier

of the multiplicand digits. The one-digit delays associated with each adder
serve two functions. They appropriately shift each partial product before
it is added to the partial product in the next lower order, and also delay
the carries generated in the summation of partial products. The digits of
the product will appear serially at the point shown. The time required for
generation of the product is the time required for serial transmission of
the digits of the product.

6 . 1 . 5 . 2 . 3 . MULTIPLICATION BY HALVING THE MULTIPLIER AND
DOUBLING THE MULTIPLICAND. A multiplier of this type is shown in
Fig. 6 . 3 5 . One factor, say the multiplier, is repeatedly halved while the

U Shift
register Doubter IGate

Multiplicand

Shift
register Halver Η \FF

Multiplier Carry out of
lowest order-"
of halved factor

Decimal
accumulator!

FIG. 6.35. Decimal multiplication by halving one factor, doubling the other

other is doubled. This process is continued for a number of cycles until
the multiplier has been reduced to 0 . Whenever a remainder of 1 is ob­
tained from halving the multiplier, the product of the multiplicand and
the appropriate power of 2 is entered into the accumulator. This remainder

340 6. A R I T H M E T I C O P E R A T I O N S

468

Note that the sequence of the remainder bits forms the binary equivalent
of the multiplier: 1101. Accordingly, the product is (2^ + 2 2 + 1) times
the multiplicand.

Halving can be accomplished by shifting each binary-coded group one
bit to the right. Whenever the least significant bit of a group is equal to
1, indicating there will be a remainder (or carry to the next lower order)
after a shift, the number 5 must be added to the next lower order. The
addition of the carry, 5, to any order cannot cause another carry because
no code group can have a value greater than 4 after a shift, and before
addition of the carry.

6.1.6. D I V I S I O N

6.1.6.1, Binary Division

6.1.6.1.1. T R I A L A N D E R R O R OR R E S T O R I N G M E T H O D S . In working
out any division process, three important items must be taken into account.
Each of these is described in the paragraphs following:

First of all there must be a determination of the correct orders of the
dividend from which the divisor is to be subtracted initially. Because a
computer does not ascertain relative magnitudes by observation, rules dif­
ferent from those used by humans must be used. One way to facilitate the
initial subtraction problem is to place restrictions on the relative magni­
tudes of the dividend and divisor. In a fractional computer the restriction
on the size of the operands is simple: the divisor must be larger than
the dividend, or else the quotient would be greater than one, and beyond

can be anticipated, since it will always occur when the least significant
digit is odd, indicated by the least significant bit of the lowest order
binary-coded decimal digit being equal to 1. Essentially, the binary-coded
decimal multiplier is converted to a pure binary number (see Section 6.4.3)
in which the location of I's is determined by where there are remainders.

Example 6.20 Multiplication of 36 by 13

Halved Remainder Doubled Partial
operand operand products

13
6 1 36 36
3 0 72
1 1 144 144
0 1 288 288

6.1. MECHANIZATION OF OPERATIONS 341

the capacity of the machine. A simple way to test for this is to hne up
the binary points and subtract the divisor from the dividend. If the
remainder is negative, the divisor is greater than the dividend. The initial
steps of a division process may be modified to meet special situations,
as for example, in a machine with built-in floating point representation
of numbers. (See Section 6.3). In this case, an automatic shift, with
corresponding adjustment of an exponent, can be actuated which will
cause the mantissa of the dividend to be less than that of the divisor.

Another important item is the procedure to be followed when sub­
traction of the divisor from the dividend or a remainder produces a nega­
tive result. An obvious way to nulhfy the subtraction is to add the divisor
back into the remainder. Whenever the subtraction of the divisor from the
old remainder leaves a new, positive remainder, or when the divisor is
added back to the old remainder to restore the previous remainder, the
divisor is shifted one place to the right before being subtracted from the
new remainder. The number of additions and subtractions required to
complete a division can be reduced as foUows: Instead of correctmg a
negative remainder by adding the divisor back, the remainder may be
shifted one place to the left before adding the divisor. The operation of
the first method can be expressed as + y - y/2 and that of the second
as simply + y/2. If, after adding y/2, the remainder is stUl negative, it is
known that the next quotient bit is 0, and the divisor is shifted another
position to the right and added. The second procedure, which is equaUy
appUcable to serial or paraUel machines, may be summarized as follows:
(a) Test the dividend and each remainder. If it is ^ 0, subtract the
divisor, otherwise add. Whenever, after an addition or subtraction, the
remainder is ^ 0, a 1 is recorded in the quotient, otherwise a 0. (b) Shift
the remainder one place to the left and repeat step (a) .

A third procedure which has several variations is similar to the pencil
and paper method of division. The divisor is compared with appropriate
orders of the dividend or remainder and a subtraction is executed only
when the comparison indicates the new remainder wiU be positive. If the
digits appear with the less significant digits first, a comparator (see
Section 6.1.4.3) may be used. The final setting of the comparator indi­
cates whether a negative remainder will be produced by the subtraction
of the divisor from the old remainder. An over-aU system of operation
can be devised wherein the comparison for the succeeding subtraction
is performed at the same time that a given subtraction is being executed.
Also, if the machine has a type of accumulator (Fig. 6.26) wherein the sign
of the difference is available before the difference itself is formed, the sign
may be tested and the subtraction aborted if a negative difference is in­
dicated.

342 6. ARITHMETIC OPERATIONS

An example of binary division is given in Example 6.21. Since each
digit can be only 1 or 0 more than one trial is never required before a
restoration

Example 6.21

X

y

7/16
10/16

0.1010

xxxx
0.1011

0.0111 0000
0.1010

Restore

0.01110
0.01010

0.001000
0.001010

Restore

Quotient digits

0.0010000
0.0001010

0.00001100
0.00001010

0.00000010

The third major item to be considered in a division process is the
disposition of the remainder after the quotient has been obtained to the
precision desired. Each of the three procedures described for producing
a quotient yields a value for the quotient that represents the largest
multiple of the divisor equal to or less than the dividend. The final re­
mainder is the difference between this largest multiple and the dividend.
There are occasions when the final remainder may be of use to a pro­
grammer. To obtain the final remainder, it is necessary that the divisor
be added back into the orders from which it was last subtracted. This is
easily done if the first method of correcting a negative remainder is used.
However, in the second method a special operation is required because
the normal procedure is to shift the remainder left once before adding.
Also, in some cases the final remainder must be obtained by a subtraction
instead of an addition. The corrective steps which must be taken at the
conclusion of the division process cause substantial complications in the
design. Usually, however, the final remainder is of no interest and, there­
fore, discarded. Even then, it may be obtained when needed by subtracting

o

o

1

1

1

6.1. MECHANIZATION OF OPERATIONS 343

the product of the unrounded quotient and the divisor from the dividend.
The preceding description of the division process considered only

positive operands. This does not introduce any loss of generality if the
operands are in signed form. As in multiplication, the signed bits are
ignored except for the simple comparison required to determine the sign
to be attached to the result. Each of the division procedures described
can also be used for operands expressed in a two's complement form.
For example, the second procedure for correcting a negative remainder
may be modified in the following way (a) Test the dividend or re­
mainder. If it is zero or has the same sign as the divisor, subtract the
divisor, otherwise add. Whenever after an addition or subtraction, the
remainder is found to be zero or have the same sign as the divisor, a
1 is recorded in the quotient, otherwise a 0. (b) Shift the remainder one
place to the left, and repeat step (a) .

A negative quotient appears in complementary form. The binary point
is after the first recorded bit. CompUcations arise in the determination of
the least significant quotient digit. A possible round-off procedure is to
always place a 1 in the least significant place of the quotient. When this
procedure is used, the two's complement representation of operands is
satisfactory. If a more accurate round-off procedure is required, it is
preferable to convert the operands to a signed form before the division
process.

6.1.6.1.2. THE NONRESTORING METHOD OF DIVISION. The methods
of division described so far fall for obvious reasons into the category of
so-called trial and error, or restoring methods. A diflierent scheme, referred
to as the nonrestoring method, has the following important advantages:
First of all, it eliminates the operations of inspecting the remainder and
restoring it when required. Secondly, it requires no extra correction op­
erations if dividend and/or divisor are negative.

In a nonrestoring method, - 1 should be used in the quotient if the
divisor y is added to the remainder, and +1 if >' is subtracted. Since an
accumulator is to be used to hold the dividend and, subsequently, the
remainders, it is more convenient to store the quotient digits in a register
rather than an accumulator. However, a difläculty arises from the fact
that the quotient register has no way of distinguishing - 1 from + 1 . One
solution is to place a 0 in the quotient wherever a - 1 should appear,
and to seek a simple relationship between this pseudo-quotient and the
true quotient. Such a relationship will now be derived: We begin by
writing an expression for the new remainder in terms of the old re­
mainder rfc_i, the pseudo-quotient digit p*, and the divisor y.

344 6. ARITHMETIC OPERATIONS

rj, = 2rjc-i + y

rjc = 2rjc-i-y

(6-13)

if PJ, = 0,

if Pk = 1,

The factor of 2 appears in the recursion equation (6-13) since the old
remainder was shifted to the left before the addition or subtraction of y.
Multiplying Eq. (6-13) by 2 - ^ yields

2-Vfe = 2-(^-i)rfc_i + [2 - ^ - 2-(^-i^Pfc]y.

Setting k = 1,2 and designating the initial remainder ro by the dividend x:

2 - V i = ; c + (2 - i - 2 V I) y

2 - 2 Γ 2 = 2 - V i + (2 - 2 - 2 - i ; 7 2) y

= ;c + [(2 - 1 + 2 - 2) - (2 ^ 1 + 2 - V 2)] y .

In general

2 -«Γη = x + (6-14)

where

2 - ^ = 0.1 + 0.01 + 0.001+ . . . = 0 . 1 1 1 . . . = 1 - 2 - « (6-15)

Substituting (6.15) in (6.14), and transposing

= [- 1 + 2-« + 22-^'^-l)p,]y + 2 - '
l

Γη.

Finally

= [-1 + 2-« + ^ 2 - < ^ - i > P ; T] + ^ y ^ -

1

(6-16)

In Eq. (6.16), the first digit, pi of the pseudo-quotient corresponds to
the sign digit since for k = I, 2-^^-'^^pj, = 2 V I , i.e., Pi is in the 2 «
position, which is the sign position. From Eq. (6-16), it is clear that to
convert the pseudo-quotient to the true quotient it is only necessary to
add (2 - « - 1) to the pseudo-quotient. Since carries beyond the sign posi­
tion are discarded, subtracting 1 is the same as adding 1. Therefore, the

6.1. MECHANIZATION OF OPERATIONS 345

X 7/16

y 10/16
0.1010 I 0.0111

0.1110 Pi = 1
1.0110

0.0100

0.1000 P2 = 1
1.0110

1.1110

1.1100 Ps = 0
0.1010

0.0110 Γ3

0.1100 P 4 = 1
1.0110

0.0010

Pseudo-quotient 1.101
Correction 1.0001

True quotient 0.1011

true quotient may be formed by transferring the pseudo-quotient from
the register into the accumulator and adding units into the sign digit and
the least significant digit.

Note that in doubling the remainder in the division process described,
the sign digit is lost. This introduces no error. The addition or subtraction of
the divisor is always such as to decrease the absolute value of the re­
mainder. If it is specified to begin with that [;c| < |y[, \2x — y| < |y|
and, in general (\2r\ - \y\) < |y|. If also, |;c| < 1, (|2r| - |y|) < 1,
and therefore the result of the operation is always within the capacity of
the registers.

The procedure of division just described is summarized by the follow­
ing set of rules: (1) Compare the sign digit of the divisor with that of the
remainder. (2) If the signs are aUke, place a 1 in the pseudo-quotient,
shift the remainder one binary place to the left, and add the complement
of the divisor to the shifted remainder. If the signs are not alike, place
a 0 in the pseudo-quotient, shift the remainder one binary place to the
left, and add the divisor to the shifted remainder. (3) After the pseudo-
quotient has been obtained through the 2-i«"i>th binary place, add
(1 + 2-«) to it to produce the true quotient. See Examples 6.22 and 6.23.

Example 6,22

346 6. ARITHMETIC OPERATIONS

y y
2-^ (0.0010)

= 0.1011 +

= ΙΙ /16- l ·

0.1010

2 - M 1 / 8)
5/8

= 0.6875 + 0.0125 = 0.7000

Example 6.23

^ _ 7/16 : 1.0110 I 0.0111 χ =
y - - 1 0 / 1 6

0.1110 Pi = 0
1.0110

0.0100

0.1000 P2 = 0
1.0110

1.1110 Γ2

1.1100 Pa = 1
0.1010

0.0110

0.1100 P 4 = 0
1.0110

0.0010

Pseudo-quotient 0.010
Correction 1.0001

True quotient 1.0101

Check

— - [True quotient] -f
2-nr

y y
2 - 4 (0.0010)

= 1.0101+ -
1.0110

= - 0 . 6 8 7 5 - 0 . 0 1 2 5 = - 0 . 7 0 0 0

The solution can be checked by substituting the result in Eq. (6.16)

— = [True quotient] +

6.1. MECHANIZATION OF OPERATIONS 347

If a machine does not have a buih-in facility for division, division may
still be accomplished by means of a program based on an iterative formula
not explicitly involving division (see Section 6.2.2).

6.L6.2, Decimal Division

Decimal division presents the same general pioblems as binary division.
Again, the correct orders of the dividend from which to subtract the
divisor must be determined, because the equivalent of visual inspection
is not readily mechanized. A simple automatic procedure, approximate but
adequate to determine relative magnitudes of divisor and dividend is to
sense the zeros in all orders higher than the highest order containing
a nonzero digit. Then, the highest order nonzero digits in each operand
can be lined up automatically. This procedure may sometimes cause
the first quotient digit to be zero, but there is no objection to this. In
floating point machines (see Section 6.3), automatic means are pro­
vided to cause the digits in each number to be shifted so that the hi^iest
order nonzero digit appears at the left end of the number.

Another problem is when to stop subtracting the divisor from one
set of orders of the dividend, and start subtracting it from a less significant
set of orders. The most straightforward solution is to use the restoring
method of division wherein the divisor is repeatedly subtracted from one
set of orders of the dividend until a negative remainder is produced. The
actual number of operations (subtractions and additions) required to
produce each digit of the quotient is then two greater than the digit,
since an extra subtraction and a subsequent compensating addition will
always be made. An exception occurs in the case when nine subtractions
of the divisor are perfonped without producing a negative remainder.
Then, unless an error has been made, it is known that the quotient digit
must be nine, and the extra two operations can be suppressed.

Another general problem, that of round off of the quotient, is dis­
cussed in Section 9.4.

A number of schemes are available for increasing the speed of the
division process. In one scheme, instead of restoring the remainder after
it becomes negative, one shifts the divisor D to the right and repeatedly
adds it to the remainder until it becomes positive. This method is based
on recognizing that lO'̂ D = 10(10"-i)D and therefore WD-j(W-^)D
can be replaced by (10 - /) (lO^-^)D where η is the most significant order
of the quotient, and / the number of iterations causing a negative remainder
in the conventional restoring method. In this modified scheme the quo­
tient digit q equals / - I or 10-/: , where k is the number of additions.

348 6. ARITHMETIC OPERATIONS

347
382

- 9 6 5 62
38 2 3 1

003 82
3 82 3 1 2

Quotient: (/3 - I) (10-^2) O'l-D = 2 9 1

Doubling or quintupling schemes may also be used for decimal divi­
sion. When using quintuphng, the first quotient digit is determined by
subtracting the quintupled divisor from the dividend. Whether this or any
subsequent subtraction of 5D is foUowed by an addition or subtraction de­
pends on whether that operation changed the remainder's sign. In keeping

TABLE 6.17. Outline of division procedure utilizing quintupled values
of the divisor

Quotient digit Subtractions first Additions first

0 -5D + D + D + D + D + 5D + D + D + D + D
1 -5D + D + D-\-D + D + 5D + D + D + D + D
2 -5D + D + D + D + 5D + D + D + D
3 -5D + D + D + 5D + D + D
4 -5D + D + 5D + D
5 -5D-D + 5D-D
6 -SD-D-D + 5D-D-D
7 -SD-D-D-D + 5D-D-D-D
8 -SD-D-D-D-D + 5D-D-D-D-D
9 -5D-D-D-D-D + 5D-D-D-D'-D

with the procedure described in the preceding paragraph, whenever a
negative remainder results from one of the sequences of operations shown
in Table 6.17 (the case for digits 0, 5, 6, 7 and 8) it is not restored
and the next sequence is added to it after a one digit shift to the
right. On the average there are 3.8 operations per quotient digit.

If doubling is combined with quintupling, addition, and subtraction,
as shown in Table 6.18, operations per quotient digit are reduced to 3.4.

Dividend: 1111 62 ^ h
Divisor: 382 1

729
382 2

6.2. ALGEBRAIC AND TRIGONOMETRIC FUNCTIONS 349

Quotient digit Subtractions first Additions first

0 -5D + 2D + 2D 5D -f 2D + 2D
1 -SD + ID + ID-D 5D + 2D + 2 D - D
2 - 5D + 2D + 2D - D 5D + 2D + 2D - D
3 -5D-^2D-D 50 + 2 0 - 0

4 -5D + 2D-D 50 + 2 0 - 0

5 - 5D - 2D + D 5 0 - 2 0 + 0

6 - 5D - 2D + D 5 0 - 2 0 + 0

7 - 5D - 2D - 2D + D 5 0 - 2 0 - 2 0 + 0

8 - 5D - 2D - 2D + D 5 0 - 2 0 - 2 0 + 0

9 - 5D - 2D - 2D 5 0 - 2 0 - 2D

For the quotient digits 0, 1,3, 5, and 7, the remainder after the indicated
operations will be negative, and therefore addition should be used first to
obtain the next quotient digit.

The number of operations per quotient digit may be reduced to 1.0
if all nine multiples of the divisor are provided. Then, each multiple
can be compared with the dividend or remainder in a separate comparison
circuit, and the quotient digit determined by the largest multiple which
leaves a positive remainder after subtraction. Each comparison circuit can
be simpler than a subtractor for only the sign of the diflierence is required.
After the determination of the quotient digit is made, it is actually sub­
tracted from the remainder. In a serial computer, the comparison process
for determining the next quotient digit can proceed simultaneously with
the subtraction of the divisor multiple corresponding to the quotient digit
just determined.

6.2. Algebraic and Trigonometric Function Generation

6.2.1. DERIVATION OF A GENERAL ITERATIVE FORMULA

To find a root of the equation, f(x) = 0, begin by estimating a value
JCn. If the point Xn is chosen at random, a point Xn+i closer to the root
(see Fig. 6.36) may be found by means of the Newton-Raphson iteration
procedure, which is based on use of the following equation

Xn^l = - fiXn) cot Θ = Xn- ί{Χη)/ί\Χη). (6-17)

TABLE 6.18. Outline of division procedure utilizing quintupled and
doubled values of the divisor

350 6. A R I T H M E T I C O P E R A T I O N S

FIG. 6.36. Approximation to the root: x^_^^ = " fiXn^cotO

With an initial estimate of ;c„, successive appUcation of Eq. (6-17) wiU
yield progressively better approximations to the root.

Let FIX) = Χ Ρ - Α , then / ' (JC) = pjĉ -̂̂ and

X = X^ x = x^ x = x^

(6-18)

Equation (6-18) is used in the sections foUowing as the basis for the
derivation of specific iterative equations to determine the value of recipro­
cals, square roots, and higher order roots.

6.2.2. C O M P U T A T I O N O F T H E R E C I P R O C A L

If in the expression / (J C) = JC*' - α (see Section 6.2.1), one substitutes
ρ = — 1, the result is

/ (J C) = (l / j c) - f l . (6-19)

The root of this equation is 1/a. Therefore, if ρ = — 1 is substituted in
Eq. (6-18), the following commonly used iterative equation for the re­
ciprocal of a number, a, is obtained

Xn + l = ""^^.^ '-a""^^ = - ""niaXn - 2) = JCN(2 - FLJCN). (6-20)
Xn

The normalized difference (JCN-f2 - Xn^i)/Xn-{-i = (1 - aXn+i) is equal
to (1 - FLJCN)^, the square of this difference at the preceding step. If
the initial estimate of the reciprocal, i.e., JCO, is good to a precision of 2 " ' ,
three iterations will suffice to give a final result good to 2-^^. Since there
are two multipUcations per iteration, a reciprocal can be obtained to the
desired accuracy in six multiplication times, and a quotient in seven.

A smaU table of 2* entries can be used to provide the initial estimate
of 1/a. To avoid overflows would be used, see Example 6.24.

Means for generating the reciprocal no longer has the importance
within digital computers that it once had, when a buüt-in division opera­
tion was not common in general purpose computers.

6.2. ALGEBRAIC AND TRIGONOMETRIC FUNCTIONS 351

a 2 - δ / α
.0001 .1
.0010 .01
.0011 .0010101
.0100 .001
.0101 .000110011
.0110 .0001010101
.0111 .0001001001
.1000 .0001
.1001 .0000111000111
.1010 .000011001100
.1011 .000010111010001011101
.1100 .0000101010
.1101 .0000100111011000
.1110 .00001001001
.1111 .0000100010001

6.2.3. METHODS OF COMPUTING THE SQUARE ROOT

In this section a number of procedures for obtaining the square root
of a number will be described. We will consider first a procedure referred
to as simple iteration, based on the general iterative equation (6-18)
derived in Section 6.2.1. If in the expression f(x) = — a (see Section
6.2.1), ρ = 2 is substituted the result is

fix) = r ^ - a . (6-21)

The roots of this equation are ;c = ± y/a. Therefore, if ρ = 2 is sub­
stituted in Eq. (6-18), the following iterative equation for the square root
of a number a is obtained

Xn^l = V2 (x„ + _ ^) . (6-22)

The initial estimate Xo may be any plus or minus value, except zero. A
good estimate of jco, for small a's, is a/2. The number of iterations re­
quired is a function of the argument, increasing as the argument decreases.
Note that a division operation is required for each iteration cycle. Equa­
tion (6-23) requires only one division, regardless of the number of times
the equation is apphed, but requires multiphcations for each iteration cycle

Equations (6-22) and (6-23) are both second order iterative equations.
This means that once a moderately accurate approximation has been
made, each appUcation of the equation wiU double the niunber of signi-

Example 6.24

352 6. ARITHMETIC OPERATIONS

Series 1 3 5 7 9 11 13 1 5 . . .

Sum of the series 1 4 9 16 25 36 49 6 4 . . .

Square root of the sum 1 2 3 4 5 6 7 8

The actual procedure used to extract a root is essentially a restoring divi­
sion process utilizing artificial subtrahends based on the series of odd num­
bers. The procedure will be described for both the decimal and binary
system.

In the decimal system, the square root may be obtained by the follow­
ing procedure: (1) Separate the digits of the radicand into groups of two
digits each, starting from the decimal point; (2) Diminish the first

ficant digits in the approximation. Equation (6-23) requires a more
accurate first guess than Eq. (6-22) and the magnitude of Xo must be
< (5a) Equations (6-24) and (6-25) are examples of third order
iterative equations

^n+i = Vs i3xn+ - - ^) (6-24)
Xn Xn

Xn^x = (15 - - f - ^ J ^) . (6-25)

Another way of obtaining the square root would be to store a reason­
ably sized table of square roots and to use an interpolative procedure to
obtain roots for which there were no entries in the table. Such a table
would be cumbersome. A more desirable approach would consist of
having a table with just a few entries to provide a good initial estimate,
JTO, with which to start one of the iterative methods. The error at the
(A I + l) th iteration, (error)n4.i, is approximately equal to (%) ((error)«^
which converges rapidly for (error)« < 1).

The procedure for extracting the square root to be described next is
known as the odd series approximation. It makes use of the fact that the
square root of the sum of a series of odd numbers: 1, 3, 5, . . . has a value
that corresponds to the position of the highest term in the series. For
example, the sum of 1, 3, 5, and 7 is 16 and the square root of 16,
namely 4, corresponds to the position of 7 in the series 1, 3, 5, 7. The
nature of the odd series relationship is shown below

6.2. ALGEBRAIC AND TRIGONOMETRIC FUNCTIONS 353

4 89 00 00 00
1

89
41
4 Γ
43
Τ
45
Restore
5
4

4
Restore

00
41
59
43

59 00
44 21
14 79
44 23
Restore
14 79 00
4 42 21

10 36 79
4 42 23
5 94 56
4 42 25
1 52 31
4 42 27

Restore

group by 1, 3, . . . successively until a negative remainder is produced;
(3) Restore the remainder to its last nonnegative value. Put down as the
first digit of the root, the number of subtractions performed before the
last nonnegative remainder was reached; (4) Bring down the next group
of two digits, and form the new subtrahend by increasing the last sub­
trahend used (i.e., the one before that producing a negative remainder)
by 1, shifting it one place to the right, and adding a 1 in the place to the
right of it. These operations are continued until a remainder of 0 is
reached, or to as many significant places as desired. The extraction of
the square root of 489 is shown as Example 6.25.

Example 6.25

354 6. ARITHMETIC OPERATIONS

yJ9 54 81
1

"8"
3
5~
5

0 "
54
61
Restore
54 81

6 01
48 80

6 03
42 77

6 05
36 72

6 07
30 65

6 09
24 56

6 11
18 45
6 13

12 32
6 15
6 17
6 17

In the binary system, the procedure is as foUows: (1) Separate the bits
of the radicand into groups of two bits each, starting from the binary
point. (2) Begin the actual extraction operation at the first group of bits
from the left that does not contain two zeros. Ahgn a 1 with the right-
hand bit of this group and subtract. The remamder wül be nonnegative

Whenever there is a zero in the root, indicated by the need for a restora­
tion after the first of a new series of subtrahends is subtracted, the next
subtrahend is formed as foUows: (a) increase the last subtrahend used
by 1, (b) shift it two places to the right, (c) after it place a 0 and then
a 1. Example 6.26 shows the use of this procedure for the extraction of
the square root of 95,481.

Example 6,26

6.2. ALGEBRAIC AND TRIGONOMETRIC FUNCTIONS 355

and a 1 is entered in the root for this group. For each double 0 group to
the left of this group, a 0 is entered in the root. (3) For all succeeding
groups, the trial factor to be subtracted from the remainder is the expres­
sion (4rn_i + 1), (if fractional arguments and Γη _ ι , the approximate root
already obtained, are treated as if they were integers). The right hand digit
of the trial divisor is aligned with the right hand digit of the group for
which it is used, and subtracted. If the remainder is nonnegative, a 1 is
entered as the root for that group. If the remainder is negative, the root
is 0 and the subtraction is restored. See Example 6.27 in which the
square root of .10101001 is extracted.

Example 6,27

V-io 10 10 01

10
01 = (4 X 1) 4 - 1

1 10
11 01 = (4 X 3) H - 1
Restore

1 10
1 10

01
01 = (4 X 6) + 1

Check: .10101001 = 169/256
.1101 = 13/16

6.2.4. COMPUTATION OF HIGHER ORDER ROOTS

To obtain the cube root of a positive number a, one can use any of a
number of third order equations and corresponding iteration functions
based on the Newton-Raphson method

Equation

x^^a = 0

; c 3 / 2 _ ^ i / 2 = 0

JC3/4 - al /4 = 0

Corresponding iteration function

g6i(x): Xn^i = l/3(a/Xn^ + 2x)

gs2(x): Xn+i = l/3(2a'^W + x)

Since the function g3i(jc) does not involve any square root operation, it
is more convenient to use in a machine without a built-in square root
instruction. However, both g32Íx) and gssix) usually converge in fewer
steps than gziix).

356 6. ARITHMETIC OPERATIONS

sin-ijc = 7 Γ / 2 - V 1 - Λ: F(X)

where: F(X) = 1.570788 - 0.214125Λ: + 0.084666JC2 - 0.035757Λ:3
+ 0.008649A:*

and 0 ^ jc ^ 1 .

(2) The technique of dividing the interval of interest into η small
subintervals and using a Taylor series expansion about the center of
each interval. This requires the storage of the sine and cosine of η argu­
ments. A value ot η = 16 is sufficient for an accuracy of 10~^ and
facilitates entry into the table. For example, if the angle χ Ues in the /th
interval and Vi is in the center of the interval, then to the accuracy desired

* Hammer, P. C. [1955] "Iterative procedures for taking roots based on square
roots," MATC, 9, 68.

t Hastings, C , Jr. [1955] Approximations for Digital Computers, Princeton Univ.
Press.

Iterative equations for the fifth, seventh, and ninth roots are listed
next.

For the fifth root
Λ : 5 / 4 - α ΐ / 4 = 0 ^ 5 (Λ :) : X^+i = [(4ai/VA:i/4) -j- JC] 5

For the seventh root

For the ninth root
GOIX): Xn+i

 =

 [8(aA) i /8 -l· X] 9*

6.2.5. GENERATION OF TRIGONOMETRIC FUNCTIONS

Storing an extensive table of trigonometric functions makes excessive
requirements on the storage facilities of a computer. On the other hand,
generating these quantities from a single Taylor series expansion is not
desirable because the maximum error grows inordinately with the range
of the interval and, therefore, the number of computations required
becomes excessive.

Some simple methods superior to the ordinary Taylor series are avail­
able. They are:

(1) The use of expansions which have essentially the same accuracy
over the entire interval, e.g., Chebyshev polynomials, continued fractions,
or optimal rational approximations. For example, Hastings! has given the
following series which has an accuracy of 10-^ over the first quadrant:
sin (π/2)χ = 1.570795Λ: - 0.64592IJC» 4-0.079488JC5 - 0.004362JC^

where: - 1 ^ jc ^ 1

6.2. ALGEBRAIC AND TRIGONOMETRIC FUNCTIONS 357

sin X = sin Vi + cos Vi(x - Vi) — sin Vi 3!

COS X = COS Vi - sin Vi(x — Vi) - cos Vi -^^—^ U ms 4-2 '^^-^^ 3!
where Vi refers to the stored values of the argument.

(3) The sine and cosine of any argument, jc, may be expressed in the
form sin χ = sin (ω + δ) and cos χ = cos (ω 4- δ), and each of these
expressions may be expanded to yield

sin (ω + δ) = sin ω cos δ + cos ω siu δ

cos (ω + δ) = COS ω COS δ - siu ω siu δ

The values of sin ω, cos ω can be obtained from a small stored table,
and sin δ, cos δ may be obtained by the following series approximations

sin δ δ | y -

cos δ 1 — — ^

Any desired accuracy may be obtained either by increasing the table of
stored values or by increasing the number of terms in the expression^ for
sin δ, cos δ. For a table of 16 values of the sine and the cosine, and using
the two term expansions for sin δ, cos δ, the values of sin x, cos χ may be
obtained with a precision of 1 0 - \

We will consider next some procedures for generating inverse trigo­
nometric functions. The Taylor series expansion for an inverse trigono­
metric function, e.g., sin-^jc = Λ : - f ;cV3! + 3JCV40 + . . . , suffers from
poor accuracy, especially near χ = 1. An interpolative scheme that is more
desirable, and which can be used to obtain both the inverse sine and cosine
is based on use of the following type of equation

s m - U + €) = s i n - ^ + + ^Wl'-x^y +···

If this equation were utilized, values of sin-^jc and V I could be
stored. Although a higher order expansion is required for the inverse
trigonometric functions than for the trigonometric functions, the method
still is useful because only a few simple operations have to be performed

* Any subroutine involving the generation of the square root by an iterative method
without a good first approximation provided by a small stored table consumes
excessive time. Since the square root operation in this expression involves χ (as
opposed to (x + e)) no interpolation or iteration is required.

(X — Vi)^ — C O S Vi (x — ViV

3 5 8 6. ARITHMETIC OPERATIONS

on stored values, thereby reducing round-off errors and the time required
for computation.

Another scheme involves use of an interpolation formula of the form

sin-K^t; + €) = sin-^x^ + ais in-^JCV- i + aisin-^x^-i + . . .

+ ¿isin-^xt,+i + Z>2sin-%+2.

In this equation Ou b u and ¿2 are all dependent on €. In this procedure,
a set of values of sin -^x^, only must be stored. The inaccuracy of a smaU
table of entries is compensated for by using several entries on either side
of x^.

Some of the methods for computing trigonometric and other trans­
cendental functions in a general purpose type of digital computer are
summarized as: (1) Computation of the function from its series expan­
sion. (2) Generation^of the function by means of a polynomial expres­
sion that adequately approximates the desired function to a required
accuracy over the range required. (3) Use of a relatively small table of
stored values and derivation of intermediate values by means of interpola­
tion formulas. (4) Numerical integration of a set of difference equations
whose solution represents the desired functions. It is not always readily
apparent which method is the most desirable. Among the factors that
must be considered are available storage space, storage access time, the
time required for each operation in the program, and the relative diflS-
culty in preparing different programs.

Ó.3. Scaling of Problems

6 . 3 . 1 . SCALING FOR FIXED-POINT COMPUTATION

While no binary point actually exists in a computer, one can imagine
it to be between any two successive bits in a numerical representation.
The position of the point is determined by the choice of scale factor. The
determination of scale factors in a problem is referred to as scaling and
involves the following: (1) Defining the position of the radix point in
each of the input numbers based on the bounds of their niagnitude.
(2) FoUowing the behavior of the point in aU of the computational steps.
(3) Knowing the position of the point in each of the final results. For
proper scaling, complete and accurate information about the bounds on
the magnitude of aU numbers entering the computation should be avail­
able. This is necessary to simultaneously provide for : (1) EflSciency of
scaling, i.e., minimization of leading zeros and, consequently, increased
accuracy. (2) Accommodation of the largest numbers without overflow
of any register. For convenience, the symbols for the numbers in a prob-

6.3. SCALING OF PROBLEMS 359

η

- I .

<-l
with the following bounds given

Ml < /
K I < / = 1, 2 , . . . «

\Pi\ < U I = 1, 2 , . . . (, i - 2) .

lern may be written in the following form which explicitly states the posi­
tion of the radix point

Λ : = Jc. (6-26)

In Eq. (6-26), χ is the true value, χ termed the "scaled form" of ^ is an /i
place fraction, and in the scale factor, r^, b is the smallest integral power
of Γ which makes greater than the maximum value of x.

A standard convention in fixed-point computation is to consider fixed-
point numbers in a computer as fractions and to express the numbers in
a problem as fractions multiplied by scale factors. Neither addition nor
subtraction changes the position of the radk point. However, special
attention must be given to the position of the radix point in a product or
quotient Usually, the radix point remains at the extreme left in both
multiplication and division of fractions. For example, in multiplication,
two n-bit fractions yield a product which is a 2n-bit fraction, and in
division, a 2n-bit fractional dividend divided by an n-bit fractional divisor
yields an n-bit fractional quotient (generally the dividend is an n-bit
fraction and the 2/i-bit accumulator is used to shift the dividend the
proper number of places to the right required to make it less than the
divisor).

The steps to follow m scaling a problem are: (1) Ascertain the
bounds on the absolute values of the numbers. (2) Set up the scaling
relationship between true numbers and scaled fractions by determining
the required scale factor. (3) By substitution, obtain from the true value
formula the scaled value formula, and write the program directly from the
latter. The scale factors which do not cancel specify the required machine
shift operations.

To prevent an overflow in a summing process within an accumulator,
it is not enough to scale the final sum according to its bound, for, in gen­
eral, it must be scaled by the largest bound which applies to any element
in the sum or partial sum. Pi, generated in the process of summing. Con­
sider the sum

3 6 0 6 . ARITHMETIC OPERATIONS

The largest bound would be selected from / , and L{ to use as the
effective bound for scaling both the sum A and the elements a^. Where the
partial sums are not known, the bound used for selecting the scale factor
is η \ak\, where η is the number of elements and ajc is the element with
the greatest magnitude.

In setting up the order of computation steps, the programmer should
attempt to determine the bounds on intermediate quantities in the com­
putation. Often a smaller bound than the implied maximum bound may
be used. For example, if | /4 | < 12 , |B| < 2 0 , the implied maximum
bound of \AB\ would be 2 4 0 . However, there may be other constraints
on the system such that \AB\ < k, where k < 2 4 0 . When there are
alternatives in the order of computation steps, that order should be
chosen which makes use of known effective bounds to replace implied
maximum bounds. The scaling of any problem is not necessarily unique,
and several good approaches may be available.

6 . 3 . 2 . FLOATING-POINT NOTATION FOR NUMBERS

In this notation each number is expressed in the form aR^, Thus, for
any number system of radix R, where R may be any integer greater than
unity, it is only necessary to specify the numbers a, b. The radbc point is
usually considered to be to the left of the highest order nonzero bit or
digit. The coefiicient or fractional part of the number, namely a, is con­
strained within specified Umits by adjustment of the integral exponent b.
The value of a is within the bounds \/R ^ a < 1, or else it is zero. In
the binary system, 1 /2 ^ α < 1, or α = 0. In the decimal system 0.1
^ α < 1, or Ö = 0. When restricted to such an arbitrary range, the
coeflScient a is referred to as the mantissa, and the integer b as the
exponent index of the floating binary or decimal number. The exponent
may be zero or any integer, except that in any machine its magnitude must
be bounded because of storage limitations.

The use of floating-point numbers affords a convenient method of
computing with numbers which vary in magnitude over a relatively wide
range. Since, after a floating-point operation, a specified number of signifi­
cant digits is retained, and the magnitude of the number indicated by an
exponent index, assurance is provided that all numbers (i.e., the man­
tissas) are fixed in magnitude within some predetermined scale. Some
examples follow to show how numbers in floating-point form are manipu­
lated. Consider first, multipUcation and division using numbers in floating
decimal form

(flllO*!) (^210*2) = (¿1102)10^1 + *2

(αι10^ΐ)/(α2ΐ0^2) = (α,/α2)10^ι-^2.

6.3. SCALING OF PROBLEMS 361

1.016 X 10 -7

6.3.3. REPRESENTATION OF FLOATING-POINT NUMBERS
WITHIN A COMPUTER

When using numbers in floating-point form within a computer, it is
convenient to represent the mantissa and exponent index as a single
number. However, a difläculty presents itself in that there is a sign associ­
ated with each, and these signs may not be the same. However, if the
range of the index is arbitrarily limited, the sign of the index can always
be made positive. For example, if it is desired to limit the range of the
exponent to — A: ̂ ft < (where, e.g., k = 50), the actual value of the
exponent used would be (ft + since 0 ^ (ft 4- Λ) < 100, i.e., (6 + Λ)
is always positive in sign. This bias of the exponent is readily removed in
the interpretation of results. Figure 6.37 shows how a floatmg decimal
number might be represented in a computer in which each storage location
accommodates a sign plus ten digits. As an example, the floating decimal
number + 0.54870623 x 10"^ would appear as + 0.5487062343. The
exponent is 43, since (6 + Λ) = (- 7 + 50).

If the values of αιο2 and αχ/α^, do not fall within the range 0.1 ^ a^a^ < 1,
an additional step is required, namely the mantissas of the results, 01^2
and öi /a2, must be scaled to fall within the specified range, and the ex­
ponent index of the result adjusted to compensate for the scaling opera­
tion. For exan^)le

Operation Unsealed result Adjusted result

(0.451 X 103) (0.207 X ΙΟ"») 0.0934 X 10-^ 0.934 X 10"*
(0.905 X 10*)/(0.231 X 10 3.92 X lO - i» 0.392 X 10"»

The algebraic addition of numbers in floating-pomt form presents
more of a problem since the exponent indices of the two numbers must
be made equal before addition of the mantissas can take place. Therefore,
the radix points of the two numbers must be aligned in some predeter­
mined scale. This scale may be defined by the exponent index of the larger
absolute number. Accordingly, the mantissa of the smaller absolute num­
ber is adjusted until its associated exponent index is equal to the ex­
ponent index of the larger. This adjustment is effected by dividing the
mantissa of the smaller absolute number by ten raised to a power equal
to the absolute value of the difference of the exponent indices. For example

Operation Unsealed result Adjusted result

(0.324 X 10 -8) + (0.984 X lO-'^) 0.0324 X 10"^ 0.102 X 10"«
0.984 X 10 -7

3 6 2 6 . A R I T H M E T I C O P E R A T I O N S

Mantissa Index

FIG. 6.37. Format for representing a number in floating point form

It is seen, tlien, that the use of floating point notation allows very
large or very smaU numbers to be stored by means of a relatively small
number of bits. In fixed-point notation, one has the alternatives of retain­
ing aU the zeros between the significant bits and the radix point or keep­
ing track of the point throughout a lengthy computation.

6 . 3 . 4 . A C O M P A R I S O N O F F I X E D - A N D F L O A T I N G - P O I N T

O P E R A T I O N I N A C O M P U T E R

Let us consider first some of the features of fixed-point operation. To
code a problem with fixed-point numbers, the coder must know in advance
the relative magnitude of the results of aU arithmetic operations. This is
necessary to insure that all numbers stay within range, and that a suffi­
cient number of significant digits is retained. If it is anticipated that the
result of some operation wiU produce an overflow, the coder will provide
for shifting the operand(s) producing the result to the right before the
operation, or after the operation if there are provisions for retaining the
overflow digit. A left shift is caUed for if it is anticipated that results will
not contain enough significant digits. The number of shifts necessary must
be determined by estimating the magnitude of each result. The procedure
of esthnating the magnitude of operation results and including right and
left shift commands to keep numbers in scale is part of the scahng problem.

From the precedmg description it is apparent that the coder makes
partial use of floating-point operations in order that results remain
within the scale of the computer. If the analysis of the number and mag­
nitude of shifts necessary is in error, and results go out of scale, it may
be necessary to recode aU or part of the problem. There are other dis­
advantages to fixed-point operation: (1) In preparing a general prob­
lem for machine solution, the coder attempts to account for the maximum
and minimum results possible for all cases. Therefore, in some cases,
significant digits may be lost. (2) In many problems it is not possible
to predetermine the magnitude of the resiflt of aU computations. Here,
the best course is trial and error running of the problem on the computer.

If floating-point notation is used for aU numbers involved in arithmetic
operations, the computer can be progranuned to automatically handle the

6.3. SCALING OF PROBLEMS 363

* The reader is reminded that in order to provide for negative exponents the
indicated value of the index is biased by + 50, so that the actual index is + 10,
not 60.

bookkeeping job of normalizing (scaling) the mantissas and recording
the exponent indices.

The principal advantages of floating-point operation are as follows;
(1) A wider range of numbers may be handled. (2) Coding a problem in
floating-point form is simpler, for no special attention must be given to
scale factors during the course of the computation. This signiñcantly
reduces time needed for coding and checking, and is an important con­
sideration for production computing, where time and energy required for
scaling in fixed-point coding can be appreciable. (3) It allows the pro­
gramming of specific problems for which the relative magnitudes of opera­
tion results are unknown, as well as the programmmg of general solutions
to standard problems without consideration of individual cases. (4) It
may be used in conjunction with fixed-point coding to determine the
relative magnitude of operation results, thereby obtaining more accurate
scaling for the fixed-point coding.

There are, also, certain disadvantages to floating-point operation,
namely: (1) Fewer significant places are available since digit places that
might otherwise be used to represent digits in a number must be reserved
to represent the exponent index of each number. (2) The results of
arithmetic operations may appear to have more significance than actually
exists. This danger of falsely interpreting computed results arises because
the bookkeeping associated with scaling is performed automatically within
the machine, whereas in fixed-point operation the coder keeps track of the
scaling involved, and therefore, knows how many significant digits are in
the results of operations. For example, consider the following operation
in floating-point notation

(.2536475860* - .2536475460) X .5400022275
= .0000000460 X.5400022275
= .4000000052 X.5400022275
- .2160008977

Actually the result does not have eight significant digits as the answer
would indicate but, as a result of the subtraction, at most one. A loss of
significance Uke this may be carried into other operations and amplified.
For most engineering problems, the objection of unknown significance
is not critical since intuitive and mathematical checks may be used to
judge the correctness of results. However, it is also true that, because of
incorrect scaling or the diflSculty of proper scaling, fixed-point opera-

3 6 4 6. A R I T H M E T I C O P E R A T I O N S

219 0.8125
109 1 1.6250 0.1
54 1 1 1.2500 0.11
27 o i l 0.5000 0.110
13 1011 1.0000 0.1101
6 11011
3 011011
1 1011011
0 11011011

Converted number: 11011011 Converted number: 0.1101

tions may result in a loss of significant digits as great or greater than that
caused by floating-point operations. (3) A floating-point system intro­
duces certain complexities. MultipUcation and division are more diflScult
because, in addition to the normal operations on the significant bits,
additive operations must be performed on the exponents. Also, a test
must be made on the products and quotients for zeros to the left of the
most significant bits and appropriate shifts and adjustments of the ex­
ponents performed, or else a gradual loss of significant bits may be intro­
duced. Additive operations too are more diflicult, because of the necessity
of shifting to match exponents before an operation can take place. Over­
flows become more frequent, requiring a shift operation and a corres­
ponding adjustment in the exponent. (4) Progranuned floating-point
operation consumes more time, and built in floating-point operation re­
quires more equipment than fixed-point operation.

6.4. Binary, Decimal Conversion

6 . 4 . 1 . D E C I M A L T O B I N A R Y C O N V E R S I O N

First, two methods of conversion wiU be illustrated using decimal
notation. In the first method, a decimal integer is converted by repeated
division by 2 . Each time a remainder occurs, i.e., whenever the number
being divided is odd, a 1 is entered in the appropriate order of the binary
number being formed. A decimal fraction is converted by repeated multi­
pUcation by 2 , any carry beyond the decimal point being discarded. Each
time there is a carry into the units' order, a 1 is entered in the appropriate
order of the binary number being formed. The process is continued until
a desired number of significant places has been attained. Two examples
of this method are shown in Example 6 .28 .

Example 6,28(a) Example 6,28(b)

Integer: 219 Fraction: 0.8125

6.4. BINARY, DECIMAL CONVERSION 365

Integer: 219 Fraction: 0.8125

V
219
128 1 2 - 1

0.8125
0.5

2β
91
64 11 2 - 2

0.3125
0.25

24
27
16 1101 2 - 4

0.0625
0.0625

23
11
8 11011

0.0000

21
3
2
1
1
0

1101101

20

3
2
1
1
0

11011011

Converted number: 11011011 Converted number: 0.1101

This method is not attractive because powers of 2 in the decimal system
are awkward to handle, and it is not simple to mechanize the determina­
tion of which powers of 2 should be subtracted.

The next two methods of conversion will be described using binary
notation. In the first method, the digits in the decimal number are examined
one at a time, starting with the highest order if the number is an integer.
The binary equivalent of the highest order digit is recorded in the lowest
four binary orders to the left of the radix point. This amount is then mul-
tipUed by 1010 (decimal 10) and the binary equivalent of the next
decimal digit is added to the product. This process is repeated for each
digit in the decimal number. For fractions, the digits are handled in
opposite sequence, and the intermediate results are divided by 1010. See
Example 6.30.

In the second method, powers of 2, in decimal notation, are subtracted
from the decimal number in sequence, starting with the largest power of
2 equal to or less than the given number. Each power of 2 which would
produce a negative difference is not subtracted. The corresponding bit in
the binary number is 1 if there is a subtraction, otherwise 0. This process
is contmued until a remainder of 0, in the case of integers, or a desired
number of significant places, in the case of fractions, is obtained. The
binary number consists of I's placed in the positions representing the
powers of 2 contained in the number, and O's in the remaining places. See
Example 6.29.

Example 6,29(a) Example 6.29(b)

366 6. ARITHMETIC OPERATIONS

Example 6.30(a)

Integer: 219

Add
Multiply by

Add
Multiply by

Add

0010 (2)
1010.
0001 (1)
1010.
1001 (9)

0010
10100
10101

11010010
11011011

Example 6.30(b)

Fraction: 0.8125

Add 0.100000000000 (.5) .100000000000
Divide by 1010. .000011001101

Add 0.001100110011 (.2) .01
Divide by 1010. .000001100110

Add 0.000110011010 (.1) .001
Divide by 1010. .000000110011

Add 0.110011001101 (.8) .1101

In Example 6.31 use is made of the binary equivalent of each decimal
order (1 , 10, 100, . . . in the case of integers and .1 , .01, .001, . . . for
fractions). The binary number is formed by accumulating each of these
quantities as many times as specified by the value of the digit in each
order. Neither multiphcation nor division is required but there can be a
large number of addition operations.

Example 6.31(a)

Integer: 219

Add 1100100 (dec 100)
Add 1010 (dec 10)
Add 1 (dec 1)

twice
once
nine times

11001000
1010
1001

Example 6.31(b)
Fraction: 0.8125

Add 0.1
Add 0.01
Add 0.001
Add 0.0001

eight times
once
twice
five times

0.110011001101
0.000000101001
0.000000001000
0.000000000010
0.110100000000

We will now reconsider the schemes of decimal to binary conversion
shown in Examples 6.28(b) and 6.30(b) in terms of binary-coded decimal
notation. We recaU that in Example 6.28(b) the binary-coded decimal is

6.4. BINARY, DECIMAL CONVERSION 367

Example 6.32

.1000 0001 0010 0101
= 1 0110 0010 0101 0000
= 1 0010 0101 0000 0000
= 0 0101 0000 0000 0000
= 1 0000 0000 0000 0000

0101 = .0102^304

Check: .b^b^b^b^ = .1101 = 13/16 = .8125

In a modification of this method, the digit right of the radix point is
tested after each multipUcation by 2 to determine if it is equal to or
greater than 5. If it is, a 1 is placed in the binary number being formed,
otherwise a 0. The two methods are equivalent since if the digit immedi­
ately to the right of the radix point is 5 or greater, a carry wiU be produced
after the next multipUcation by 2. The first procedure, that of Usting the
carries, is preferable since it requires no comparison operation.

The scheme of Example 6.30(b), using binary-coded decimal nota­
tion, is shown in Example 6.33. Each digit, starting with the least signifi­
cant one, is added to the four most significant orders of a fractional
accumulator, the result is divided by ten and the process repeated. After
the most significant digit has been added, the result is divided by 10/16.
Examination of this method shows that after each division by ten, the

multiplied successively by 2, but if there is a carry into the unit's order,
it is not included in the next multipUcation. The successive coeflScients
that appear in the unit's order, i.e., to the left of the radix point, wiU be
the bits of the converted number. Why this is so can be seen by con­
sidering the foUowing equations

Κ (α ι Χ 1 0 - 1 + 0 2 Χ 1 0 - 2 + χ ι ο - 3 + . _)

= (bi Χ 2 - 1 + ¿ 2 Χ 2 - 2 + ¿ 3 X 2 - 3 + . . .)

Then 2(öi Χ 10 - ι + 02 Χ 10-« + Χ 10-» + . . .)

= (b^X20)-l·R^

and 2 Χ 2(αι Χ 10 - ι + «2 Χ 10-^ + αζΧ 10-» + . . .) - bi

= ¿ 1 + (¿ 2 Χ 20) + R2

etc.
In these equations, the Ri refer to the fractional part of the binary-coded
number after each multipUcation. The conversion of (.1000) (0001)
(0010) (0101) = .8125 to binary form is shown in Example 6.32.

368 6. A R I T H M E T I C O P E R A T I O N S

four most significant binary orders must all have the value 0, so the new
digit can simply be entered there without the need for an addition operation.

Example 6.33

Fraction: .(1000) (0001) (0010) (0101) = .8125

Add 0.0101 (5 /16) 0.0101
Divide by 1010. 0.00001000

Add 0.0010 (2 /16) 0.00101000
Divide by 1010. 0.00000100

Add 0.0001 (1 /16) 0.00010100
Divide by 1010. 0.00000010

Add 0.1000 (8 /16) 0.10000010
Divide by 0.1010 0.11010000

Check: {[((5 /16) -i- 10 + 2 /16) 10 + 1/16] ^ 10 + 8/16}
- 10/16 = 8 /10 + 1/100 + 2/1000 + 5/10000 = .8125 = 13/16 = .1101

6.4.2. B I N A R Y T O D E C I M A L C O N V E R S I O N

The four methods of conversion to be described here are counterparts
of the schemes in Section 6.4.1. In the first method, conversion of an in­
teger (Example 6.34(a)) is begun by dividing it by ten. The quotient is
divided by ten and this process is repeated until a zero quotient appears.
The remainder after each division represents a digit of the decimal number.
Conversion of a fraction (Example 6.34(b)) is begun by multiplying it
by ten. The fractional part of the product is multiplied by ten, and this

Example 634{a)

Integer: 11011011 = 219

Divide integer by 1010.
Divide quotient by 1010.
Divide quotient by 1010.

Quotient
10101

10
0

Remainder
(1001)
(0001)
(0010)

Example 6.34(b)

Fraction: .1101 = .8125

Multiply fraction by 1010.
Multiply fraction by 1010.
Multiply fraction by 1010.
Multiply fraction by 1010.

(1000).001
(0001).01
(0010).1
(OlOl).O

6.4. BINARY, DECIMAL CONVERSION 369

process is continued until Üie fractional part of a product is zero. The re­
moved integral values represent the digits of the decimal number. Since
lOjc = 2^x + 2x, multipUcation can be avoided, the latter two terms being
formed by shifting χ right three places and one place, respectively. Also,
if there is no provision for accepting digits to the left of the radix point,
10/16 may be used as a multiplier instead of ten, and the bits of the
product starting with the 2"^ order are treated as the fractional part in Ex­
ample 6.34(b). The four bits right of the radix point after each multi­
pUcation by 10/16 designate the binary coded digits.

The remaining three methods wiU be outiined briefly. In the counterpart
of the method used in Example 6.29, binary equivalents of powers of ten
are subtracted until there is a zero remainder. The same power of ten may
have to be subtracted several times, depending on the value of the digit. In
the next method, comparable to that used in Example 6.30(a), each digit
of the binary number is examined, starting with the highest order. Its
value (1 or 0) is added to an accumulator and the sum is doubled. This
process is continued until the value of the least significant bit is added. In
the method akin to that of Example 6.31, each bit position is examined
and wherever there is a 1 the power of two it represents is accumulated. In
Examples 6.29 and 6.31 the process for integers and fractions is the same,
while in Examples 6.28 and 6.30 multipUcation and division are inter­
changed. The same type of relationship appUes in the schemes just de­
scribed.

6.4.3. A COMPARISON OF BINARY AND BINARY-CODED
DECIMAL REPRESENTATION

The principal advantages of a binary-coded decimal compared to a
binary representation of numbers for a computing system are: (1) Input-
output equipment that accepts and generates binary-coded decimal num­
bers simpUfies the task of the user in preparing input data and inteφreting
output data. (2) The interpretation of numbers within the computer is
faciUtated, thereby aiding in the detection of faults within the computer.

In pure binary representation, four bits can represent 16 different
binary numbers. In a four bit binary-coded decimal system, six of these
are not used. The relative efficiency of the binary-coded decimal number
system depends on the range of numbers to be accommodated. For regis­
ters of practical length (say from 20 to 40 bits), numbers expressed in
binary-coded decimal form require about 18% to 25% more bistable
elements than binary numbers. However, the six unused numbers of a
four bit binary-coded decimal group can be put to use in a redundancy

370 6. ARITHMETIC OPERATIONS

error checking scheme (see Chapter 9) , since the presence of any of them
indicates that an error has occurred.

When binary-coded decimal input and/or output devices are connected
to a binary computer, so called input-output conversion programs, placed
in the main store, are used to convert from one representation to the other.

LITERATURE

Ashenhurst, R. L. and Metropolis, N. [1959] Unnormalized floating point arithmetic,
/. ACM, 6, 415-428.

Ashenhurst, R. L. [1962] The MANIAC III arithmetic system, Proc. AFIPS Spring
Joint Computer Conference, 195-202.

Avizienis, Α., [1960] A study of redundant number representations for parallel digital
computers. University of Illinois Digital Computer Lab., Rept. No. 101.

Avizienis, Α., [1961] Signed digit number representations for fast parallel arithmetic,
IRE Trans. El. Comp., 1 0 , 389-400.

Booth, A. D. [1951] A signed binary multiphcation technique, Quart. J. Mech. Appl.
Math., 4, Pt. 2, 236-240.

Brigham, R. C. [1961] Some properties of binary counters with feedback, IRE Trans.
El. Comp., 1 0 , 699-701.

Carroll, W. N. [1960] High-speed counter requiring no carry propagation, IBM J.
Research and Develop., 4, 423-425.

Chaplin, G. B. B., Hayes, R. E., Owens, A. R. [1955] A transistor digital fast
multiplier with magnetostrictive storage, Proc. Inst. Elec. Engrs., {London)
1 0 2 , Pt. B, 412-425.

Couleur, J. F. [1958] BIDEC a binary-to-decimal or decimal-to-binary converter,
I.R.E. Trans. Ei. Comp., EC-7, 313-316.

Curtis, p. C , Jr. and Frank, W. L. [1959] An algorithm for the determination of the
polynomial of best minimax approximation to a function defined on a finite
point set, / . ACM, 6, 395-404.

Estrin, G., Gilchrist, B., Pomerene, J. H., [1956] A note on high-speed multiplica­
tion, IRE Trans. El. Comp., 5, 140.

Fraenkel, A. S. [1961] The use of index calculus and Mersenne primes for the design
of a high-speed digital multiplier, J. ACM, 8, 87-96.

Frank, M. E. and Schy, S. T. [1961] Counting on a magnetic drum. Control Engrg.,
8, No. 10, 75-79.

Freiman, C. V. [1961] Statistical analysis of certain binary division algorithms,
Proc. IRE, 49, 91-103.

Gamer, H. L. [1959] A ring model for the study of multiplication for complement
codes, I.R.E. Trans. El. Comp., EC-8, 25-30.

Gamer, H. L. [1959] The residue number system, Proc. Western Joint Computer
Conference, 146-153.

Hendrickson, Η. C. [1960] Fast high-accuracy binary parallel addition, IRE Trans.
El. Comp, 9, 465-469.

Jackson, R. C , Rhodes, W. H„ Jr., Winger, W. D., Brenza, J. G., [1960] A built-in
table lookup arithmetic unit, Proc. Western Joint Computer Conference, 239-
250.

Kogbetliantz, E. G. [1959] Computation of sin N, cos Λ̂ , and ^y/N using an elec­
tronic computer, IBM J. Research and Develop., 3, 147-152.

LITERATURE 371

Koons, F. and Lubkin, S. [1949] Conversion of numbers from decimal to binary
form in the EDVAC, MTAC, 3, 427-431.

Kilburn, T., Edwards, D. B. G., and Aspinall, D. [1959] Parallel addition in digital
computers, a new fast carry circuit, Proc. lEE, 106, Pt. B, 464-466.

Lehman, M. [1958] Short cut multiplication and division in automatic binary digital
computers, Proc. lEE, 105, Pt. B, 496-504.

Lehman, M. and Burla, Ν. [1961] Skip techniques for high-speed carry-propagation
in binary arithmetic units, IRE Trans. El. Comp, 10, 691-698.

MacSorly, O. L. [1961] High-speed arithmetic in binary computers, Proc. IRE, 49,
67-91.

Metropolis, N. and Ashenhurst, R. L. [1958] Significant digit computer arithmetic,
I.R.E. Trans. El. Comp., EC-7, 265-267.

Minnick, R. C. [1957] Tchebysheff approximations for power series, J. ACM, 4,
487-504.

Pope, D. A. and Stein, M. L. [1960] Multiple precision arithmetic, Comm. ACM, 3,
652-654.

Rabinowitz, P. [1961] Multiple-precision division. Comm. ACM, 4, p. 98.
Reitwiesner, G. W. [1960] The determination of carry propagation length for binary

addition, IRE Trans. El. Comp, 9, 35-38; correction, 261.
Robertson, J. E. [1958] A new class of digital division methods, I.R.E. Trans. El.

Camp., EC-7, 218-222.
Robinson, A. A. [1953] Multiplication in the Manchester University high speed digi­

tal computer. Electron. Eng., 25, 6-10.
Saltman, R. G. [1961] Reducing computing time for synchronous binary division,

IRE Trans. El. Comp, 10, 169-174; corrections, 461.
Shaw, R. F. [1950] Arithmetic operations in a binary computer, Rev. Sei. Instr., 21,

687-693.
Sklansky, J. [1960] An evaluation of several two-summand binary adders, IRE Trans.

El. Comp, 9, 213-226.
Sklansky, J. [1960] Conditional-sum addition logic, IRE Trans. El. Comp, 9, 226-231.
Smith, J. L. and Weinberger, A. [1958] Shortcut multiplication for binary digital

computers, NBS Circular 591, Section 1, U.S. Dept. of Commerce.
Spitzbart, A. and Shell, D. L. [1958] A Chebycheff filling criterion, / . ACM, 5,

22-31.
Tocher, K. D. [1958] Techniques of multiplication and division for automatic binary

computers, Quart. J. Mech. Appl. Math, 11, 364-384.
Traub, J. F. [1961] Comparison of iterative methods for the calculation of nth roots.

Comm. ACM, 4, 143-145,
Traub, J. F. [1961] On a class of iteration formulas and some historical notes. Comm.

ACM, 4, 276-278.
Wadey, W. G. [1960] Floating-point arithmetics, / . ACM, 7, 129-139.
Weinberger, A. and Smith, J. L. [1958] A logic for high speed addition, NBS

Circular 591, Section 1, U.S. Dept. of Commerce.
Williams, F. C , Robinson, A. Α., Kilburn, T. [1952] Universal high speed digital

computers: serial computing circuits, Proc. Inst. Elec. Engrs. {London), 99,
Pt. II, 94-106.

Wilson, J. B. and Lediey, R. S. [1961] An algorithm for rapid binary division, IRE
Trans. El. Comp, 10, 662-670.

7. System Design of GP Computers

7.1. Variants in Organization and Mechanization
In Chapter 2, the basic operational requirements of a stored program

digital computer were presented. However, from that point on the reader
had to accept as a matter of faith that a physical system satisfying these
requirements could actually be constructed. Now that the topics of
Boolean algebra, switching networks, storage systems, and arithmetic
units have been presented, it is appropriate to consider, in some detail,
the various ways in which a digital computer can be organized and
mechanized.

In the early stages of planning a computer, a number of important
decisions must be made upon which the eventual design will largely de­
pend. Four important basic considerations are: (1) number and type of
instructions to be included in the machine's repertory; (2) size and type
of main store; (3) format of words for representing instructions and data;
and (4) nature of the control unit, and how it is affected by the choice
of serial or parallel, and synchronous or asynchronous operation, the
choice of arithmetic unit, the number of addresses per instruction, special
features such as index registers, the type and mode of operation of
input-output equipment, the utilization of microprogramming, and, finally,
the inclusion of program-interrupt control features valuable for effi­
cient operation of a computer subject to concurrent demands. These
items are described in Sections 7.2-7.5, respectively. The arithmetic unit
will be considered only in relation to its influence on the control unit,
since specific variants in its design, namely algorithms, logical designs, and
circuitry for the basic arithmetic operations as well as ways of represent­
ing negative numbers are described in Chapter 6.

7.2. Number and Type of Instructions
In the design of a general purpose type of digital computer, one of

th(; first decisions to be made relates to the choice of arithmetic, logical,
and information transfer operations to be built into the machine, i.e.,
made available to the user as a single instruction. An important con­
sideration here is the expected frequency of use of an operation in prob­
lems to be solved by the computer. This can only be estimated, since all
the types of problems for which the computer will be used are not usually

372

7.2. NUMBER AND TYPE OF INSTRUCTIONS 373

known in advance. At one end of the design spectrum are machines that
are relatively simple, inexpensive, slow, and diflBcult to program, and at
the other end, machines that are complex, expensive, fast, and easily
programmed. There are a number of intermediate areas, each of which
is optimum for each of several specific classes of apphcations.

It is often preferable to generate relatively complex operations or
functions, e.g., the extraction of roots, and the evaluation of trigonometric
functions, by the use of subroutines instead of the additional hardware
requh-ed to directly mechanize these operations. This would be the case
if, after considering the speed and average frequency of use of these sub­
routines, it is ascertained that their use would not result in any serious im­
pairment of computational work. Prior to the actual design of a computer,
it is not accurately known what the addition of a particular instruction will
cost in equipment. The addition of an apparenty simple instruction may
add appreciably to the complexity and the required number of com­
ponents, while an apparently complex instruction may be added at mod­
erate cost. Why this is so may be explained by first considering the
nature of an instruction. Each instruction can be considered as a directive
to the computer's control unit, the efliect of which is to cause a number
of more or less elementary operations to be performed, e.g., obtaining an
operand from storage, causing either an arithmetic or logical operation
to be performed on it, transferring data from one part of the computer to
another, etc. In Section 7.5.7, and foUowing, it is shown how each in­
struction can be considered to be comprised of a number of commands.
A machine is capable of executing a specified instruction, if aU the
elementary operations caUed for by the commands comprising the instruc­
tion are available and can be assembled in proper sequence. Thus, the
cost of a new instruction depends on how many of the elementary opera­
tions needed to synthesize it are already avaUable within the machine.

If certain instructions are established, e.g., by a prospective customer,
as being necessary, the designer's chief concern is to design a computer
that adequately meets the specified requirements. If the designer has free­
dom of choice in specifying the instructions, as weU as the manner in
which they are to be executed, he may, in general, produce a design that
requires less equipment for mechanization. Thus economies can be efliected
if the instructions chosen are considered as a group. This is just one aspect
of the economies that can, in general, be reaUzed by considering a com­
puter as a system.

If possible, it is desirable that no instructions be included which are
not generally useful and yet add appreciably to physical requirements. The
term "generaUy useful" must be defined. It is used in the sense of being

374 7. SYSTEM DESIGN OF GP COMPUTERS

Reliability ^

^"""" '^^^^/nexibiMty '

FIG. 7.1. Some representative computer design criteria

should be emphasized that the preceding remarks apply more to com­
putational work or slow real time control systems, than to high speed
control systems. In the latter case, the inclusion of special infrequently
used instructions may make the difference between successful or non-
successful operation.

The following list of instructions that have been used in existing
computers provides a good indication of the wide variety possible, but
also shows that there are only a few basic types:

Arithmetic instructions

1. Clear the accumulator and add (m) to it.*
2. Add (m) to the accumulator.

• By definition (m) means: Contents of storage location m.

"generally useful for a specific type or group of applications." Any general
purpose type of device suffers from the fact that compromises have been
made in its design in order to be able to classify it as a general purpose
type of device. The designer is continually confronted with a "Battle of
the Bulge," and must grapple with all sides of the situation to keep things
under control. The problem is a complex one, subject to several restraints:
The number of instructions must not be allowed to grow too large or
else the equipment will be cumbersome; it must not be too small or else
the utility and speed of the computer are adversely affected. The design
should permit as rapid a computation as possible without utilizing an
excess of parallel equipment or frequencies of operation that promote un­
reliability. The fronts of a design battle are illustrated in Fig. 7.1. It

7.2. NUMBER AND TYPE OF INSTRUCTIONS 375

3. Clear the accumulator and add absolute value of (m) to it.
4. Add absolute value of (m) to the accumulator.

5. Clear the accumulator and subtract (m) from it.
6. Subtract (m) from the accumulator.
7. Subtract absolute value of (m) from the accumulator.

8. Multiply the contents of the accumulator by (m), retaining the most
significant half of the product in the accumulator.

9. Multiply the contents of the accumulator by (m), rounding off the
most significant half of the product by a specified procedure.

10. Divide the contents of the accumulator by (m) , forming the quotient
in the multiplier-quotient register.

Logical instructions

11. Shift right by k binary positions.
12. Shift left by k binary positions.

13. Replace the address in a specified instruction in the main store with
the address designated by specified bits in the accumulator.

14. Form the logical product (bit by bit) of a specified word in the main
store and the contents of the accumulator.

15. Complement individual bits of the accumulator corresponding to
positions in another register holding I's.

16. Clear individual bits of the accumulator corresponding to positions
in another register holding I's.

17. Stop the machine (maintaining or recirculating all information).

Transfer of control instructions

18. Transfer control to storage location m.
19. Transfer control to storage location m if the sign of the accumulator

is negative (or positive, or zero).
20. Compare the contents of the accumulator with some other specified

register. According to whether the contents of the accumulator are
less than, equal to, or greater than the contents of the other register
continue in sequence, skip one, or skip two instructions, respectively.

21. If a breakpoint bit has the value specified, skip the instruction con­
taining it and transfer control to a fixed location in the main store.

Sense instructions

22. Take the next instruction in sequence or from a specified address in

376 7. SYSTEM DESIGN OF GP COMPUTERS

* For commercial applications such as large inventory control, storage units of a
different order of magnitude are required. Such machines are not so much com­
puters as they are low access time filing units.

the main store according to whether a bistable device, Q\ is in a set
or reset state.

23. If a bistable device, Q\ is reset, set it and continue in sequence.
24. If a bistable device, Q\ is set, reset it and take the next instruction

from a specified address in the main store.

Input-output instructions

25. Read a specified number of words, blocks, or cards from an input
device directly to a specified register in the computer.

26. Write a specified number of words, or blocks on a specified output
device from addresses in the main store starting at a specified point.

27. Advance (or reverse) a specified magnetic tape a specified number
of blocks without altering their contents.

28. Rewind a specified magnetic tape to the beginning of a reel.
29. Print on a specified printer k Unes from the main store, starting at

a specified address.
If a computer has a number of auxiliary registers other than those

comprising the basic arithmetic unit, a number of special instructions
wiU be required for transferring information between each of these regis­
ters and other registers that may be specified as sources or destinations.

7.3. The Main Store

In a stored program computer, the instructions comprising a program
as weU as constants and intermediate data are stored in a large capacity
storage system (like those described in Chapter 5) referred to as the
main store. Three important decisions must be made in regard to this
store, namely, the type of storage elements to be used, the total word
capacity, and the manner in which access is gained to the store. The rela­
tive advantages of different types of large capacity storage systems are
described in Chapter 5. In respect to the total word capacity to be em­
ployed, there is a practical upper limit to the size of the main store*
because blocks of new data and/or instructions can be introduced from
auxiliary storage units at adequate speeds. Since most computations wiU
be highly repetitive in nature, the time required to complete the operations
specified by one fiUing of the main store may be considerably greater
than the time required for the filUng itself. In this case, the over-aU speed

7.4. WORD FORMAT 377

of the computer would be increased only slightly by use of a larger sized
main store. This consideration alone would make main stores of 1,000-4,000
words adequate in most cases. However, more complex applications and
accommodation of programs that automatically convert a problem-oriented
language to instructions in machine code may call for 4,000 to 16,000
words and more. Selection circuitry for gaining access to the main store can
take a variety of forms depending on the circuit characteristics of the
storage elements and various schemes for recording in and reading the
contents of the individual elements. As stated eariier (see Chapter 5) a
basic characteristic of a storage system is whether there is access to all
the bits of an instruction or number simultaneously, or whether there is
access to each bit in sequence, i.e., whether the machine operates in a
parallel mode or serially. Some large capacity storage systems are better
suited for parallel operation, while others are better for serial operation.
For example, acoustic delay Hues are better suited for serial operation
while a parallel mode is more applicable to cathode-ray tubes and
magnetic cores. The bits of each word stored in a magnetic drum or disk
store are usually recorded and read serially, although parallel arrange­
ments can be used, too. The influence of the type of access on other parts
of the computer will be described in Section 7.5.1.

7.4. W o r d Format

The term "word" denotes an assemblage of bits considered as an
entity in a computer. A word may hold a coded representation of either
a number or an instruction. In arriving at the number of bits to be used in
a word, as usual, a number of compromises must be made. Let us first
consider the items affecting the choice of word length to represent a
number. If the word length is made adequate for even the largest num­
bers that might be used, much storage space and circuitry will be wasted
whra problems requiring less accurate solutions are solved. If too short
a word length is chosen, there exists the possibility of using two or more
words to store long numbers when necessary, but the multiple precision
techniques required for operations on such numbers necessitate extra pro­
gram steps, and consequently increase storage space requirements and
solution time for a given problem. In a stored program computer, it is
convenient, as well as economical of storage space, to represent an in­
struction by the same word length, or an integral multiple or submultiple
of the word length, used for a number. The number of bits in an instruc­
tion depends on the following:

(1) The number of bits used to distinguish one instruction from
another. Usually a binary code is used to represent the various instruc-

378 7. SYSTEM DESIGN OF GP COMPUTERS

tions, so if there are η different buih-in instructions, at least log2(n + JC)
bits are required, where χ is the smallest integer that makes π + JC an
integral power of two. Sometimes additional bits may be reserved in
order to accommodate codes for interpretive instructions that may be
used. An instruction code wherein each instruction is represented by
a binary number makes the most economical use of storage. Also, since
it does not restrict the choice of code to represent a particular instruc­
tion, the use of a nmemonic code is faciUtated. In some machines, how­
ever, particular bits are associated with particular classes of instructions.
For example, one bit position can be used to distinguish between an
addition or subtraction, another to distinguish between a recording or
reading operation, etc. The effect of these two types of instruction codes
on the main store and the control unit are described in Section 7.5.

(2) The size of the main store. Bits must be allotted in the instruction
word format for controlling the selection of a particular word in the main
store. The number of words, n, in storage is usually some integral power
of two, so that the number of bits allotted for the selection of a particular
address is simply log2 n.

(3) So far we have considered machines in which never more than
one address is referred to in an instruction. Machines of this type are,
accordingly, referred to as single-address machines. However, machines
have also been built in which more than one address is referred to in a
particular instruction. Additional bits must be provided to indicate these
addresses, thereby increasing the number of bits required in an instruction
word. The effect of multi-address instructions on the control unit is
described in Section 7.5.4.

(4) The number of bits reserved for special control functions, if any,
e.g., index registers (described in Section 7.5.5) or for the addresses of
any other auxiUary registers.

The word lengths that have been chosen for presently operating gen­
eral purpose electronic digital computers intended for scientific and en­
gineering computations vary from 32 to 40 bits. Some studies have indi­
cated that for an "average" scientific problem the optimum word length
Ues in this range.

7.5. The Control Unit
The usual mode of operation of a computer is as follows. After

the machine is energized, a program for solving a particular problem is
entered into the main store. The program is entered into the computer
from an external storage medium such as punched cards, punched paper
tape, or magnetic tape, which is moved and sensed by a suitable transport
device and sensing mechanism. Once the machine has been filled and the

7.5. THE CONTROL UNIT 379

computer set to an active computing state, the sequence of states through
which the machine progresses is determined by the stored program, and
the number, type, and interconnection of its switching and storage ele­
ments. The advance from one internal state to the next is under the
supervision of that part of the computer referred to as the control unit.
In the case where the program to be executed requires more storage than
available in the main store, large segments of the program may be entered
at the appropriate time from an auxiliary store by the planting of input
instructions at appropriate points in the master program.

The introductory description of the operation of an automatic stored
program computer in Chapter 2 indicates the fundamental requirements
of the control unit. Briefly, it must provide (1) means for inspecting the
contents of each instruction word, and generating signals that cause the
operations therein specified to be executed; and (2) means for causmg
the instructions located in the main store to be sensed in proper sequence.
It is convenient, therefore, to divide the time interval for carrying out
each step of the stored program into two major periods. The operations
performed during the first period are said to comprise a search and
acquisition cycle, and the operations performed in the second period com­
prise an execution cycle. To begin computation, means must be provided
to locate the first instruction to be executed. If instructions are stored in
sequentially numbered addresses in the main store, it is only necessary,
after the machine has been switched to an active computing state, to
always refer to a specific storage location, say that having the address
00 . . . 000. In machines with single-address instructions, the control unit is
provided with a counter which is always set to some initial value when
the machine is switched to an active computing state. Upon execution of
each instruction, the control counter is advanced, usually by a single incre­
ment, so that it then specifies the address of the next instruction to be
executed. An exception to this operation occurs for jump instructions, in
a manner described at the end of the following paragraph.

Since, once acquired, the information in an instruction word must be
used to control the execution process, it is necessary that the control
provide a register for storing the contents of an instruction word. This
register is referred to by various names in different machines, e.g., control
register, instruction register. Actually the control register may also be
considered as a group of separate registers. The ones that hold the opera­
tion code and address code are referred to as the operation and address
registers, respectively. There may also be other registers for special func­
tions. (For a jump instruction, the contents of the control counter are
replaced by the contents of the address register).

If the main store is of the static type, the number in the address

380 7. SYSTEM DESIGN OF GP COMPUTERS

register refers to a physical place only. As a matter of convenience, each
address can be considered to be specified by two coordinate numbers,
X and y. For example in the coincident current magnetic core store
(Section 5.3.2) the bits of a word occupy the same XY position in aU
planes and the planes are operated upon simultaneously. The X and Y
parts of the address can each be apphed directly to a many-to-one func­
tion table as shown in Fig. 7.2.

Write-
Read-

1
Many 1 1

1 to 1 ^ 1
one 1 Yn h

γ

Many
to

one
matrix

Static
store

Instruction counter
or

address register

I Write Read

FIG. 7.2. Word selection in a static store

If the main store is of the dynamic type (see Fig. 7.3), part of the
address refers to one of a number of storage areas, e.g., a particular track
on a magnetic drum, or a particular acoustic tank among a set, and the
other part of the address refers to the place which that storage location
occupies along a particular track on the drum or in the delay hne. One
way of locating a particular word in a specific line or track in a dynamic
store is by means of a counter whose contents are advanced by 1 after a
time interval corresponding to that required to read, or record, a word.
Each time the word, whose place in a line is specified by the Y part of the
address, is about to emerge from the hne, the number in the index counter
will be identical with the bits in the time part (Y) of the address register. If
the output from the latter unit and the counter are apphed to a coincidence
circuit, a timing signal wiU be produced which can be used to allow a
writing or reading operation to occur at the proper time. The X output of
the address register controls selection of a particular hne. An input to

7,5. THE CONTROL UNIT 381

Timing
index

counter
Γ

iCoincidencel
detector

ί?Ί

v>1 -p.
Delay
line
store

Instruction counter
or

address register

Many
to

one

" Ί Γ
Write Read

FIG. 7.3. Word selection in a delay line store

the many-to-one table from an order decoder specifies whether a writing
or reading operation is to take place. Since it is necessary that the delay
line input or output gates be open only during the time specified by the
Y code in the address register, the output of the coincidence detector as well
as the output of the many-to-one table is appUed to the input-output gates.

We have already indicated that it is a usual convention to separate
out groups of bits in an instruction word according to the functions to be
represented or controlled by each group. For example, one group may
be used to specify the address from which the operand or the next
instruction is to be obtained. Another group is used to hold the operation
code. If the machine has index registers, a special group of bits may be
used to address the registers to be used with the instruction, while another
group of bits may be reserved to hold numbers to be loaded into or added
to the contents of an index register. StiU other bits or groups of bits may
be used for special purposes such as parity checking (see Chapter 9) ,
breakpoint designation (see Section 7.6.3.), or for any other purpose
that may be convenient and desirable for a particular machine. Though
the number of bits in each group is usually determined by the number
of bits required to specify any one of the total number of choices by
means of a weighted binary code, this does not have to be the case. For
example, a type of operation code may be used wherein particular bits are
associated with particular classes of instructions. With such a system, the
outputs of the operation register can be connected dkectly to the appropri-

382 7. SYSTEM DESIGN OF GP COMPUTERS

ate gates in the machine, without intervening decoding and encoding func­
tion tables. The machine built at the Princeton Institute for Advanced Study
has 10 bits allotted to specify an operation. Since not aU combinations of
these are used, more storage capacity is required to hold a program than if a
binary weighted code with fewer bits were used. However, the word length
was chosen on the basis of the length of numbers desired, and this was
so large that more than enough bits were available for single address
instructions. Whether the scheme would stiU be attractive if the conflict
between the word length most suited to the storage of numbers and that
most suited to the storage of instructions were resolved another way is
debatable. It could be argued that the added expense of additional storage
capacity would more than offset the degree of elimination of decoding
and encoding function tables.

Regardless of the type of code used, the bits used to represent an
instruction comprise the basic information from which other circuits mtist
be activated for the execution of the indicated function. Therefore, in addi­
tion to the control counter and control register(s), the control unit must
contain circuits which generate, from the information in the control
register, the actual electrical signals for execution of each of the instruc­
tions. The circuits for accomphshing this wiU be referred to collectively
as the main control circuits. TTiese circuits are used to develop a sequence
of detailed commands to control the switching of information within the
arithmetic unit and between the arithmetic unit and other units of the
computer. A method of control in which the sequence of commands is
generated by means of a master clock foUowed by timing-pulse distributing
circuits is referred to as synchronous or clock control. The timing of aU
operations is controUed or synchronized with the clock, and each opera­
tion requires an integral number of clock intervals. A method of control in
which a start signal causes a certain action to be taken, and in which the
successful completion of an action generates a signal to initiate the proper
foUowing action, is referred to as asynchronous or revertive control. In
an asynchronous computer there is no fixed time reference, each operation
being commenced as soon as the preceding one is completed. A further
description of synchronous and asynchronous control is provided in Sec­
tion 7.5.2.

To summarize, the control unit must produce as many different se­
quences of gating or switching signals as the number of different arith­
metic, logical, or transfer operations the computer is required to per­
form, and it must be capable of assuming at least as many logical con­
figurations (i.e., binary states) as there are different steps required for
the execution of aU these instructions. This sets a lower Umit to the
number of active storage elements required for the control unit. These

7.5. THE CONTROL UNIT 383

steps will be referred to as commands in discussions that follow, and it
will become evident that some commands are commonly required for the
execution of any instruction, and that of the remainder some are different
only in a superficial way. The common steps performed during tne ac­
quisition cycle may be grouped under the heading of instruction look-up
commands. An instruction counter (see Fig. 7.4) supplies the storage

J Storage - 4 η
' elements *'

Word
selection
circuits

Main store !

Storage
register

Multiplier
rj—I quotient

register
Τ

AccumulatorhH

Arittimetic

Timing
control

Instruction ^
register o n d p

counter '

Η Address Operation L
Instruction

register

I I Auxiliary ^ inputs
Instruction acquisition

and execution
switching circuitry

Input

HOutputI

Control

External
equipment

FIG. 7.4. Over-all arrangement for a single-address GP computer

selection circuits with the address of the next instruction and the main
control circuits provide gating signals that cause an instruction to be
read from the main store. The execution of an instruction is also per­
formed by means of the main control circuits.

All instructions may be classified in even more general categories
than those described in Section 7.2. Three basic categories are as follows.
(1) Commands which control the transfer of information between parts
of a system: the control of information transfers, as well as the selection
of locations in the memory, depends largely on the particular type
of storage used. (2) Conditional (or sequencing commands): This type
of instruction makes the location from which the next instruction is ob­
tained dependent upon whether the contents of some register, e.g., the
accumulator, are less than, equal to, or greater than some number (usually
taken, for convenience, to be zero). The control unit must arrange, there­
fore, to examine the sign and/or other bits of one or more registers, as
well as cause any indicated transfers of control. (3) Conmoiands which

384 7, SYSTEM DESIGN OF GP COMPUTERS

control the manipulation of information—the arithmetic and logical opera­
tions called for by certain instructions. Though these commands may
involve the selection of words to be read from or recorded in the main
store, they are primarily concerned with the interconnections of various
parts of the arithmetic unit.

The requirements for simple operations such as addition, subtraction,
collation, may be very similar, differing perhaps in that part of their con­
trol which guides the operands to the proper destination in the arithmetic
unit. More complicated instructions such as multiplication and division,
require more complex control circuits to arrange for a number of different
operations that may be required (depending on the algebraic algorithms
employed), e.g., shifts of operand(s) and partial products, examination
and/or comparison of bits in the operands, recording of the number of
steps completed so that a signal may be provided indicating the comple­
tion of a multiplication or division, etc.

The details of a control unit's design depend on so many factors and
differ so from one machine to another that it is not practical to discuss
the details of several machines. Instead, the principal functions and opera­
tions common to most general purpose computer control units have
been described. In the succeeding sections, the effects of five important
variables on over-all machine operation will be considered. They are:
serial or parallel operation, synchronous or asynchronous operation, the
type of arithmetic unit, the use of single or multiple-address instructions,
and the inclusion of special features such as index registers.

7.5.1. SERIAL OR PARALLEL OPERATION

Though it is diflEicult to draw comparisons, because of various possible
designs for both serial and parallel machines, some important distinctions
can be made. First of all, because the complete addends are operated
upon simultaneously in a parallel machine, rather than bit by bit as in a
serial machine, its arithmetic unit must be larger: a separate register
element (a flip-flop or bistable counter) as well as a separate adder cir­
cuit, must be provided for each bit (see Sections 6.1.2 and 6.1.3). The
difference in equipment requirements is greater for machines with a longer
word length. The control circuits can be simpler in a parallel machine;
the timing is simpler since a number can be transferred from one section
of the machine to another, or an addition performed, by the application of
a single pulse to a set of gates. In a serial machine, a set of timing pulses
corresponding to individual bit positions must be generated and applied
to various gates.

The faster speed of the parallel machine is reflected in the fact that its

7.5. THE CONTROL UNIT 385

dominant unit of time is an addition time, i.e., the time interval required
to add two numbers, while in a serial computer it is a word time, i.e.,
the time required to read or record a word (in both cases, the access time
is not included). Certain devices may be employed to increase the speed
of a serial computer. For example, the control unit may be modified so
that the next instruction to be executed is selected from the main store
and placed in a stand-by register (often referred to as a preconmiand
register) concurrently with the actual execution of the current instruction.
This, as well as other procedures that might be employed to increase the
speed of a serial machine would have little effect on the speed of a computer
with a parallel access memory and a parallel arithmetic unit. However,
a higher degree of paralleUsm can be obtained by using several local in­
formation processors distributed throughout the area occupied by the
memory, and a central processor to exercise over-all control. Such an ar­
rangement could materially increase the speed of machines in the gigacycle
range where transit time is a basic hmitation (see Sections 4.3.4 and 4.7).

TABLE 7 .1 . A comparison of serial and parallel operation
for certain figures of merit.

Figure of merit Serial Parallel

Circuitry
Amount
Complexity of control

Speed of the arithmetic
unit

Compatibility
With main store

With type of control

Considerably less

Compatible with serial
or parallel storage

Compatible with syn­
chronous control only

Simpler
Faster

Compatible with parallel
storage

Compatible with synchro­
nous or asynchronous
control

7.5.2. SYNCHRONOUS OR ASYNCHRONOUS OPERATION

In a completely synchronous computer, the timing of all operations
is controlled or synchronized with a clock, and each operation requires
an integral number of clock intervals. The machine is controlled by a
clock pulse oscillator whose successive output signals define the smallest
time interval recognized in a machine, namely a bit period. Other pulses
defining major and minor periods are derived either from the clock by

386 7. SYSTEM DESIGN OF GP COMPUTERS

means of counters that produce an output signal after accumulating certain
specified clock "counts" (see Sections 3.10 and 6.1.1) or from timing
tracks (see Section 7.6.3). All switching waveforms rise and fall at times
defined relative to the clock waveform, and the duration of the rise and
fall times must be less than a specified time which is dependent on the
nature of the switching elements (see Chapter 4) .

In an asychronous machine, each operation is initiated upon com­
pletion of the one preceding. Not only is there a wide tolerance on the
shape and ampUtude of control pulses, but because the timing of a
particular pulse is unimportant provided it does not occur until the pre­
ceding operation is completed, it need not be accurately phased relative
to the clock. Although an asynchronous machine can be designed so that
on the completion of each operation a pulse is emitted which initiates
the next operation, as a matter of convenience the machine can be driven
from a clock source to which it is, strictly speaking, synchronized.

7,52,1. Synchronous Control

In a synchronous computer there is a clock pulse generator which
serves as the source for various timing signals. The period between
successive clock pulses is the smallest interval of time defined in the
machine. Other time intervals of importance in its operation are defined
by the intervals between designated states of clock pulse counters. Two
of the major time periods have already been referred to, namely that
required to transfer an instruction from the main store to the control
register(s), and that required to actually execute an instruction. In
addition to these major periods for instruction acquisition and execution,
there are other periods specified for the performance of various operations.
There is also a requirement for the generation of signals that define
specific points within these time intervals. The circuits that generate
the various timing signals required are sometimes referred to collectively
as a timing pattern generator.

As stated in Section 7.5, the execution of each instruction requires the
performance of a number of operations in sequence. In a synchronous
computer, the time for initiation of each minor or major operation is
specified by a timing signal from the timing pattern generator. With
synchronous control, no action can take place, i.e., there can be no
advance from one internal state to the next unless a clock pulse is present.
The number of clock pulse periods required for an instruction acquisition
period is fixed, since the same operations are performed in all acquisition
periods. The number allotted for the execution of each instruction is
dependent on and determined from the operations of which it is comprised.

7.5. THE CONTROL UNIT 387

A typical arrangement for a synchronous control unit is shown in
Fig. 7.5. All operations required in the execution of an instruction are

Storage
elements

\
Word

selection
circuits

Main store

Arithmetic

Instruction L Address Operation
counter register register

Auxiliarŷ inputs
I— Encoding

switching
r network

η I

Command lines

Many
to

one

Timing Clock
pattern pulse

generator source
Instruction acquisition and execution circuits

FIG. 7 . 5 . Synchronous control for a single-address G P computer

dictated by the order code placed in the operation register during the
acquisition period immediately preceding. The outputs of the operation
register are apphed to a many-to-one function table, causing one output
hne to be energized for each instruction. These output hnes, as well as a
number of auxihary inputs and the timing signals from the timing pattern
generator, are apphed to an encoding switching network. One may think of
the inputs from the many-to-one (decoding) table and the auxihary inputs
as controlhng the connections made between the inputs from the timing
pattern generator and the output command lines of the encoding switching
network. Some typical auxihary inputs are signals indicating: (1) whether
the conditions of conditional type instructions have been satisfied, (2)
whether the computer is currently in an acquisition or execution period,
(3) which step is being performed in the execution of an instruction
whose execution period consists of several steps. Whenever an instruction
requires more than one step in its execution, the individual steps are
indicated by a counter which is caused to advance after the completion
of each step. When the required number of steps has been completed,
a signal is produced to initiate a new instruction acquisition period.

For instructions referring to the main store, the storage selection
circuits are controUed by the address register. During an acquisition

388 7. SYSTEM DESIGN OF GP COMPUTERS

period, they are controlled by the instruction counter. This counter norm­
ally is advanced by one increment during the execution of each instruction,
so that in the succeeding acquisition period it will cause the selection of
the instruction in the next sequentially numbered address. If the instruc­
tion just executed called for a transfer of control to some other address,
that address will have been transferred into the instruction counter from
the address register.

7.5.2.2, Asynchronous Control

In an asynchronous machine, a control cycle normally begins by gener­
ation of a signal at a particular physical location. Branchings will then
take place according to the order code of the instruction received from
the main store. However, there is no precise control over the intermediate
steps of each operation. One may think of the action as free running—
each action in an operation triggers another action until the particular
operation is completed. A signal, indicating the completion of a particu­
lar operation, is always generated at a specified location, and is used to
initiate the next chain in a specified sequence of operations.

A typical arrangement for an asynchronous control unit is shown in
Fig. 7.6. When the computer is switched to an active computing state.

Storage
elements

Τ
Word

selection
circuits

Main store

Arithmetic

I Timing control
I Start

Instruction
counter

Address
register

Operation
register

Auxiliory inputs

D e l a y s , g a t e s H A N D h
r 1 — Γ

-1
ORE-I Delays^gatesWANDJ-

i J -
Delays,gatesHAND|

Τ τ

Many
to

one

Execution command
lines

[Chain of
d e l a y s U - l

Acquisition command
lines

Instruction acquisition and execution circuits

FIG. 7.6. Asynchronous control for a single-address GP computer

7.5. THE CONTROL UNIT 389

the timing control circuits initiate an operation by generating a "start"
pulse. This pulse is applied to a chain of delay units from whose outputs
the acquisition period timing pulses are obtained. The lines along which
these timing pulses are directed are the command lines to circuits that
must be activated to execute the operations required during the instruction
acquisition period, namely selecting the next instruction from the main
store and transferring it to the control register (i.e., the address and
operation registers). The acquisition period is completed by the time the
start pulse activates the instruction execution circuits.

The emergence of the pulse at the far end of the acquisition delay
units signals the beginning of the execution period. The pulse is applied
to the inputs of a number of AND gates, as shown in Fig. 7.6. There is
one AND gate for each instruction in the computer's repertory, and the
pulses will pass only through the one connected to the currently energized
output line of the many-to-one function table, which in turn is determined
by the order code in the operation register, i.e., the instruction to be
executed. After passing any one of the AND gates, the pulse is applied
to a chain of delays and gates which generate a sequence of signals
which are directed ¿ong command lines to activate circuits that cause the
execution of any given instruction. For some instructions, the pulse may
be recirculated along some closed loop within a particular set of delays
and gates until a specified condition is met, as signaled by one of the
auxiUary inputs. For example, in operations such as multiplication,
division, and shifting, a particular sequence of commands must be re­
peated a number of times. The completion of the required number is
usually indicated by a counter which activates a command hne. The
signal on this command Une causes the recirculating loop to be effectively
broken, and also opens a gate allowing the pulse to pass on. When the
execution of an instruction has been completed, the pulse returns to the
timing control circuits so that they can initiate the next operation.

Before the instruction counter can be triggered to its next state, it
must receive an indication, i.e., a revertive signal, that its last output
signal was successful in activating certain specified circuits. If the op­
eration were unsuccessful, the signal to advance the counter would not
arrive, and the counter and therefore the whole computer would be
stopped. This feature may be useful in locating failures within a computer.

7,5.2.5. Comparison of Synchronous and Asynchronous Control

In a synchronous system, the duration specified for an operational
period is determined from the maximum time required by the longest
operation to be performed in that period. This is not the case in an asyn-

390 7. SYSTEM DESIGN OF GP COMPUTERS

* Henney, F. C , HI [1961] Iterative Arrays of Logical Circuits, M.LT. and John
Wiley & Sons, New York.

chronous system. Asynchronous operation of regular networks (i.e., ones
with exactly one equilibrium state for each possible combination of pri­
mary input values*) yields a speed advantage, in principle, because the
average time to transmit a signal through a network is the average (rather
than the maximum) delay per circuit times the number of circuits. With
either type of control, overall speed is limited by the main store since
addition (or subtraction), logical and transfer operations can be completed
in less time than it takes to acquire a word in storage. By making serial
multiplication and division asynchronous, the average time for execution
of these operations can be significantly reduced.

The fact that by far most computers are synchronous machines may be
ascribed to several factors, including the foUowing. First, there are poten­
tial hazards in asynchronous networks due to variation in response time
of active elements and in the transmission time of signals. An interlock
system (see Section 4.3.4) for nonregular networks means additional
circuitry which, in most cases, increases the delay per circuit to where
there is no longer a clear advantage over synchronous operation. FinaUy,
because of an indeterminate time for execution of operations and the
complexities required, in general, for hazard free operation, asynchronous
systems are considered more difficuh to design, understand and service.

Table 7.2 provides a brief resume of certain figures of merit of inter­
est in a comparison of synchronous and asynchronous operation. A princi­
pal consideration in reference to the computing element is the consistency
of its operating time. For example, the operating time of a relay is a
function of its exact adjustment, the tolerances of its components, etc.
Because of a wide variation in operating time, relays are best suited
for asynchronous control. Vacuum tube, transistor, and magnetic core
circuits are suitable for either type of control.

7.5.3. NUMERICAL REPRESENTATION IN THE ARITHMETIC UNIT

Two major considerations in the design of an arithmetic unit, namely
serial or paraUel operation, and synchronous or asynchronous control,
have already been considered (in Sections 7.5.1 and 7.5.2). It was
pointed out there that in a parallel asynchronous machine, a number
can be transferred from one register to another upon receipt of a signal
pulse whose time of occurrence, rise and fall times, and duration are
aU noncritical. In a serial synchronous machine, the timing of each
waveform relative to the clock waveform, as weU as hs rise and faU
times, and duration are aU critical.

7.5. THE CONTROL UNIT

TABLE 7.2. A comparison of synchronous and asynchronous control
for certain figures of merit

391

Figure of merit Synchronous Asynchronous

Compatibility of control Compatible with sync. Compatible with async.
With arithmetic unit or async. arith. unit arithmetic unit

With storage Compatible with serial Compatible with
or parallel storage parallel storage

Speed of operation Determined by estimated Determined by average
speed of slowest speed of all circuits
element

Component tolerance Only limited degradation Speed independent circuits
allowable because of operable after consider-
requirements on wave- able degradation of com-
shapes and pulse ponent characteristics.
coincidence at gates.

Ease of maintenance Simpler organization, A dc coupled machine can
easier to understand. be put in a state of static

equilibrium

Ease of understanding Operation of circuits Hazard-free networks are
is straightforward. generally more complex.

We will now consider the effects of certain choices in numerical
representation upon the complexity of the arithmetic unit and, therefore,
its control, Le., all the circuits required to cause transfers of information
into and out of the arithmetic unit as well as to supply signals that
cause arithmetic and logical operations to proceed at the right time and
in proper sequence. The items which we shall consider are (1) the num­
ber base, (2) means for positioning the radix point, (3) the representa­
tion of negative numbers. In most computers, numbers are represented
internally either in a binary or some type of binary-coded decimal repre­
sentation. In those cases where it is either convenient or necessary to
enter and display data in decimal form, input-output data conversions
would be required for a binary machine (see Sections 6.4.3, 6.4.4).
On the other hand, arithmetic operations are more complex for a binary­
coded decimal machine (see Sections 6.1.3, 6.1.4.2.3, 6.1.5.2, 6.1.6.2).
Various means for representing negative numbers are described in Sec­
tion 6.1.4. A comparison of fixed positioning of the radix point and
floating point operation is provided in Sections 6.3.3. and 6.3.4. In a

392 7. SYSTEM DESIGN OF GP COMPUTERS

computer with built-in floating-point operation, counters must be pro­
vided to store the exponent associated with each number. The shifts
required prior to or after arithmetic operations are effected under control
of these counters, and circuits that sense nonzero digits in a shift register.
The exponent counter receives an input pulse after each shift. By ac­
cumulating them, it keeps track of the number of shifts.

The effects on the arithmetic unit and its control of the three major
choices in numerical representation are summarized, for convenience, in
Table 7.3.

TABLE 7.3. Effects of numerical representation on the arithmetic unit

Choice

Number base
Binary-coded decimal

Binary

Radix point
Fixed

Floating

Representation of
negative numbers
Absolute value and sign

Two's complement

One's complement

Comment

General familiarity
decimal input-output
conversion simpler

Simpler arithmetic

Simple arithmetic unit

Wide range of numbers

Easy multiplication and
division. Simpler input-
output data conversion.

Addition and subtraction
easy. Derivation of
complement easy. One
value of zero

Derivation of complement
very easy, facilitating
conversion to and from
signed form before and
after multiplication
and division

Internal mechanization more
complex than for binary

Requires conversions of in­
put data and output data
for decimal display

Limited range of numbers

Complex arithmetic unit

Addition and subtraction
more complex than with
complements. Two values
of zero.

Conversion to signed form
is complex. Normal mul­
tiplication and division
methods require correc­
tions, special methods
(Section 6.1.5.1.6) do
not.

Extra end point correction
in addition and subtrac­
tion. Need to know signs
prior to conversion for
multiplication and divi­
sion complicates serial
machine (since l.s. bit is
first). Two values of
zero.

7.5. THE CONTROL UNIT 393

* Minimum access programming techniques can also be used with one-address ma­
chines. They depend on an internal addressing arrangement wherein successively
numbered addresses are separated by a specified number of word lengths. This
relative inflexibility makes the one-address machine less efficient in minimizing
access time. See Knuth, D. E. [1961].

7.5.4. NUMBER OF ADDRESSES IN AN INSTRUCTION

The instructions described in Chapter 2 and in Section 7.2 are of a
class referred to as single-address instructions. This means simply that
only one address is referred to in an instruction. However, there are a
number of machines in which reference is made to more than one address
per instruction. A brief description of different addressing systems that
have been used follows:

A one-address system requires three instructions for most arithmetic
operations: two instructions to bring the operands from storage and one
instruction to transfer the result back to storage. Instructions are executed
in sequence according to the contents of an instruction counter. The code
bits reserved for specifying an address in the main store may be used for
other purposes in the case of instructions requiring no internal address,
e.g., shift, test, and input-output instructions.

In one type of two-address computer (e.g., the IBM 650) there is
included in each instruction a second address which usually specifies from
which storage location the next instruction is to be obtained. Consequently,
the instruction counter (required in the one-address computer) may be
replaced with a simpler unit, an instruction register. This system facilitates
minimum access programming* for computers having a nonrandom
access main store, because the next instruction can, in general, be placed
in an address that will be accessible to the reading stations, shortly after
execution of the current instruction. In another type of two-address ma­
chine (e.g., the ERA 1103) both addresses may refer to operands used in
the execution of an instruction.

In the usual three-address computer, the three addresses specified in
each instruction are those from which two operands are to be obtained
and that to which the result of an operation on the two operands is to be
transferred.

In a computer with a four-address instruction (e.g., the SWAC) each
instruction contains the three addresses of a three-address computer, plus
an additional address specifying the location from which the next instruc­
tion is to be obtained.

The control sequence of a machine using single address instructions
proceeds in two stages: the acquisition of an instruction from the main

394 7. SYSTEM DESIGN OF GP COMPUTERS

store and the execution of that instruction. Since the address of the next
instruction is obtained by adding a constant to the address from which
the present instruction was obtained, some facility must be provided to
produce the new address at the proper time. Since the constant is usually
1, a counter is provided. In the execution of a jump instruction, the con­
tents of the counter are replaced by the contents of the address register.
The control sequence of a two or more address machine proceeds in two
or more stages, depending on whether the addresses are dealt with con­
currently or sequentially. As stated earlier, if each instruction contains
the address of the next instruction, the sequence control counter can be
replaced by a simpler register. This "next instruction register" may receive
its information from the instruction register and one or the other may be
eliminated.

As noted earlier, if each instruction specifies the address of the next
instruction to be executed, there is greater programming flexibility. How­
ever, additional storage space may be required for these extra addresses.
The amount of extra storage space consumed is diflBcult to ascertain
precisely, since the length of a word is usually dictated by the maximum
number of significant digits that are to be available for representing a
number. The space consumed by extra addresses depends also on the
size of the main store. On the other hand, a program of multiple address
instructions requires fewer words of storage than an equivalent program
of single address instructions. Another advantage of a multiple address
system is that the main store does not have to be consulted as often, and
therefore, the over-all computer speed is less dependent upon access time
to the main store. The value of these advantages depends on how efficiently
the multiple-address system is used. The advantage of the single-address
system is that it permits a simpler control unit.

7.5.5. INCLUSION OF SPECIAL CONTROL FEATURES

An instruction may be converted to a new one by transferring it from
the main store to the accumulator and then performing some operation
on it. This procedure, though, is often inconvenient and wasteful of time
and storage space. Therefore, in some computers a special register or
group of registers referred to as index registers is provided. The contents
of these registers can be automatically added to an instruction before it
is executed (by means of special circuitry in the control unit) at the
discretion of the programmer. A group of index registers is often referred
to collectively as a B-box because this designation was used in the com­
puter in which they were first used, namely that built at the University
of Manchester. In a machine provided with index registers, extra bits

7.5. THE CONTROL UNIT 395

must be reserved in each instruction word for their addresses. For ex­
ample, if four bits are assigned for a B-box address, as many as 16 index
registers may be referenced. In most applications index registers are used
only to modify the address part of an instruction. Therefore, they usuaUy
contain no more bits than required for an address in the main store.

Since the incorporation of index registers into a computer enables an
instruction to be modified before it is executed, the foUowing distinction
must be made: An instruction in the form in which it appears on the
programmer's sheet, on an input tape, or in the internal memory of the
computer is termed a presumptive instruction. The instruction executed by
the computer is termed the effective instruction. To faciUtate the use of
index registers, the control unit of the computer is modified so that the
presumptive instruction may be automaticaUy converted to the instruction
to be executed. The additional capabilities incorporated into the control
unit are as foUows: (1) after an instruction has been selected from the
main store, but before it is executed, the index register designated by the
B-box address is inspected; (2) the contents of this index register are
added to (or subtracted from) the presumptive instruction; (3) while B-
box address bits in the actual instruction may be set to zero (as in the
University of Manchester machine), the B-box address bits in storage are
unchanged, however. The necessity of having to sequence these modifica­
tion procedures compUcates the control unit.

For a machine with index registers, other faciUties must be added
besides the capabihty for automatic modification of an instruction just
described. These consist mainly of adding to the machine's instruction
repertory, instructions relating to the B-box. Some basic instructions
of this type are as foUows: (1) an instruction for transferring data into
the index registers; (2) an instruction for copying the contents of an
index register into the main store; (3) at least one instruction that per­
forms a shnple arithmetic operation on the contents of an index register.
Such an instruction is useful in permitting index registers to serve as
auxiUary accumulators, e.g., for counting (from which the term "index
register"), leaving the accumulator undisturbed during the mam compu­
tation. A typical instruction might be: subtract the contents of storage
location s from the contents of index register /. However, a diflSculty
arises in connection with instructions intended to operate on the contents
of an index register. This is because such an instruction must specify the
mdex register to be operated upon, yet the bits reserved for an index
register address are normaUy used to indicate the index register whose
contents are to be used to modify the instruction. Therefore, an additional
type of B-box instruction, one which can never be modified by the

396 7. SYSTEM DESIGN OF GP COMPUTERS

The greater convenience of counting backwards (facilitating the use of the con­
ditional transfer instruction) is one reason why subtraction may be preferred to
addition for an arithmetic operation on the contents of an index register. Also,
addition may be compounded from subtraction, but not vice versa.

contents of an index register, must be provided. In this type of instruction,
designated as non-B modifiable, the B-box address specifies the index
register on which the instruction operates and nothing else. Each of the
three types of B-box instructions described eariier in this paragraph may
be of the Β modifiable or non-B modifiable type.

It is also useful to have a transfer type of B-instruction conditional
on the contents of a designated index register. The Manchester University
computer has two instructions of this type, an absolute B-conditional
transfer instruction and a relative B-conditional transfer instruction. The
term absolute indicates that control is transferred to a specified address,
and relative indicates that control is transferred a specified number of
positions from the original position. An absolute instruction of this type
might be of the form: (4) take control to the next instruction in order
if the number in the index register is negative, otherwise transfer control
to 1 plus the address which appears in the conditional transfer instruction.
It should be noted that an additional rule is needed to specify which
index register decides the behavior of the control. In the Manchester
University computer, the decisive index register is the one last operated
on, i.e., the index register appearing in the last actual instruction, prior to
the B-conditional transfer instruction. On occasions when it is required
to execute a B-conditional transfer instruction conditional on the contents
of index register i while the last operation was performed on a different
index register, a dummy instruction may be inserted which formally acts
on i without having an efliect on the program, i.e., without altering the
number in index register /, e.g., "copy contents of index register / into
storage location s where ^ is a spare," or "subtract the contents of s from
index register / where s contains zero."

The economy to be reaUzed from the use of a B-box will be demon­
strated by programming a problem first without and then with the use
of B-box instructions. Example 7.1 shows two such programs, each of
which is designed to cause the numbers in storage locations 50 through
99 to be multiplied by the contents of storage location η and the products
returned to these locations. Note: the instruction codes used in the first
program are defined in Table 2.1 except for Μ m, which means "produce
in the accumulator the product of the numbers in the accumulator and
storage location m." In the second program, F m η is a non-B-modifiable
form of instruction which fills index register η with the contents of storage
location m. R m η (also non-B-modifiable) is a combination tally and
conditional transfer instruction: 1) It subtracts* .00 . . . 01 from the

7.5. THE CONTROL UNIT 397

Address Instruction Explanation

000 cA η Multiplies the contents of storage locations
001 Μ 099 050 through 099 by the contents of location n.
002 C 099

003 cA 002 Converts the instruction C m (in storage loca­
004 S 102 tion 002) to C m - 1.
005 C 002

006 cA 001 Address m in Μ m is used as a tally number
007 S 100 to detect when 50 numbers have been oper­
008 Τ 012 ated on, indicated by (M m - Μ 051) < 0.

009 A 101 Μ m is replaced by Μ m — 1, produced as
110 C 001 the net effect of instructions 007 and 009.

Oil U 000 Stop
012 Ζ

100 Μ 051)
101 Μ 050 [Constants are stored here.
102 — 001 1

Program with B-box instructions

Address Instruction Β Address Explanation

000 F 100 Ol Fills index register Ol with contents of lo­
cation 100.

001 cA η 00
002 Μ 050 Ol
003 C 050 Ol
004 R 001 Ol Subtracts 1 from index register 01 and trans­

fers control to location 001 if remainder ^ 0.

005 Ζ Stop

100 — 049 The constant, 049, is stored at location 100.

For convenience in use of conditional transfer instructions, addresses
are operated on in the order 99, 98, . . . 50 rather than the reverse order.
It is assumed that index register 00 is cleared before the program is ini­
tiated (or that 00 is a fictitious address whose contents are interpreted
to be zero). By reducing the number in index register 01, R 001 01 re­
duces the tally number and the address in locations 002 and 003.

contents of index register n, and 2) if the remainder is ^ 0, transfers
control to location m, otherwise to the next consecutive location. The other
instructions are B-modifiable forms of instructions defined earUer.

Example 7.1

Program without B-box instructions

398 7. SYSTEM DESIGN OF GP COMPUTERS

Uses to which index registers may be put include the following:
(1) To reduce the amount of storage space required by programs

containing computer modified commands. For example, when
computed results have to be stored in sequential locations, the
same instruction may be used repeatedly, with the address part
being B-modified each time. Without the use of index registers,
three separate instructions would be required to add an increment
to the address part of an instruction during each traversal of
an iteration loop. With index registers, the number of instructions
is reduced to one.

(2) To dispose of or obtain information from stored tables. If the
value of a function corresponding to a given argument is desired,
a table may be stored having the value of f(x) stored in location
X, To obtain'/(.;c) it is then only necessary to plant the argument
in an appropriate instruction. The B-box may be used to modify
this instruction.

(3) In sorting processes.
(4) To modify instructions permanently stored in those channels

of a dynamic magnetic store which are not provided with a rec­
ord head, i.e., for altering so-called dead programs. For example,
such dead programs may be used to provide a permanent input
routine. They have the advantage of precluding the possibility
of an accidental writing-over operation. Use of the B-box retains
this advantage while eliminating the disadvantage of not being
normally able to modify instructions within a dead program
during use.

(5) To plant links in closed subroutines. A closed subroutine is
preceded by instructions which insert, at the close of the sub­
routine, an instruction returning control to the main program.
This may be done by storing the link in an index register at
the beginning of the subroutine, using the same index register to
modify the instruction which returns control to the main pro­
gram.

(6) To change the internal addresses of a subroutine, thus enabling
that routine to be placed in an arbitrary section of the main
store. We recall that a subroutine contains both external addresses
(which refer to fixed positions in the memory) and internal
addresses (which refer to positions within the subroutine itself).
If a subroutine is written to fit into a section of the memory
starting at location zero, it may be made to fit into another
section starting at location η if η is added to all internal addresses.
If η is stored in an index register at the beginning of a subroutine,

7.5. THE CONTROL UNIT 399

and if all instructions having internal addresses are modified
by the contents of that index register, the subroutine will operate
properly.

The following computers, among others, have a B-box type of
facility

The Ferranti (University of Manchester) Computer
The Whirlwind I (adapted)
The MIDAC (University of Michigan)
The Electrodata Datatron
The IBM-704

Some machines have a repeat counter that controls the number of
times an instruction is repeated. In these machines a built-in instruction
is provided for transferring a number from the main store to the repeat
counter. The number in the counter is diminished by 1 each time the
instruction is repeated, until the counter reaches 0, whereupon the pro­
cess is ended. For example, the UNIVAC-1103A computer, which is a two-
address machine, has a repeat instruction which states: repeat the next
instruction η times, augment one address by / and the other by / (where
the allowed values for /, / are (0, 1), (1 , 0) , (1 , 1). A repeat counter
facilitates such operations as adding a long list of numbers stored at
sequentially numbered addresses, and transferring large blocks of informa­
tion between the main store and input or output devices. In the latter
case, the repeat counter is used to hold the number designating how
many words are to be transferred. As indicated in the preceding discussion
of index registers, it is often desirable to alter the address part of an
instruction each time it is repeated. A simple way to provide Üiis feature
is to convert the control register that holds the address of an instruction
to a counter. Then, the pulses that are sent to the repeat counter upon
each execution of an instruction to be repeated may also be sent to this
counter to change the address by 1.

7.5.6. INTEGRATION OF INPUT-OUTPUT EQUIPMENT

Equipment used either for the preparation of data and/or its com­
munication to the computer, or for producing a record of computed
results is referred to generally as input-output equipment. An important
distinction in the way this equipment is used is whether its operation is
on-hne or off-hne. In on-Une operation there is direct control of the
equipment by the computer. In off-hne operation there is no connection
between the equipment and the computer: input equipment used off-hne
records data on an external storage medium for subsequent entry into
the computer by on-line equipment; output equipment used off-lme pro-

400 7. SYSTEM DESIGN OF GP COMPUTERS

cesses data recorded on an external storage medium by on-line equipment.
The control console of a computer is usually provided with special

keys and switches by means of which signals may be generated for such
functions as controlHng the internal operation (e.g., starting or stopping
a computation), revising the contents of a selected storage location, or
correcting small errors. Depression of a key actuates a mechanical switch,
either directly or indirectly by energizing a solenoid. This action
produces binary signals, on one or more wires, which are transmitted
to the proper functional unit, e.g., one or more control flip-flops, a counter,
control register, or storage register. Where it is convenient to have a
typewritten record of data entered via a keyboard an electric typewriter
may also be provided as an on-hne data entry device. The signals
generated by depression of a key are transmitted to the computer and
used concurrently to actuate a typing bar. The use of a Flexowriter allows
the production of a punched paper tape record as well.

For the entry of large amounts of data, e.g., complete programs and
libraries of subroutines, it is more efficient to prepare the data off-line
by means of data preparation machines, e.g., keyboard controlled paper-
tape punches and card punches. After the data has been prepared it can
be read into the computer at a rapid rate by means of higher speed
readers, e.g., paper-tape readers, punched-card readers, or magnetic tape
readers connected on-line. An additional advantage of off-Une data prepa­
ration is that it permits the location and correction of most errors intro­
duced by the operator prior to the entry of that data into the computer.
In addition to various error checking procedures that may be used,
verification may be obtained by means of standard or special equip­
ment designed for this puφOse. In either case, circuitry is provided that
compares the recorded data keyed in by one operator with that prepared
independently by another. If there is a disagreement an indication is
provided, usually by locking of the keyboard, and the erroneous data
can be removed. Of course, though this procedure greatly reduces the
probabiUty of an undetected operator error the same error made in
corresponding characters of both records would go undetected. Such
errors would then have to be picked up by other means.

Since a single keyboard can be connected electrically to more than
one set of actuating devices, one used to produce typewritten records
or documents such as checks or invoices can be modified to cause the
recording of data on an input medium simultaneously.

In addition to its data entry devices, the control console is also
usually provided with switches and indicators which allow the contents
of registers in the arithmetic and control units or storage locations in the

7.5. THE CONTROL UNIT 401

main store, as well as the status of specified circuits, to be monitored.
The data recorded by output equipment operating on-line may be in a
form directly usable, such as the typewritten page produced by an electric
typewriter, or in a form not directly usable such as data recorded on
external storage media, e.g., punched-paper tapes, punched cards, or
magnetic tape. A visual record can be produced from the external storage
media by means of off-hne electric typewriters activated by punched-paper
tape and line-at-a-time printers activated by punched cards and magnetic
tape. The principal reason for the use of ofl[-line output equipment is
that it allows a greater data output rate. This is because, in general, data
can be accepted by a recording device at a greater rate than by a
corresponding printer. The types and number of pieces of peripheral
equipment used depends, generally, on the characteristics of the computer
— îts provisions for control of input-output equipment, its speed, the
capacity and type of main store. The types of output equipment called
for depend also on the output rates and form required of various classi­
fications of data to be recorded on external storage media and/or printed.
For example, because recording on magnetic tape is faster than the
operation of a card punch or a mechanical printer, a magnetic tape unit
would be used if large quantities of output data were to be recorded in
a brief period. If punched-card records were also required they could
be produced off-Une by means of a magnetic tape-to-punched card con­
verter. Printed records could be obtained either from a magnetic tape
or punched-card controlled printer. An added benefit of producing inter­
mediate records on external storage media is that subsequently they can
be used as inputs to a computer as well as to a number of specialized
units of peripheral equipment.

For appUcations involving long sequences of operations on relatively
small amounts of input data and producing relatively little output data,
the input-output data transfer rate is moderate, and a shnple type of
computer organization may be used in which input-output instructions
are similar to internal instructions operating on single operands. For
those applications where the ratio of input-output to internal operations
is appreciable, (mainly in commercial record keeping and data processing
applications), it may be necessary to provide higher speed input-output
equipment or so design the computer's logical structure that it can con­
trol computing operations and certain input-output operations simul­
taneously. One way of accomplishing parallel internal and input-output
operation is to provide instructions which can cause the transfer of a
block of data between the main store and an auxiliary store. The latter
must be provided with separate controls which allow it to accept or trans-

402 7. SYSTEM DESIGN OF GP COMPUTERS

mit data between itself and external devices without the need for access to
the main store. Thus, individual data transfers between the main store
and external devices do not disrupt the main program.

Whenever two storage media of different rates must be interconnected,
an intermediate store must be provided, referred to, for obvious reasons,
as a buffer. An efBcient way to utilize an input buffer is to cause the
transfer of a block of data from the input medium to the buffer during
the time the computer is processing the last previously received block
of input data, and at the completion of this processing, to cause the
new set of input data in the buffer to be transferred at high speed to the
computer's main store. An output buffer would be used in a similar way.

In larger systems it is the usual practice to provide one appropriately
large storage unit to act as buffer (and control) between the internal
store and any one of several selectable external storage units of a particu­
lar type. For example, a single buffer may accommodate as many as ten
magnetic tape units, (as in the UNI VAC-1103 A or IBM-704 com­
puters), each of which is identified by an address code.

The storage capacity of a buffer depends primarily on the chosen
unit of information transfer between the internal and external stores,
the difference in their rates and the time allowed for transfer. The buffer
must be capable of receiving information at one rate and transmitting it
at another. This can be accomplished by means of static registers or a
combination of static registers and a less expensive cyclical type of
storage. In addition to being responsive to a wide range of input fre­
quencies, static registers can also provide a completely asynchronous
means of read-in and read-out.

A common characteristic of the external storage problem is the need
for a very large volume of storage accessible to the computer, though
not necessarily at high speeds. Therefore, the size of the external store,
though varying with the application, is usually several times that of the
internal store. An insurance company file, for example, may contain 10^^
bits. Access times of the order of seconds rather than milU- or micro­
seconds can be tolerated here. The most commonly used external storage
media are punched cards, punched paper tape, and magnetic tape, disks,
or drums. Programs held in these external stores must be transferred to the
internal store before they can be executed.

As in the computer, an assemblage of bits in an external store is
usually organized into groups called words. However, the form of a
word or character stored here need not be the same as in the internal
store. For example, a word on magnetic tape may be in serial-parallel
form, a word of 36 bits, say, being arranged on six tracks with six bits

7.5. THE CONTROL UNIT 403

per track. In the computer the same word may be stored as 36 serial bits.
A sequence of words in an external store is called a block. Its size need
not have any relation to details of internal storage.

Because of the relatively long access thne to a word in an external
store, it is inefficient to use an instruction for the transfer of only one
word. Accordingly, it is the practice to cause the transfer of information
between the computer's fast access storage and consecutive locations
on tapes, disks, or drums by an mstruction that refers to a block of
several words (called a block transfer instruction) rather than by instruc­
tions referring to single words.

Transfers of information from external to internal stores are most
easily effected by addressing information in the internal store. During
the execution of a program, if it is anticipated that the capacity of the
internal store will be exceeded, a few internal storage locations are
reserved for instructions which wiU record appropriate blocks of inter­
mediate results on tapes, disks, or drums, and then call in blocks of more
program steps or data, as required.

The control of the external store must supervise the tasks of handling
the medium and causing the indicated locations to be selected. The as­
sociated problems vary with the particular storage medimn. As an example,
consider a magnetic tape handhng unit. Here, a search operation may be
initiated by an instruction from the computer which identifies the tape
handhng unit to be consulted, and gives the address of a particular block
on the tape. These two numbers (i.e., that of the tape unit, and the block
address) are stored by a separate tape control unit. This permits other
instructions to be executed by the computer while the search progresses.
At some point in the execution of the main program, the computer will
require the execution of an instruction calling for the desired block of
information to be read from the tape. Since the instant at which the read
instruction may occur and that by which the search is completed will
not, in general, coincide, it is necessary to provide some type of interlock
in the system which will aUow the read operation to occur only if there
is an indication that the search for the desired block has been completed.
The tape control unit provides the foUowing faciUties to accompUsh the
search: storage for the code identifying a tape unit and the address of a
block, a means for distmguishmg block address information from other
information stored on the tape, controls to start the tape drive and
accelerate the tape smoothly when a block is caUed for (in either a readmg
or recording operation), comparison circuits to detect when the desired
block has been reached, controls to stop the tape drive, and other
misceUaneous controls.

404 7. SYSTEM DESIGN OF GP COMPUTERS

7.5.7. MICROPROGRAMMING

The operations called for by a single machine instruction are effected,
in general, by a sequence of elementary commands, sometimes referred
to as micro-operations. The number and sequence of these commands for
the execution of each instruction are usually wired into the computer.
Each instruction can be considered as being composed of a microprogram
of commands, just as a normal computation is composed of a program
of instructions. The concept of microprogramming is useful in designing
the control circuits of a computer. Its primary purpose is to situate and
interconnect the elementary commands in such a way that they are
readily accessible either for the modiñcation of old instructions or the
formation of new ones. The use of microprogramming in the design of
the control unit does not necessarily imply a more eflBcient final logical
design. What it does provide is conceptual clarity and flexibiUty in respect
to modification of the instruction repertory.

The design of a control unit based on the microprogramming tech­
nique will be described for a parallel computer. It is convenient to regard
the control unit as consisting of a control register unit and a microcontrol
unit. Both are shown in Fig. 7.7 and will be discussed in turn. The

To switching matrix Output
of main store of main store ^

M I A

ρ

Single
) — increment

adder

Control register unit

pulse

Gate

Control Conditional
pulse ^jnputs

Decoding 1 Encoding
function 1 1 function
table TQ 1* table Tb

ΕΞΞΞΞ
Microcontrol unit

FIG. 7.7. A microprogrammed control unit

control register unit consists of a group of registers and an adder together
with a switching system which enables transfers of information between

7.5. THE CONTROL UNIT 405

the registers. The names and functions of these registers are shown in
Table 7.4. The incorporation of more registers into the unit would
enable additional facilitIes, e.g., index registers, to be added to the micro­
programs.

TABLE 7.4. Registers in a control register ueit

Register Function

I a The contents of the address register, I a' control the selection of
a location in the main store.

10 The order code buffer register, 10, hoids the code of the instruction
to be executed next by the microcontrol unit.

P The program sequence control register, P, holds the address of
the next instruction to be executed.

C This register serves two functions: (1) it acts as an address counter,
receiving an address from register P and augmenting it by 1,
(2) it acts as an instruction buffer register, receiving first each
instruction selected from the main store.

A number of preparatory commands must be carried out prior to the
execution of any instruction. These instruction acquisition commands
select an instruction or operand from the main store, transfer it to the
control unit, and set up the control unit to repeat the look-up operation
for successive instructions in the program. The numerical code for each
of these commands, as well as a description of the operations performed
by each is given in Table 7.5. At the conclusion of the instruction
acquisition operations, the following conditions exist: (a) the address of
the operand is in register, fa; (b) the order code, defining the entry point
to a microprogram, is in register, MI.

TABLE 7.5. Instruction acquisition commands

Command No. Operation

Transfers address of instruction to be executed from the register P
to the register I a' and also to the register C.

2 Adds 1 to the contents of register C and transfers the result, the
next consecutive address, to the register P.

3 Selects from the main store the instruction whose address is specified
by register I a' and transfers this instruction to register C.

4 Transfers the order code and operand address of the instruction to
be executed from register C to regi~ters 10 and la' respectively.

S Transfers the order code, which defines the entry point to the
microprogram of a given instruction, from register 10 to register MI.

406 7. SYSTEM DESIGN OF GP COMPUTERS

It is the function of the microcontrol umt (see Fig. 7.7) to actuaUy
execute the instruction obtained from the main store by the control
register unit. Application of an "advance" pulse to the gate causes the
code of the entry point, which may be considered to be an address, to be
transferred to register M2. When a control pulse is apphed to the many-
to-one function table Γα, one, and only one, output line wiU be activated,
according to the address in register M2. The activation of any line causes
gates to produce signals required for a particular command. The code
specifying a particular instruction must cause a unique sequence of com­
mands to be executed. Therefore, the activation of any output Une of
Ta can also be used to cause the address of the succeeding command in
the microprogram to be entered next into register M2 (via register M i) .
This can be mechanized by use of a one-to-many table, Γ^, which when
activated produces a command address on its parallel output Unes, (not,
in general, unique to a particular input). The progression from one com­
mand of a microprogram to the next is achieved by alternate apphcation
of the control pulse to Ta and the advance pulse to the gate, the advance
pulse being apphed just before the control pulse.

To run a program, it is only necessary that the address of the first
instruction to be executed be placed in register P, and that the address
00 . . . 01 be placed in register M o . Then the application of successive
pulses to the input of table J«, and to the gate, wUl cause the first and
succeeding mstructions to be executed by a microprogram of elementary
commands.

The steps involved in the execution of each instruction wiU now be
described. We recaU, first, that at the completion of any nUcroprogram,
control normaUy is advanced to the first in the sequence of commands
necessary to select a new instruction from the main store and set up
the control register unit for selection of the next instruction. This sequence
consists of commands 1 through 5 (described in Table 7.5). However,
at the conclusion of an unconditional transfer of control instruction and,
it foUows, the execution of a successful conditional transfer of control
instruction, command 1 is skipped. The effect of this is twofold. First,
h causes the instruction at the address specified in the transfer of control
instruction to be selected from the main store, rather than the instruction
at the address one greater than that from which the transfer of control
instruction itself was obtained. Secondly, it places in the next instruction
register Ρ the address one greater than the address to which control
was transferred by the transfer of control instruction. The effect of
skipping command 1 is best iUustrated by an example. In Table 7.6,
the first column shows the effects of the operations dictated by commands

7.5. THE CONTROL UNIT 407

1 through 4 in the instruction acquisition phase of cycle p + 1, following
the execution of a nontransfer of control type of instruction. The second
column indicates the effects of commands 2 through 4 in cycle p + 1
following receipt of a transfer of control instruction in cycle p.

TABLE 7.6

Cycle Command Operations Command Operations

p

2 Augments the address
j in C by one and trans­
fers j + 1 to P.

Receipt of any instruc­
tion except [U m]
eventually transfers
control to (1)

1 Transfers contents of
P, j + 1, to 10' and also
to c.

3

4

9

Transfers the instruction
[U m] from the main
store to C
Transfers instruction in
C, [U m], to 10, 1a
Transfers control to
command 2.

p+l

2

3

4

Augments the address
j + 1 in C by one and
transfers the result
i+2 to P.
The instruction whose
address j + 1 is in 1a
is selected from the
main store and placed
in C.

The operand address
and the order code of
the instruction in C
are placed in 10 and'
la' respectively

2

3

4

Augments the address
mine by one, and
transfers the result
m+ltoP

The instruction whose
address m is in 1a is
selected from the main
store and placed in C

Th~ operand address
and the order code of
the instruction in C are
placed in 1a and 10,

respectively

An explanation of the microprogram for executing each of the instruc­
tions A m, cA m, S m, U m, T m, C m, and Z (described in Table 2.1)
will now be given. Reference to Fig. 7.8, which indicates the sequence

408 7. SYSTEM DESIGN OF GP COMPUTERS

FIG. 7.8. Flow diagram of microprograms

of control and the operations performed for the execution of each instruc­
tion, will be helpful. The numbers within circles designate commands,
and the numbers in squares, the operations called for by those commands.
Commands 1 through 5 have already been discussed. Commands 11, 13,
15, 16, 14, 12, and 10 designate the entry points to the microprograms
of the instructions A m, cA m, S m, U m, T m, C m, and Z, respectively.
Every command designates not only what micro-operation will be per­
formed next, but also to what command control will be transferred after
completion of the micro-operation. The operation designated by each of
the various operation codes is shown in Table 7.7.

The operations in Table 7.7 indicate use of a relatively simple arith­
metic unit containing only a register R, an accumulator A, and an
adder-subtractor unit. This restriction has been made only to simplify
the description. Also, the switching system in the arithmetic unit may be
designed either to permit a large variety of commands, or it may be
restricted. It would seem preferable to have the more flexible system
for a computer with a large instruction repertory, since then fewer
commands would be required, in general, in a given microprogram. Similar
remarks apply to the degree of flexibility to be provided when designing
the switching system for the control register unit.

7.5. T H E C O N T R O L U N I T 409

Operation
code Operation

20 Transfers the operand, whose address is specified by 7̂ , from the
main store to the register R in the arithmetic unit

21 Adds the contents of register R to the contents of the accumulator A
22 Transfers a word from the location in the main store specified by

7g to the accumulator A
23 Subtracts the contents of register R from the contents of the

accumulator A
24 Sets the nip-flop F¿ if the sign bit of the accumulator is 1.
25 Copies the contents of the accumulator A into the location in the

main store specified by the address in 7̂

The manner of execution of the microprograms for instructions A m,
cA m, S m, and C m should be clear from reference to Fig. 7.8.
Note that in the case of Τ m, control is transferred to the same place,
(command 2) , if the sign of the accumulator is negative, indicated by
Ff = 1, as if a U m instruction were being executed. If the sign is
positive, control is advanced to command 1. The only other instruction
caUing for some comment is instruction Z. If the flip-flop Fz is in the reset
state, the only effect of command 10 is to cause control to be transferred
back to itself. This effectively puts the computer in a blocked or "dynamic
stop" state. The computer can be taken out of this state by activation
of a restart switch, which sets the flip-flop Then control will be
advanced to command 1.

All micro-operations will not, in general, take the same length of
time to perform. For example, even in a parallel computer it may not
be possible to reduce the carry propagation time in an adder to the point
where an addition requires the same time interval as a transfer. Other
operations, too, notably transfers between the main store and external
equipment, may take many times the interval required for an ordinary
command. Therefore, for longer micro-operations than the normal,
the sequence of operations in the microprogram must be interrupted.
One way of doing this for a long command is as follows. Associate a
flip-flop, Fy, with the command and use the flip-flop output as a con­
ditional input to table Γ 5 . The flip-flop will be set only by the completion
of the command being executed. As long as it is not set, the output of
table will be the address of the current command and, consequentiy,
the contents of register M2 are not altered. Upon completion of the
command, Fy is set, allowing control to be advanced to the next com-

TABLE 7.7

410 7. SYSTEM DESIGN OF GP COMPUTERS

mand in the microprogram. The advantage of this arrangement is that
it does not require any modification of the circuits supplying input
signals to table Γα. Note that this type of operation is similar to that
for recirculating the stop command (see Fig. 7.8).

The technique described in the preceding paragraphs is best adapted
to a parallel type of computer. However, a serial computer may be
designed along the same lines. The pertinent differences are as follows:
In a parallel computer with an asynchronous arithmetic unit, every
gate requires only one kind of waveform to operate it and the timing of
that waveform is not critical. In a serial computer, different gates
require different waveforms, the same gate may require different wave­
forms at different times, and all these waveforms must be critically
timed. These complications may be handled by including in the micro-
control unit a third function table, Γ^, for selecting the appropriate
waveform for each command. The main waveform routed by the
decoding function table, T«, opens a gate which is fed by a waveform
selected by table Γ^. This enables a waveform of correct duration to be
applied to any selected gate in the arithmetic or control sections of the
computer.

The early mechanization of the microprogramming technique was
either by the use of accessible diode matrices, which are easily rewired,
or plugboards. It is possible, however, to store the micro-instructions
in a high speed random access storage unit. This allows new instructions
to be generated even during the execution of a program, e.g., under the
control of problem parameters. Thus, any given computer may have
whatever instruction code its user desires, and even this may be changed
for different programs, or during the course of a program.

7.5.8. PROGRAM INTERRUPT CONTROL

Where a machine is used as an on-line data processor, it may be
desirable to provide a means of interrupting the normal advance of
control through the stored program in response to signals received from
external sources. In an early form of mechanization, referred to as
program interrupt control, the program being executed was mterrupted
whenever a signal was received from a source of input data indicating
that it was ready to transmit data for storage in the computer's internal
store. For computer systems applied to control of industrial processes,
this concept can be expanded to allow the computer to respond to
demand signals from different sources on a priority basis. Each source
of such a signal is assigned a priority number in accordance with its role
in the over-all program designed for the process being controlled. There

7.5. THE CONTROL UNIT 411

is a program in the main store corresponding to each of these priorities.
Whenever an input signal is received, the program currently being exe­
cuted is interrupted and control transferred to the program called for by
the new input signal, provided it has a higher priority than the program
being executed. All input demands are scanned in an orderly manner
and all demands satisfied sequentially m accordance with their priorities.

A priority interrupt control feature is particularly useful in industrial
control applications where it is important that a computer responds auto­
matically and after a minimal delay to various critical situations mdicated
by ofli-Unut values of variables being monitored or by other indicators
such as the actuation of a control switch. It is similar on a programmed
level to the operation of a dc coupled asynchronous system on a circuit
level in that each operation is initiated by completion of the preceding
one. In this case one of several programs which can be considered to be
in parallel will be entered upon completion of a program executed in
response to a demand of higjier priority. This allows a machme's time to
be utilized to the fullest and also allows a variety of demands to be satis­
fied without the necessity of assigning in advance time intervals for their
performance. A wide variety of demands can then be accommodated within
an over-all program design. Included in the hierarchy of programs may be
those for the accumulation of signals from a clock, the execution of self-
checking routines, special functions which may be demanded occasionally
by manually-operated switches to which priorities have been assigned,
the scanning of analog readings of various measuring devices and their
conversion to digital form, etc.

Priority interrupt control is generally useful for eflBcient asynchronous
use bf a computer. For example, consider the case where a computer
mcorporated in a control system is idle for periods of varying duration
throughout the day. In this case, programs for the solution of other prob­
lems can be made available for call-m and solution during these otherwise
idle times by being assigned priorities lower than those of any of the
demands imposed by the system being controlled.

The inclusion of a priority interrupt system does not markedly affect
the complexity of the control unit. Briefly, it must provide for relatively
shnple operations of a bookkeeping nature in order to keep track of the
demand currently receiving attention, and the priorities of the demands
awaiting satisfaction. The priority interrupt control circuits operate con­
currently and independent of other operations. Their main functions are
to inspect periodically the status of stations at which demand signals may
be present and to cause interruption of the program currently being
executed whenever a higher level demand is detected. Upon detection of
this higher priority demand, the control imit must cause a transfer of

412 7. SYSTEM DESIGN OF GP COMPUTERS

control from one program to another subject to various constramts m-
cluding the following: (1) the mterruption is to be deferred until com­
pletion of the present instruction, and (2) before control is actually
transferred to the entry of the new program, the return address to the
next instruction that would have been obeyed (had the interruption not
occurred) is planted in a specified location so that it may be used on exit
from the new program to return to the one interrupted. Other special
operations may also be desirable, depending on the nature of the particular
computer in which the priority interrupt system is incorporated, and the
degree of sophistication of the interrupt system.

7.6. Logical Designs of General Purpose Arithmetic Computers

Earher in this chapter certain broad principles involved in the design
of a general purpose arithmetic digital computer were considered. In
Sections 7.6.2 and 7.6.3, the logical designs of two specific computer
systems wiU be derived. Since there are a great many variables entering
into the design of a digital computer, the total number of different
designs possible is enormous. The criteria for the two particular designs
described were chosen on the following bases. First of ¿Q, the instruction
repertory was restricted to the seven basic single-address instructions
described in Chapter 2. The inclusion of more instructions would not
have contributed materially to the purpose of instruction, but would
have added appreciably to the complexity of detail and perhaps even
obscured fundamental points. To indicate specificaUy the influence of the
type of main store on over-all computer design, both major types of
main stores are considered—a paraUel access static store in Section
7.6.2 and a serial access dynamic store in Section 7.6.3. In both cases,
the size of the main store chosen was dictated by considerations of
simphcity. Although the word lengths were chosen to be 16 bits in one
machine and 32 in the other, the format of munbers and instructions
in both machines is similar. In the machine with a static main store,
the arithmetic unit is not described in detail because the machine's
logical design is such that any of a number of arithmetic units, described
in Chapter 6, could be used. Although synchronous operation is impUed
in the description of this machine, it could readily be adapted, in a
manner to be described, to asynchronous operation. The machine with
the dynamic main store must be a synchronous machine. In its design,
advantage is taken of the opportunity to demonstrate certain ways to
minimize the requirements for active storage units. For example, it is
shown how the arithmetic and control functions can be achieved by
means of circulating registers plus a smaU amount of active storage and

7.6. GENERAL PURPOSE COMPUTERS 413

switching circuitry. Also, extensive use is made of the technique of
time-sharing which is defined and described m Section 7.6.1.

7.6.1. TIME-SHARING

"Time-sharing" refers to a way of organizing the various operations
to be performed by a machine in such a way that more efficient utilization
of a storage element, such as a flip-flop, is obtained. It is best described
by means of an example. Assume that a major operating cycle of a
system is divided into a number of periods, say n, by time markers,
to through i«. Assume that a flip-flop must be set by a signal W at time t^
and reset by a signal X at time /ί+α, where / < (/ + a) < n. Assume,
too, that another flip-flop is to be set by a signal Y at time it+j, and
reset by a signal Ζ at time ti+c, where (/ + a) < (/ + 6) < (/ +c)
< n. All of these requirements may be met by two flip-flops P, Q, having
the following mput equations

ρ = wti ρ = Xti^a

q = yii+ft q = Z / i + c .

If the periods during which each of the flip-flops P, β , is used to control
other circuits do not overlap, Ρ and β may be replaced by a single ffip-
flop /?, with the following input equations

r=Wti+ Yt^, f = Xti^a + Z/.+,.

Note that though a storage element (a ffip-flop) is saved, two lo^cal
operators (OR gates) have been added.

There are two distinct ways of employing the time-sharing technique:
(1) For a system with a given major cycle of operation, an inspection may
be made of some given estimate of flip-flop requhrements for the purpose
of detecting whether separate flip-flops are being used for nonoverlapping
functions as described above. Even if such a situation does not exist, it
may often be forced by the designer through some mmor changes in the
operation of parts or all of the system (e.g., trial and error changes in
various switchmg signals, m order to produce a larger percentage of input
signals that are nonoverlapping). (2) This is a more fundamental method,
and affects the basic design of a system. It consists of mcreasing the period
of operation of the machme, defining new subintervals of time, and speci­
fying that functions which might normally be performed concurrently be
performed in different subintervals. Therefore, a single ffip-flop may be
used for several functions during a smgle major period. The extent of the
time-sharing employed is Umited by the speed requirements of a system.

Though the term time-sharing has been given to the technique de-

414 7. SYSTEM DESIGN OF GP COMPUTERS

* Also, it does not take into account the repetitive nature of the signals generated
by the flip-flops used for control purposes in a computer. There would, of course,
be little point in transmitting these three messages repeatedly, whereas in a com­
puter it is essential for control information to be maintained and/or generated as
long as the system is in operation.

scribed, the reader will readily appreciate that no new concept is involved
here. The first procedure recognizes that it is wasteful to use two transmis­
sion channels of equal capacity for the transmission of two messages in
an interval At, if they can both be transmitted over one channel within the
same interval. The second recognizes that, if a given message can be trans­
mitted over a channel of bandwidth α in a time interval At, then the same
message can be transmitted over a channel of bandwidth a/n (where
η > 1) if a time interval nAt is allowed.

Often, in descriptions of digital computer design techniques, multiplex­
ing is included under the heading of time-sharing. A distinction should be
made. Consideration of a transmission channel will illustrate the differ­
ence: Time-sharing improves channel utilization by eliminating dead
times, i.e., by minimizing the time intervals when the channel is not being
used. Multiplexing, too, provides efficient channel utilization. However,
instead of serially transmitting different whole messages, it samples cor­
responding bits of each message sequentially. For example, the second
bit of the first message is not transmitted until the first bits of all the
messages have been transmitted. At the receiving station, each message
is reconstructed by diverting onto a separate path all bits of a particular
message. The entry to each channel may readily be controlled by means
of a gate with a timing signal input. Example 7.2 illustrates the basic
difference between time sharing and multiplexing on an information chan­
nel. However, it is incomplete* in that it does not show why or how one
method may be preferable to the other in the design of a digital computer.
Examples of time-sharing are given in the design of the general purpose
computers described in Sections 7.6.2 and 7.6.3. One example of multi­
plexing is provided in a digital differential analyzer, wherein the bits of the
Y and R registers could be stored alternately, on one channel, at the
cost of doubling the time required to process a single operational unit
(see Chapter 8) .

Example 7.2

Messages to be transmitted
One: I love you
Two: Merry Xmas
Three: Hello Jack

7.6. GENERAL PURPOSE COMPUTERS 415

Time sharing

Muhipiexing

Η ö[] J o j c k

Direction of transmission

I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 1 2 3 I 2 3 I 2 3 I 2 3

When there is time sharing or multiplexing of storage channels or
active storage elements, distinct timing signals are associated with each
term in the Boolean algebraic expressions of the read, record signals, or
flip-flop input signals. Inspection of these equations, therefore, indicates
what takes place at any given time. However, to satisfy some criteria of
mechanization, like reducing the number of gating levels, or equalizing the
load on certain variables, the original equations may be manipulated to
yield forms that satisfy these criteria. Since the meaning of a rearranged
expression may not be as apparent as that of the original, it is useful for
the sake of clarity to list both in a description of the machine.

7.6.2. THE LOGICAL DESIGN OF A G P COMPUTER WITH A
STATIC MAIN STORE

For convenience, we choose as the instruction repertory for this ma­
chine, the list of instructions described in Table 2.1. For ready reference,
the instructions and their codes are Usted again

Code Instruction
cA m Clear the accumulator, then add (m) to it

A m Add (m) to the accumulator
S m Subtract (m) from the accumulator

C m Copy the contents of the accumulator into the main store
U m Unconditional transfer
Τ m Conditional transfer
Ζ Stop

Other specifications are as follows: (1) All transfers of information
within the machine are effected in parallel. (2) The main store is of the
random access type with a capacity of 1024 words. (3) The length of
words is 16 bits. (4) All numbers, JC, used in the computer are normaUzed
to Ue in the range - 1 ^ jc ^ (1 - 2-^*^). Negative numbers will have a 1
in the sign position and be in a two's complement form. (5) The same
word length is used both for storage of a number or an instruction. The

416 7. SYSTEM DESIGN OF GP COMPUTERS

Order Operand
2O2-1 2"'^ address

II II r m ~ n
16 I 161514 10 I

(a) Number format (b) Instruction format

FIG. 7.9. Word format for a number (a) and an instruction (b)

Position 1 holds the least significant bit, (2-^«), and the sign bit is in
position 16. The format of a word representing an instruction is shown
in Fig. 7.9(b). The three-bit group (positions 14, 15, 16) is used to store
the order codes. The ten-bit group (positions 1 through 10) is reserved
for the address (from 1 to 1024) in the main store of the operand desig­
nated in aU instructions, with the exception of the Ζ instruction.

We wiU now consider some general requirements for the control unit.
It is assumed that, after a program has been placed in the main store,
and upon activation of the computer, the control unit wiU cause the in­
struction stored in memory location 1 to be located first and subsequently
wiU obtain instructions from consecutively numbered locations within the
main store. The only exception to this procedure wiU occur in the event
that a U m or a successful Τ m instruction is encountered. The other
major function of the control unit is to initiate and assure completion of
the sequence of operations necessary to execute the instruction obtained
from the main store.

These two principle functions of the control unit, namely, causing
reference to be made to a specified address in the main store and causing
the actual execution of instructions so obtained, can be achieved by the
use of flip-flops and switching networks. SpecificaUy, the control unit wiU
be comprised of ten flip-flops, Ci through Cio, which we shaU refer to as
the control register, and four flip-flops, h through I4, which we shaU
refer to as the instruction register. The C flip-flops wiU serve two functions,
namely as a storage selection (i.e., address) register (of both instructions
and operands), and also as a program counter. When acting as an address
register, the control register selects a word from the proper address in the
main store by specifying two coordinate numbers, X and Y (see Fig. 7.2).
The y address is in positions 1 through 5 of an instruction word and the X
address in positions 6 through 10. When an instruction word is obtained
from the main store, the Y address is placed in flip-flops Ci through Ce
and the X address in Ce through Cio. These flip-flops are used as inputs
to an X and a Y matrix, both of which are many-to-one function tables

format of a word representing a number is shown in Fig. 7.9(a).

7.6. GENERAL PURPOSE COMPUTERS 417

(see Chapter 4) . Consequently, one output line of both the X and the Ύ
matrix is activated. Through the use of additional circuits (not shown)
this selects a corresponding X, Y storage location in each plane for the
puφose of either recording or reading. Details of a procedure for selecting
all the bits of a word in parallel from a static store are provided in
Chapter 5. Since a word in this machine has 16 bits, there are 16 planes
and 16 output Unes in the memory. When acting as a program counter,
the control register functions as foUows: The execution of each instruction
causes its contents to be advanced by 1, so that it then indicates the next
consecutive address in the main store from which an instruction word is
to be obtained. The flip-flops / i through Iz receive the order code from
positions 14 through 16 of an instruction word at the same time that the
operand address is received by the flip-flops C i . . . Cio.

To summarize, upon activation of the computer, the control regster
wUl automaticaUy be set to 1. By design, this wiU cause the operand ad­
dress and order code of the instruction word stored in address Ζ = 0,
y = 1, of the main store to be placed in the control register and the
instruction register, respectively. The contents of the control register wiU
then control the transfer of information to or from the specified address
depending upon whether a recording or reading operation is specified
by the order code in the instruction register. At the same time, a specified
sequence of operations necessary to execute an instruction is generated in
accordance with the contents of the instruction register. How this is ac-
compUshed wiU be described after considering the nature of certain other
registers in the machine.

There are two registers in the arithmetic unit. One register, comprised
of flip-flops, / i i , y42, . . . /4ie, accepts and temporarily stores the result
of an arithmetic or logical operation. For example, if two numbers in the
main store are to be added, the instruction cA would be used to bring
one of these numbers into the register and then the instruction A(m)
would cause the second number to be added to the first and the result
placed in the register. In the execution of the latter operation, the flip-
flops Αχ, /Í2, . . . ^ l e and another group of flip-flops, Äi , . . . ^ le are
used as the inputs to an adder. The output of the adder is stored in the
flip-flops Ai, A2, . . . Aie, replacing their previous contents. The flip-flops
/ i i , i42, . . . ^ l e are referred to as an accumulator because the result of an
operation stored there may, in turn, be operated upon to form a new
result and, in general, the results of successive operations may be
accumulated before the contents are transferred.

The other register in the arithmetic unit is referred to as the R register.
It is comprised of flip-flops, Ri, R2, . . . Rie which have already been
referred to in connection with one of their major functions, namely to

418 7. S Y S T E M D E S I G N O F G P C O M P U T E R S

Store an operand selected from the main store in a form which can be
used as an input to a switching circuit such as an adder. Briefly, it holds
one of the operands when either of the instructions A(m) or S(m) is to
be executed. As a matter of convenience, the transmission of a word from
the main store will always be by way of this register. For example, when
a word is to be transferred from the main store to the accumulator, it will
first be transferred to the R register and from there to the accumulator.
The R register is also used in conjunction with the control register as
follows: One clock period after the R register receives an instruction word
from the main store, the order code (m RURI^RIQ) and the operand
address (in / ? i . . . Rio) are transferred to Iihh and C i . . . Cio, re­
spectively. Smiultaneously, the contents of C i . . . Cio (the address from
which the current instruction was obtained) are transferred to . . . Rio.
The latter transfer temporarily stores in the R register the address from
which the current instruction was obtained until the contents of the control
register have served to initiate a transfer of information to or from the
main store. At that time, the address fhom which the current instruction
was obtained can be retransferred from the R register to the control regis­
ter so that the latter, acting as a program counter, can form the address
of the next instruction to be executed.

Now that the nature of the control unit and arithmetic unit have been
outlined, we will consider the specific requirements for the execution of
the various instructions. Because execution of each instruction usually
requires the performance of a number of operations, each instruction can
be considered as a set of elementary commands. Though these commands
differ in detail, all of them fall into one of two main categories, namely
those that cause the transfer of information from one part of the computer
to another, or cause information from two or more sources to be combined.
Both types of operations can be performed by means of switching net­
works. A description of the machine's instructions in terms of more ele­
mentary commands is given in Table 7.7.

Before considering further the requirements for execution of particular
instructions, we will consider what commands are required in the execu­
tion of any instruction. Three of these are: (1) A command which causes
an instruction word (whose location is specified by the contents of the
control register) to be transferred from the main store to the R register.
(2) A command which causes the operand address part of the instruction
word stored inRi... Rio to be transferred to C i . . . Cio. (3) A command
which causes the order code part of the instruction word, in Äie^ieÄie,
to be transferred to Iihh- The first of these three commands causes the
instruction word specified by the control register to be obtained from the
main store. The second suppUes the control register with information

7.6. GENERAL PURPOSE COMPUTERS 419

Instruction Code Conmiands

cA m (a) Transfer the contents of the selected word to the R register
(b) Transfer the contents of the R register to the accumulator

A m (a) Transfer the contents of the selected word to the R register
(b) Add the contents of the R register to the contents of the

accumulator
S m (a) Transfer the contents of the selected word to the R register

(b) Add the complement of the contents of the R register to the
accumulator

C m Transfer the contents of the accumulator to the selected word in
the main store

U m Cause the next instruction word to be selected from memory
location m

Τ m (a) If the contents of the accumulator are negative, cause the
next instruction word to be selected from memory location m

(b) If the contents of the accumulator are not negative, carry out
the operations necessary to advance to the state at which the
program counter advances by a count of 1

Ζ Stop, i.e., idle until the computer is activated again

necessary for it to cause information to be transferred into or out of the
indicated storage location. The third supplies the instruction register with
information which it uses to cause a particular sequence of commands to
be obeyed, according to the instruction that is to be executed. The first of
these two commands can be referred to as an instruction look-up com­
mand, and the latter two as set up commands for instruction execution,
i.e., they set the control and instruction registers of the control unit to
states which initiate the correct sequence of commands required to exe­
cute a specified instruction.

Other conMnands used to facilitate operation of the control unit are:
(4) A command which causes the address in the control register to be
transferred to the R register at the same time the operand address is
transferred to the control register. (This command is required so that
while the control register is being used to select a specified operand address
in the main store, the address from which the current instruction was
selected is not lost.) (5) A command which, after an operand address
has been selected, returns to the control register (from the R register)
the address of the current instruction being executed.* The control register

*This command is identical in its action to command (2), and therefore is not
listed separately in Table 7.8.

TABLE 7.7

420 7. SYSTEM DESIGN OF GP COMPUTERS

Command Action

(1) Transfer (M^y)* to Äi . . . Rie
(2) Transfer Ri . . . Rio to Ci . . . Cio
(3) Transfer to hhh
(4) Transfer Ci . . . Cio to Ri . . . Rio
(6) Add one increment to Ci . . . Cio
(7) Add {R) to (A)
(8) Transfer (R) to A
(9) Add (R) to (A)

(10) Transfer (A) to Μ,^

The additional commands required for the execution of specific instruc­
tions wiU now be described. First, note that command (a) of instructions
A m, cA m, and S m are aU ahke and equivalent to command (1) in
Table 7.8. In addition, provision must be made for the execution of part
(b) of each of these three instructions. This caUs for commands (7) , (8) ,
and (9) , shown in Table 7.8. Instruction C m requires command (10),
also shown in Table 7.8. The nine different commands hsted in Table 7.8
permit the transfers of information between registers, and the arithmetic
operations required for the execution of all instructions specified.

Now we can return to a further description of the operation of the
instruction register. First, we will comment on why the instruction register
has four stages which can indicate 16 different states, as shown in Table
7.9, when only three stages are required to distinguish seven different
instructions, and each of the seven codes could be used to initiate at the

^ M^y refers to the storage location specified by the current contents of the χ and y
selection matrix.

will then be in a position (except in the case of U m, successful Τ m,
or Ζ instruction) at the completion of execution of the current instruction,
to obey command (6) which is described next. (6) A command which
causes the contents of the control register to be advanced by a count of 1,
thereby enabhng the next instruction word to be selected from the main
store.

For ease of reference, the five different commands just described wiU
be referred to by command numbers. The numbers and an abbreviated
statement of the action of each command are shown as the first five entries
in Table 7.8.

TABLE 7.8

7.6. GENERAL PURPOSE COMPUTERS 421

proper time all elementary commands required for the execution of a
given instruction.

TABLE 7.9. Defined states of the instruction register

h / 3 h h Configure

0 0 0 0 So
0 0 0 1 Si
0 0 1 0 S2
0 0 1 1 SB
0 1 0 0 S4
0 1 0 1 s.
0 1 1 0 Si
0 1 1 1 S7
1 0 0 0 5e
1 0 0 1 ^9
1 0 1 0 Sio
1 0 1 1 Sn
1 1 0 0 S12
1 1 0 1 Si,
1 1 1 0 Su
1 1 1 1 Si,

The reasons will be apparent from the following description of how the 16
states are utilized. First of all, seven of the states, as defined by / i , h,
and Is are used to indicate which of the seven instructions is about to be
executed. The remaining nine states are used to indicate intermediate
points. These intermediate points are simply the points between the
successive conmiands used in the generation of each instruction. Thus,
the instruction register acts in a way similar to the microcontrol unit de­
scribed in Section 7.5.7. The code of an instruction placed in / i , h, h
specifies the initial address of the microprogram of commands to be used
in the execution of that instruction. Specifically, the instruction code
placed in Zi, I2, h causes the first command, or conMnands if simultaneous
operation is possible, to be executed. During the period of execution, the
mstruction register can be set to an intermediate state which is a function
only of its preceding state. Similarly each new state of the instruction
register can be used both to cause particular commands to be executed
and to set the instruction register to another state. Any state of the
instruction register causes a unique change in its contents. However, there
are some intermediate states which could have been produced by any one

422 7. SYSTEM DESIGN OF GP COMPUTERS

of several preceding states. Such states, e.g., S12, S^, Sm, are called com­
mon states because the execution of any instruction requires that the
instruction register pass through these states.

A schematic indicating successive states assumed by the instruction
register as well as different commands obeyed in the execution of each
instruction is shown in Fig. 7.10. The symbols in the circles indicate con-

FiG. 7.10. Flow diagram of instruction execution

figurations of the instruction register. The numbers in the rectangles desig­
nate which commands are performed during the interval from the con­
figuration above to that below. Only one clock period is required for the
execution of any or all commands designated in a given box (with the
exception of commands (7) and (9) , for reasons to be explained). Also,
the time interval between circles on a line is one clock period whether or
not there is an intervening box, since the contents of the instruction
register can be modified at the same time a command is being executed.
The time required for the execution of each instruction, in terms of
number of clock periods, is shown in Table 7.10.

7.6. GENERAL PURPOSE COMPUTERS 423

Instruction Look-up and set-up time Execution time
(i.e., from 3^2, to 5^, 5^, (i.e., from SQ, 5^, Sj ,

•̂ 2» ^Z* ^4* ^6* 53,54,55, or5eto5i2)

cA m 3 Clock periods 2 Clock periods
A m 3
S m 3 -

C m 3 1
U m 3 1
Τ m 3 1
Ζ 3

The execution time for the stop instruction is not listed in Table 7.10
since its execution time does not fall strictly into the definition listed
above, because all that is required for its execution is that the instruction
register be in the state So. Of course, when the computer is set to an
active state manually by means of a switch on the control panel (in a
manner described in a succeeding paragraph), one clock period is required
for the transition from So to S12. The execution times for the instructions
A m and S m have not been specified because the times required to
form the sum or difference of two numbers of given length depends on
how we design the adder which is incorporated into the computer. This
is subject to great variability, as indicated in Chapter 6. The adder may
be serial and/or synchronous, or it may be serial-parallel and/or asyn­
chronous. The choice hinges primarily on the price in equipment com­
plexity one is willing to pay for increased speed. However, for the pur­
poses of the present discussion, we need not be concerned with the in­
ternal lo^c of the adder. If it is synchronous, the thne required for an
addition or subtraction will be constant and predictable, and a timing
signal can be provided to change the instruction register from configura­
tion Si or 5 5 to S12 at the completion of an addition or subtraction,
respectively. If the adder is asynchronous, a signal may be derived from
it indicating when the addition or subtraction is complete. This completion
signal is then used to advance the instruction register. Such signals will
be designated by the notation Ei in the Boolean equations describing the
machine's logical structure.

Now that the general mode of operation of the computer has been con­
sidered, we will describe the input signals to the flip-flops in the instruc­
tion and control registers of the control unit and the accumulator and R
register of the arithmetic unit. These flip-flops are all specified to be of the

TABLE 7.10

424 7. SYSTEM DESIGN OF GP COMPUTERS

Τ type. The input equations for flip-flops, / i , I2, /.s, h can be derived by
examination of Fig. 7 .10 which shows all allowable configurations, as well
as transition paths from one configuration to another, of the instruction
register. These input equations are listed below in reduced form

h = Uh + {Ei^m + Ei^m^^ . . . + £ , · + + . . . + £ „) + / 3 / 2 / i ^ i 4

Í2 = hhihh + / 4 / 1) + / 3 / 2 / i (/ 4 + Ä) + hhhRlS

14 = I4G + hhlv
The input signals to the control register may be derived simply by

considering when and from what sources it receives input information,
and when its contents have to be modified according to some prescribed
rule. The preceding description of commands required by the computer
shows that for the execution of command (2) , which takes place if any
of the configurations 5 i 5 , Sj, S 3 , 5*5, or S4Ä exists (see Fig. 7.10) the
control register must copy the contents of the R register. The other change
required in the contents of Ci ...Cio occurs when the configuration 5i2
exists, at which time the contents of the control register should change
by a count of 1 (achievable by execution of command (6)) . Accordingly,
the input equation to each flip-flop of the control register is of the form

Ci = {Rid + Rid) (S i 5 + Si + 5 3 + 5 5 + S4Ä) + C,_iC^2 . . . CiSn

for / = 1, 2, . . . 10.

Because we are not specifying the type of adder to be used in this
machine, the input signals, if any, to the R register when it is functioning
as part of the adder will not be considered. Exclusive of this the R register
can receive input information from two sources: the memory and the
control register, in the execution of commands (1) and (4) , respectively.
Accordingly, the input equation to each flip-flop of the R register is of the
form

ri = [(M.),Ä, + {MM (^14 + .̂ 1 + .^3 + . ^ 5) + {CiRi + dRr)Sx^

for / = 1, 2, . . . 10

r, = [{Mc)iRi + {M,),R,] (S i 4 + Si + 5 3 + S5)

for; = 11, 12, . . . 16.
Because we are not specifying the type of adder to be used, we will also
neglect the input signals to the accumulator when it is functioning as part
of the adder. Exclusive of this, the accumulator must be provided with

7.6. GENERAL PURPOSE COMPUTERS 425

means to accept information from the R register (for the performance
of command (8)) . For this function the input equation to each flip-flop
of the accumulator is of the form

ai = (RiAi + RiÄ^)Sn

f o r / = 1,2, . . . 1 6 .

We will now consider how the computer is started, i.e., set to an active
computing state, or placed in an inactive or idle state. A single flip-flop, G,
can be used for this purpose. When it is in the 1 state, the computer is
defined as being in the active computing state. When the main power is
switched on, the flip-flop G is first set to the idle state by means of a
reset switch located on the control panel (a set switch also being pro­
vided) . The computer is always set first to the idle state in order to pre­
vent it from initiating the execution of instructions before a complete pro­
gram has been inserted in the main store and checked, and the control
circuits set to the desired initial conditions. Inspection of Fig. 7.10 shows
also that once the computer has been set to state So, as a result of the
execution of a stop instruction, it will remain in that state until flip-flop G
is set to 1. (It is assimied that the / register is always set initially to the
state 5o). The input signals to the flip-flop G (which is of the R-S type)
are

g =^ s Activation of the set switch
g = r Activation of the reset switch

+ RuRisRieSio Indication that a stop instruction is about
to be executed, i.e., the / register will
be put into configuration So at the next
clock pulse.

The reason for the signal RiéRisRieSw rather than So (which would be
incorrect) becomes apparent when it is recalled that for the particular
type of flip-flop being described, an effective delay of one cycle exists
between the time it receives an input signal and the earliest time at which
it can use that information to control a gatmg signal.

In conclusion, a few brief comments on the filhng and initial setting
of the computer, and the disposition of computed results. In the Appendix
on input-output equipment there are descriptions of a number of devices
that can be used to insert data into a computer. EssentiaUy what the com­
puter must provide for this function are signals to start and stop the input
device and a buffer register to accept specified amounts of input data and
from which this data can be transferred either to the arithmetic unit for

426 7. SYSTEM DESIGN OF GP COMPUTERS

any required pre-storage transformation or directly to the main store. All
that is required for initial setting of the machine is a set of clear switches
on the console which upon activation transmit signals to the reset inputs
of the appropriate flip-flops: / i , . . . 14, Co, C i , . . . C 9 , Ro, and
Ao, Ai,,., Ais. The results of computations can be made available in any
of a number of forms described in the Appendix. Here provisions must be
made similar to those for input data, namely: signals to start and stop
the output device and buffer registers between the computer and the
output device. With both input and output devices, the buffer register(s)
may be either in the auxiliary device, the computer, or both, depending
on the nature of each.

7.6.3. THE LOGICAL DESIGN OF A G P COMPUTER WITH A
DYNAMIC MAIN STORE

The instruction repertory of the computer to be described next is prac­
tically the same as that of the machine described in Section 7.6.2. The
only exception is that the stop instruction, Z , is replaced by a conditional
stop or break point instruction Z b , which reads: "If switch Si is set,
stop; otherwise continue." The Si refer to a set of five two-position
switches on the control panel, of which only one may be set before
initiating or continuing execution of a program. Each bit of the address
field used for one coordinate (the track number) of the operand address in
other instructions is used in a Z b instruction to refer to a particular
break point switch. During execution of a Z b instruction, the break point
switches are inspected, and if the one designated in the address has been
set, the machine is stopped, i.e., put into an idle state. The conditional stop
instruction faciUtates checking out a new program since it allows stops to
be programmed at convenient points, while at the same time not requiring
removal of these stop instructions from the program after check out.
Deactivation of the break point switches on the control console effectively
removes the stop instructions from the checked out program.

Other specifications are as follows: (1) All transfers of information
within the machine as well as arithmetic operations are performed serially.
(2) The main store is either a magnetic drum or disk memory with a
capacity of 1024 words. (3) The length of words is 32 bits. (4) All num­
bers, jc, used in the computer are normalized to lie in the range — 1 ^
j c ^ (l - 2 - 3 i) . Negative numbers will have a 1 in the sign position and
be in a two's complement form. (5) The same word length is used both
for storage of a number or an instruction.

Other major differences between this machine and the one described
in Section 7.6.2, outside of the different type of main store, will be de-

7.6. GENERAL PURPOSE COMPUTERS 427

scribed next. First, the main store will be utilized not only for storage
of instructions, problem parameters, and working storage, but also for
other purposes. First of aJl, a set of channels will be provided with per­
manently recorded data from which timing signals useful for control pur­
poses will be derived. Also, arithmetic and control registers will be mech­
anized, not by means of flip-flops, but from delay Unes formed by appro­
priate positioning of record and read heads along a channel m the store
(see Sections 5.1 and 5.2). Thus, this machme makes extensive use of pas­
sive storage elements not only for general storage, but also for information
processing and control functions usually obtained by means of active
elements. The other feature of this machine not present in the machine
with the static main store is an extensive use of time-sharing. However,
time-sharing could have been used in connection with the static store
computer as well. It is utiHzed here, m conjunction with the dynamic mam
store, to emphasize how the requirements for active storage elements can
be reduced.

The major functional units of this machme are the main store, the
timing channels, the circulating arithmetic and control registers, the logic
switching network, and the arithmetic and control flip-flops. The organi­
zation of these elements into a computer system is shown in Fig. 7.11.

Record
amplifiers

Dynamic

magnetic

store

I Head-selection
switch

I
Record

amplifier

Main storage
channels

Read
amplifier

• Clock channel
: Timing channels
: Circulating registers

Read
amplifiers

Combinational
switching circuits

Arithmetic and
control fl ip-flops

Sequential switching network

FIG 7.Π. Organization of a GP computer with a dynamic main store

428 7. SYSTEM DESIGN OF GP COMPUTERS

As a matter of convenience, different storage areas in the machine can be
classified on the basis of access time. The delay in reading or altering the
contents of a flip-flop is at most one bit time, and for a circulating register
one word time. The maximum access time to a location in the main store
is the period of one revolution, and on the average, half a revolution.
By the use of such devices as storage-address interlacing, and other mini­
mum access coding techniques (see Section 7.5.4), the average access
time can be reduced to just a few words. To summarize, these different
storage areas represent immediate, quick, and slow access storage, re­
spectively. Another class of storage, intermediate between the quick and
slow access types, may be obtained by adding a number of circulating
loops, each having a length of only a few words. Such loops, sometimes
referred to as high speed loops, or revolvers, are useful for the purpose
of serving as a working storage area.

The 1024 words of 32 bits each in the dynamic store are arranged in
32 tracks of 32 words each. Ten bits are adequate to specify the address
of any of these storage locations, five being used to specify a sector num­
ber and five to specify a track number (see Fig. 7.12). The format of a
word representing a number is shown in Fig. 7.13(a). The format of a

Track /
Sector / Track /

Drum Disk

FIG. 7 . 1 2 . Addressing systems in a magnetic drum or disk store

¿ 3 0

32 (α) 2 I

Order code Operand address

Trackl Sector I
32 17 14

(b)

FIG. 7 . 1 3 . Word format for a number (a) and an instruction (b)

7.6. GENERAL PURPOSE COMPUTERS 429

word representing an instruction is shown in Fig. 7.13(b). This arrange­
ment of information in an instruction word is to a certain extent arbitrary,
but the utiUty of it will be apparent after the description of the computer's
mode of operation. The positions 1 through 32 indicate the order in
which information is read from or recorded in the store. These temporal
positions can also be used to indicate spatial positions in a delay line type
of store. Position 1 is not used, serving as a buffer zone between adjacent
words. (This one-bit period provides an interval in which transients that
may be introduced in initiating a recording operation can decay.) Posi­
tions 2 through 11 are reserved for the 10 bits of the address code.
Positions 14 through 17 are reserved for the three-bit order code
which specifies the instruction to be executed. Note that in this case the
word length is dictated by the precision required for numbers. Less than
half of the 32 bits are used in a word storing an instruction. For a more
elaborate machine the unused bits could be used in various ways. For
example, two complete smgle-address mstructions could be stored in one
word. Also, unused bits could be used for additional purposes such as
the address of index registers, and other registers if such facilities were
incorporated in the design. Some of the unused bits could also be utilized
for order codes and storage addresses if additional instructions and storage
facilities were added to the machine.

Since a recording and reading operation cannot occur simultaneously
in the main store, a single magnetic head can be used for both purposes.
Also, since at most a single word in the main store is referred to during
the acquisition or execution of any instruction, it would be wasteful to
provide a separate record and read amplifier for each head. Instead, a
single record and read amplifier are provided for the main store together
with a selection matrix which causes the appropriate amplifier to be con­
nected to the head on the track containing the specified storage location.
During the instruction acquisition period, the selection matrix causes the
read amplifier to be connected to the address specified by tiie control
register. During the instruction execution period, the selection matrix
connects either the read or record amplifier to a particular head in
accordance with the order code and operand address of the instruction
to be executed. All heads other than the one selected are inactive and
have no effect on the information circulating in their associated channels.
Whenever new information is to be recorded, it is not necessary to first
erase the old because erasure is impUcit in the recording operation, i.e.,
it writes over old information. However, a separate erasure may be
effected simply by recording all O's in any storage location.

The basic source of timing signals in the computer is the clock chan­
nel. It has no record head, and a single read head. A imiformly spaced

430 7. SYSTEM DESIGN OF GP COMPUTERS

32i3l 30 Il7 Il4 ill |6 ll
Sector» code

^ 3 l i l M i l l l i n n i "

FIG. 7.14. One word length of information on the permanent timing tracks

In positions 2 through 6 of each word period, pi contains the sector num­
ber of aU the words (as many as there are channels m the mam store)
in the next sector that wiU pass under the read-record heads, and in
position 32, pi = 1; in aU other positions pi = 0. The signals generated
by p2 and ps are the same in every word period. In positions 2 through 11,
P2 = 1; elsewhere p2 = 0. In positions 7 through 11, 15 through 17, and
in position 32, ps = 1; elsewhere ps = 0. Different word periods are dis­
tinguished by means of the sector code numbers recorded on channel Pi.
The information from channels Pi, P2, and ps are used to derive time
duration signals as shown in Fig. 7.15. Di and D2 define the positions of

3213130 il7 |I4 ill |6

p , - Γ-

02 ^ L-

T - ^

0 . ^

FIG. 7.15. Time duration signals derived from permanent timing tracks

series of signals, permanently recorded here, are read continuaUy when
the machine is in operation. The time interval between successive clock
pulses defines, and is referred to as, a bit period. There are, also, three
other permanently recorded timing channels, each of which has a single
read head only. These channels, designated pi, p2, Ps, serve the foUowing
important functions: (1) They provide signals indicating time intervals
of interest within a word period, namely that reserved for the order code,
and the track and sector number of an address in an instruction, and the
one bit period reserved for the sign bit of a number. (2) They provide
signals indicating the sector number of words in the main store. Infor­
mation is recorded on the permanent timing tracks as shown in Fig. 7.14.

7.6. GENERAL PURPOSE COMPUTERS 431

the sector and track addresses, respectively, D 3 defines the position of the
order code, and D4 the position of the sign.

The registers of the arithmetic and control unit are actually short
delay Unes formed by appropriate placement of record and read heads
along tracks of the dynamic store. Though these circulating registers (see
Section 5.1) are physically part of the main store, logically they are parts
of the arithmetic and control units and function analogously to the way
they would if they were static registers. There are three circulating regis­
ters, each of a single word length: the control register, the R register,
and the accumulator. The function of each of these will be described next.

The control register, C, holds the address of the storage location con­
taining the next instruction to be read and executed. In the one-address
machine bemg described, 1 is normaUy added to the contents of the
control register after each instruction is read. This faciUtates obtaining
instructions sequentiaUy from consecutively numbered storage locations,
corresponding to the consecutively numbered steps of a written program
of instructions. After an instruction has been located and read, it must
be kept available until its operand has been located. The R register serves
this function. Also, if a multipUcation and/or division instruction were
added to the instruction repertory, the R register could be used to store
the multiplicand and make it available for incorporation into the partial
products as they are formed, and to store and make available the denomi­
nator. The result of each arithmetic or logical operation appears first in
the accumidator. This result may then either be transferred to the main
store and/or retained for use in the succeeding operation. If a multipUca­
tion and/or division instruction were added, the accumulator could be
extended to two word lengths. In multipUcation, it could be used to hold
the multipUer and the partial products. Since the bits of the multipUer
can be discarded as the partial product grows, no more than two word
lengths of storage are essential for the two numbers. In division, the ac­
cumulator could be used to hold the numerator (and subsequently the
partial remainders), as well as the quotient. Since neither of these exceeds
one word length, a total of two word lengths for the accumulator would be
sufläcient here, too.

As stated earUer, the logical design of a digital computer defines aU
the permissible states the computer can assume, as weU as the rules gov­
erning the transition from one state to another. In the computer imder
consideration, the next active state is specified primarily by the state of a
group of flip-flops, each of which maintains a constant setting throughout
a bit period. The active state of the computer during any bit period may
be considered as being defined by the foUowing: (1) the current signals
from the permanent timing tracks; (2) the current signals from the ck-

432 7. SYSTEM DESIGN OF GP COMPUTERS

• Also, in some cases, by external inputs.

culating registers; (3) the current bit read from the main store (though
such information is not present if recording is in progress); (4) the cur­
rent state of the flip-flops. It is clear that each new active state is deter­
mined in part by the preceding active state, and in part by information
presented by the main store* (including timing tracks and circulating
registers). It is the function of the gating circuits that comprise the switch­
ing network to transform this input information and produce the follow­
ing types of signals which will effect a transition to a new state: (1) input
signals to the flip-flops; (2) signals specifying information to be recorded
in the circulating registers; (3) a signal to the head selection matrix to
indicate whether a bit is to be recorded in the main store and if so: (4)
the signal to be recorded in the main store; (5) signals to control various
output devices, e.g., an electric typewriter, magnetic tape, etc.

The flip-flops, which mainly determine an active state of the com­
puter, represent storage to which there is practically immediate access
either for the purpose of reading its current state or causing that state to
be altered. The current state of each flip-flop is determined by its preced­
ing state and the current input to it from the logic switching network.
In this machine flip-flops are used for the following major functions:
(1) They define various phases of operation in which characteristically
different operations common to the execution of each instruction are per­
formed. Continuous access to this information is required, since it controls
the transition from one major operation to the next. The four phases of
operation through which the computer passes in carrying out an instruc­
tion are defined in Table 7.11. (2) The flip-flops also store the order
code of the instruction to be executed. This information serves to control
the process of execution. (3) They indicate the address of the channel
in the main store to be selected. Whenever information is to be read from,
or recorded in, the main store, the address of the channel to be selected
is stored in a group of flip-flops. This information is left undisturbed
until the operation is completed, since it must be continuously available to
control the selection of the appropriate head by means of the head selec­
tion matrix. (4) They hold, from one bit period to the next, a carry bit
generated during any addition operation. (5) They compare two groups
of bits from different sources, and indicate whether they are identical.
Such a function is useful in search operations.

In addition to the functions described, flip-flops are also used for a
number of specialized control or gating signals that must be generated
during the course of operation of the computer. During times and phases
of operations when some of the flip-flop functions already described are

7.6. G E N E R A L P U R P O S E C O M P U T E R S 433

1 A search is made for the instruction word
2 The designated instruction is read into the R register
3 A search is made for the operand word
4 The designated operand is read and the instruction executed

not required, the same flip-flops may be utihzed for these special functions.
Sometimes, more than the minimum number of flip-flops actually

required are used to define various states. This can yield certain advan­
tages. For example, the use of a few additional flip-flops makes it possible
to reduce the complexity of the mput signals to the flip-flops, thereby re­
ducing the number of gating elements required and shnphfying the descrip­
tion of the computer's operation. Also, as shown in Section 3.8.1, the use
of additional fhp-flops can elunmate the gating elements used for a many-
to-one function table to decode the contents of a smaUer number of
flip-flops.

The four phases of operation through which the computer passes in
carrying out an instruction wiU now be described in more detaü: During
phase 1, a search is made for the instruction word whose address is in the
control register. Because of the varying access time to words in the main
store, phase 1 may last from 1 to 32 word periods. During time interval
Di of each word period, the sector number part of the address in the
control register is compared with the sector code number from track pi
by means of a flip-flop, K. The search, and phase 1, are concluded at the
end of that word period during which there is complete coincidence.
During the tune interval £>2 the track number part of the address in
the control register is stepped into a shift register comprised of five flip-
flops. Γι through Γ 5 .

Phase 2 has a duration of only one word period, during which two
principal events occur: (1) The instruction word at the selected address
(which is the next instruction to be executed) is read into the R register
This action is effected by means of the flip-flops Τχ through Γδ which con­
trol the head selection network. This network aUows information to be
read only from the head on that track of the main store whose numerical
code is contained in Γι through Γ5. (2) In order that control may be
advanced automaticaUy to the instruction in the succeeding storage loca­
tion after the one just selected has been executed, a 1 is added to the
address in the control register.

TABLE 7.11

Phase Principal operation performed

434 7. SYSTEM DESIGN OF GP COMPUTERS

cA m The contents of the address specified are copied into the
accumulator

A m, S m The contents of the address specified are added to or
subtracted from the contents of the accumulator

C m The contents of the accumulator are transferred to the
address specified

U m The address specified in the U m instruction is trans­
ferred to the control register

Τ m Same as U m if the test is successful
Zy^ The computer is put into an inactive or idle state

if the break-point condition is satisfied.

In Table 7.13 are listed the order codes, held in flip-flops / i , and h
and also the information that would be recorded in the circulating regis­
ters and the main store during phase 4, for each instruction. Co, AQ, and
Mo refer to the inputs to the record amplifiers associated with the control
register C, the accumulator A , and the main store, respectively. During
phase 4 data is never recorded in the R register.

During phase 3, a search is made for the operand whose address is
specified in the instruction word which was read into the R register during
phase 2. Therefore, the time duration of this phase may vary from 1 to 32
word periods. During time interval Di of each word period, the sector
number part of the address in the R register is compared with the sector
code number from track pi, by means of flip-flop K, The search and
phase 3 are concluded at the end of that word period during which there
is complete coincidence. During time interval D2, the track number part
of the address in the R register is stepped into the shift regster comprised
of flip-flops Γι through Γ 5 . During time interval D 3 the order code of the
instruction word in the R register is stepped into the shift register com­
prised of flip-flops / i , / 2 , / a . For instructions Z, U m, Τ m phase 3 is
only one word period in length since a search does not have to be made
for a word in the main store.

During phase 4 each instruction is actually executed. Because of the
simple nature of the instructions in the computer being described, an
interval of only one word period is required to execute any of the instruc­
tions. Table 7.12 indicates the operations that are performed for each
instruction.

TABLE 7.12

Instruction Operation performed during phase 4

7.6. GENERAL PURPOSE COMPUTERS 435

h h Instruction Ao Mo Co

0 0 1 cA m Μ
1 1 0 A m Sum: U + M)
1 1 1 S m Diff: U - A f)
1 0 0 C m A A
0 1 0 U m A Μ
0 1 1 Τ m A Af, for successful Τ m
0 0 0 Zb A

Table 7.14 provides a summary of the functions of the various flip-
flops during each of the four phases of operation.

Now that an over-all picture of the machine^^s organization and opera­
tion has been presented, the signals that cause the required actions to
take place will be described by means of Boolean algebraic equations.
These signals are classified into three main categories: (1) time duration
signals that are derived from the permanent timing tracks, (2) input
signals to the flip-flops, (3) input signals to the record ampUfiers. (For
brevity, not aU logical and arithmetic functions are described. For example,
logic necessary to initially load the central store is not included; also, the
clock pulse input to each gate is not shown in these equations).

The time duration signals are as foUows:

Signal defining time interval within a word aUotted to the sector number
part of the address: Di

DI = PIPI 5 i = ^2 + P3

Signal defining time interval within a word aUotted to the track number
part of the address: D2

Signal defining time interval within a word aUoted to the order code: D 3

2)3 = P1P2P3 3^=PI+P2 + PZ

Signal defining time interval within a word aUotted to the sign bit: D 4

Z)4 = P 1 P 3 ^ 4 = Λ + ^3

The input signals to the eleven flip-flops (Usted in Table 7.14) wiU

TABLE 7.13. Data recorded in the dynamic store during phase 4 in accordance
with the instruction being executed

T
A

B
L

E
7.

14
.

Su
m

m
ar

y
of

fu
nc

tio
ns

of
fli

p-
flo

ps
du

ri
ng

th
e

fo
ur

ph
as

es
of

op
er

at
io

n

~ w 0
\

Se
ar

ch
es

fo
r

in
st

ru
ct

io
n

A
ct

s
as

ca
rr

y
fli

p-
flo

p
in

th
e

Se
ar

ch
es

fo
r

op
er

an
d

w
ho

se
A

ct
s

as
a

ca
rr

y
(o

r
bo

rr
ow

)
w

ho
se

ad
dr

es
s

is
in

C
op

er
at

io
n

of
ad

di
ng

1
to

ad
dr

es
s

is
in

R
re

gi
st

er
fli

p-
flo

p
in

th
e

ex
ec

ut
io

n
re

gi
st

er
by

co
m

pa
ri

ng
th

e
ad

dr
es

s
in

C
re

gi
st

er
.

by
co

m
pa

ri
ng

su
cc

es
si

ve
of

an
A

m
or

S
m

in
-

su
cc

es
si

ve
bi

ts
fr

om
C

bi
ts

fr
om

R
w

ith
th

e
se

c-
st

ru
ct

io
n.

w
ith

th
e

se
ct

or
co

de
s

in
to

r
co

de
s

in
tr

ac
k

Pl
.

tr
ac

k
Pl

.

R
ec

ei
ve

s
tr

ac
k

nu
m

be
r

of
C

on
tr

ol
s

se
le

ct
io

n
of

ch
an

-
R

ec
ei

ve
s

tr
ac

k
nu

m
be

r
of

C
on

tr
ol

s
se

le
ct

io
n

of
ch

an
-

in
st

ru
ct

io
n

ad
dr

es
s

fr
om

ne
l

w
ho

se
ad

dr
es

s
is

in
C

op
er

an
d

ad
dr

es
s

fr
om

R
ne

l
w

ho
se

ad
dr

es
s

is
in

R
C

re
gi

st
er

.
re

gi
st

er
.

re
gi

st
er

.
re

gi
st

er
.

Fl
ip

-f
lo

p

K T1

}
T 2 T s T

4
T

5

11
!

1 2 Is F
1

~
F

2
~

Ph
as

e
1

1 2
in

di
ca

te
s

w
he

th
er

co
m

­
pu

te
r

is
in

an
ac

tiv
e

or
id

le
st

at
e.

11
'I

s
no

t
us

ed
.

D
ef

in
e

ph
as

es
1

th
ro

ug
h

4
as

fo
llo

w
s

F
I

F
2

Ph
as

e
0

0
1

0
1

2
1

0
3

1
1

4

Ph
as

e
2

Ph
as

e
3

R
ec

ei
ve

s
in

st
ru

ct
io

n
fr

om
R

re
gi

st
er

,

Ph
as

e
4

co
de

C
on

tr
ol

s
ex

ec
ut

io
n

of
in

­
st

ru
ct

io
n

w
ho

se
co

de
it

co
nt

ai
ns

.

~ en ~ en ~ t11 ~ C t11 en C5 Z o ~ o ." n o a:: ." c:: ~ t11 ~ en

7.6. GENERAL PURPOSE COMPUTERS 437

be described next. As indicated in Table 7.14, the flip-flops, F i , F2, deñne
the four phases of operation of the computer. The input signals which
advance them from one phase to the next are (Note: in the remaining
equations of this section, variables apparently missing have been eliminated
by algebraic reduction—e.g., in an expression Uke FX + FXY, F is
eliminated).

fx = P1F2D,

h = F i F 2 Z) 4

fi = F 1 F 2 Í ? 1)4 Effects transition from phase 3 to
phase 4, provided search for op­
erand has been completed (indi­
cated by KD^.

+ FiK D4I2 Effects transition from phase 1 to
phase 2, provided search for
instruction has been completed
(indicated by and com­
puter is not blocked (indicated
by / 2) .

The flip-flop Κ serves four distinct functions, in accordance with which
phase of operations is taking place. This accounts for the many terms in
its input equations:

k = FiF2Di(PiC + FiQ Indicates a disagreement between
-f- FiF2Di(PiR +PiR) correspondmg pulses of the sec-

(/i + 12h) tor code track and the sector
number designated in the control
register C or the register R dur­
ing search phases 1 or 3 respec­
tively.

+F1F2CP2 During the addition of 1 to the ad­
dress in C during phase 2, state
R is interpreted as 1 and state Κ
is interpreted as 0. At the begm-
ning of phase 2, the state R
exists, and the flip-flop is set to
state Κ by the first zero encoun­
tered in the address in C. (Thus,
Κ acts Uke Β in Section 6.1.1.5).

438 7. SYSTEM DESIGN OF GP COMPUTERS

+ FiFiMAD/^IiIili Indicates production of a carry
pulse during execution of instruc­
tion A(m) in phase 4.

+ FxFiMÄD/^IiIi, Indicates production of a borrow
pulse during execution of in­
struction S(m) in phase 4.

H = D4 Resets the flip-flop Κ at the end of
each word period.

+ FxFiMÄIxIih Indicates no carry pulse has been
produced and resets flip-flop Κ
during execution of instruction
A(m) in phase 4.

-f FiFiÑAIiI^ Indicates no borrow pulse has been
produced and resets flip-flop Κ
during execution of instruction
S(m) m phase 4.

The flip-flops Γ ι . . . Γ5 are used to hold the address of the track to be
selected from the main store for a recording or reading operation. During
phases 1 and 3 they act collectively as a shift register, information being
stepped into them from the control register or the R register, respectively.
During phases 2 and 4 they provide a signal to the head selection matrix.
Smce there are 32 tracks m the mam store, five flip-flops (which have
25 = 32 distinct configurations) are requked. The input equations for
these flip-flops are

tx = FiDiiFxC + FxR) Numbers indicating the tracks to be
ϊχ = FiDiiFxC -}- FxR) selected during phases 2 and 4

are stepped into flip-flop Γχ dur­
ing phases 1 and 3 respectively.
Γι is the entrance to the shift
register.

Í2 = Fi^iTi Receives information shifted out of
Í2 = F2D2TX flip-flop Γι.

Í3 = F2D2T2 Receives information shifted out of
h = F2D2T2 flip-flop Γ 2 .

U = F2D2T1 Receives information shifted out of
Ü = F2D2Ti flip-flop Γ3 .

ts = F2D2T4 Receives information shifted out of
is = F2D2T4 flip-flop Γ4 .

7.6. GENERAL PURPOSE COMPUTERS 439

The flip-flops /] , 12, and I o are used to receive and hold the order
code of the instruction which is about to be executed. During phase 3
they behave as a shift register, information being stepped into them from
the R register, and during phase 4 their contents are used to control the
execution of the specified instruction. Since these flip-flops are not re­
quired for the above function during phases 1 and 2, one of them,
is used for another purpose, namely to put the counter into a blocked or
idle state upon the completion of phase 4 if any of the following conditions
exist: (1) An overflow of the accumulator is produced after the execution
of instructions A(m) or S(m), indicating an improper addition or sub­
traction. (2) The one cycle of operations switch, Oi, is in a set condition.
This switch enables the computer to be set to an idle state at the end of
any cycle of operations so that its contents may be inspected. (3) The
presence of the conditional stop instruction, Zb, and the address upon
which it is contingent. The input equations for these flip-flops are

i'l = FiFiD^R Information indicating what type of
fi = FxFiD^R instruction is to be executed is

stepped into Ιχ during phase 3.
Flip-flop / i is the entrance to the
shift register composed of / i ,
/ 2 , / 3 .

Í2 = FiFiDiIi Receives information stepped out
of flip-flop / i .

+ F i F 2 D 4 (/ i + /2 + h)Oi If the one cycle switch, Oi, has not
been set and the conditional stop

+ FXFIDAHTXSX + ... 4- ^5^5)01 instruction, Zb, is not being exe­
cuted, the computer is put into
an active state at the end of
phase 4.

+ F The activate switch, £ , being set
takes the computer out of an in­
active or idle state.

¡2 = FiFiD^lx Receives information stepped out of
flip-flop h,

+ FxF2D¿0\ + (A + /2 + h) Puts the computer into an inactive
(TiSi + ... + TsSs)] state at the end of phase 4 be­

cause the one cycle switch, Oi,
is set, or Zb is being executed.

440 7. SYSTEM DESIGN OF GP COMPUTERS

A few words of further explanation are in order for the third expression
in the input equation / 2 . The four terms in this expression describe various
conditions which indicate an overflow has occurred. Specifically, in addi­
tion, one knows that an overflow has occurred if the sum of two negative
numbers produces a positive number, or if the sum of two positive num­
bers produces a negative number. These two conditions are indicated by
the signals RMAD4 and KMÄD4, respectively. In subtraction, an overflow
has occurred when the subtraction of a negative from a positive number
produces a negative number or the subtraction of a positive from a
negative number produces a positive number, as indicated by RMÄD4
and KMAD4, respectively.

Reference to Fig. 7.11 and the description of the machine's organiza­
tion shows that there are only four record amplifiers: one for the 32
tracks of the central store and one for each of the circulating registers,
C, R , and A . The input signals to these amplifiers, for recording a " 1 , "
Afo, Co, /?o, and AQ, respectively. Recording current must be supplied to
the recording circuit of the central store only when a C m instruction
is to be executed. Accordingly, the signal used to energize this recording
circuit is

W = F 1 F 2 / 1 / 2 .

The information actually recorded in the central store is the contents of
the accumulator A (see Table 7.13). Therefore,

+ F1F2D4 [RMiAhhh computer is put into an inactive
State because an overflow has

+ Ähh) + KM{AIiIi occurred on the execution of
+ i / 1 / 2 / 3)] A m or S m.

ii = F1F2D1I2 Receives information stepped out of
flip-flop / 2 .

/3 = FiF2D^l2 Receives information stepped out of
flip-flop / 2 .

+ D4AI1I2I3 If * e number in the accumulator is
negative (indicated by D4A) the
instruction Τ m is converted to
U m.

7.6. GENERAL PURPOSE COMPUTERS 441

Λ/ο = WA

The record " 1 " signals for the circulating registers are as follows

Co = F2P2C Recirculates address in control reg­
ister C, during phases 1 and 3.

+ F2P2C Recirculates nonaddress informa­
tion in C during phases 2 and 4.

+ FiPiih + h + h)C Recirculates address in C during
phases 3 and 4 unless instruction
U m is about to be executed.

+ FiFiPiiKC + RC) Sum of the old address m C plus 1,
formed during phase 2.

+ FiFihhhR Transfers the contents of the R reg­
ister to the control register C
during phase 4, thereby effecting
execution of a U m instruction
when called for.

RQ = F2R Recirculates contents of the R reg­
ister during phases 1 and 3.

-f F 1 / 2 / ? Recirculates contents of the R reg­
ister during phases 3 and 4 unless
h is true.

+ F1F2M Receives, during phase 2, contents
of word selected from the main
store.

+ F2I2M Copies, during phases 2 and 4, the
contents of the word selected
from the main store if I2 is true.

AQ = FiA Recirculates contents of accumula­
tor A during phases 1 and 2.

+ F2A Recirculates contents of A during
phases 1 and 3.

+ I1I2A Recirculates contents of A during
phase 4 if instructions U m or
Τ m are being executed.

442 7. SYSTEM DESIGN OF GP COMPUTERS

+ F.F^hhhM

+ FxF2hh [K{AM + AM
+ K{AM + AM)]

+ hhA

Recirculates contents of A during
phase 4 if instruction Zb is being
executed.

During phase 4 copies the contents
of the word selected from the
main store into the accumulator
if instruction cA m iS' to be
executed.

During phase 4, records the sum or
difference of the number in the
accumulator and that in tlie word
selected from the main store, ac­
cording to whether the instruction
to be executed is A m or S m
respectively.

Recirculates contents of A during
phase 4 if instruction C m is
being executed.

7.7. Concluding Remarks

In earlier chapters we have considered various systems of circuit
logic (Chapter 4) , a description of how groups of these elements, inter­
connected for the purpose of generating various switching functions,
could be conveniently described by means of Boolean algebraic statements
(Chapter 3) , the characteristics and means of access to large capacity
storage systems (Chapter 5) , and various schemes for interconnecting
storage and gating elements in order to perform arithmetic and logical
operations (Chapter 6) .

In this chapter we have shown, first of all, some of the basic criteria
*o be considered in designing a digital computer. Next we have considered
some of the problems encountered and various alternatives available in
the design of the control unit whose function it is to generate the various
signals required to coordinate the operations of the main store, arithmetic
unit and input-output unit, and to cause them individually and in unison
to execute the various operations required. Finally, two examples were
presented to iUustrate techniques for arriving at the logical structure of a
digital computer as well as convenient means for describing that structure.
It is our purpose here to review and amplify some basic points in this
material.

A logical starting point in the design of a computer system is a con-

7.7. CONCLUDING REMARKS 443

sideratíon of the kind and number of functions the system must perform.
This leads to a specification of basic parameters such as word formats
for instructions and data, the type and size of main store, the instruction
repertory, a description of the arithmetic unit and its operation times, the
type of control unit, etc.

Sometimes "logical design" is used to refer to the process by which one
derives a minimal set of logical circuitry to perform specified functions.
Logical design is here defined, in a broader sense, as synonymous with
computer synthesis. It includes determination of the following: (1) the
number and function of each building block: flip-flops, inverters, drivers,
etc. (2) choice of a specific form of detailed logical structure—a state­
ment of the organization of the various functional units, and a description
of the interconnections of logical and nonlogical elements, taking into
accoimt limitations of a particular system of circuit logic which may place
certain restrictions on permissible ways of interconnecting these elements.

In the computer designs presented in this chapter, three distinct means
were employed to aid in a description of the logical structure of these
machines, namely: (1) verbal statements, (2) block diagrams, (3)
Boolean algebraic equations. Strictly speaking, logical design is an art.
Though based on a knowledge of certain principles, it is dependent on
the creative ability of the designer—^his skill, intuition, and ima^a t ion .
It is legitimate to use any tools which aid the creative process, and
different designers use one or more to varying degrees according to their
personal inclination. Also certain descriptions are convenient after a
machine has been designed while others are more useful as aids in the
synthesis process.

Verbal statements are useful, to begin with, in expressing the general
structure of the machine. From this point on both block diagrams and
Boolean algebraic statements may be helpful. Block diagrams are useful
to indicate the paths of information flow between various parts of a
system. At first, only relatively large functional blocks are delineated and
as the design progresses, each block may be supplanted by several blocks,
showing the logical structure in greater detail.

Different types of block diagrams, with varying degrees of detail may
be useful in a number of ways. For example:

(1) To show the gross functions of various functional units.
(2) To show the arrangement and interconnection of these units for

information flow.
(3) To show details of the internal design such as the number and

locations of logical elements as well as nonlogical elements such as cathode
or emitter followers, voltage clamps, pulse stretchers, etc.

(4) To indicate the manner of mating input-output devices to the

444 7. SYSTEM DESIGN OF GP COMPUTERS

internal circuits of the computer by showing the details of matching
devices such as buffer ampUfiers, etc.

(5) (a) To show where physical wiring leads are to be placed, in­
cluding the critical ones. The block diagram provides a one-to-one cor­
respondence between logic and physical layout. The location of both local
and remote terminals can be specified by coordinates.

(b) To show the physical interconnection of racks, registers,
logic circuits, etc.

(c) To show, by means of different symbols on Unes, the paths
of pulse and dc signals.

(6) As a visual aid to checking for errors and unintentional redundan­
cies in the design.

(7) As a visual aid in maintenance of the completed machine.
(8) To faciUtate manufacturing and maintenance, since a block dia­

gram can convey important design data to relatively untrained personnel.
In the conceptual development of a particular design, many gross

arrangements may be considered before one is chosen. Block diagrams are
useful as aids to both a spatial and temporal visualization of the arrange­
ment of elements, aiding in the evaluation of alternate arrangements, and
making apparent modifications that would improve the design.

A Boolean algebraic description of a computer can provide many of
the functions performed by block diagrams. In addition, it is not as diffi­
cult to produce nor as cumbersome to manipulate as a block diagram, and
offers other advantages because it constitutes a machine language. By
definition, a machine language is a language which can be used to describe
the structure of a digital computer, and which is of a form that enables
it to be entered into and operated upon by any digital computer. A num­
ber of advantages accrue from this capabUity. First, after Boolean alge­
braic descriptions are entered into a computer, a number of useful listings
can be obtained by sorting this data with respect to certain indices and
tabulating the result. For example, the foUowing tabulations are useful:
(1) a tabulation of the inputs to aU active storage elements, (2) a tabula­
tion of aU the loads on each active storage element, (3) a tabulation Ust­
ing aU physical interconnections of elements in the computer.

The first tabulation, caUed a logic tabulation, can describe inputs to
aU elements, whether of a logical nature or not, for the Boolean notation
can be adapted to describe different types of circuits and gating arrange­
ments. A computer can be programmed to inspect the logic tabulation to
determine if any circuit restrictions have been violated, either in respect
to nonaUowable interconnections of elements in the permissible chains of
logical elements and auxiUary circuits, the number of inputs to a gate

7.7. CONCLUDING REMARKS 445

or the number of levels in a gate, or the number of gates which a flip-
flop can drive.

The second tabulation is called a usage tabulation. The logic and
usage tabulations faciUtate maintenance since they indicate all elements
that can affect a particular element as well as all elements that a particular
element can effect. Also, from these two tabulations and a suitable pro­
gram, a determination can be made of which elements are closely Unked
logically, and this can be used to facilitate physical layout specifications.

The third tabulation, which can be derived from the logic and usage
tabulations, comprises a wiring tabulation for it hsts all points that should
be interconnected. It is useful for a number of purposes: (1) it will tell
whether any wires have been left unconnected, thus providing a check on
whether all required input signals have been specified; (2) it can also be
updated more rapidly, in the event of changes either in the development
or production stages, than wiring diagrams; (3) it is useful both in initially
wiring a machme and m future maintenance, being easier to use than a
set of wiring diagrams. If automatic wiring machines are to be used, they
can be activated from the data in the wiring tabulation.

The logic, usage, and wiring tabulations describe the sources and des­
tinations of all signals as well as the location of all components (and also
enable a totalization of specified machine components to be readily ob-
tamed). While this adequately describes a machine, it is no assurance that
the machine so described will function according to specifications. How­
ever, if the computer being synthesized is described in terms of a machine
language, information relating to the actual operation of the machine can
be obtained before construction by means of a simulation program. From
this program, the logical operation of the computer being synthesized
can be checked for various specified sets of problems and input data, and
faults or omissions in the logical design can be detected. Also, simulation
programs allow modifications or additions to the design to be checked
readily, not only by the original designers, but by others less intimate
with the structure of the machine. Finally, simulation aids in developing
maintenance procedures, for specified faults can be simulated and their
effect on the operation of the simulated machine observed. However, it
must be pointed out that the cost incurred in producing these simulation
programs is appreciable and should be justifiable on economic grounds or
some other basis.

Some of the more important criteria to be considered when comparing
different computer designs are as follows:

(a) Susceptibility of the computer to undetectable errors (inherent
in its logical design).

446 7. SYSTEM DESIGN OF GP COMPUTERS

(b) Reliability of operation (inherent in the electronic and mechani­
cal design, and indirectly influenced by the logical design).

(c) Simphcity of design.
(d) Flexibility, both in respect to present operation and modification

and expansion of the system.
(e) Compatibihty of systems components.
(f) Speed and accuracy of computations,
(g) Automatic features.
(h) Convenience and flexibihty of receiving input data from various

sources.
(i) Facilities for presentation of output data.
(j) Provisions to retain intermediate resuhs in case of power failure.
(k) Ease of servicing.
(1) Ease of training personnel.
(m) Economics of production.
The extensive use of time sharing, multiplexing, logical microprogram­

ming and other schemes enable appreciable savings to be realized in the
number of physical components in a system. However, this savings is
achieved not without certain disadvantages. For one thing this type of
design results in an almost complete loss of identity of functional units.
This lack of a simple one to one correspondence between physical units
and functions makes it difficuh for any but highly skihed personnel to
thoroughly understand the structure of a machine, and therefore makes
maintenance more difficult. However, this disadvantage may be aUeviated
if the machine is built of reliable components and plug-in subassembhes
which can readily be replaced.

Also, in developing schemes for equipment minimization it is important
to consider not only the computer itself, but also the number, types, and
mode of operation of input-output equipment that is to be utihzed. Often,
schemes that appear attractive for a machine with very limited input-
output facilities lead to comphcations when additional terminal equip­
ment is added. This is because a highly integrated system with little
redundancy and flexibihty does not have sufficient slack to aUow additions
to be squeezed in. As a result, modification of such systems may require
unscrambling of many of the items originaUy integrated in the interior
computer design.

In the last analysis, a particular design arrived at must be capable of
justification on economic grounds. The choice wiU depend on whether
one is interested mainly in solving differential equations, a computer
capable of solving a wide variety of problems, in a computer for an auto­
matic control system, or for other engineering, business or industrial
apphcations. In aU these cases, the particular information processing sys-

LITERATURE 447

tern chosen must be justified either because it saves money, saves time,
provides solutions not otherwise obtainable, enables a better product to
be produced, increases operational efficiency, permits exploitation of new
ideas, is more reUable than other methods, etc.

LITERATURE

Auerbach, A. Α., Eckert, J. P., Jr., Shaw, R. F., Weiner, J. R. and Wilson, L. D.
[1952] The Binac, Proc. IRE, 40, 12-29.

Beckman, F. S., Brooks, F. P., Jr. and Lawless, W. J., Jr. [1961] Developments in
the logical organization of computer arithmetic and control units, Proc. IRE,
49, 53-66 (includes a bibliography of 60 entries).

Bigelow, J. H., et al. [1947] Interim Progress Reports on the Physical Realization of
an Electronic Computing Instrument, Institute for Advanced Study, Princeton.

Blaauw, G. A. [1959] Indexing and control-word techniques, IBM J. Research and
Develop., 3, 288-301.

Brooks, F. P., Jr. [1958] A program controlled interruption system. Proceedings of
the Eastern Joint Computer Conference, 1957, 128-132.

Brooks, F. P., Jr. [1960] The execute operations—a fourth mode of instruction
sequencing, Comm. ACM, 3, 168-170.

Burks, A. W., Goldstine, H. H., Von Neumann, J. [1947] Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument. Institute for
Advanced Study, Princeton, N. J.

Burks, A. W., Copi, I. M. [1956] The logical design of an idealized general purpose
computer, Jour. Franklin Inst., 261, 299-314; 421-436.

Carter, W. C , Ellis, M. [1954] A comparison of order structures for automatic
digital computers, Operations Research Soc. of America Journal, 2, 41-58.

Frankel, S. P. [1958] On the minimum logical complexity required for a general
purpose computer, IRE Trans. El. Comp., EC-7, 282-285.

Frankel, S. P. [1959] A logic design for a microwave computer, IRE Trans.
El. Comp., EC-8, 271-276.

Knuth, D. E. [1961] Minimizing drum latency time, J. ACM, 8, 119-150.
Leiner, A. L. Notz, W. Α., Smith, J. L., and Weinberger, A. [1959] PILOT—a

new multiple computer system, / . ACM, 6, 313-335.
Loberman, H. and Weinberger, A. [1957] Formal procedures for connecting ter­

minals with a minimum total wire length, / . ACM, 4, 428-437.
Lourie, N., Schrimpf, H., Reach, R. and Kahn, W. [1959] Arithmetic and control

techniques in a multiprogram computer. Proceedings of the Eastern Joint Com­
puter Conference, 1959, 75-81.

Staff of the Digital Computer Laboratory [1957] On the design of a very high­
speed computer. Digital Computer Lab., University of Illinois, Rept. No. 80.

Van der Poel, W. L. [1951] A simple electronic digital computer, Appl. Sei. Res.,
2B, 367-400.

Wilkes, M. v . , Renwick, W. and Wheeler, D. J. [1958] The design of the control
unit of an electronic digital computer, Proc. Inst. Elec. Engrs., 105 (B) , 121-
128.

Wilkes, M. v . , Stringer, J.B. [1953] Microprogramming and the design of the
control circuits in an electronic digital computer, Proc. Cambridge Phil. Soc,
49, 230-238.

8. The Digital Differential Analyzer

8.1. Introduction

So far our attention has been directed mainly toward the general
purpose type of digital computer. Utilization of such machines requires
that an initial statement of a problem be reduced to a sequence of ele­
mentary arithmetic and logical steps, often involving numerical approxi­
mation algorithms. These steps are then reduced to a sequence of instruc­
tions (in machine code) selected from the computer's instruction repertory.

One of the most important and commonly encountered mathematical
problems in the physical sciences and engineering is that of solving dif­
ferential equations. An ordinary differential equation is, briefly, a mathe­
matical representation of how an incremental change in one variable of
a system affects the values of other variables in the system, and defines
the way in which the system can change from one state to another. The
equation, then, can be used to predict the effects of applying disturbing
forces (referred to as forcing functions) to the system, provided the sys­
tem's initial state, expressed by so-called boundary conditions, is known.
These boundary conditions permit the evaluation of arbitrary constants
that enter when integrations are performed. As many boundary conditions
must be stated as there are arbitrary constants (in an ordinary differential
equation) or arbitrary functions (in a partial differential equation).

The idea of building a machine in which the movement of functionally
related parts would simulate the operation of defined, logical processes
of the mind is usually credited to Leibnitz. Generally speaking, two systems
are considered analogous if their elements have similar physical and/or
abstract attributes, and the elements are similarly interrelated in each.

Differential analyzers are analog machines. They are based on the
observation that, in general, a physical system can be represented by a
group of elements interconnected so that disturbances of one or more
elements are coupled to other elements. This is the basis for derivation of
differential equations in the first place. The differential equation specifies
the variables of interest in a system and the manner in which they are
interrelated. It follows that if one has a set of idealized elements, analogous
in behavior to the elements of a system to be investigated, one can use the
differential equation of the system to indicate how these elements must be

448

8.1. INTRODUCTION 449

interconnected. Assume then, that an "idealized" physical element is
available which has the following properties. (1) It is capable of assum­
ing a range of distinguishable states, and can indicate its state at all
times. (2) It is capable of transmitting indications of changes in its states
to other elements. Assume, further, that this element can accept incre­
ments of one variable, dx, as an independent variable input, and that of
another variable as the dependent variable y, and that it can produce
at its output an incremental change, dz = ky dx, where y represents the
sum of increments accumulated from some initial time, to, and /: is a
constant. A device having these properties is referred to as an integrator.
A commonly used functional schematic of an integrator is shown in Fig.
8.1. The first practical working differential analyzer used mechanical

- \ —
} ^cfz

dy

FIG. 8.1. Functional schematic of an integrator

wheel and disk integrators of the type shown in Fig. 8.2. Its mode of

C
dt

FIG. 8.2. Schematic of a mechanical integrator

Operation is, briefly, as follows. The disk D is driven at a rate dx/dt,
corresponding to the rate of change of an independent variable x. The

450 8. THE DIGITAL DIFFERENTIAL ANALYZER

angular position of this disk represents the instantaneous value of JC. The
disk is geared by friction to a smaller disk. As a result, the smaller disk
is forced to turn at some rate, say dz/dt. The ratio of the angular veloci­
ties of the two shafts is proportional to the distance y from the point of
contact of the two disks to the center of the larger disk. Changes in the
dependent variable y are effected by rotation of the lead screw. Any
particular design wiU involve a constant, k, which is dependent on the
relative sizes of the two disks. It is apparent then that dz/dt = ky dx/dt.
If the dy/dt shaft is extemaUy geared to the larger disk, so that the rela­
tion is independent of time, the foUowing equations may be used to repre­
sent the action of the integrator

dz = kydx (8- la)

or

ζ = kfydx (8-lb)

Assume, also, that another element is avaUable which can accept two
or more variables in incremental form and produce an output equal to
their algebraic sum. Such a device, suitable for use with mechanical in­
tegrators, is a differential gear assembly. It also aUows the integration
of the algebraic sum of a group of dependent variables to be obtained
for its output can be used as the dy input of an integrator.

In principle, a machine composed of only integrators and adders is
adequate to obtain the solution of differential equations. This is because:

(1) The action of these elements can be used to represent the action
of each term in an equation. This action is in the form of shaft rotations,
voltages, or pulse streams in the mechanical analog, electronic analog,
and electronic digital differential analyzers, respectively.

(2) The individual elements can be interconnected so that the group­
ing of terms and the equahty among the terms demanded by the equation
are satisfied.

Inspection of a differential equation shows that there is always present
an interdependence between values of derivatives and functions. This
interdependence is satisfied by interconnecting integrators, as described
in Sections 8.2 and 8.5.2. A characteristic of these interconnections is
that there is always present at least one feedback path. It is the feedback
connection which mechanizes the equal sign in the equation, for it imposes
the constraint which forces the machine to operate so that the two sides of
the equation are equalized. A standard procedure in setting up a problem
is to anticipate that a feedback connection wiU be made. The feedback
connection activates not only the element to which it is directly connected,
but aU others dependent on the activation of that element.

8.1. INTRODUCTION 451

Examination of the ordinary differential equation

" ' dx
(8-2)

ihows that the feedback connection required always exists in at least one
form. This follows since all terms on the right hand side can be developed
from the independent variables and the nth derivative. Therefore, by
supplying the independent variable, and anticipating an input providing
the nth derivative, the right hand side of the equation can be produced,
and this output fed back to supply the anticipated input carrying the nth
derivative.

An alternate procedure is to use the highest-order derivative on the
right hand side of the equation as the anticipated variable. From it and
the dependent variable, all the remaining terms on the right can be
derived. Once formed, the variable d^y/dx"" is integrated as many times
as necessary to reach the order of the anticipated variable, where the
feedback connection is made.

The conditions for solving an ordinary differential equation by means
of a differential analyzer are outlined in the appendix to this chapter.

One may ask why an integrator is used as a basic element of a differen­
tial analyzer. It is obvious that an integrator can be used to generate lower-
order derivatives from higher-order ones, in accordance with the relation

^ = ^ . (S - 3 ,

However, an apparently equally useful relation, and one which would
imply the use of a differentiator is

d^y d
dX^ " dx

(8-4)

Theoretically, the solution of differential equations could be mechanized
with either of these devices. However, the integrator wins out on the
basis of a very practical consideration. Differentiation requires essentially
the subtraction of quantities of nearly equal magnitude. This implies that
a differentiator would require a much greater precision for a given accu­
racy, since the subtraction of nearly equal quantities wipes out significant
digits. The physical realization of such a device is, therefore, not as simple
or practical.

Sir William Thomson [1876] was the first to suggest that mechanical
integrators could be connected together in closed loops and constrained
to produce solutions of differential equations. The first machine based
on integrating devices was built at M.I.T. in 1925. It used a photo-

452 8. THE DIGITAL DIFFERENTIAL ANALYZER

electric integraph (an integrating graph follower), and watt-hour meters
as integrators. Its accuracy was only of the order of 1 part in 100. In
1930, Vannevar Bush developed at M.I.T. an all mechanical differential
analyzer which utilized wheel and disk mechanical integrators. This ma­
chine could achieve an accuracy of 1 part in 1000, an accuracy of 1
part in 3000 being considered good for a mechanical integrator. In later
machines where the mechanical integrator was placed in a servo loop,
accuracies of 1 part in 30,000 could be obtained for the integrators with
over-all accuracies ranging from below 1 part in 10,000 to 1 part in
25,000, depending on the nature of the problem.

Electronic analog differential analyzers, developed at a later date,
use the integrating characteristic of a capacitor in conjunction with opera­
tional amplifiers to produce linearity. The advantage of the electronic
analog machine over the mechanical is greater speed and compactness.
The accuracy of the electronic analog devices is also Umited, and involves
long-term drift problems that are overcome only with highly engineered
critical circuits. Also, unless special devices are employed the variable
of integration must be time, and this places a restriction on the type of
problems that can be solved.

The digital differential analyzer (DDA) is unique in that it provides
certain desirable features of both analog differential analyzers and digital
computation. The most important of these features are

(1) It can provide greater accuracy than is obtainable with an analog
computer. Analog equipment is only as accurate as its components. In a
mechanical analog differential analyzer, there is a Umit to the accuracy
of machined parts, and the accuracy decreases as wear continues. In the
electronic analog type, there is a similar limit imposed by the stabiUty as
well as the precision of electronic components. In a digital computer, the
components must be only capable of resolving two values, represented
by two easily distinguishable voltages. Consequently, the digital differential
analyzer is capable of yielding more accurate solutions as weU as sim­
plifying problems of maintenance.

(2) It inherently has greater logical capacity than analog machines.
(3) It provides greater flexibiUty than analog machines, because of

its logical capacity, and also because changes can be effected by reprogram-
ing rather than equipment modification.

(4) It is more compact than analog machines (for systems beyond a
certain minimum complexity).

(5) In an electronic analog integrator, the variable of integration must
be time. The integrator in the digital differential analyzer can receive the
output of any other integrator directly as its independent variable input.

8.1. INTRODUCTION 453

This facihtates muhiplication, division, and the solution of nonlinear equa­
tions without the use of special devices.

(6) It provides exact repeatability of problem solutions (not being
subject to the variable drift of an analog computer).

(7) In a digital differential analyzer, differential equations may be
solved without reducing them first to difference equations as required in
an integral transfer (GP) type of digital computer.

(8) For the solution of certain types of problems, it can be mechanized
with fewer components than required by an integral transfer type of
digital computer.

Because an integrator can be used for a number of purposes, the
number of integrators in a machine is not a reUable index of the maxi­
mum order of equation that can be solved. Specifically, in solving a dif­
ferential equation, the value of a variable of interest is obtained by a
process which includes integration of certain variables and generation of
auxiliary functions usually of an algebraic or trigonometric nature. Inte­
grators may also be used in the generation of these auxiUary functions,
e.g., to generate the product of two variables. These auxiliary uses may,
in some cases, consume more integrators than the reduction of derivatives.
Thus, while only integrators and adders are essential to a differential ana­
lyzer (see Appendix, p. 516), as a matter of convenience, or economy,
however, both mechanical and electronic differential analyzers have includ­
ed other units. Mechanical differential analyzers may contain the following
additional elements: gear boxes for multiplying a variable by a constant;
resolvers for directly performing vector resolutions; multipliers for pro­
ducing the product of two variables; input tables or function units which,
given a variable, x, as an input constrain a second variable, to rotate
as J = iix), where /(JC) is an arbitrary given function with only a finite
number of finite discontinuities. Electronic analog differential analyzers
may also contain special units for multiplication by a constant, multiplica­
tion of two variables, vector resolution, and function generation.

Digital differential analyzers may also be provided with units to fac­
ilitate execution of frequently encountered computing functions, e.g., out­
put multipliers (Section 8.5.7.), decision units (Section 8.6), digital servos
(Section 8.7) and more complex operational units for special purpose ma­
chines (Section 8.9). For machines to be used in computing laboratories,
graph foUowers and plotters have also been developed to facilitate the
insertion of empirical data, and to enable outputs to be displayed in
graphical form. In certain types of control system applications (see
Section 8.9), multiplication is called for more often than integration.
This led to the development of an incremental multipUer, based on the

454 8. THE DIGITAL DIFFERENTIAL ANALYZER

logical principles of the digital integrator. By the inclusion of appropriate
control circuitry it then becomes possible merely by a simple program­
ming procedure to cause the "multiplier" to provide the functions of both
an integrator and a servo, simultaneously (see Fig. 8.27).

The differential analyzer came into being as a result of the deficiencies
of classical methods of solving differential equations, especially nonlinear
equations. The development of this machine to its present forms has been
largely due to the following advantages which it offers, compared to
analytic solutions, in the solution of problems in engineering: (1) The
ease of changing parameters in a synthesis problem; this facilitates the
investigation of many alternate configurations. (2) The completeness of
solution; information can be generated which describes the states of a
system at any specified number of points between an initial state and an
arbitrary later time.

There is no single analytic method which provides the solution of
differential equations in general. The differential analyzer provides a basic
method applicable to the solution of all ordinary differential equations.
Though it was invented to solve differential equations, it can also be used
to solve arithmetic or algebraic equations. This can be done by causing it
to solve the differential equations having the desired arithmetic or alge­
braic equations as solutions.

8.2. Generation of Functions in α Differential Analyzer

We will illustrate here how a number of commonly encountered func­
tions may be generated by appropriate integrator interconnections. As
indicated in the preceding section, the procedure consists of determining
the differential equation(s) whose solution is the required function. An
integrator hook-up that satisfies the differential equation relations will
then generate the function. Often, there is available more than one inte­
grator hook-up for generating a function. (See pages 476-480, and 511).

Integrator hook-ups for the generation of a number of commonly
encountered functions are grouped together in Fig. 8.3 for convenience
of reference. Most of these are self explanatory. However, some require
simple mathematical preliminaries, or a few words of explanation. A
statement of the functions generated in each of the entries in Fig. 8.3,
as well as pertinent notes where necessary, are listed below.

(a) Generation of e^^, given d(kA), where k may be positive or
negative.

(b) Generation of sin ^ , cos ^ , given dA

8.2. GENERATION OF FUNCTIONS 455

(0)

'dA

(c)

tan >4

i/(tan>ij)

(e)

o ' / = - { l / , 4 ^) c M

(g)

dA

sin ^

cos /4 ^

(b)

'dA
(d)

i / (log^>1)

dA

(f)

ί/=Ι/(/1+Α·)

d{\oqgKA*k)'\

uA/KA*k)/ \d\\/KA*k)\

(h)

a!4

1 /4 1/2 5
-1/2/1

(i) (J)

FIG. 8.3. Generation of functions by means of integrators.

456 8. THE DIGITAL DIFFERENTIAL ANALYZER

afJloqeA)

\/A

\/A

dA

I CIIAK)

k) (I)

UM

dv/k^

Β

A d d e r ' i ^

(m)

dA

dB

dA

θ

\/B

dB \/B
d{AB)

\/B

dB/B

d(\/B)

Adder d ,

(n)

dB

Ad{\/B)
~ld(A/B)

dA

(\/B)dA

sinh A

cosh /4

(o)

dA

dA dA

sec A 5
ton A

sec A >
(P)

dA

^zAdA

d(%BcA)

¿/{tan A)

FIG. 8.3. Generation of functions by means of integrators.

8.2. GENERATION OF FUNCTIONS 457

Θ

azk sin (kA)

0\kcos{/cA) 1
J

(s)

CSC >4 /

ctn A

¿/(ctn>1) ¿/(ctn>1)
CSC >ί ^

(q)

dA

dA

dA

"Θ
A d d e r - a J

du

dA

dA

.-Α·

dA dA

\ > / *
'dieriA)

x2/F
(r)

¿/=g^ cos Β

θ

i^'e^ sin β

v-e^ sin ^

¿/=^'^ cos Β

dr

dB

dv

dA

dv
A d d e r n ds

dB

du

θ

(u)

dA

\dB

dA

dB

(t)

dA

Adder-
dr du

dB

ds

dA

ds
Adder-: dv

-ΊΒ

dr

FIG. 8.3. Generation of functions by means of integrators.

458 8. T H E DIGITAL D I F F E R E N T I A L A N A L Y Z E R

\/r

\/r

Β

dr

d(\/r)

d(\oqr)^(dr)/r

Adr/r

Bdr/r
dB (Ädder i

dB

Β 'BdB
dB

A dB

(ν)

FIG. 8.3. Generation of functions by means of integrators

Let / i = sin A, Í2 = cos A

äfi ^ df2
- / T - = c o s ^ , J . = — sin ^ dA dA

= - s i n ^ , ^ = - c o s ^

Therefore, an arrangement that satisfies the equation d^f/dA^
= - f will generate both the sine and cosine.

(c) Generation of A^, given dA

d(A^) = 2A dA.

(d) Generation of A^, given dA

d(A^) = SA^dA.

(e) Generation of tan A, given dA

1 + tan2 A = sec2 A

d (t a n ^) = stc^ A dA.

8.2. GENERATION OF FUNCTIONS 459

For A = 0, the integrand register holding (1 + tan" A) is actually
set to its maximum possible value (1 — 2 - °) .

(f) Generation of l/A, logeA, given dA

dil/A) = -(i/A)d(log,A)

d(logeA) = (í/A)dA.

(g) Generation of l/A, \/A^, given dA

Let / = l/A

di = - {l/A^) dA

= -fdA.

Scaling difficulties are worse for this hook-up than that in (f),
since the quantity in an integrand presents a greater scaling
problem than l/A.

(h) Generation of 1/{A + k), and loge(/i + k), given k, da

Let « = 1/{A +k)

du = - (A + k)-'dA

= -u'dA.

The arrangement in (i) generates

du - uudA = d[l/(A+k)]

The quantity u dA is also generated in the process

udA = dA/(A+k) = d\loge(A+k)]

(i) Generation of ..4^, given dA

il/2A^) dA = d(A^)

(l/A^)d(A^) = dA/2A

— (l/A^)dA/2A = d(A-^).

(j) Generation of given dA

(1//ÍVÍ) d(l /^V4) = d(l/2A)

- (1/2A) • 2 • diA'A) = dil/AVi)

H/AVi) dA = 2d(A^).

(k) Generation of A", given dA

Let A" = exp(Ä;loge.4)

460 8 THE DIGITAL DIFFERENTIAL ANALYZER

d(A^) = txpiklogeA) diklogeA),

Note that the two-integrator arrangement for generating d(logeA)
is the same as in (f).

(I) Generation of 4- ^ i) ' ' where η may be integral or not, given
ki, n, dA.

The quantity (̂ 4 - f is a general expression for an integral or
nonintegral power of a function.

Let V = k2loge(A + ki) = \oge(A+kx)^2

dv = k2dA/(A+ki)

vn/k2 = nloge(A + ki) = loge(A + ki)^

exp (vn/k2) = (A+ k^Y.

Therefore, {AkiY may be generated by generating exp (vn /*2).
If ndv/k2 is given, only one integrator is required to generate
exp(vn/Ä:2).

Note that the two-integrator arrangement for generating dv/k2 is
the same as the hook-up in (f).

(m) Generation of AB, given dA, dB

d(AB) = AdB + BdA.

(n) Generation of A/B, given dA, dB

d(A/B) = A d{\/B) + (1 /B) dA.

The first two integrators are used to generate d{\/B) from dB.

(o) Generation of sinh A, cosh A, given dA, dB

Let h = sinh A, = cosh A.

^ = cosh A, = sinh ^
dA dA

-ξ^ = sinh A, = cosh A. dA^ dA
Therefore, an arrangement that satisfies the equation d^f/dA^ = /
will generate both the hyperbolic sine and cosine.

(p) Generation of tan A, sec A, given dA. (For - π/Ι < A(rad)
< rr/2)

8.2. GENERATION OF FUNCTIONS 461

d(t3nA) = (stc Ay dA

d(sccA) = (SQCA)(i2inA) dA.

(q) Generation of cot A, esc A, given dA. (For 0 < y4(rad) < π)

d (c t n ^) = - (c s c ^) 2 d ^

d (c s c ^) = - (esc A)(ein A) dA,

(r) Generation of probability (or error) function, erf A, given dA
2

By definition erf ^ = — 7 = | exp (- A^^ dA

d (e r f ^) = - 4 = e x p (- . 4 2) ¿ ^ ,

(s) Generation of a\ sin kA, cos kA, given dA

Let /i = uxuVikA, U = CI2 cos fci4

= aik cos kA, = - sin kA
dA dA

This arrangement is identical to the one in Fig. 8.3(b) except
for the use of two constant multipliers.

(t) Generation of the complex exponential, + given dA, dB

Let Μ + /v = + = e^^

= cos Β + /e^ sin

d(w + iv) = - sin Β dB -\- cos Β d/i - f /e^ cos fi dfi
- f / sin fi dA

du - - sin Β dB cos Β dA = - ν dfi + w d>i

dv = cos fi dfi + sin fi d/i = udB -hv dA

The arrangement shown in Fig. 8.3 (t) does not produce the
absolute value of the vector quantity + but only the value
of the "real" and "imaginary" components, u and v, respectively.

(u) Generation of the complex sine and cosine, sin(^ H-ifi), cos
(A +ÍB), given dA, dB

Let r -\- is = sin {A + iB) = sin A cos iB + cos A sin /fi

462 8. THE DIGITAL DIFFERENTIAL ANALYZER

= sin A cosh Β + / cos A sinh Β

d(r + is) = sin A sinh Β dB + cosh Β cos A dA
- f / (cos A cosh Β dB - sinh Β sin)

Let u + iv = cos {A + /ß) = cos A cos /ß — sin A sin

= cos A cosh 5 — / sin /4 sinh Β

d(u + /ν) = cos A sinh Β dB - cosh ß sin ^
- /(sin cosh Β dB + sinh 5 cos ̂)

dr = sin A sinh 5 ¿ 5 + cosh Β eos A dA = -vdB + udA

ds = eos A cosh Β dB - sinh β sin ^ = udB -\-v dA

du = cos ^ sinh Β dB - cosh Β sin d/4 = s dB - r dA

dv = sin ^ cosh Β dB - sinh Β cos A dA = - r dB — s dA.

The arrangement shown in Fig. 8.3 (u) does not produce the
absolute value of the vector quantities sin {A + /B), cos {A iB),
but only the value of the "real" and "imaginary" components,
r, u, and s, v, respectively.

(v) Transformation from polar coordinates (r, 0) to rectangular
coordinates (A, B).

A-hiB = re^ = r (cos θ + / sin Θ)

A = r cos 0

dA = cos θ dr - r sin 0 d0

= (^ d r) / r - B d 0

Β = Γ sin 0

dB = sin 0 dr + r cos 0 d0

= (Bdr)/r +Ade.

8.3. Digital Integrators

The operations performed by a digital integrator are analogous to
those performed by a mechanical integrator. An integrator may be con­
sidered as a device which receives two input rates and transmits one
output rate, where the input and output rates for an ideal integrator (see
Appendix of this chapter) are related as follows

8.3. DIGITAL INTEGRATORS 463

Throughout this chapter an integrator's input hnes wiU be referred to
as dx and dy hnes and its output hne as the dz hne; in schematics of inte­
grator hook-ups, variables on these Unes are shown as differentials, (as in
Figs. 8.1 and 8.3). This aUows an idealized statement of functions gener­
ated by particular integrator hook-ups without distinction between analog
and digital integrators. However, for the case of digital integrators, quan­
tities on these Unes wiU be designated by the increments AJC, Ay, and Δζ,
respectively. The central store for the Δζ outputs wiU be referred to as the
Δζ store or, sometimes, as the Ζ hne (when a delay hne store is used).

A block diagram of a basic digital integrator is shown in Fig. 8.4.

R π

r/?+)'AdderVÍ'^/?í-°'h

i [

"Tstart
¡ pulse I

I i 1 pulse I

I L - C i — J I

1̂ [Registei]*'|CounterJ^

dx

dy

Fio. 8.4. Block diagram of a digital integrator

The digital integrator shown here consists of two accumulators, R and y ,
together with associated adders and control circuitry. The block labeled
"Σ dy register" receives from the "Σ dy counter" (a counter that can dis­
tinguish between and accumulate positive and negative increments), the
algebraic sum of inputs appearing in sequence on an integrator's dy lines.
(The number of dy lines is variable and is usually between 1 and 7) .
At a specified signal, the start pulse, the accumulated number in the Σ dy
register is shifted out and added to the contents of the Y accumulator,
thus forming the new value of y. The number in the Y accumulator is
added to or subtracted from the contents of the R accumulator according
to whether ^x is positive or negative. The control flip-flops determine
when the (y + Σ dy) and {R + Y) additions start and stop (in accord­
ance with a start pulse code usually placed in the Y accumulator
in a position that is read just prior to the appearance of the least signifi­
cant bh) .

464 8. THE DIGITAL DIFFERENTIAL ANALYZER

It is apparent that Y is added to at a rate Ax/¿¡it. Eventually, the R
accumulator will overflow, and this rate of overflow is taken as the output
rate Δζ/Δί. The Δζ output signals are sent to a central store, where the
current Az outputs of all the integrators in the computer are held. The
Δ.̂ and Δ>̂ inputs to the various integrators are obtained either from this
central store or from external devices. The constant of proportionahty
between Δζ/Δί and Ax/At for a digital integrator is determined by the
numerical capacity of the accumulators. The maximum length of the
accumulators is fixed in accordance with specified accuracy requirements.

It must be emphasized that the particular integrator unit illustrated
is not the only one possible, but merely embodies the basic concepts of a
digital integrator. Many variations within this basic design are possible.
For example, (1) any of several number systems may be used in the Y
accumulator, (2) an adder could be placed in the dx input Une, (3) the
capacity of the Σ dy register can be varied, subject to the anticipated
requirements of the range of problems to be solved, and may even be
eliminated by utilizing servo adders (see Section 8.7) to perform the
summation of rates. A principal variant in the basic incremental computer
design is the restriction placed on the allowable values of the increments
produced and transmitted. In a machine with so called ternary transfer
characteristics, each operational unit may produce any of three outputs:
0, + 1, - 1. In a machine with binary transfer, only two increment values
are defined: + 1, - 1. At any step, Δζ is defined to be + 1 if the R register,
overflows, and - 1 if it does not. The advantage of the binary transfer
system is that it reduces the size of the Δζ store by one half (since one
binary storage element can represent either of two values, while two are
required to represent three values) and also reduces the logical circuitry
required. This economy is offset by a loss in precision and increased diffi­
culty in comprehension of the machine's numerical operations. The
pecuUarities of the increment sequences and the means for producing
them in the binary transfer system will now be compared to the more
natural operation of the ternary system. In the latter, the average rate of
change of a variable may be determined simply by summing the incre­
ments produced and dividing by the number of steps. For example, for
the sequence + 1, 0, 0, - 1, ~ 1 the answer is - 2 / 6 = - 1 / 3 . A zero
output rate would be 0, 0, 0, . . . 0. In a binary transfer system, because
of the lack of zero increments, special means must be provided to generate
an average zero rate. This may readily be done by alternately generating
positive and negative increments, in a machine where 0 represents — 1
and 1 represents + 1, simply by adding 1 to Δζ every other step. The
digital integrator described in Section 8.3.2. is designed for a machine
with a binary transfer system and uses the number system for y shown
in Fig. 8.18. With this system, the addition of zero (y = 1.000 . . . 0)

8.3. DIGITAL INTEGRATORS 465

causes an overflow of the R register every other step. Thus, the various
positive and negative output rates are comprised of the supeφosition of
the "true" output rate on the zero-rate sequence. Returning to the loss of
precision in the binary transfer system, referred to earUer in this para­
graph, it is now apparent that in this system the least significant bit of the
number in the Y accumulator actually has no significance. This is obvious
if we consider the case where the dy input is a zero-rate sequence. Here,
the value of the bit in the least significant position is determined only by
whether it is inspected on an odd or even step of the iteration process.
The loss of precision and the oscillation, too, are objectionable. In closing,
it should be pointed out that the restriction on the size of increments to
a single unit can cause considerable difficulty when the computer is used
in applications where it is necessary to generate large magnitude changes
within a short period. For this reason, variable increment computers
have been designed which are capable of generating increments having
any of several selectable values. The larger increments are used whenever
it is necessary to generate a large change in a variable after a minimum
number of steps, for example—in estabUshing new initial conditions (see
Merz [1959] and Braun [I960]).

The particular integrator shown in Fig. 8.4 approximates integration
by a simple rectangular summation operation, described in Section 8.3.2.
The nature of this integration process is shown in Fig. 8.5. From the
figure it is evident that the approximation can be improved by de­
creasing the size of increments in χ and y , and that for a continuous

FIG. 8.5. Approximation to the integral by rectangular summation

monotonic curve the error of integration is < (yn — yo)^Jc, A trapezoidal
approximation to the integral is more precise and may be achieved by
suitable modification of the scheme shown in Fig. 8.5. In a trapezoidal
type of integration scheme, the area under a curve is approximated by

466 8. THE DIGITAL DIFFERENTIAL ANALYZER

summing the areas of a series of trapezoids (see Fig. 8.6).

The fundamental area of integration is (yt)i(^x)i, where (yt)i is an

FIG. 8.6. Approximation to the integral by trapezoidal sununation

estimate of the average value of y in the interval (AJC)Í. Theoretically,
the integrator must take this into account. This may be done by utilizing
for the rectangular scheme. The ratio of the error terms in the two
methods is of the order of Ax.

In general, some of the successive Ax inputs to an integrator through­
out a number of integration cycles will be zero. For trapezoidal integration,
the error of approximation to the integral is less for the trapezoidal than
an additional register as part of the integrator. This register, Yu accumu­
lates the quantity

(yt)i = yn + V i (A y) . (8-6)
β = η + 1

where yn is the value assumed by yi when the last non^ro dx input,
(Ax)n+u was received and X S = n + i (Ay), is the sum of all the dy inputs
entering the integrator after y« is set into the Yt register. When a nonzero
dx input occurs, the quantity in the Yt registe (yOi is either added to, or
subtracted from, the contents of the R register, in accordance with the
sign of the dx input. Thus, the value of y integrated is the average value
of y in the region between the nonzero dx inputs rather than the value
at either end-point. When an integrator's operation is described by Eq.
(8-6), it is said to be operating in the interpolative mode, this name
referring to the fact that Üie value of y used over an integration interval
is obtained by interpolating between the values of y at the end-points.

8.3. DIGITAL INTEGRATORS 467

8.3.1. EXAMPLE OF OPERATION OF A DIGITAL INTEGRATOR

The following example illustrates the operation of a digital integrator,
utihzing a rectangular integration formula. It is assumed that the dz out­
put of an integrator (with a sign reversal) is used as the dy input to the
same integrator. In this case

dz = — zdx

or
dy = —ydx.

(8-7a)

(8-7b)

The solution of Eq. (8-7) is y = e-^. Since, for ;c = 0, = 1, the
initial value in the Y accumulator must be 1*. Table 8.1 shows the
approximate values of generated by an integrator using a rectangular
integration formula. (To simphfy the description, it is assumed that the Y
accumulator has a precision of only 1 part in 16.) Figure 8.7 shows the

12 16 20 24 28 32

2^

FIG. 8.7. Generation of e - ^ by a digital integrator

function y = e-", and also the values as generated by the integrator. It is
apparent that the error in the generated function is essentially less than
the height of one increment. When accumulators of greater capacity are
used, this increment becomes of less significance. In other words, the
accuracy of the digital integrator can be extended indefinitely, theoretically.

8.3.2. RouND-oFF ERROR IN A DIGITAL INTEGRATOR

The R register, whose capacity is iV = 2*̂ , accumulates a sequence
riiy n2, . . . Hfc where | | < N/2, In an integrator employing rectangular
summation, Δζ is the scaled down sum of the elemental areas yi Δ Λ (see

* There is an initial error of magnitude since the largest number the Y accumula­
tor can hold is 1 - 2-*» and in this case, Λ = 4.

468 8. THE DIGITAL DIFFERENTIAL ANALYZER

TABLE 8 . 1 .

R dy

0 1 . 0 0 1 5 0

1 0 . 9 7 1 5 1 5

2 0 . 9 4 1 5 3 0

3 0 . 9 1 1 5 1 3 - 1
4 0 . 8 8 1 4 2 7

5 0 . 8 6 1 4 9 - 1
6 0 . 8 3 1 3 2 2
7 0 . 8 0 1 3 3 - 1
8 0 . 7 8 1 2 1 5
9 0 . 7 5 1 2 2 7

1 0 0 . 7 3 1 2 7 - 1
1 1 0 . 7 1 1 1 1 8
1 2 0 . 6 9 1 1 2 9
1 3 0 . 6 7 1 1 8 - 1
1 4 0 . 6 5 1 0 1 8
1 5 0 . 6 3 1 0 2 8
1 6 0 . 6 1 1 0 6 - 1
1 7 0 . 5 9 9 1 5
1 8 0 . 5 7 9 2 4
1 9 0 . 5 5 9 1 - 1
2 0 0 . 5 4 8 9
2 1 0 . 5 2 8 1 7
2 2 0 . 5 0 8 2 5
2 3 0 . 4 9 8 1 - 1
2 4 0 . 4 7 7 8
2 5 0 . 4 6 7 1 5
2 6 0 . 4 4 7 2 2
2 7 0 . 4 3 7 2 9
2 8 0 . 4 2 7 4 - 1
2 9 0 . 4 0 6 1 0
3 0 0 . 3 9 6 1 6
3 1 0 . 3 8 6 2 2
3 2 0 . 3 7 6 2 8

Fig. 8.5). In a machine with a binary transfer system Δζ is considered
positive in a period when register R overflows and zero otherwise. During
the /th processing of an integrator, [rii -f (N/2)]* is added to register R,
leaving in it some quantity TÍ . If register R were of unlimited capacity, the
number r« which it would contain during the /th processing would be

* The particular type of integrator being described here is one in a system with
binary communication between integrators (see page 464). This accounts for the

term Ν/I.

25x e-aJ 24y

8.3. DIGITAL INTEGRATORS 469

r« = Γ ο + ^ (Πι + N/2).
i = 1

= r„ + + I n..

(8-8)

(8-9)
y = 1

Letting [Y stand for "integral part of," i.e., the sum of the overflows pro­
duced during / iterations

The Δζ contribution during the /th step, namely [riu/NYi - [ru/NYi-i
is either 0 or + 1, and a convenient general expression for Δζ is

ΔΖ = 2 I
Summing the unit increments, AZi

Tu Tu

i L Ν J i - Π)

Σ--{Σ[̂ -];-Σ[̂]:_.}-Σ'«-'
i = 1 1

fc - 1

Since O ^ (Γ η) Ο = Γο < iV, [TJNYQ - 0. Also, substituting the right hand
side of Eq. (8-10) into Eq. (8-14) yields

Substituting the value of (r„)fc given by Eq. (8-8)

(8-15)

(8-16)

(8-17)

470 8. THE DIGITAL DIFFERENTIAL ANALYZER

I = 1

2

j = 1

where e = (2/N)(ro - is the round-off error. To determine its upper
bound, consider its absolute value \e\

Since |ro - rjc\ < N, \e\ < 2. If initially the contents of register R are set
equal to N/2

Since 0 ^ r, < \N/2 - ^ N/2 , and

k i ^ 1.

8.3.3. CHOICE OF INTEGRATION FORMULAS

In a binary transfer machine, the numbers rii which are added to the R
register are given by rii = yi AJC{ where AJC = i t 1. During the /th iteration,
the quantity added to register R is (yt άχι + N/2). If Δ;τ = - f 1, the con­
tents of Y are added to register JR, but if AJC = - 1, the A^'s complement
of y is added to register R, i.e.,

r, = Γ ί _ ι + (yt-f N /2) if AJC* = - f 1 (8-22)

r, = r i _ i 4 - N - (y i + iV/2) if AJC* = - 1

= (- y t + iV/2). (8-23)

Equations (8-22) and (8-23) may be written in the generalized form

η = n.i+N/2-hyAXi (8-24)

If in Eq. (8-19) rij is replaced by y i AJCÍ

2)AZ. =-L·^y,^, + e. (8-25)

8.3. DIGITAL INTEGRATORS 471

Let us consider the nature of YI, the number to be added to register JR.
If the initial value of Y is YO, and if during the /th cycle, there IZ an incre­
ment, ^YU as well as a unit increment, A;Ci, then the following general ex­
pression may be written

Í - 1

yi (8-26)
Í = 1

where the term F(^Xi)^yi indicates that yi (the current value of y) may
be a function of the increment in x, as well as the increment in y .

Four simple possible choices for Fi^xO are

Case 1:
F(AJCi) = 0 (8-27a)

Case 2:
F(AXi) = 1 (8-27b)

Case 3:
F(^Xi) = 1 if ΔΛΤί = -t- 1)

\ i.e., F (A^,) (1 + Δ ^ Ο
= 0 if ΔΛ:< = - 1) (8-27C)

Case 4:
F(AXi) ^ % (8-27d)

If the value of F(/^i) for each of these cases is substituted into Eq.
(8-26), the following exp

Case 1:
i -

yi = yo -f

Case 2:

y< yo +
j =

Case 3:

i -
yi = yo +

essions for y» are obtained

^YJ -f-

(8-28a)

(8-28b)

Ay) + Í4(l -f AjCi) Ay< (8-28c)

472 8. THE DIGITAL DIFFERENTIAL ANALYZER

Case 4:
i - 1

y. = yo+ 2) Δ /̂ + ^ Δ̂ *· (8-28d)
i = 1

For case 1, the value of y i is that at the end of the (/ - l) th iteration
cycle (which may be referred to as "old y ") . For case 2, the value of y^
is that at the end of the /th iteration cycle ("new y ") . For case 3, yi is
equal to "new y " for + Ax and "old y " for - AJC. Case 4 provides for
linear interpolation.

8.4. Structure of α Digital Differential Analyzer

There are several levels of abstraction and organization on which to
functionally describe a digital computer. For example, we may consider
such a machine as a "black box" containing a set of switching elements and
bistable-state storage elements. Its functional organization can be com­
pletely specified by stating how its elements are interconnected. To specify
its functional state requires, in addition, a description of the current state
of its storage elements.

The mechanics of solving a mathematical problem, or processing data,
in general, consists of translating given initial information by prescribed
rules to a more useful form. The computer in a sense does not create
any new information, i.e., information not inherent in the original data.
It may be considered both a computational operator, performing arithmetic
and logical transformations, and also a communication system, since it
accepts input data and transmits selected output information. The funda­
mental process of coding, by which information is translated by specified
rules from one form to another, enters into both areas. In a computer,
any of innumerable coding schemes may be used to convert input data to
a form more appropriate for the machine's structure; also to convert
results to a form called for by the end use. In any communication system,
coding may be used to improve the probabihty of correct detection of
information after transmission over a noisy channel, while within a
computer special codes may be used to detect and correct errors generated
either in arithmetic operations or data transfers (see Section 9.2).

In preceding descriptions, integrators were spoken of as distinct
physical entities. However, though it is convenient to consider the integrator
as an operational entity, in many digital differential analyzers, namely those
with completely serial organization, an integrator does not exist as a
distinct physical entity, as in mechanical and electronic analog differential
analyzers. Nevertheless, even in this case, one can think of the machine

8.4. STRUCTURE OF A DIGITAL DIFFERENTIAL ANALYZER 473

as having several units comparable in function to mechanical or electronic
integrators. These units are capable of being interconnected as far as
information transfer is concerned in such fashion that they will solve any
problem that can be solved on a differential analyzer. The digital differen­
tial analyzer acts as a pulse coded analog of any physical system under
investigation and is similarly constrained in its behavior. The rates of
mechanical shaft rotations in a mechanical analog computer are repre­
sented in the digital differential analyzer by the repetition rates of electrical
pulses, and angular or linear displacements by the contents of storage
registers which accumulate these pulse inputs.

In a completely serial digital differential analyzer, all R and Y accumu­
lators are mechanized as circulating registers. Specifically, the various
integrands can be stored as magnetizable cells on the surface of a dynamic
magnetic store. Each bit of each integrand is operated upon serially as it is
read from the store. The circuits controlled by the variable of integration,
which cause the transfer of data to the R accumulator, are time-shared
among all the integrators. All of the arithmetic and control operations to
be performed on an integrator are effected by signals from different parts
of a gating network which, in turn, receive their signals from the control
and read channel flip-flops. Only one arithmetic unit is required, for
after each binary place of an integrator is operated upon, the result of
that operation is sent to the store, leaving the computation and control
circuits free to operate on new information being read from the store.
The manner in which information is processed in a serial digital differen­
tial analyzer is presented in Fig. 8.8 and the discussion following.

The computation and control center, shown in Fig. 8.8, processes all
information within the machine, and effectively achieves the only arith­
metic functions required in a digital differential analyzer, namely, addi­
tion and subtraction. It receives signals from the storage synchronizing
flip-flops, and also from the arithmetic and control flip-flops. From these,
new signals are generated which are either recorded in the store or used
to set arithmetic and control flip-flops. Of the many possible combina­
tions of input signals, only those which represent the operational steps
required in a differential analyzer are permanently wired into the gating
network. As a result, it is not necessary to instruct the machine in the
details of how to solve a problem, but only to insert the initial conditions
into its store. A general purpose (GP) type of digital computer has a
central arithmetic unit that must be used in solving a variety of problems.
Therefore, to solve a specific problem, a program of instructions as well
as initial numerical values, must be entered into its main store.

In a machine of this type, flip-flops are employed for several pur­
poses: (1) to provide distinct time signals, (2) to facilitate the synchro-

474 8. THE DIGITAL DIFFERENTIAL ANALYZER

Magnetic drum memory

Record Read

Power amplifiers

Read

Voltage amps

Synchronizing FF's

new Y
n e w / ?

new dz

Computation and
control center

Gating
network

T T T
Arithmetic and

control FF's

old Y
old R

(Contents of dz
storage for
inspection)

FIG. 8.8. Information flow through a completely serial digital differential analyzer
(external inputs and outputs not shown)

nization of information from the memory with the computer's clock, (3)
to control the arithmetic and logical operations performed in the com­
puter, and (4) to provide time delays for carries in the adders.

In a completely serial machine, only one digit of one integrator is up­
dated at a time in the computation and control center, and so it is necessary
to provide a means for storing the other bits of that integrator, and the
bits of all the other integrators. Each integrator is operated upon in
sequence and in a cyclical manner: integrator / - f 1 is always processed
following integrator /. When this type of operation is used, the fixed delay
or recirculation type of memory is practical for a digital differential analy­
zer. Completely serial DDA's have used magnetic drums or disks for the
main store because of the combination of economy and reliability they
afliord. However, when the integrator registers are organized serially on a
drum or disk, the iteration rate, i.e., the frequency of processing of each
integrator, is limited by the rotational frequency (usually somewhere be­
tween 80 to 160 rev/sec). Also, there may be diflaculties in addressing inte­
grators, as brought out at the end of this section. When these limitations
cannot be tolerated, DDA's can be mechanized with static stores and vary­
ing degrees of parallel operation (see Section 8.11).

8.4. STRUCTURE OF A DIGITAL DIFFERENTIAL ANALYZER 475

Because the access thne (i.e., the time required to obtain a specified
word from storage) is variable in a dynamic magnetic store, depending
on the word's position relative to a reading head at the time the word is
called for, there is a distinct disadvantage in its use as the main store
of a GP computer. However, the organization and control of the program
in a DDA is such that a dynamic type of store can be used in what
amounts to a zero access time mode of operation. This type of organization
leads to a simple and elegant machine that consists mainly of passive stor­
age elements (magnetizable cells) and in which the number of actual com­
puting elements can be kept to a minimum. Actually, all that is required
besides the storage registers are some relatively simple adders, counters,
and some form of control. Because of the serial type of operation used,
the adders can be relatively simple.

The signals read from the store are not of a suitable amplitude or
shape to be processed directly by the gating network. Consequently, these
signals are amphfied and restored to rectangular pulses before entering the
network. Each read channel consists of voltage amplification and shaping
circuits and a flip-flop that synchronizes data read from the store with
the clock. Each record channel has voltage ampUfication circuits, foUowed
by a power ampUfier which drives a magnetic recording head.

During each bit period of the time interval when the contents of a
particular integrator (or similar type of operational unit that may be in a
DDA, e.g., decision unit, multiplier, etc., described later in this chapter) are
read out of the long delay lines, the last recorded output of some opera­
tional unit can be read out of the Ζ Une. This Une, we recaU, is a short fixed
delay store which holds the last recorded output of each operational unit.
Information in the Ζ Une is recirculated at aU times except when new
information generated by an operational unit replaces the preceding value.

If the number of operational units in the computer is equal to or less
than the number of bits defining the length of an operational unit, a single
addressing channel is suflScient to hold each marker required to indicate
the pulse time when the output of a particular operational unit is available
from the Ζ Une. The information in the address channels is used as
foUows: When initially filUng the computer, I's are placed in those posi­
tions in the address channel which correspond to pulse times at which
inputs to be routed to a particular operational unit are available from the
Ζ Une. This information is used to control coincidence gates which wiU
admit information from the Ζ Une at the specified time. The address
channel achieves the same function as the physical wiring of a plugboard
used to connect operational units in an analog differential analyzer.

A convenient way of utiUzing the address channel is to read from it
during each time interval the marker bits that wiU cause the pick up of

476 8. T H E DIGITAL D I F F E R E N T I A L A N A L Y Z E R

Address channel 1 An M„-||

1 Rn 1 Rn-\\Rn-z\

1 rn 1 Κ/,-11 rn-z 1

lo^/Hir^-zi

¿

Time

FIG. 8.9. Relative locations of address decoding information and
other data in a serial D D A

A major difficulty arises in a completely serial DDA when there are
more operational units than bits per register, because the marker system
for Δζ selection requires a marker position for each Δζ. When several ad­
dress lines are required, each can be associated with one of several read
heads so stationed along the Δζ hne that they scan aU Az's in one word
time. (For high-density recording the close head spacing required may not
be reaUzable, so several Δζ lines may be used). The possibihty of simul­
taneous inputs from the Δζ stations complicates matters too. (Also, the
reader may reflect on the additional encoding and decoding required to
channel a designated Δζ to the proper input or combination of inputs of an
operational unit). For further comments on this problem see Sections 8.10
and 8.11.

8.5. Preparation of Problems for α Digital Differential Analyzer

8.5.1. I N T R O D U C T I O N

A digital differential analyzer can be used to solve an ordinary dif­
ferential equation of any order or degree, hnear or nonlinear, or a simul­
taneous set of such equations. It can also be used to solve integral equa­
tions, transcendental algebraic equations, and simultaneous sets of such
equations. Actually, any problem which has a solution that is also the
solution of a set of nonsingular differential equations can be solved on a
digital differential analyzer provided that the machine has a suflBcient
number of components of two types, adders and integrators. A principal
advantage of the DDA over the general purpose arithmetic computer as
an engineering computing aid is its more direct, simple, and intuitive
approach. With a DDA, differential equations need not be reduced to

the dz's required as inputs to the operational unit that wiU be processed
during the succeeding time interval. This is shown in Fig. 8.9.

8.5. PREPARATION OF PROBLEMS 477

8.5.2. MAPPING

Mapping consists of specifying how the operational units in a machine
should be interconnected so that the variable or variables of interest are
generated within the system. The value of these variables as a function
of the independent variable represents the solution to the problem being
investigated. The desired interconnections between operational units is
usually expressed by means of marker code bits inserted in that part of
the store reserved for this purpose (see Section 8.4). The actual inter­
connection is performed by logical decoding networks in the computer's
control circuitry. During computation, information is transmitted between
integrators in the form of incremental changes in variables. The source of
the dx input may be the output of any integrator as well as the computer's
internal clock, the empirical data received from external sources like
paper tapes, magnetic tapes, etc. The dy input may also come from any
of these sources. Also, a d;c or a dy input may consist of the sum of out­
puts from several sources. Though adders can be provided to sum both
dx and dy inputs, for reasons of design simphcity and practical considera­
tions, dx inputs are limited usually to one or two, while several dy inputs
are permitted. It can be shown that any ordinary differential equation
can be so mapped that more than one input on a dx input hne is never
needed. On those occasions where it is convenient to use the sum of two
variables as a dx input to a particular integrator, the summation may be
performed prior to transmission to the integrator by means of a servo
adder (see Section 8.7).

To estabUsh the interconnections required to generate the solution
of a given problem, a procedure like the following may be used: (1) If
necessary, reduce the problem to a set of differential equations. (2) Isolate
the highest derivative of each dependent variable by putting it on the left

difference equations before computation can be initiated. Instead, pro­
gramming a problem involves only three steps: mapping, scaUng, and
coding. Mapping, which consists of specifying how the operational units
are to be interconnected, and scaling are discussed in the paragraphs
following. Coding will not be discussed because it is routine and consists
of detailed procedures which differ appreciably from one machine to
another.

Any continuous function required in the solution of a problem can
be generated within a DDA by suitably interconnecting a set of integrators
to solve an auxiliary differential equation whose solution is the required
function. Provision can also be made for inserting empirical or discon­
tinuous data into a DDA.

478 8. THE DIGITAL DIFFERENTIAL ANALYZER

side of the differential equation and all other terms on the right.*
(3) Assume the highest derivative is known, and by integrating it, generate
all lower derivatives required in the problem. (4) Combine the variables
on the right side of the equation as indicated and use this sum as the
source of the assumed highest derivative. This procedure is illustrated in
Fig. 8.10 where the equation

a(Px/df + bdx/dt + ex = 0 (8-29)

is solved by double integration of the expression

(Px/dfi = - (b/a) dx/dt - (c/a)x.

FIG. 8.10. A mapping for solution of the equation:
a d^x/dt^ + b dx/dt 4- cjc = 0

In Section 8.3, a trapezoidal and a rectangular integration formula
were considered, and in Section 8.3.3, certain variants were described.
We will continue next with some comments on how the choice of a rec­
tangular formula or an interpolative or extrapolative form of the trape­
zoidal formula is influenced by the assignment of integrator numbers,
when integrators are processed sequentially in a common arithmetic unit.

* This may not always be possible, as, for example, in the case of certain trans­
cendental types of equations, where the highest order derivative might appear
alone on one side of the equation, and also be the argument of some function on
the opposite side. Nevertheless, if the equation does have a solution, the machine
can be programmed to find it.

8.5. PREPARATION OF PROBLEMS 479

where yn-i is the value that was held in the Y register when the last non­
zero dx input, (Ajc)n+i, was received.

The following rules may be used in assigning integrator numbers and
modes: (1) The dx input to each integrator should be the machine inde­
pendent variable, Δί, or the output of a smaUer numbered integrator.
(2) Whenever possible, the dy input should be Δί or the output of a
smaller numbered integrator. Integrators so programmed should be as­
signed the interpolative mode. (3) When the dy input is the integrator's
own output or the output of a higher numbered integrator, the extra­
polative mode should be used. (4) For multiple dy inputs, aU of the
inputs should come either from sources as in rule 2 or, as in rule 3, i.e.,
unmixed, and the respective mode of integration should be used. (5) The
inputs to an adder should come from smaUer numbered integrators.
(6) Use of a digital servo (see Section 8.7) may require violation of

(This assumes that a machine provides a programmer with the choice
of integration formula to be used in each integrator—which is not always
the case.)

The assignment of integrator numbers determines the order in which
each integrator will operate in an iteration period of the computer. Each
iteration begins with operations on integrator number 1, followed by
operations on higher numbered integrators in ascending order. The assign­
ment of the modes of integration is determined by the flow of information
indicated by the mapping, taking into account the order in which the
integrators are operated upon.

The interpolative mode gives greater accuracy only when the dy inputs
are integrator outputs that have occurred in the same integration period.
The solution of most problems requires the frequent use of integrator
hook-ups in which some of the dy inputs are integrator outputs that have
occurred in the preceding integration period. Therefore, when trapezoidal
integration is to be performed and the dx input is (Ajc)t, the y value to be
integrated must be predicted by an extrapolation of the (Ay)i_i input.
The simplest extrapolation is a Unear one, and an integrator performing
such an extrapolation is said to operate in the extrapolative mode. An
integrator operating in this mode functions as one in the interpolative
mode, except that the quantity accumulated in the Yt register during the /th
period is

i - 1

(yOi = yn-i + ^ 2) ^t^y^i-^ (8-30)

480 8. THE DIGITAL DIFFERENTIAL ANALYZER

some of the preceding rules, but the amount of violation should be kept
to a minimum. (7) For multiplication of two variables, both integrators
should receive their inputs from smaller numbered integrators.

8.5.3. SCALING

Any computing machine has a limitation in the magnitude of the
numbers it can handle. A desk calculator, for example, has an accumulator
register of fixed size. An electronic analog computer operates over some
limited voltage range. A mechanical analog machine has physicaUy Umited
motions. A primary purpose of scaling (see Section 6.3, also) in any com­
puter is to assure that intermediate results stay within specified ranges
during the running of a problem. In a digital machine, this means the
capacity of the registers must not be exceeded. It is also important to
prevent crowding of results into a smaU segment of the numerical range of
the registers (usually centered about zero) with an accompanying loss of
significant digits, and in a DDA we must prevent the output of any oper­
ational unit from being systematically hmited to insignificant changes.

The problem of scaling a DDA is similar to that of scahng an analog
differential analyzer. Control of the scale may be achieved in a number
of ways: by providing a facility that aUows a choice of the number of sig­
nificant digits employed in any given integrator, the use of constant multi­
pliers, and digital servos with gain (see Section 8 . 7) , etc.

A logical first step in scahng a problem is to estimate the maximum
values each of the variables is likely to attain during the course of a com­
putation. The more accurate this estimate, the better the solution. If the
estimate is too low, integrators wiU overflow, and the problem will have
to be rescaled. If the estimate is too high, more significant places will be
used than required and hence it wiU take longer than necessary to obtain
a solution. Of course, it is desirable to have all scales as great as possible
for maximum accuracy.

8.5.4. SCALING RELATIONSHIPS WITHIN AN INTEGRATOR

Although a scale factor can be any number within a machine's range,
restricting scale factors to integral powers of the machine's radix allows
the product of scale factors, or a scale factor and a problem value, to be
obtained by summing exponents. For a binary machine, the characteristic
equation of an integrator is Δζ = y Ax/l''^ for an integrand register of
rii bits. Since each machine variable is a product of a problem variable
and a scale factor, a similar relation holds between the scale factors

= · · (8-31)

8.5. P R E P A R A T I O N O F P R O B L E M S 481

and + ni = 5^ + S^,. (8-32)

Let the estimated maximum value of the integrand be < 2*̂ *,
where rrii is the smallest integer satisfying the relation. Therefore, the
capacity of the integrand must be · 2̂ "*. Accordingly, the second rela­
tion that must be satisfied is

(Sy + nii) ^ Hi ^ Ν (8-33)

where is the maximum number of bits per accumulator (a characteristic
of a particular machine design).

Equation (8-32) may be written
S^-S,= n,- Sy. (8-34)

Equation (8-33) may be written
mi < (rii-Sy). (8-35)

It follows from Eqs. (8-34) and (8-35) that
(S , - 5 ,) ^ m,. (8-36)

All the variables contributing to a particular input must be at the
same scale. For example, all the dy inputs to a particular integrator must
have the same scale. When considering the interconnections between
integrators, it is also apparent that if a dz output is used as an input to
another integrator, then, in general, the two must be of equal scale.
However, the same variable may be treated as having a different scale at
input and output, for special purposes.

8.5.5. S C A L I N G R E L A T I O N S H I P S F O R A S E T O F I N T E G R A T O R S

We niay distinguish between two sets of criteria to be satisfied in
scaling. The first consists of satisfying the relations in Eqs. (8-32),
(8-33), and (8-36), for all integrators, and thereby obtaining relative
magnitudes for all the scales (principally from Eq. (8-36). The second
consists of estabHshing a definite value for one of the scales. This will
depend principally on the accuracy and computing speed desired. Among
other factors that may influence the choice is the fact that some variable
may require a certain minimum scale for a required accuracy. The accuracy
with which maximum values of the integrands are estimated and the
efficiency of scaling are primary factors in determining how effectively the
machine's precision and computing time are utilized.

Part of the difficulty in scaling results from the fact that the scaUng
relations involve inequalities, as shown in Eqs. (8-33) and (8-36). In
general, there are a number of sets of scaling factors that will satisfy a
particular hook-up of integrators. A trial and error approach to satis-

482 8. T H E DIGITAL D I F F E R E N T I A L A N A L Y Z E R

faction of the constraints on scaling imposed by the machine and the nature
of a problem can be very tedious for problems involving large numbers of
integrators. However, an optimal set of scales can be produced systemati­
cally by a method in which these constraints are organized in a matrix form
(see Gill [1959]). Once the scaling has been performed, the scaling re­
lations can be used to determine the initial value of each integrand.

There are two possible criteria for fixing the scaling, and sometimes it
is impossible to satisfy both. On the one hand, one may require that a
particular variable have a specified precision, thereby fixing its scale and
estabHshing all others. On the other hand, one can fix the time of com­
putation which, in general, fixes the scale of the independent variable.
This points out a distinguishing feature of the DDA, namely the option
it offers of a direct trade-off between precision and solution time, one
being proportional to the other. For example, in increasing the pre­
cision from one part in 2^^ to one part in 2^\ the computing time required
would be doubled. The result of scaling a problem is a determination of
the register lengths for every integrator in the machine. Therefore, once a
problem has been correctly scaled, the computation may be stepped up in
accuracy or in speed by readjustment of all integrator lengths by the
same amount (within the capacity of the registers).

The steps involved in scaling a problem can be summarized as fol­
lows: (1) Estimate the value of m (see Eq. 8-33) for each integrand.
(2) From Eq. (8-36) estabhsh a set of inequaUties for all integrators,
involving scale differences. (3) Upon some basis, i.e., the accuracy
requirement of a particular variable, establish the numerical value of a
particular scale. This plus the information in item (2) should allow all
scales to be determined. (4) Equation (8-32) now permits the integrand
length in bits, η», to be determined for each integrator. (5) As a check,
we see whether Eq. (8-32) can be satisfied for each integrator. It may
be that it is not satisfied for all integrators, as a result of the fact that the
relations formed in accordance with Eq. (8-36) are inequalities rather
than identities. In this case, from one to all of the scale factors may have
to be changed. If possible, the scale on the independent variable should
not be changed, since the time required for the solution of a problem
depends on the scale (and range of interest) of the independent variable.
(6) Determine the proper scaled initial value of each integrand.

8.5.6. N O R M A L I Z A T I O N

Normalization insures that several of the critical integrands will be
full at their maximum values. Since the output rates of these normalized
integrators will be increased each pulse will represent a smaller value of
the original variable, and so the accuracy is improved. In practice, the

8.5. PREPARATION OF PROBLEMS 483

y A) ~ max X max V 1̂ max / maxl-^l^max«

(8-40)

Equation (8-37) may now be written in normalized form

dy\ = ^ i^cUax dYn + B|;c|2^ax d^n + C|^|«n,ax y η dXn + D^l^max Xn dXn^

(8-41)

The higihest order integrand is now automatically full at its maximum
value. At least one of the other integrands in the problem may be adjusted
to opthnum or full by suitable choice of \x\max' The problem will not
necessarily be run to the maximum value assigned to the independent
variable.

Normalization provides clarity and convenience in the scaling process.
In some problems it may be applied differently to different sections of
the problem, and usually enables constants and maximum values to be
adjusted so that scaling can be improved further.

8.5.7. OUTPUT MULTIPLIERS

Assume that the variable appearing in a y accumulator has a known
upper bound. If the absolute value of this upper bound is given by |a|,

scales of the final output variables usually determine the necessary scale
of the over-all problem and thus the running time. Normalization permits
a shorter running time with no decrease in accuracy by permitting a
decrease in the ratio of the input to output scales.

A simple procedure for normaUzing equations is as follows. Consider
the differential equation

dy = Ady^Bdy+-Cydx^ Dx dx. (8-37)

NormaUzed values of y" and χ are

^ y I max l-^lmax

where the denominators in (8-38) represent maximum absolute values in
the original units, and yn and Xn refer to normalized units for which the
maximum value will be unity.

We will derive next the equivalent normalized form of Eq. (8-37).
The appropriate normalization for the lower derivatives is obtained from
Eq. (8-38) by performing the indicated integrations

— (8-39)

file:///x/max'

484 8. THE DIGITAL DIFFERENTIAL ANALYZER

where 0 < α < 1, then the output rate of the integrator wiU not be
over a times the maximum rate. This causes a decrease in the efficiency
of operation of the integrator. Increasing the output rate could result
in better scaling. This can be done, within the limitations of the over-aU
scaling constraints, by restricting the capacity of the R register. In the Ben-
dix D-12 digital differential analyzer, circuitry is provided which gives the
user the option of muhiplying the output of chosen integrators by 1, 2, or
5, for the cases in which the bounds on Y are 1.0, 0.5, and 0.2, respectively.
For these cases the bounds and initial values of R are as shown below

Initial value ofR Output multiplier

X 1

X 2

X 5

Bounds on R

0 ^ r< < 1.0

0 ^r^< 0.5

0 < < 0.2

To = 0.5

To = 0.25

= 0.1

8.6. Decision Units in α Digital Differential Analyzer

It has been shown (in Section 8.3) how digital integrators may be
utihzed to generate approximations (to any precision desired) of analytic
functions. With a shght modification, one or both accumulators of a
digital integrator may be utilized to generate nonanalytic functions. An
operational unit used this way is sometimes referred to as a decision
integrator. However, a term like decision unit is better suited, since inte­
gration is not actually performed. The output of a decision unit may be
utihzed to generate nonanalytic functions to be used to represent Ihniters,
hysteresis, backlash, static friction, absolute values, inert zones, etc. It
may also be utihzed to act as an automatic switching control at some
point or points in the course of a computation.

Two types of decision units wiU be considered. Figure 8.11 shows a

gnUn
-dy.

Yj sgn // Ij Decision V

FIG. 8 . 1 1 . Decision unit (type 1)

8.6 . D E C I S I O N U N I T S 4 8 5

Decision —^Output

FIG. 8.12. Decision unit (type 2)

lator. Successive incremental inputs of the dependent variable are received
by the Y accumulator, and in any iteration period, say the /th, the incre­
mental output (Δζ)ί, is determined by the incremental input of the inde­
pendent variable, (Δχ)ί, and the quantity, yi, currently in the Y accumula­
tor. The two flip-flops shown receive and indicate the three possible
values of dx, namely + 1, 0 , and - 1. The output (Az)i is a function
of yi, in accordance with the following scheme

(1) If yi > h (Δζ). = 0

(2) If y. ^ - h (Δζ). = 0

(3) If yi = 0, (Δz)i = 0

(4) If 0 < yi < 1, (Δζ). = (Δ^).

(5) If - 1 < yi < 0, (Δζ). = - (Δχ)..

Note that rules (1) and (2) enable the decision unit to be used as a
limiter.

8 . 6 . 1 . E X A M P L E S O F U S E O F A D E C I S I O N U N I T

We will consider first some examples of how nonUnear functions may
be generated by the use of decision units: In Fig. 8 . 1 3 , a decision unit is
used to generate the absolute value of a function, u. Since, in any iteration
period the same increment is used both as a dx and a dy input, the
decision unit emits the absolute value of increments in u as its output, in
accordance with rules (4) and (5) of the preceding paragraph.

schematic of a decision unit which will arbitrarily be classed as type 1.
This type of decision unit is identical to a digital integrator with one
exception, namely, it has the capabihty of picking up as a dx input not
only the normal incremental outputs of operational units or input devices,
but also the signum function of the number in a y accumulator. If each
integrator is provided with this additional capability, it can be used either
as an integrator or decision unit. A more general type of decision unit,
referred to as type 2 , is shown in Fig. 8 . 1 2 ; it does not use an R accumu-

486 8. THE DIGITAL DIFFERENTIAL ANALYZER

L.J L . J L.J L . J L.J L . J

1 υ 1

-du
'du

FIG. 8 . 1 3 .

In Fig. 8.14 two decision units are used to generate the sawtooth

Θ

l . J l . J

1 Β 1

Θ

l . J l . J

1 Β 1

Γ - Ί Γ - Τ

k . ^ L . J

1 , 1

Γ - Ί Γ - Τ

k . ^ L . J

1 , 1

Γ - Ί Γ - Τ

k . ^ L . J

1 , 1

dB = sgn >i

FIG. 8 . 1 4 .

functions, A and B, also in accordance with rules (4) and (5) . In Fig.
8.15 a decision unit is used to generate a chpped sine wave by use of

1 1

. dFm
-d(b sine)
'd(b sine)

^(θ·) = / ^ 5 ί η β for ^ sin O < ¿7
^(·θ·)=<7 ^οτύ sine ^ σ

(l -c7+/>sin-e)

FIG. 8 . 1 5 .

8.6. DECISION UNITS 487

rule (1) , The quantity 1 - a is entered initially into the Y accumulator
so that y becomes equal to 1 when b sin θ becomes equal to α.

Next we will describe examples of how decision units may be used for
automatic switching operations. First, consider the case where it is
desired to stop all or part of a computation when a variable, F, passes
through zero, or exceeds specified limits. The decision unit acts as a
switch, in that its output is used to stop computation when F = 0, or
F > A. A mapping to achieve this is illustrated in Fig. 8.16. For F < 0,

Decision .dt
•dF

— V - ,

dt

A-=1/2

= 0 forF<0

FIG. 8 . 1 6 . Decision unit (type 2) controlled by a variable F

the output of h = since the output of the decision unit is - Δ ί .
Since the output of h = Δ ί / 2 , the output of Ic will be (- Δ ί / 2 4- Δ ί / 2) = 0.
(This is because Ic is programmed to operate as a servo adder, there­
fore producing an output rate equal to the sum of its dy input rates;
the internal operation of servo adders is described in Section 8.7).
For F > 0, the output of = Δ ί / 2 . Therefore, the output of Ic will be
equal to Δ ί . If the output of Ic is used as the independent variable
in certain parts or all of a problem, computation involving these
parts will cease when F passes through zero. Next, consider the case
where it is desired to stop certain parts of a computation and begin
another (i.e., drop or add terms in an equation) when a variable, F,
passes through zero, or exceeds certain Umits; or when some variable F2
becomes, say, greater than some other variable Fi. A mapping for the first
case is shown in Fig. 8.17. From the figure one sees that the switching
can be automatically achieved during the course of the computation if dt
is used to generate functions to be used in all parts of the compu­
tation, and dt — di to generate the functions to be used only during the
time when F < 0.

488 8. THE DIGITAL DIFFERENTIAL ANALYZER

Decision,. ,
L . J k . J

= 1/2 x "

•dF

Servo

Servo

dt/Z
dt

^dz^dt/Z for F>0
= 'df/2 for F<0

^df=df for F>0
= 0 for F<0

Ádt'dñ^O iorF>0
dfiorF<0

FIG. 8.17. Further example of use of decision units

8.7. Digital Servos

Though a separate accumulator or the Y accumulator of an integrator
can accept two or more incremental inputs and accumulate their sum, it
cannot generate a rate equal to the sum of the input rates. The addition
of rates and the generation of values of imphcit functions by function
inversion may be performed by using an integrator programmed to function
as a digital servo.

We wiU consider first how a digital servo can produce an incremen­
tal output equal to the sum of two inputs. An integrator may be pro­
grammed either as shown in Figure 8.19 (a) , referred to as a "hard"
or undamped servo, or as shown in Figure 8.19 (b) , referred to as a
"soft" or damped servo. The "hard servo" wiU be described first. Since
its operation is governed by the number system used, the description wiU
be related specifically to the number system usuaUy employed in a
DDA with binary communication. This number system, shown in Fig.
8.18, is described as circular because when an increment is added to the
representation of the maximum positive number, 1 - 2"'*, the result is the
representation of the maximum negative number, — 1, and conversely,
subtracting a single increment from - 1 produces 1 - 2"**. Ordinarily,
the occurrence of overflows (at the two overload points) is avoided by
accurately estimating the maximum value of each integrand in the scaling
of a problem. Also, if an overflow of the Y register occurs, the machine
is caused to stop. However, if one programs the machine to ignore the
occurrence of an overflow, and utUizes the sensitivity of the circular
number system at the overload points, an integrator can be used as a digital
servo.

Assume that an integrand contains the representation of 1 — 2"'* and

8.7. DIGITAL SERVOS 489

Binary number
Decimal

equivalent

Sign
position 2 - 1 2 - 2 2 - 3

1. 1 1 1 %
1. 1 1 0 %
1. 1 0 1 %
1. 1 0 0 %
1. 0 1 1 %
1. 0 1 0 %
1. 0 0 1 %
1. 0 0 0 ZERO
0. 1 1 1
0 . 1 1 0
0 . 1 0 1 -%
0 . 1 0 0 -%
0. 0 1 1 -%
0. 0 1 0
0 . 0 0 1
0 . 0 0 0 - 1

+0.5

Zero Overload
τ Τ point

-0.5

FIG. 8 . 1 8 . Digital integrator's circular number system that facilitates servo operation

that the independent variable is time. Under these conditions, the inte­
grator will produce a 1 at its output during each iteration period. The
sequence of I's thus generated represents the machine's maximum positive
output rate. If a single bit is added in the least significant bit, the value of
the integrand will change from 1 — 2""'* to — 1 and the integrator will
then generate a sequence of zeros, the maximum negative rate. As another
example, assume the Y register is initially set to the value - 1, aud the
diflierence of two quantities (a - b) representing some error signal is
accumulated in the register. If the value of the error is a small positive
quantity, e, the quantity stored in the register will be — 1 + e. The
machine interprets this as being close to the maximum negative number,
and the integrator output will be close to the maximum negative output
rate. On the other hand, if the error is negative, the integrand value will
he Í — e which the machine interprets as being close to the largest positive
number, and the integrator output is close to the maximum positive
output rate. Thus, we see that a suitable initial setting of the contents of
the Y register will cause the dz output to be the same as the signum
function of y , and, by a small change in the integrand, the output of an
integrator can be caused to vary from the largest positive to the largest
negative rate, or vice versa. The initial setting is equal to i> - 6"** or

490 8. THE DIGITAL DIFFERENTIAL ANALYZER

Servo

±Max

Τ — Θ Τ —
^ da /j< da

'db - db

FIG. 8.19. (a) Servo adder, (b) Damped servo adder

be obtained. The dx input to the integrator is designated as dt (t is time)
because it consists of a sequence of I's occurring at the iteration frequency
of the machine (which is also the maximum output rate that can be gen­
erated). Each occurrence of the dt input causes the contents of the Y
register to be added to R, We will assume that initially the inputs have
no effect on the integrand. (For a single input, in a system with binary
communication, this would mean a sequence of alternate I's and O's; for the
sum of two inputs to be zero in all iteration periods, their signs must
always be opposite.) If the initial value of the integrand is 1-2-**,
the dz output during the first iteration period will be positive. When
fed back during the next iteration period it changes the integrand from
1 — 2-** to — 1. As a result, the next output of the integrator will be
a negative increment which feeds back converting the value of the inte­
grand to 1 - 2-»». The value of the integrand will, therefore, oscillate
between - 1 and 1 - 2-»», and the output of the integrator will be a zero
rate. Now, assume that the da input and the db input each increase by a
single increment. This will cause the contents of the integrand to change
from 1 — 2 - " to — I t o — 1 + 2~**. The negative integrand results in a
negative dz output. When fed back during the next iteration period, it
changes the integrand from — 1 + 2~'*to— 1 (assuming a net input of zero
from da and db during this period). Under the same input conditions, the
integrand is changed from — 1 to 1 — 2"** at the end of the next period.
Thus, the feedback signals bring the integrand back to its initial condi­
tion, and a net output of two negative increments is produced, representing
the sum of the da and db inputs during this period. Since the servo can-

0.000 . . . 0, which represents in a complementary number system with a
radix b the maximum positive and negative values, respectively.

We will illustrate now how to generate a dz output equal to the sum
of two dy inputs, da and db. Assume these inputs are fed into a Y
accumulator. Normally, under these conditions, the quantity α + ft would
be accumulated. If, however, an initial value of 1 - 2"** is set into the Y
accumulator and the dz output of the integrator is fed back into its own
integrand, as shown in Fig. 8.19(a), a considerably different result will

8.7. DIGITAL SERVOS 491

not produce more than one output per iteration period, the correspondence
of the sum of its outputs to the sum of the da and db inputs, over η itera­
tion periods, depends on whether the sum is greater than n.

The output of the servo adder shown in Fig. 8.19(a) consists of
bunched groups of pulses. The damped servo adder shown in Fig. 8.19(b)
generates a steadier output rate at the cost of a delay between the input
and output. Since the damped integrator servo causes an exponential decay
of the error introduced, it may be used to smooth irregular inputs. This
action is evident if we consider the schematic of Fig. 8.19(b) and assume
the inputs on lines da, db to be temporarily zero. Then disregarding the
input hnes da, db, the schematic describes the familiar arrangement for
generating e-*, and, therefore, the value of the integrand (representing
the current error) will decay exponentiaUy. Since the output of the
damped integrator servo is a function of the error rather Üian on-off
(depending on the sign of the error) it may be used as a variable gain
device in a servo loop. When a servo error exceeding a few pulses is
allowable, the damped integrator servo should be used to decrease oscil­
lations occurring in the servo system.

As mentioned previously, a digital servo can generate only a single
output in an iteration period. The servo is said to be overloaded if the
algebraic sum of incremental inputs received in any interval is greater than
the maximum absolute value of outputs the servo can produce in that in­
terval, namely the sum of a sequence of ah positive or all negative incre­
ments occurring at the iteration rate of the computer. The net effect of an
overload is a delay between the time by which a number of inputs are
received and the time when the sum of the servo's outputs equals this num­
ber. The extent of the delay depends on the degree of overload and its
duration.

If, for a particular problem, the sum of the outputs of the sources
supplying a servo are greater than the fuU rate, the rate of the independent
variable must be decreased, while the dt rate is left undisturbed. Then,
the input rates to the servo will correspondingly decrease, allowing it
to keep up. To facilitate changing the rate of the independent variable in
aU parts of the problem, the incremental sequence, dt can be used as the
input to a constant muhipher. The output of this constant muhipher is
then taken to be the independent variable, and its rate can be changed
simply by changing the value of the constant in the multiplier.

It is at times useful to have a servo unit for the purpose of changing
the scale factor of a variable in order to facihtate scaling a problem. Such
a servo unit is often referred to as a servo with gain. An example is iUus-

492 8. THE DIGITAL DIFFERENTIAL ANALYZER

Servo e \ _

k<\

Γ3Γ
^dy

^dz^dy/k

FIG. 8.20. Servo with gain

sum of the dy inputs, where k is an arbitrary constant less than one. It
is clear from the figure that the servo unit will continue to generate
outputs until {kz-y) becomes equal to zero, at which time dz - {kz — y^
dt will become equal to zero. For this to occur, the sum of the dz outputs
must be equal to 1 /k times the sum of the dy inputs.

Digital servos are useful not only as adders to generate a pulse rate
equal to the sum of two or more rates, but for performing such operations
as function inversion and the solution of equations. Use of the basic digital
servo for these more complex operations requires the inclusion of other
elements into the feedback loop between the output of the servo and the
input to its own integrand. As a first example, consider the generation
of y as a function of χ where y is defined imphcitly as a function of χ by
P{x> y) - 0. Figure 8.21 shows the general operation of a servo in which

dx
dy

Servo
F{xVy

-dt

F(x,y)
Generator ^ dF(x,y)

or
F(x,y)dx

FIG. 8.21. Use of a digital servo for function inversion

dF(x, y)/dy must be nonzero and the output sign of the servo must be
the opposite of the sign of dF(x, y)/dx. Under these conditions, and if
there is not excessive delay in the feedback network, when incremental
changes in y cause F(x, y) ^ 0, the servo will generate incremental
changes in χ until F(x, y) = 0. The block labeled F(x, y) generator, refers
to one or more operational units that generate F(x, y) from dy and the
output of the servo, which is assumed to be dx. The functions may be

trated in Fig. 8.20. The sum of the dz outputs is equal to l/k times the

8.7. DIGITAL SERVOS 493

either algebraic or differential equations. The independent variable is
shown as y, but considerable judgement will be required to determine
which variable should be considered independent, and what sign should be
used in the servo. The method may be extended to simultaneous equations
in three or more variables. The decision as to choice of independent vari­
able, sign of servo, form of schematic, etc. will be correspondingly involved,
and one must also have an initial idea of the general form of the answer.
Also, it is assumed that correct initial conditions are known.

A number of inverse functions, Uke the square root, inverse trigo­
nometric quantities, a quotient, etc., may be generated more economicaUy
if digital servos are utiUzed in addition to conventional integrators. The
next example demonstrates this point. Assume the foUowing equation is
to be solved for θ

a = b cos θ (8-42)

where a and b are variables. Figure 8.22 shows an arrangement for

c o s e

C/B
asm Β 1

Θ

5
Θ

c o s e -

(σ-ócosB)^

dcosB

—db

da

- c o s - e db

FIG. 8.22. Generation of (c o s - i) utilizing a digital servo

generating 0. This is another example of the weU known boot strap
method: The output of the servo unit, assumed to be dO, is then used to
generate b cos Θ, which is fed back as one of the dy inputs to the servo
unit. At some point {a - b cos Θ) becomes equal to zero, at which point
the output of the digital servo becomes equal to zero. For this to have

The generation of dO by means of Eq. (8-46) requires generation of
several auxiliary functions (squares, square roots, quotients). As a result
much more computing capacity is required than if a digital servo were
utilized.

Figures 8.23(a), (b), (c), and (d) illustrate mappings which utilize
digital servos to generate functions involving a division operation. In each
of these examples, the inputs to the servo adders are like functions of
opposite sign which are derived from different points in the system. The
output of the servo, assumed to be the function required, is used in
generating one or both of the servo's inputs.

Both "hard" and "soft" servo action can be obtained regardless of
whether binary or ternary increments are used. Also, use of an integrator
is not essential, for servo action can be obtained from a single accumulator
by driving it to zero by means of a negative correction when it holds a
positive value and vice versa. The accumulator is initially set to zero and
during each iteration period it may receive one or more incremental inputs.
These are accumulated and, during each iteration period, the output of
the accumulator is a single increment whose sign is determined by the
current contents of the accumulator. This type of operation can be pro­
grammed in a specific machine only if there is provision for it in the
design of the machine. If decision units of the type shown in Fig. 8.12 are
provided in the machine, they, too, may be programmed to operate as
servos. The output of such a unit will be either positive or negative in
accordance with the sign bit as long as the contents are nonzero, and
zero when the contents of the accumulator have been driven to zero.

494 8. THE DIGITAL DIFFERENTIAL ANALYZER

occurred, the servo must, in fact, have generated the correct value of 8,
which now can be read as the value in the Y accumulator of integrator, I j •

To illustrate the economies effected by this procedure, consider how th~
above problem can be solved without the use of servos..Equation (8-42)
may be written

cos 8 alb

8 cos-1 alb.

Taking derivatives on both sides of Eq. (8-44)

- d (a/b)

(8-43)

(8-44)

8.8. Error Analysis for an Incremental Multiplier
When feedback loops are present in an integrator network, its analysis

becomes cumbersome because of the presence of remainders in the R

8.8. ERROR ANALYSIS 495

dA
(dA)/A

I/A dfServo (!)
:!:Max dA

A dA e
Servo ~

df
B

-dA
dB

±Max

(0) (b)

e,,[(Ad8)18 -dA
8 /

e""(-AIB)dB
AlB /

I
Servo <;>" J

:!:Max
L.

d(AIB)

d8
dB

df
d(AI8)
dA

(c)

-Adf>------......
----..~------dfe

A--....--III....------+--dA

Bfdf
B

----'IIIlI-o-----+--+--..........-dB
---....~--+--~-+---df
Servo
8f -A

(d)

FIG. 8.23. Generation of (a) d(l/A), (b) (dA)IB, (c) AlB, (d) A/B

registers. However, analysis is not too difficult for simple nonfeedback net­
works, e.g., the multiplication network shown in Fig. 8.24. Assume that dA

d8

A
dA

d(AB)
dA

B
d8

FIG. 8.24.

496 8. THE DIGITAL DIFFERENTIAL ANALYZER

and dB are each restricted to unit increments, and that the scales of the dz
outputs are the same (so that the dz outputs may be added directly), After k
iterations, the value of the summed dz outputs is (Eq. (8-25))

(8-47)

t - 1

If in Eq. (8-26) one replaces (Yo + Z dYj) by its equivalent yj-h

J = 1

'k

one can obtain the following expression for ZYjlUj
• = t

kZ (Yj-l + F(dX)j dYj) dXj
(= 1

(8-43)

The increment to the product A o Bo, which will be designated as ~P, is
the sum of contributions from both integrators (see Fig. 8-24).

(8-49)

(8-50)

~ {itl (Bj- 1 + F(dAd dBj) M j

+ jtl (Aj - l+ F(dBj) dAj)dBj} + el + e2

~ {jtl (B
j-ldAi + Ai - ldB j

)

+ itl (F (dA.) + F(dB.» dA. dB; } + el + e2 (8-51)

From the equalities

Ai = Ai- 1 + ~Ai

Bi = Bi - 1 + ~Bi (8-52)

8.8. ERROR ANALYSIS 497

i = 1

= (AjcBj, - ^ o ^ o) + ^ (^ (Δ / í i) + F(AB,) - 1) Δ ^ ί Δ Β ,
» = 1

+ ^1 + ^2 (8-56)

The round off errors βχ and 62 are unavoidable but we are interested in
considering what choices for F(Δ;Ci) wiU reduce the term Σ(F (Δ^^) +
F(ABi) — 1)Δ/4{ΔΒί, which may be considered as the error Ε in the
computation of a product, to zero in the general case. Corresponding to
the four choices for F(ΔJCi) described in Section 8.3.3, namely 1) F(AXi)

= 0, 2) F(AXi) = 1, 3) F(Δ;Ci) = % + % (AXi) and 4) F(Δ;Ci) = ^
are the following expressions for Ε

k

Case 1: Ε = - ^ AAÍ^BÍ ^ 0
< = 1

Case 2: Ε = ^ Δ ^ ί Δ ^ ί 0.
i = 1

Case 2 corresponds to a rectangular integration scheme using the new
value of y, i.e., yi. Two such integrators, interconnected as shown in Fig.
8.24, would generate

L{AB) = \Bi_i-l· (AB)i](AA)i + M i _ i + (Δ / 1) ί] (Δ Β) ί

= Bi^i(AA)i + Ai.i(AB)i + 2 (Δ ^) ί (Δ5)ί .(8-57)

it follows that

AiBi = Ai_iBi_i+ Bi-i^Ai + Ai-i ABÍ + AAÍ^BÍ (8-53)

Rearranging Eq. (8-53) yields

Bi^iáAi + ^ i - i A ß i = AiBi - Ai^iBi^i - AAÍABÍ (8-54)

Substituting the right hand side of Eq. (8-54) into (8-51)

Δ Ρ = 2̂ (AiBi - / l i - i B i - i - AAiABi)

+ ^ (F(AAi) + F(áBi)) ^iABi | + + 62 (8-55)

file:///Bi_i-l�

498 8. THE DIGITAL DIFFERENTIAL ANALYZER

From Fig. 8.25 it is readily seen that the error produced results from
counting the area (AA)i(AB)i twice.

BM

Case 3:

FIG. 8 . 2 5 .

£ = % X Δ / ί ί 2 Aß t + Vi Χ Δ Β . 2 A/4i

Since AAi^ = ABÍ^ = 1

£ = Vi Σ A ß i + % Σ Δ ^ ί ^ O

Case 4: £ = 0.

Case 4 corresponds to a trapezoidal integration scheme. Two such integra­
tors interconnected as shown in Fig. 8.24 would generate

MAB) = + 1/2 Δ^ΟΔΒί (8-58)

+ (Bi_i + V2 äBi)LA^

= Ai^i ABi + 5t_i AAi + AAi ΔΒ*.

The successive dy inputs are accumulated as before. However, during an
iteration period in which the dx input differs from zero, say the /th, the
quantity added to or subtracted from the contents of the R register is the
current contents of the Y register plus (Ay)i/2. At the end of the /th
period, the Y register holds yi = yi_i -f (Ay)i, but the quantity added to,
or subtracted from, the R register is y{_i + (Ay)i/2 when (Ax)i 0.

There is another case for which £ = 0, namely, if F(AXi) — 0 (case 1)
is chosen for one integrator and £ (A j c ,) = 1 (case 2) is chosen for the
other.

8.9. More Complex Operational Units

An important application of digital computers is the automatic gen­
eration of navigational data in vehicles traversing great distances under

8.9. MORE COMPLEX OPERATIONAL UNITS 499

conditions which make accurate determination of position, velocity, etc.,
at the rate required, difficuh or impossible by other means. A computer
can provide a high-speed link between measuring instruments and controls
which enable it to change its position in accordance with current require­
ments. The computer receives its inputs from such sources as radars, gyro
compasses, air speed indicators, roll and pitch indicators, barometric and
radar altimeters, etc. It transforms this data to produce outputs in the
form of control signals to the auto-pilot, automatic tracking signals to the
radars, display signals, etc. Derived quantities include present position in
terms of latitude and longitude, distance to destination, etc.

Essentially, the navigation problem consists of resolving a vehicle's
motion, as sensed by its instruments, along the axes of some chosen co­
ordinate system. The computational problem is, therefore, basicaUy that
of solving trigonometric and algebraic equations, plus the integration of
certain variables. The mathematical operations that will enter into the
computation may be classified as follows: (1) addition, subtraction, mul­
tiphcation, and division; (2) generation of trigonometric functions (which
may be restricted to generation of sines, cosines), and inverse trigo­
nometric functions; (3) integration; (4) simple function generation:
exponentials, absolute values, etc.; (5) analog-digital conversion, and
digital-analog conversion.

The computations necessary to derive the desired output quantities
may be performed either by an integral transfer (GP) computer or an
incremental computer. Both types have been buih for this function. How­
ever, the nature of the problem particularly lends itself to an incremental
technique, since the variables involved are, in general, continuous and
have limited rates of change.

Because of the high relative frequency with which the operation of
multiphcation is performed in this apphcation, it is important that an
efficient and accurate method of performing multiplication be provided.
The method of performing multiplication depicted in Fig. 8.3 (m) takes
two integrators and a total of four registers (two R and two Y registers) to
generate the incremental change in the product of two munbers. An
obvious way to increase the speed of multiphcation by a factor of two
would be to use two sets of integrators in parallel. This would require
additional R line and an additional Y line. Other approaches may be more
desirable. One alternative is to use a three hne structure as shown
in Fig. 8.26. This configuration may be arrived at by recognition of the
fact that the use of two remainder registers in the generation of a product
(or sum of squares) is redundant.

By providing for storage of the output of one of tiie Y registers (i.e..

500 8. THE DIGITAL DIFFERENTIAL ANALYZER

I 5
Ί

• dx^ -- dB

dy^^dA

'dx^^dA

dy^-dB

L .

FIG. 8,26. Block diagram of a three-line structure programmed as a multiplier.

the value of the sign bit) as well as for that of the R register overflow,
and by incorporating additional switching circuitry into the design, the
three register unit may be programmed to provide (in addition to a
product or sum of squares) both the integration of a variable and a servo
operation, as shown in Fig. 8.27. Specifically, registers Ya and R can be

dz-ydx
Γ"

5 -dx

'dy

S g n / 2
>2

-dF
- S g n / 2

FIG. 8.27. Block diagram of a three-line structure programmed as an
integrator and servo register.

organized to form a conventional integrator, and register YO can be used
as a servo register. The servo register may be used to store the value of
an input or output quantity in an analog-to-digital or digital-to-analog con­
version loop, as well as operate in a servo computational loop.

A useful operation which is utilized frequently in a class of naviga­
tional problems is that of rotation of a vector (see Fig. 8.28). This opera­
tion may be written as

A' = A cos θ Β sin θ

B' = Β cos θ - A sin θ

8.9. MORE COMPLEX OPERATIONAL UNITS 501

Β

5 '

or

A

FIG. 8.28. Rotation of a vector

dA = A d(cos β) + cos β + Ö d(sin Θ) + sin θ dB

dB' = Β d(cos θ) cos θ dB-A d(sm θ) - sin θ dA.

If only the two-line integrator structure were used, four integrators would
be required to generate the terms in each component of the vector. With
the five-line structure depicted in Fig. 8.29 all four terms, plus an output
rate equal to the sum of these four rates may be generated in one word
time. The increased capacity of the three and five line structure is paid for
by having to provide for more registers and associated circuitry in parallel.
However, the efficiency is greater than that of the two-line structure
because of the eUmination of redundant remainder registers (see Fig. 8.29).

Γ

dz - d(A cos θ -h Β sin Θ)

5

2

- dA
-d cos Θ
-d cos Θ
-d A

-dB
-d sin θ

-d sin Θ
•dB

FIG. 8.29. Block diagram of a five-line operational unit.

If, in addition to providing for storage of the output of one of the Y
registers (as in the three-Une structure), some of the registers in the

502 8. THE DIGITAL DIFFERENTIAL ANALYZER

8.10. Limiting Communication in α Special Purpose D D A

For a machine designed to solve only a particular problem (e.g., a
computer designed to operate in a specific control system as opposed to
one designed to compute solutions to a variety of problems), a saving
in equipment may be effected by restricting the communication between
operational units. Since no operational unit receives inputs from more
than a few, say five or six, of the other operational units, it is not neces­
sary for each unit to be able to scan the outputs of all other units. How­
ever, the problem of assigning operational units for the solution of a
large number of equations in such a way as to permit each operational
unit to receive all its required inputs can be a cumbersome, trial and error
task. Of course, the more limited the access to the Δζ store, the prob-
abihty of a particular desired input being available to an operational unit
(assuming all inputs to be equally likely), and the more formidable the
task of mapping (see Section 8.5.2).

In general, it may not be possible to assign operational units so that
the inputs required by each are available from the Ζ fine during the scan­
ning time Ti, If this is the case, one solution is to use so-called repeater
or relay stations as follows: Assume that after several "juggUngs" of
operational unit assignments, there is stUl some unit, /, which must
receive an input from unit m, but that the output of unit m is not avail­
able from the Ζ Une during the time interval Γ^_ι when unit / can receive
its inputs. If there is some operational unit, r, which can receive an input
from unit m, and whose output, in turn, can be picked up by unit /, then
unit r (programmed as a constant multipUer with k = \) can be used as
a repeater link. Preferably, unit r should be where it can pick up the most
recent output of unit m, and its most recent output should be available to
unit /. Whenever it is considered economical to limit communication in a
special purpose computer, both the specific mathematical formulation of
the problem and programming requirements must be taken into con­
sideration.

five-line structure are made capable of operating either as an integrand
register or a remainder register, and the required multiple incremental
storage is provided for each operational unit, it becomes possible to pro­
gram a single operational unit to operate also as follows: (1) to generate
both a multiplication and an integration, (2) to integrate two functions and
perform a servo operation, etc.

8.11. APPLICABILITY OF THE DDA 503

8.11. Applicability of the D D A

Various departures have been taken from the mechanization of a DDA
depicted in Fig. 8.8 for the purposes of improving computing flexibihty,
ease of programming and computing speed. Some variants in operational
unit structure for special purpose machines were described in Section 8.9.
Use of a static store for the Az's can alleviate addressing problems, de­
scribed in the preceding section and on page 476. Some recent designs, with
plugboard programming and higher iteration rates, will be mentioned
briefly. The CORSAIR computer (Owen et al [I960]) has an iteration
rate of 500/sec, obtained by use of a ferrite core store for Y, R and Δζ in
conjunction with a single time-shared arithmetic unit. In the TRICE com­
puter (Mitchell and Ruhman [1958]) an iteration rate of 100,000/sec is
produced by use of separate active-element registers and an arithmetic unit
for each integrator. In the SPEDAC-310 (Bradley and Genna [1962]) an
iteration rate of 1,000,000/sec is achieved by use of separate active-element
registers and a serial-parallel arithmetic unit for each integrator.

In control appUcations a computer must be able to analyze and gener­
ate data fast enough to keep up with changes in the physical environment
which it is monitoring and aiding to control. A computer's maximum fre­
quency of sine wave generation (in cycles/sec) is a convenient, though
approximate, guide to the highest frequency of change in a computed
function that can be accommodated for a second order system.

For a DDA, this upper frequency may be computed from the expres­
sion RI/2τΓ where R is the resolution and / the iterations/sec. (To compen­
sate for round-off and truncation error, the number of bit positions used in
the integrators may be greater than called for by the resolution.) For accu­
racies of . 01% and . 1 % the upper frequencies are .0016 and .016, respec­
tively, for a serial DDA with / = 1(F; .016 and .16 for a serial-paraUel
DDA with / = 103; 1 5 9 ^nd 159 for a parallel DDA with / = 10«.

For a GP machme of the IBM 7090 class, the upper frequency of sine
wave generation for an accuracy of either . 01% or . 1 % is about .1 to .3.
These ñgures are based on generating sin θ for aU values of θ defined by
the increments ΔΟ in the DDA. They are approximate since the multipli­
cation time varies with the number of I's in the multipUer and various op­
tions in programming details. The lower figures are for a three term
Chebyshev polynomial approximation to sin θ (see Section 6.2.5 and
Hastings [1955]); the higher figure is based on computing increments to
the sine and cosine, as in a DDA. For any significant problem the figures
for a GP machine would be considerably less since the arithmetic unit
would be available for the sine computation only a fraction of the total
computational cycle.

504 8. THE DIGITAL DIFFERENTIAL ANALYZER

For a high precision analog computer the upper frequency is about 3
at .01 % accuracy and in the neighborhood of 100 for .1 % accuracy. These
figures are only approximate guides because the upper frequency varies
with the nature of the over-all problem.

On pages 452-453, 476 and 499 certain capabilities of the DDA are
described. At this point let us consider briefly the outlook for machines
of this type. First of all, applicability of the DDA does not depend on
whether integration appears explicitly in a problem. The distinguishing
characteristic of this type of machine is that it operates in an incremental
manner, with limits in the size of these increments. Serial and serial-
parallel DDA's are economical to use in the control of systems where the
variables change only in a limited and continuous manner, e.g., in airborne
navigation and flight control, weapons control, missile guidance, the con­
trol of certain industrial plant processes. Outside of specialized military
applications, the use of incremental machines has thus far been limited—
for good reasons. In computing installations, much work does not require
solutions over a continuum, but for a small set of values of the input
variables; also, business accounting as well as other types of data pro­
cessing problems for which a DDA is not well suited (see Braun [I960])
must usually be handled. For problems calling for continuous solutions,
but not high accuracy, an inexpensive electrical analog computer is usually
more economical. In the area of real time simulation of high performance
systems, incremental machines competitive with the best analog computers
for high speed, high accuracy integration were not available until recently.
Now, a DDA with an iteration rate of 10^/sec is even adequate for faster
than real time (high speed) computation, so it can be used for making
predictions sufliciently in advance to allow corrective action.

8.12. Sources of Error
In any computing machine, errors may arise from two distinct sources

—those inherent in the nature of the machine and those pecuUar to a
particular problem. It is not always possible to isolate the source. Sources
of error in a digital differential analyzer which are inherent in the nature
of the machine are as follows: (1) round-off error (common to all com­
puting machines; (2) truncation error; (3) the logical characteristics
of computing algorithms used; (4) phase effect errors; (5) lags pro­
duced by feedback connections and serial processing of operational
units. The relative importance of each type of error depends on the
characteristics of individual machines, and special facilities, if any, that
have been incorporated into its design to minimize the effects of certain
errors. For example, a particular design may give the user the option of

8.12. SOURCES OF ERROR 505

using one of several integration formulas (see Section 8.3.3) according
to which he judges best for the solution of a specific problem.

For a general discussion of round-off error (common to aU computing
operations because of the finite length of numbers carried) refer to
Section 9.4. In an incremental computer there is a round-off error due
to the fixed length of the Y register, and because the remainder in the R
register is neglected in reading the current value of z. The magnitude of
round-off error assumes greater importance in problems where two
variables (w, v) are nearly equal and their difference is important to the
problem. In these cases, the equations should be expressed in terms of
u and U'V rather than in terms of u and ν separately. (In servo system
problems this may require solution of the open loop rather than the closed
loop.) Truncation error arises because higher order terms, as expressed
in a power series representation of y, are neglected in the integration
formula. For example, the rectangular integration formula assumes y is
constant during each increment of the independent variable, while the
trapezoidal takes into account only the first-order difference.

Phase error and its relation to the computing algorithm, certain types
of error resulting from the serial nature of the computer, and errors
produced in the generation of certain functions wiU be treated later in
this section. First, we wiU describe briefly certain errors which result
from the nature of the problem and the particular way it is programmed.

Sometimes an idealized model of a physical system may result in a
mathematical description which, in its deviation from a true physical sit­
uation, introduces troublesome anomalies. Examples of situations that can­
not occur physically are representation of an acceleration by a step func­
tion, or a force by an impulse function. In the case of static systems
discontinuities can arise, so generation of a solution may require intro­
duction of certain devices and/or approximations. It is usually helpful to
have information beforehand concerning the form of the solution and the
nature of the variables involved in the problem. Also, since the form of
equations can often be changed to better suit the characteristics of the
DDA, it is important that the user of the computer be as familiar with
the functional characteristics of the particular machine he is using as he
is with the nature of the problem he is trying to solve.

The mathematics of a problem may be set up in different forms,
arising from changes of variable and parametric methods. For example,
dependent and independent variables may be interchanged by means of
the relation

udv = d(uv) — V du.

There is, in general, more than one mapping of an equation or set of

506 8. THE DIGITAL DIFFERENTIAL ANALYZER

Σ dz

dt

Remainder
of

network

•

FIG. 8 . 3 0

that the dx and dy inputs of the integrator are the outputs of other op­
erational units in the hook-up used to generate a problem solution, and
that the dz output of this integrator feeds into the network. (Other in­
puts and outputs of the network are not shown.) The prime mover of the
network is the independent variable input dt.

If the scale of dt is increased, the scale of dx and dy and also the
length of the integrand register will be increased. If the length of the
integrand register cannot be decreased, (and it is assumed that the scales
of the integrators are such that the error contribution of each is the same)

equations that will generate a solution. One will not always be able to
predict whether one mapping has a significant advantage over another. A
good choice depends on the user's familiarity with the nature of the prob­
lem, his mathematical intuition, his analysis of the mapping to detect
sources of difficulty, and his ability to employ corrective measures to com­
pensate for errors peculiar to the mapping or logical structure of a com­
puter. There are cases where it is obvious that a particular mapping will
give trouble. For example, a mapping in which an integrand appears
containing 1/x cannot be used in the region where χ is small or zero,
since the integrand becomes infinite at JC = 0. In such a case an alternate
map may often be found which utiUzes a digital servo, and which can be
used in the region where χ is small.

In a complex problem, a careful arrangement of the order of the
integrators can be effective in reducing errors to much less than would be
the case if the integrators were arranged at random (see Section 8.5.2).

A change in scale of the independent variable necessitates changing
the lengths of all variable integrands and affects the scaling relation­
ships between the computer and external devices. Increasing the scale
factor of the independent variable (which decreases the size of the step
in the integration formula) makes a more accurate solution possible. Not
only is there a reduction in the integration step but also a reduction of
round-off error in all variable integrands, and a lesser effect from errors
introduced into the least significant digit position.

Consideration of Fig. 8.30 will be helpful in assessing the effect of
increment size on the output of an individual integrator. It is assumed

8.12. SOURCES OF ERROR 507

little can be gained by other scaling adjustments. If only the scale of dy
or dx were increased, when both inputs contribute a comparable error,
there would be no appreciable effect. Since an integrand register should
become as full as possible without producing an overflow, its length should
be decreased if possible (implying that, before the change, the position in
this register to the right of the binary point, at least, would always have
been zero). Although the length of the integrand register indicates the
degree of resolution to which a variable is accumulated, the computed
function may not be this accurate because various sources of error may
significantly degrade it. Nevertheless, precision can be used as a measure
of relative accuracy since increasing it will increase the accuracy; also,
where the contribution of error sources other than round-off and trunca­
tion error is negligible, the precision serves as a guide to the accuracy.

By efficient scaHng (including such devices as dividing a solution into
several parts, each with efficient scaling in a specified interval where one
or more variables varies over a wide range), normalization and combining
of constants, one can diminish the relative effect of errors. Devices which
increase the rate of an incremental output improve the accuracy of the
corresponding variable, though this is not generally true when servos are
used. To prevent overloading of servo adders, without reducing overall
accuracy, the rates of their inputs should be reduced, if possible, without
reducing the scale of the independent variable.

There is a type of error pecuUar to incremental computers, known as
"phase" error, which results from the relationship between the dx and dy
increment sequences. It may best be illustrated by specific examples.
Assume that in a computer with binary transfer the function y is constant
and Ax/At = 0. Since a zero-rate sequence in this type of machine con­
sists of alternate positive and negative increments, y will be alternately
augmented and diminished by a single increment even though, theoretically,
it should stay constant. It at each step Ax and Ay are in phase (i.e., of
the same sign), the following series of quantities will be added to the R
register: (y + Ay) Ax, — y Ax, (y + Ay) Ax, — yAx, . . . If ΔΛ: and Ay are
out of phase the sign of each term in the series will be changed. The net
result is a spurious introduction of AyAx (or - AyAx) every two steps of
the iteration, resulting eventually in a spurious dz output. The magnitude
of Ay may be one or more increments depending on whether it is gen­
erated by one or more integrators. For the special case of both ΔΛ: = 0
and Ay - 0, phase error may be eliminated by the following correction
scheme: If AXi^i is positive and AXi is negative, add - y i _ i rather than
— y i to the R accumulator. This scheme also tends to reduce phase error
when Ay 0. In another scheme, algorithm yt = y i _ i + (A y i _ i + Ayi)/1
is used so when the current and preceding inputs are opposite in sign, the

508 8. THE DIGITAL DIFFERENTIAL ANALYZER

value of y is left unchanged. The first of these schemes allows the genera­
tion of sin t, cos t without variation in the limits between which these
functions oscillate. However, if the second scheme is used as well, phase
error is introduced. Although various logical and programming devices
may be used to reduce phase error, none has been found to be the most
effective for all situations. Analysis of phase error is difficult because
it requires knowledge of the behavior of the dx and dy inputs at all times.

In a machine with binary communication (see Section 8.3) if the R
registers are left empty at the start of a problem negative increments
are generated initially by all integrators and this bias may significantly
affect the final result. A simple procedure that helps to compensate for
this effect is to fill some average value into the R register. A more
precise approach is to set R to an exact value. This value may be de­
termined by recalling that the value of each integrand represents an
accumulation of dz outputs from one or more integrators. If only one dz
is involved, the initial condition of the integrand can be computed to
more places than accommodated by the Y register, and the less significant
bits placed in the R register whose overflow feeds it.

In a serially-organized DDA a start-up error is also produced because
of a lag in the production of outputs by higher numbered integrators. In
other words, any integrator with an input from a higher numbered integra­
tor initially cannot pick up that output but receives from the Δ ζ store
instead a value which may not be valid (see Section 8.5.2). Thus, each
integrand may have an effective initial value which will differ from
the value called out in the coding of the problem. However, one may be
able to compensate for this effect by running the problem for several iter­
ation periods, and noting the value of the integrands at the end of each
period. An effective initial value can be derived from a smooth curve
fitted to these points. This information can be used to estimate the amount
by which the initial value placed in an integrand register should be biased
with respect to the integrand value on the coding sheet. The starting error
can also be materially affected by the assignment of numbers to each of
the operational units employed. Starting errors as well as phase errors
assume greater importance when the dz output of an integrator drives
other integrators which in turn may influence the first integrator's dy
input. In this case, particular combinations of sign conditions can force
the error farther in the same direction, producing a so called biased
round-off error. Starting and round-off errors in the variable integrands
are often of major importance in the overall error picture.

Often, errors may be produced which are pecuUar to the functions
being generated. For example, auxiliary functions well behaved throughout
the interval of interest can be generated with greater accuracy than func-

8.12. S O U R C E S O F E R R O R 509

tions witii discontinuities or excessive rates of change in one or more
regions. Another type of situation that can resuh in a sizeable error
is where there is a product of two variables, and the variables have an
inverse relationship to one another with the ratio of maximum to minimmn
values being large. A shnilar situation holds for the quotient of two
variables which vary in a direct relation. In each case special corrective
measures may be caUed for.

Functions of particular importance in navigation and guidance prob­
lems are the sine and cosine. We wiU consider next the nature of errors
pecuUar to generation of the sine. With the integrator hook-up of Fig. 8.3
(b) and a rectangular integration formula, the output of one integrator is

(Δ sin E)r « cos Ö

However, the precise expression for Δ sin d is

Δ sm ^ = sm ((9 + ΔΟ) - sin θ

= sin θ (cos AO - I) -\- cos θ sm ΔΟ

Replacing cos Αθ and sin Δ^ in the expression above by their series ex­
pansions

A sin θ = sin θ(1 - (Αθ)%1 + (Δ(9)ί4! - . . . - 1)

+ cos θ (Αθ - (Δ0)%! + (Αθ)%\ - . . .)

= c o s Ö Δ ^ - s i n ö (Δ Ö) % - c o s ö (Δ Ö) % + . . .

Thus, to Üie second order the error in (Δ sin θ)τ is

e = - (Υ2)(Αθ)^$ιηθ

Since this error grows regardless of the sign of Δ^ it is cumulative, ap­
pearing as an apparent rotation of the vector and a growth in its ampli­
tude. In problems where the range of θ is not too great, the error may be
tolerable. In apphcations like the navigational problem described in Sec­
tion 8.9, the drift in sin θ (and cos Θ) over a long period can render the
computation invahd. The growth in amplitude of the vector may be re­
moved in part by use of a trapezoidal integration formula, which yields

(Δ sin E)T = [cos(E -h ΑΘ) -h cos θ]Αθ/2

= c o s ö Δ Ö - s i n ö (Δ ^) % - c o s ö (Δ Ö) % + . . .

510 8. THE DIGITAL DIFFERENTIAL ANALYZER

The initial statement of a differential equation may be in either a
derivative or differential form, though the derivative form is prevalent.
Any of a number of algebraic manipulations may be made to transform
equations to a form more convenient for solution and/or interpretation—
e.g., replacement of the original set of variables by a new set, defined in
terms of the original ones, transformation of coordinates, etc. We will
consider an important difference between derivative and differential expres­
sions of a differential equation. For example, assume we have the equation

y<n^ = f(yn-V, /η-2^, . . . γ<1\ y, χ) (8-59)

where y^^^ is equal to the nth derivative of the function y with respect to x,
and / is a particular function of the variables in the parentheses. If we
take the differential of both sides of Eq. (8-59)

d / n . = dfi/'^-^', . . . , y, X)

Since yí'»̂ = (d^y/ájc«), it follows that

Sy^^'dx = ŷ ^̂ -î

If we assume several inputs whose sum equals dy^"^ are fed into an inte­
grand register, and the independent variable is dx, the output for an ideal
integrator would be ŷ**̂ dx. If there is a bias β between given and effective
initial values, the output is (ŷ **̂ + ß)dx. Accumulation of these incre­
ments yields y^"-^^ + ßx. Thus instead of the true (n - l) s t derivative
we obtain a quantity which drifts from this value Unearly with x.

Returning to Eq. (8-59), multiplying both sides by dx yields

y^'dx = f{y<n-i\yn-2>^ ^ ^ ^ ,y^\y,x)dx = dy*"-^'

If the terms whose sum equals dy^^-^^ are fed into an integrand register, ac­
cumulating them yields y ^ - ' ^ \ This indicates that use of the lower order
derivative will not introduce the drift present in the higher order case.
(The preceding comparison assumes that mappings of the two forms
are comparable in the errors produced in other parts of the network).
The differentiation method is less favorable because of other reasons,
too: (1) In practice the lower order derivative is a velocity, whereas
the higher order derivative is an acceleration. In a given period the latter
can traverse a greater interval of its overall range. As a result, the scaling
problem tends to be more difficult, (2) The mapping is complicated in
cases where nonlinear terms must be differentiated. Finally, even where

8.12. SOURCES OF ERROR 511

the higher order derivative is required as part of the solution, the differen­
tiation method may be avoided by use of servo differentiation.

In general, digital servos should not be used to generate algebraic
functions that can be obtained directly. (This does not apply in on-hne
applications where a servo is used as a null seeking device that is part of a
self-correcting system.) Limiting devices, for example an absolute value
generator, must be carefully adjusted. Since the operation of a servo
depends on feedback of errors to its input, a loop with appreciable at­
tenuation in the feedback path results in poor control. Also, a servo adder,
at best, introduces a one cycle phase leg.

In concluding this discussion on sources of error we point out that
although schematics such as shown in Fig. 8.10 can be useful, they also
can be responsible for the introduction of errors, e.g. by the inadvertent
connection or failure to connect a pair of lines or by a functional nota­
tion becoming associated with the wrong line. The experienced programmer
can save thne and effort by replacing the schematics with a set of inte­
grator input-output equations.

The characteristic equation of an integrator (dz = ky dx) may be
stated in the form

d[f (integrand)] = [integrand] [d(independent variable)]

where the integrand y is the sum of the dependent variable inputs dyi.
The Usting of input-output equations is started by assuming that incre­
ments of the terms whose sum equals the highest order derivative have been
formed. These increments are accumulated in an integrand register for the
purpose of generating the next lower order derivative, thus (see page 478)

dx/dt = {d^x/dt^)dt

= [- (b/a)dx/dt- (c/a)x]dt

Since the term - (b/a) dx/dt appears in the differential equation, a con­
stant multiplier is used to produce the output — {b/a) dx/dt

- {b/a) · dx/dt = - {b/a)dx/dt

Another integrator is requked to generate dx from dx/dt

dx = {dx/dt)dt

Another constant multiplier converts dx to - {c/a)dx

512 8. THE DIGITAL DIFFERENTIAL ANALYZER

- (c/a) · djc = ~ (c/a)dx

The list of equations is complete since aU terms originally assumed to
exist have actually been generated. Each equation specifies the type of
operational unit required for its mechanization.

8.13. Checking Results of Computations

Any of various verification procedures may be employed to aid in
estabhshing a degree of confidence in the correctness of solutions. We
will consider spot checks, which are generally useful in computational
work, and two types of checks suitable for use with a DDA, namely run­
ning a problem with different scale factors, and running a problem in
reverse.

In one type of spot check, solutions are compared with values already
known for specific values of the independent variable. In physical prob­
lems these points are so chosen that values are readily obtained from
physical considerations. In function generation these points are where
the values of one or more factors is readily known (e.g., where f(x) =
0 or 1). In a type of spot check known as a substitution check certain
sets of computed values are inserted into the original equations. An in­
dication of error is provided by the degree to which an equation does not
balance. To keep a running check of the discrepancy, one can employ an
acciunulator in which the terms on one side of an equation are subtracted
from those on the other.

If a problem is run with different scale factors and certain digit
positions in the solution are invariable, increased confidence may be
placed in the accuracy of these positions. If this approach is to be prac­
tical, the additional runs should not greatly increase the time for a solution.
This would not be the case if the problem were run first with a smaU scale
factor and then with successively higher ones. An alternate approach is
to rerun the problem with smaller scale factors; if each solution (Si)j
obtained for points / on run j is considered as the sum of a true solution
Si and an error Ei, then on the first run

(5i)i = Si+(Ei)i (8-60)

and on the second run

(5i)2 = S i + (£ i)2 (8-61)

If the scale factors on the second run are 1/n times those on the first
run, then we may reasonably estimate that

8.14. SIMULATING THE DDA WITH A GP MACHINE 513

(5i)2 « 5, + n(Ei)i (8-62)

From Equations (8-60) and (8-62) a general expression for estimating the
error on the first run is

(£i) i - (5 i) 2 - (5 i) i / (n - l) (8-63)

To lessen the probability of obtaining too low an estimate for the error
on the first run because of a chance agreement of (5i)i and (Si)2 at a
selected point, (£i) i should be evaluated for several values of / at widely
separated points. If the error is too large, the original scale factor can be
increased and a new estimate obtained.

This method also allows an estimate of the true solution to be made
from two inaccurate solutions, in the event that a rerun with higher scale
factors is not practical because of computing time requirements and the
limited length of registers. Solving Equations (8-60) and (8-62) for Si

Si ^ [n(5i)i - (Si)2]/(n - 1) (8-64)

In principle one can, by changing the sign of the independent variable,
retrace a computation. At the end of this process, the deviation from
the correct initial conditions indicates over-all error in the computation.
(The retracing process is precise for a linear difference equation with
constant coeflScients only if the coeñicients of the highest and lowest order
terms are +1 or - 1 .) Also, sometimes the initial state cannot be re­
covered; e.g., after a damped oscillation has decayed completely.

8.14. Simulating the D D A with α G P Machine

The differential analyzer approach to the solution of a problem is
direct, simple, and intuitive. A way in which this approach can be used
with a GP arithmetic computer will be illustrated by a specific example.
Consider the familiar second order differential equation

y" + y = 0, where y" =

This equation is solved on a differential analyzer by specifying that two
integrators be interconnected as shown in Fig. 8.3(b). The two integrators
form a closed loop system, and when the driving function is apphed, the
system will oscillate in a manner defined by the given differential equation,
since the integrator system is an analog of a physical system described by
the equation. An analog differential analyzer produces a mechanical dis-

514 8. THE DIGITAL DIFFERENTIAL ANALYZER

1+X + -
x^
2! ^ 3!

+

sin A: = ^ 3!
+ Λ:»

5!
χ-ι
7!

COiiX = 1 -
^ 2!

+ X*
4!

χ"
6!

- h . . .

+ . . .

or Chebyshev polynomials (see Section 6.2.5).
In a differential analyzer, integration is a basic operation, whereas

multipUcation (other than by a constant) is not and must normaUy be
constructed from integration operations. In an mtegral transfer machine,
multipUcation and addition are basic operations (though multipUcation

placement when driven; a digital differential analyzer produces trains of
pulses representing numerical increments.

Each of the elements of a continuous differential analyzer can be
simulated in a digital computer, of either the incremental (DDA) or
integral transfer (GP) type. The digital differential analyzer has a fixed
program that simulates the operation of integration, and only the inter­
connection of "integrators" and scaling has to be derived for an individual
problem. Simulation of a differential analyzer can also be performed by a
GP machine. However, in this case one must write a complete program
to simulate the operation of integrators, in addition to specifying inter­
connections and scaHng.

Common analytic functions (polynomial, trigonometric, logarithmic,
etc.) are usually generated in a differential analyzer by interconnecting
units in a system so that the system satisfies a differential equation whose
solution is known to be the desired function (as shown in Fig. 8.3). These
functions can be generated in a GP machine by the use of difference equa­
tions. For example, to generate the function e^'^ for the equidistant discrete
values of the argument χ = nh (where h is the constant interval and η an
integer), one can utilize the difference equation

which states the exponential function can be generated by simply multi­
plying the (n — l) th value by a constant to obtain the nth value. Sin χ
or cos X can be generated by the following trigonometric identities

cos nh = 2(cos Ä)cos (η - 1)A - cos (n - 2)h

sin nh = 2(cos A)sin (n- l)h- sin (n - 2)A.

These functions may also be generated by power series

8.14. S I M U L A T I N G T H E D D A W I T H A G P M A C H I N E 515

is usually constructed automatically from repeated addition operations)
and integration must be constructed from multiplication and additions.

The integral of a function f{x) between the limits a, b can be found
by dividing the interval into η equal subintervals, approximating the func­
tion by some mean value fi in each subinterval, multiplying each U by the
width of the subinterval and adding up the areas of all the rectangles. The
computation is simpler when fewer intervals are taken, but the accuracy
suffers. For a high speed digital computer it is not impractical to take
large values of n. When η is large, rectangular integration gives a suflBciently
good approximation, thereby permitting the use of this simple process. A
real difficulty lies in the fact that as η becomes large, the number of
products to be summed becomes great. Since each product is rounded ofli,
the error grows as η grows.

The characteristic equation of an integrator (see Section 8.1) may
be written

w = k j udv.
An integrator can be simulated by assigning one register to store the

output w, and a second register to store the input «. Once each cycle,
the change in v, Δ ν (corresponding to the constant change h used in the
preceding discussion), is determined. The product « Δ ν is then added to
the contents of the register containing w. Thus, identifying the various
values of each variable with a subscript to denote the iteration period in
which that value occurred (i.e., Vi is the value of ν at the end of the /th
period, vo being the initial value), the integration is performed by using
the formula

Wi = + Mi(Vi - V i _ i)

or by a similar formula

Wi = - f « i _ i (V i - V i _ i)

To illustrate the diflferential analyzer approach to the solution of a
differential equation, we will consider the equation

/ ' = - y .

Solution of this equation requires two integrations

y = srdx

y = iy dx.
The computation cycle is begun by performing the integration y' = / y" dx,
making use of the rectangular integration formula

516 8. THE DIGITAL DIFFERENTIAL ANALYZER

and the original differential equation

The integration y = ¡ y dx \s obtained by use of the rectangular integra­
tion formula

yi = y t - i + AyV

The program shown in Table 8.2 will produce the solution from = 0
to jc = «Λ.

To summarize, this differential analyzer approach generates functions
by the use of difference equations and performs integration by summing
the areas of rectangles. It permits rapid writing of very short iterative
programs for the solution of differential equations, and is intuitive, simple
and easy to apply. Its primary value is in the preliminary investigations
of ranges of values.

Appendix: Conditions for Generating Functions of One or More
Variables, and for Solving Ordinary Differential Equa­
tions by Means of α Differential Analyzer

A general theory of the differential analyzer has been formulated to
describe the conditions necessary for the solution of viirious types of
problems on an "idealized" machine. Actual machines differ from the
ideal in such physical hmitations as time lags in the transmission of data
within the system and the finite length of numbers that can be repre­
sented. An outhne of the theory wiU be presented here. (For the complete
treatise, see Shannon [1941], [1942.])

The assumptions underlying the theory are as foUows: (1) AU or­
dinary differential equations to be considered have unique solutions.
(2) Formal processes of integration, differentiation, etc., are vahd in the
region of interest. (3) For total differential equations, it is not necessary
that the equations be integrable but it is assumed that a solution exists
along any curve in the region of interest. (4) There is avaUable an
unhmited number of idealized integrators and adders. The characteristics
of an integrator are: Given two input variables du and dv, an output vari­
able is constrained to be = {u-\- a)dv, where a, the initial setting of
the integrand, is an arbitrary constant for aU variations of u and v. (In
any integrator, the maximum value of |w + is hmited, but by changing
scale factors it can be made as great as desired so that except for poles
of u the integration can be performed.) The characteristics of an adder

APPENDIX

TABLE 8.2. Program for solution of the equation / ' = —y.

517

Address Instruction B-code Explanation

001

002

003

004

005

006

007

008

009

010

F k + 3

A k + 4

S k + 1

Μ k

A k + 2

C k + 2

Μ k

A k + 1

C k + 1

R 002

01 Places iteration index in index register 01

Clears accumulator

Places - y ^ ^ i = / ' i - i in accumulator

Forms hy'_j^

Form + hy_^ = y\

Replaces y_^ (in storage location k + 2)
by y<

Forms hy'^

Forms yi_i + hy\ = y^

Replaces >'^_i (in storage location k + 1) by

01 Subtract 1 from index register 01 and transfer
control to location 002 if remainder is !> 0.

1 2 Next instruction

k

k + 1

k-h2

k + 3

k-f 4

yo* y i

y o* y i

Iteration Index
(n - 1) 2 - 8 0

Zero

Constants and intermedíate results are stored
here

are: Given two input variables du and dv, an output variable is constrained
to be dw = dw + dv for all variations of u and v. (5) A system of ordinary
differential equations with independent variable χ and dependent variables
yu y2 . . .y« can be solved if, and only if, a set of connections can be found
using the above elements and satisfying the source of drive assiunption,
such that when there is an increment in the independent variable JC, incre­
ments in the dependent variables are constrained to vary in accordance
with the equations for arbitrary given initial conditions. (6) A system of

518 8. THE DIGITAL DIFFERENTIAL ANALYZER

i. i = 0

where yo = 1, yi is the independent variable, and y2 . . . yn are dependent
variables, among which are the dependent variables of the original system.

A function of a single variable y = j{x) can be generated if there is
an interconnection such that when there is an increment in the independent
variable dx there is a dependent variable that is constrained to vary by an
amount dy. It follows from Theorem 1 that if /(JC) can be generated
there must exist a set of equations (1) such that if y i = x, then y2 = fix).
A function of η variables F{xi , . . Xn) can be generated if there is a set of
interconnections such that for independent increments in Xi . , . Xn, a de­
pendent variable will be constrained to generate an increment dF.

Theorem 2 . A function of one variable can be generated if, and only
if, the function is not hypertranscendental.

Theorem i . If a function of one variable y = f(x) can be generated,

then its derivative ζ = f(x), its integral w = (f(x)dx, and its in-
^ a

verse χ = / ~ ^ (y) can be generated.
Theorem 4. If two functions / and g can both be generated, then the

functional product y = / [g(jc)] can be generated.
Theorem 5 relates to the approximation of functions which cannot be

generated exactly.
Theorem 5. Any function f(x) which is continuous in a closed interval

a ^ X ^ b, can be generated in this interval to within any prescribed
allowable error € > 0 using only a finite number of integrators.

The next five theorems relate to functions of more than one variable.
Theorem 6. A function of m variables y m + i = / (y / · · · y m) can be gen­

erated if, and only if, it satisfies a set of total differential equations of
the form

total differential equations can be solved if a set of connections can be
found such that when there is an increment in a set of independent variable
inputs JCi . . . Xn, increments in the dependent variables are considered to
vary in accordance with the equations for arbitrary given initial conditions.

We will list next five theorems pertaining to functions of a single vari­
able. The first is referred to as the fundamental solvability condition:

Theorem 7. A necessary and sufficient condition for a system of or­
dinary differential equations to be solved using only integrators and adders
is that they can be written in the form

LITERATURE 519

dyjc = ^ üijjcytdyj = (m + 1), (m + 2) . . .

i. i = 0

where yo = 1 and the a's are real constants.
Theorem 7. If two functions of several variables, f(xi . . . Xn) and

g (y i . . . Jm) can both be generated, then it is possible to generate any func­
tional product, for example φ(χ2, ^3 · · · n̂> yu ^2 . · · ^m) = í(g* ^2,

Theorem S. Given any function of η variables /(xi . . . J^n), continuous
in all variables in a closed region of η - space ajc ^ Xk ^ k = 1,2
. . . a function F(xi , . . Xn) can be generated using only a finite number
of integrators and adders such that within the region ajc ^ Xk ^ bk>
\f — F\ < € where e is an arbitrarily small prescribed positive number.

Theorem 9. If a function of η variables f(xi . . . Xn) can be gen­
erated, its partial derivative with respect to any one variable, say ^i, can
be generated.

Theorem 10. If a function of η variables y = f(xi . . . Xn) can be
generated, its inverse with respect to any one variable Xi = F(y, X2 * * -
Xn) can be generated.

Finally, we fist a general theorem which relates to systems of equations.
Theorem 11. The most general system of ordinary differential

equations:

fk(x; yu y'l . . . yi* ;̂ y2, y ' 2 . . . y 2 ' ^ . . . y», . . . yrT) = 0
where A: = 1, 2, . . . n, and which is of the /nth order in η dependent vari­
ables can be solved on a differential analyzer using only a finite number of
integrators and adders providing the functions are combinations of non-
hypertranscendental functions of the variables.

LITERATURE

Adams, C. W. [1950] The differential analyzer approach in digital computers, M.I.T.,
Project Whirlwind, Memorandum M-1036.

Amble, O. [1946] On a principle of connection for Bush integrators, J. Sei. Instr..
23, 284-287.

Bradley, R. E. and Genna, J. F . [1962] Design of a one-megacycle iteration rate
DDA, Proc. AFIPS Spring Joint Computer Conference, 353-364.

Braun, Ε. L. [1954] Design features of current digital differential analyzers, IRE
National Convention Record, 2, Part 4, 87-97.

Braun, Ε. L. [1957] Digital computers in continuous control systems, IRE National
Convention Record, 5, Part 4, 127-135; IRE Trans. El. Comp., 7, (June 1958).

Braun, Ε. L, and Post, G. [1958] Systems considerations for computers in process
control, IRE National Convention Record, 6, Part 4, 168-181.

Braun, Ε. L. [1960] A comparison of integral and incremental digital computers for
process control applications, Control Engineering, 7, 113-118.

520 8. THE DIGITAL DIFFERENTIAL ANALYZER

Bush, V. [1931] The differential analyzer, a new machine for solving differential
equations, J. Franklin Inst., 212, 447-488.

Bush, V. and Caldwell, S. H. [1945] A new type of differential analyzer, / . Franklin
Inst., 240, 225-326.

Crank, J. [1948] The differential analyzer, Longmans, Green, London.
Deering, C. S. and Shelman, C. B. [1961] An incremental computer technique for

solving coordinate-rotation equations, IRE Trans. El. Comp., 10, 748-751.
Donan, J. F. [1952] The serial memory D.D.A., MTAC 6, No. 38, 102-112.
Gill, A. [1959] Systematic scaling for digital differential analyzers, IRE Trans. El.

Comp., 8, 486-489.
Hartree, D. R. [1946] [1948] The application of the differential analyzer to the

evaluation of solutions of partial differential equations, Proc. 1st Canadian
Math. Congress, Montreal, 1945. Univ. of Toronto Press, Toronto, pp. 327-337;
MTAC, 2, 56.

Hartree, D. R. [1940] The Bush differential analyzer and its applications, Nature,
146, 319-323.

Henegar, H. B. [1961] New continuous path system uses DDA interpolator. Control
Engrg., 8, No. 1, 71-76.

Maginniss, F. J. [1945] Differential analyzer applications, Gen. Elec. Rev., 48, 54-59.
Mendelson, M, J. [1954] The decimal digital differential analyzer. Aeronaut. Engrg.

Rev., 13, 42-54.
Merz, D. M. [1959] GEVIC—A real time variable increment digital computer.

Automatic Control, September 1959, 18 DC-26 DC.
Michel, J. G. L, [1948] Extensions in differential analyzer technique, / . Sei. Instr.,

25, 357-361.
Mitchell, J. M. and Ruhman, S. [1958] The TRICE-A high speed incremental com­

puter, IRE National Convention Record, 6, Part 4, 206-216.
Nelson, D. J. [1962] DDA error analysis using sampled data techniques, Proc.

AFIPS Spring Joint Computer Conference, 365-375.
Owen, P. L., Partridge, M. F. and Sizer, T.R.H. [1960] CORSAIR, A digital differen­

tial analyzer. Electronic Engrg., 32, 740-745.
Palevsky, M. [1953] The design of the Bendix digital differential analyzer, Proc. IRE,

41, 1352-1356.
Reed, I. S. [1951] Some mathematical remarks on the Boolean machine, M.I.T.,

Project Lincoln, Technical Report No. 2.
Rowley, G. C. [1958] Digital differential analyzers, Brit. Commun. & Electronics, 5,

934-939.
Shannon, C. E. [1941] Mathematical theory of the differential analyzer, / . Math,

and Phys., 20, 337-354.
Shannon, C. E. [1942] Theory and design of linear differential equation machines,

PBL 58240 (4-951) OSRD 411, January, 1942.
Shemeta, E. A. [1960] Accelerated programming for GEVIC in real time applica­

tions, Automatic Control, 12, 26-44.
Sprague, R. E. [1952] Fundamental concepts of the digital differential analyzer

method of computation, MTAC, 6, No. 37, 41-49.
Thomson, Sir William (Lord Kelvin) [1876] Mechanical integration of the linear

differential equations of the second order with variable coefficients, Proc. Roy.
Soc, 24, 269.

Tiemey, J. W., Homan, C. J., Nemanic, D. J., Amundson, N. R. [1957] The digital
computer as a process controller, Control Engineering, 4, 166-175.

Weiss, E. [1952] Applications of the CRC-105 decimal digital differential analyzer.
IRE Trans. El. Comp., 1, 19-24.

9. The Detection and Correction of Errors

9.1. Introduction

This chapter deals with topics related to the vaUdity of results pro­
duced by a digital computer. This includes techniques for anticipating,
detecting, and locating the source of equipment failures; special codes
for minimizing the effect of errors, and for detecting and/or self-correcting
errors; mathematical techniques for checking results and minimizing errors
due to the computation process itself. Techniques for improving the
reUabihty of electronic circuits will not be discussed here. For a theoretical
discussion of reUabiUty in electronic circuits, the reader is referred to the
references listed in the bibliography of this chapter.

The validity of results produced by a digital computer depends on
many things including the adequacy of the mathematical formulation and
numerical approximation procedure, the absence of mistakes in the pro­
gramming and coding of the problem and its entry into the computer,
and the correct operation of the computer during the time interval required
for solution of the problem. Let us consider briefly the general question
of reliabihty of the computer itself. A commonly used deñnition of reU­
abihty is as foUows: the probability (expressed in percentage) that a
system will perform its function without error for a specified length of
thne while in a specified environment. For example, if, whenever a
machine is used, it operates without failure for the specified duration
and in the specified environment, it is considered 100% reUable.

A useful device for indicating a machine's reliabUity is a histogram
such as the one shown in Fig. 9.1, in which are charted the frequencies of

Frequency

Time interval of error-free operation

FIG. 9 .1. History of error-free operating intervals

different error-free periods of operation, accumulated from an operating
log which Usts how long the computer functions properly each time it is

521

522 9. THE DETECTION AND CORRECTION OF ERRORS

turned on. From this data one can also estimate the mean time to failure.
Of course, the degree of confidence that can be placed in the reUability
figure increases, theoretically, with the number of samples. In practice,
this measure will also be influenced by the effects of aging (good or bad)
and other factors such as improved maintenance techniques, replacement
of parts, etc. A high mean time to failure figure is of importance in a
laboratory computer, since it implies the computer will be available for
useful work a large percentage of the time. For other applications, e.g.,
a computer used in a high-speed real-time control system, such as in a
supersonic aircraft, a value for the minimum error free period of operation
greater than the period of a mission is of more importance. Finally, it
should be emphasized that any machine must be designed for operation in
a particular environment and that a reliabiHty figure for a particular
machine must be based on operating experience in the environment
specified.

Once a fault or error has occurred somewhere in the computer, it is,
of course, desirable to detect the source of error in a minimal time. The
fault-correcting time can be reduced by the use of techniques and devices
designed to aid in disclosing the location of faults. (Regardless of these
devices, the fault-correcting time will also be a function of the skill and
ability of the operation and maintenance personnel.)

Before describing the checks most commonly used for detecting mal­
functions of the computing equipment and tracing them to their source,
let us consider the ways in which such malfunctions may be brought
about, i.e., the ways in which components of the machine may fail. Some
basic types of failures are shown schematically in Fig. 9.2. This is a

Parameter
value

Satisfactory

Marginal
Unsatisfactory

Sudden

\

Gradual Intermittent

\ Λ f—VJ^

\ V

0 0 0

FIG. 9.2. Different types of failure

• Time

quahtative picture. The time scale will vary with the physical nature of
the component and in fact will vary even with components of the same
type. Unsatisfactory performance resulting from gradual deterioration or
aging of a component is more common than a sudden complete failure.

9.2. DETECTING AND LOCATING SOURCES OF ERROR 523

The latter type of failure may occur when a component which has not
been adequately underrated is subjected to a greater than normal load,
i.e., when a component has been rated with respect to average rather
than peak requirements. Intermittent failures may occur any time after
the performance characteristics of a component have reached the marginal
zone—^whether that zone was entered suddenly or gradually.

The different types of failures described imply different degrees of
difficulty in detection of faulty operation and location of the defective
component. An error caused by a complete failure of a component is
relatively easy to find.

9.2. Detecting and Locating Sources of Error

There are a number of possible sources of error in the results produced
by a digital computer. These errors may be introduced by the particular
mathematical formulation of the problem being solved, by the finite
numerical processes employed, by mistakes in programming, and by
malfunctioning of the computing equipment. We will consider in the
succeeding sections the different means that may be employed to detect
and locate the source of these failures.

When an error is caused by a complete failure of a component it is
relatively easy to trace the source. Test programs (described in Section
9.2.3), which require the functioning of all components in the computer
or in a suspected part of it are useful in detecting this source of error.

Tracing the source of an intermittent error is more diflScult. To aid in
such a trace it is desirable to provide some means for stopping the com­
puter on the very step where the erior occurs. This is because study of
the contents of the various registers at this time sometimes permits the
source of the error to be deduced. An advantage of error detection cir­
cuits, compared to programmed checks, is that they detect an error
immediately upon occurrence. Test programs are helpful here, too,
although not when the marginal component fails only rarely (see Section
9.2.3 for a discussion of how the frequency of failure may be increased
by a marginal checking procedure). Actually, the best way to trace mar­
ginal components is by a preventive maintenance procedure.

Some intermittent errors cannot be traced by any simple procedure.
Instead success depends on the ingenuity and experience of the trouble-
shooter. Examples of elusive sources of error are: (1) Defective con­
nections in wiring, e.g., cold solder joints. (2) Components operating
marginally, but to which marginal checking procedures cannot be appUed
because of their location in a circuit. (3) Places where the failure may be
self heaUng for a relatively long time before partial failure occurs again.

5 2 4 9 . THE DETECTION AND CORRECTION OF ERRORS

Another significant source of errors arises from mistakes in wiring intro­
duced either when the computer was built or modified, or during a trouble­
shooting operation.

Checking to assure that the results of computations are correct has
long been considered important. For a high-speed computer where enor­
mous amounts of computation are performed without interruption there
is an even greater need for checks. This follows because in large com­
puting systems numerous components are subject to failure, and even a
single failure may often completely vitiate the solution. It is desirable
that a computer check itself during the course of a computation for the
following principal reasons: (1) There are too many operations involved
to permit a check of this type by a human operator. (2) Human checking
would not be in keeping with the initial purpose of the computer—i.e.,
to reheve humans of routine computation. (3) The check should proceed
in step with the computation in order that errors may be detected as they
occur, thus preventing the loss of correct results obtained before the
occurrence of an error. Special considerations in the checking of a com­
puter functioning as part of a control system are discussed in Section 9 . 2 . 2 .

There are a number of automatic checking methods available. They
fall into two main categories, namely built-in checks, and programmed
checks. These will be discussed in Sections 9.2.1 and 9 . 2 . 2 , followed by
a description of programs for testing and diagnosis in Section 9 . 2 . 3 , and
preventive maintenance in 9 . 2 . 4 . It should be emphasized here that there
is no substitute for basically reUable circuitry, since most practical error
detection and correction schemes are effective only against single tran­
sient malfunctions resulting not from a faulty component but from a
random disturbance.

9 . 2 . 1 . BUILT-IN CHECKS

9 . 2 . 7 . / . Information Storage and Transfer Checks

This type of check is used to determine whether an error has been
introduced in the process of writing information into or reading it from
the store, or in the transfer of information between various sections of
the computer. Any of various techniques may be employed for such
checks. For example, there is incorporated in the MIT Whirlwind com­
puter a special checking register which is used whenever the execution
of an instruction requires the transfer of information from one set of
registers to another. This register receives information from the source
register and, also, via a different path, from the receiving register. Any
discrepancy indicates an error has occurred. Another scheme consists of

9.2. DETECTING AND LOCATING SOURCES OF ERROR 525

simply storing each quantity in duplicate and comparing corresponding
positions of each pair. Note that both these schemes depend on the
introduction of some type of redundancy—in the first case a redundant
operation, in the second redundant storage as well. Neither of them fur­
nishes the information required to correct an error, although the latter
scheme, which can detect a single error in any or all pairs of data words,
can be extended one step further to the extreme of storing each quantity in
triplicate and deciding on the correct value of any bit position on a
majority principle.

We will now proceed to describe some schemes for error detection
and correction based upon the use of special codes and coding techniques.
When one or more bit positions in a coded group is changed as the result
of a malfunction in the computer, a new value may be produced which is
also meaningful, i.e., one of a set of admissible values. If this is the case,
inspection of the new value is not sufficient to estabUsh that an error has
occurred. This implies that the capability for error detection depends on
there being a greater number of possible values than admissible values.
For example, in a four-bit binary-coded decimal group, the decimal
values 0 through 9 are admissible, but the values 10 through 15 are not.
Therefore, the occurrence of any of the values 10 through 15 is an indi­
cation that an error has occurred. However, with this system there is not
complete assurance that an error, even in a single bit position, can be
detected. This is because an error in an admissible value may produce
another admissible value, e.g., the accidental changing of 6 to 7 (110 to
111). For assurance that an error in a single bit position can always be
detected, the defined set of admissible values must be such that a change
of an admissible value in any bit position produces a nonadmissible value.
A code capable of detecting an error in any bit position of a decimal
representation requires at least five bits. One such code represents the
digits by the ten representations of five bits in which two of the bits have
the value 1. Error detection is accomplished by inspection of the number
of Ts present. A major drawback of this code is that it is not weU suited
for arithmetic manipulations.

A way of introducing nonadmissible values for error detection which
does not preclude the use of the straight binary code or any other desired
code, is by the inclusion of a parity bit with the group of bits to be
checked. The value assigned to this bit is such that in a so-caUed even
parity checking system the total number of I's in the data and parity bit
is even and in the odd parity checking system it is odd. The net effect
is that η + 1 bits are used to represent 2̂ ^ admissible values and 2^ non-
admissible values. The parity bit is stored and transmitted with the group

526 9. THE DETECTION AND CORRECTION OF ERRORS

Pr

0 0 1 0 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 0
0 1 0 0 0

Pc 1 0 1 1

If only one check fails, and it is assumed that only one error has
occurred, then it may be assumed that the error is in the parity bit itself.
By the addition of another parity bit, Pcr, to check the oddness or even­
ness of the number of I's in the column parity bits, double errors may be
detected. Also, the foUowing characteristics will be exhibited for single
failures in any of the parity check bits: (1) An error in a Pr bit causes
the check in only that row to fail. (2) An error in Pcr causes a check
failure in the bottom row only. (3) An error in a Pc bit causes the new
check bit Pcr to faU as weU as the corresponding column check to faU. If
a response is obtained other than the three just hsted or that produced
by a single failure in one of the numbers checked, two or more errors
must have occurred.

For a parity check to be capable of multiple error detection or the
detection and correction of a single error, more than one parity bit
is required. In other words, each admissible value must differ from every
other in more than two positions. For example, the detection and correc­
tion of a single error in a group of bits requires that each admissible value
differs in at least three bit positions from every other admissible value.

of bits being checked. A subsequent discrepancy between the oddness
(or evenness) of I's in the number itself and the value of the parity bit
indicates that one error or an odd number of errors has occurred.

The type of parity check just described may be considered as a single
row or column check. In another type of parity check, referred to as an
array check, several rows and columns of data are checked as a set, a
parity bit being assigned to each row and column. The location of a single
error is indicated by the intersection of the row and column corresponding
to the row and column parity bits for which there is a discrepancy. In
the array check, shown in Table 9.1, ρ stands for the parity bit, chosen
to be 1 whenever the number of I's in the collection being checked is even.

TABLE 9 . 1 . Parity checking for an array of numbers

9.2. D E T E C T I N G A N D L O C A T I N G S O U R C E S O F E R R O R 527

Pi

Fz
^4

1 2 3 4 6 7 8 12
1 2 3 5 6 9 10 13
1 2 4 5 7 9 11 14
1 3 4 5 8 10 11 15

The actual checking of the m - f A: bit positions takes place as follows.
Since the value of the parity bit plus the bits it checks is defined to be
always even (or odd), a check is made of the sum of the parity bits and
the digits it checks to see whether this condition is satisfied. If so, the

This is apparent if we consider the case where two admissible values differ
in only two bit positions, e.g., 100 and 111. If the third bit of the first
number is erroneously changed to 1 and the second bit of the second
number is changed to 0, the same value 101 is produced. It is obviously
impossible to correct such an error by inspection of the number 101 since
it could have resulted from a single error in either 100 or 111.

Correction of a single error in addition to detection of a double error
requires that each admissible value differs in at least four bit positions
from every other admissible value. It is generally true that error detecting
and correcting codes have the property of being able to trade correcting
for detecting ability. For example, the double error detecting and single
error correcting code can be used instead as a triple error detecting, non-
correcting code.

The single-error correcting scheme that will be described next is essen­
tially a special form of parity checking. It consists of producing a group
of check bits in such a way that the value of this group of check bits, con­
sidered as a single check number, indicates which bit position, if any, is
in error. Several parity bits are associated with the data bits, the number
of parity bits being determined by the number of bits in the data. If m is
the number of data bits, then the number of parity bits, k, must be such
that the number of possible values of the k bits (i.e., 2^) is adequate to
indicate any of the m - f A: bit positions in which an error can occur and,
also, the occurrence of no error. In other words, 2* ^ m + Λ + 1. The
set of bits which each parity bit checks is so chosen that a different value
of the k check bits occurs for an error in any of the m -h A: bits and for the
case of no error. It is even possible to so select the group of bits checked
by each parity bit that if an error occurs in any bit position, the value of
the k check bits indicates directly the number of that position.

Assume that the m data bits are numbered from 1 through m and
the k check bits are numbered from m + 1 through m -\- k. Then for
the case of m = 11, A: = 4, for example, the check bits Fi could be defined
as the sum (modulo 2) of the value of the indicated bit positions

528 9. THE DETECTION AND CORRECTION OF ERRORS

TABLE 9 . 2 . Values of a checking function F4F3F2F1 corresponding to a single error
or no error in the 1 5 positions checked

Position of Error ^4 ^3 F2 ^ 1

None 0 0 0 0

1 1 1 1 1

2 0 1 1 1

3 1 0 1 1
4 1 1 0 1
5 1 1 1 0

6 0 0 1 1
7 0 1 0 1
8 1 0 0 1
9 0 1 1 0

1 0 1 0 1 0

1 1 1 1 0 0
1 2 0 0 0 1
1 3 0 0 1 0
1 4 0 1 0 0
1 5 1 0 0 0

Simply by rearranging the positions in which the data and parity bits
are placed, it is possible to derive a checking function that automatically
produces the number of the position in error, rather than an arbitrary
number (which must be referenced to a particular position) as in the pre­
ceding example. This occurs if the parity bits are placed in positions
1, 2, 4, . . . 2^ and each Fi is defined as the sum (modulo 2) of the
values of the indicated bit positions

corresponding check bit is assigned the value 0, otherwise 1. The bit
positions entering into each parity check are so chosen that when a single
error occurs, it will show up in one or more bits of the checking function.
A one-to-one correspondence is thus estabhshed between the sources of an
error (in either a data or parity bit) and the values of the checking func­
tion. Table 9.2 shows the value of the checking function for the cases of
an error in any of positions 1 through 15 and for the case of no error.
Note that a single error among the Fi indicates a parity bit in error, and
that either two, three, or four failures among the Fi indicates a data bit
in error.

For example, if there is an error in position 13, F4F3F2F1 = 1101; if an
error occurs in position 7, F4F3F2F1 = O l l i ; if there is no error,
F4F3F2F1 = 0000.

Table 9.3 shows the number of data bits (m ^ 2^ - k - 1) that can
be accommodated by a given number of check bits, and also the number
of bits checked by each parity bit, pi.

TABLE 9.3

Data bits, m Check bits, k Bits checked per p^

1 2 1
2-4 3 3
5-11 4 7

12-26 5 15
27-57 6 31
58-120 7 63

We will now consider some hardware requirements of the parity
checking schemes that have been described. Those for operating on what
may be considered a single row or column of data can be mechanized
for systems in which the bits appear either serially or in parallel. In a
parallel system each parity bit can be formed by means of a combinational
circuit whose inputs are the values of the bit positions being checked by
the parity bit. In a serial system, the values of the bit positions being
checked are entered sequentially into the input of a trigger (single-input)
flip-flop. Either arrangement can indicate whether the number of I's
entered is even or odd. In the row and column checking scheme, if the
bits in each row appear in parallel, and the bits in each column serially,
it is necessary to store some indication of the row in which a parity check
failed, so that when the column parity bit check fails the proper word can
be referenced and the value of the bit position in error complemented.

In the error correction scheme utilizing a check number, each parity
bit can be generated by the means already described: speciñcally, by a
single input flip-flop if the data is in serial form, by a combinational cir­
cuit (with the number of terms indicated in column 3 of Table 9.3) if the

9.2. DETECTING AND LOCATING SOURCES OF ERROR 529

F1 1 3 5 7 9 11 13 15
F2 2 3 6 7 10 11 14 15
Fg 4 5 6 7 12 13 14 15
F4 8 9 10 11 12 13 14 15

530 9. THE DETECTION AND CORRECTION OF ERRORS

data is in parallel form. For each check bit, a single input flip-flop
may be used for data in serial form and a combinational circuit (with one
more term than for p,) if the data is in parallel form. These circuits allow
the detection of an error and its location. Automatic correction of the
error (which is accomplished by complementing the value of the bit in
the position designated by the checking number) requires the use of some
temporary storage and delay elements. In the example described, if the
bits appear serially as the successive states of a flip-flop, ß \ then the
correction can be eff'ected by means of a delay line (or shift register) and
ten flip-flops as follows. Data read from is used to set each of four
flip-flops F*, F'̂ , F2, F^ in accordance with the rules for forming the check
bits F 4 , F 3 , F2, Fl. At the end of the word period, the check number is
transferred from F\ F», F^, F^ to four other flip-flops F l^ F̂ »̂ F^ ,̂ F^ .
0^ also drives a delay line whose length is such that as one word is
being read from the bits of the preceding word are read from a flip-
flop driven from the output of the delay line. As each bit is read
from ß2, the contents of F^^ F^ ,̂ F^ ,̂ F^̂ are diminished by 1, so when
they hold the value 0001, the bit read from is the one that is to be
corrected. The output of is shifted into a flip-flop, β·^, except when the
contents of F^^ F^^, F^^, F^^ equal 0001, at which time the complement
of β2 is shifted to β^. Thus, bits of a word with one error appearing at β \
win appear in correct form at the output of one word-time later. It
should be stated at this point that because of the added cost they introduce,
error detection and correction circuits are used sparingly.

The error detection and correction schemes described are aU based
on defining a set of admissible values and a corresponding set of inadmis­
sible values. It foUows that more bit positions are used than would normally
be required to represent the data. A measure of the redundancy is the
ratio of the additional bits used to the minimum number required to repre­
sent the data. For example, in the case where m = 26, Λ = 5, the re­
dundancy is 0.19. In order to conserve storage elements, it is desirable
to have an error detection and correction scheme that does not introduce
too much redundancy. For a description of various error detection and
correction schemes, see the papers hsted in the bibliography.

9.2.7.2. Arithmetic Checks

In normal operation, a scale factor assigned by the programmer is
associated with each number in the machine, and remains constant during
the course of a problem. This scale factor is chosen so that every number
used or generated during the course of a problem can be represented
within the finite register length of the computer. Often it is quite diflftcult

9.2. DETECTING AND LOCATING SOURCES OF ERROR 531

Sum 62838 Sum of addend residues 9
Residue 0 Residue 0

The multipUcation check is based on the fact that the residue of the
product of two numbers should be equal to the residue of the product of
the factor residues. For example

* It is not necessary to divide a number by the modulus to obtain its residue, since
the residue of the sum of the digits in a number is equal to the residue of the
number itself.

to estimate accurate bounds on some of the partial results of a complicated
problem. Therefore, one of the most important and commonly used built-
in checking features is one that indicates whether a number has been pro­
duced that exceeds register capacity. This is usually accomplished by a
circuit that detects an overflow of the accumulator (in either a positive
or negative sense). This also sets the computer to an idle state, thereby
allowing corrections to be made before the effects of the overflow can be
propagated. In a control computer provided with automatic error correc­
tion routines, the overflow would not stop the machine but instead cause
transfer of control to the correction routine.

Machines having a built-in divide instruction should have a built-in
check to test whether the quotient will be less than 1. The check consists
of ascertaining if the divisor is less than the dividend, in which event the
quotient register would overflow. Checking circuits for adders and other
arithmetic devices are not diflicult if appropriate codes are chosen. How­
ever, it is difficult to devise practical checking circuits for all of a com­
puter, the control circuits in particular being difficuh to check thoroughly.

Another type of check that can be incorporated into the arithmetic
circuits is based on a procedure often used to check manually-performed
arithmetic. When used with the decimal system, this check is referred to
as checking by casting out 9's. In this check, the result of each of the four
basic arithmetic operations is checked by the use of the residue (modulo
nine) of the operands. In the addition check, the residue of each addend is
obtained* and the residue of the sum of these residues is compared with
the residue of the sum of the addends. If the residue of the sum agrees
with the residue of the sum of the addend residues, the sum is assumed to
be correct. For example

Addends Residue of addends
15941 2
46897 7

532 9. THE DETECTION AND CORRECTION OF ERRORS

Factors Residue of factors
12 3
7 7

Product 84 Product of factor residues 21
Residue 3 3

The division check consists of comparing the residue of the remainder
with the difference formed by subtracting the product of the residues of
divisor and quotient from the residue of the dividend. For example, if
the dividend is 23 and the divisor 12, then

r̂emainder — /̂ divldpnd ~" (í̂ dlvieor ^ /̂ quotient)
2 = 5 - (3 X 1)

where R is the residue.
An analagous system of checking may be applied to binary numbers

by considering such numbers as octal numbers (merely by considering
groups of three bits each) and using a casting out 7's system. An obvious
deficiency of any residue checking procedure is that it will not detect an
error whose magnitude is an integral multiple of the number being cast out.

Circuits for residue checks would perform the following operations:
(1) production of the residues from the operands, (2) operations of an
arithmetic nature on these residues, (3) generation of the residues of these
results, and (4) comparison of the residue of the results produced by
operating on the operands with the residue of the result produced by op­
erating on the residues.

Another built-in checking device, intended for use in a control com­
puter, does not actually check an arithmetic operation but is designed to
prevent a program from getting out of sequence. It consists of generating
periodically a timing pulse which causes control to be transferred to a
specified point in the program, the program being divided into sections
each of which can be executed in less time than the period of the timing
pulses. These timing pulses are also useful in applications where the com­
putation must be synchronized with real tune, faciUtating the use of
predictive and extrapolative formulas.

The use of built-in checking equipment adds considerably to the cost
and complexity of a computing system. For this reason, and because more
reUable components are becoming available, the use of built-in checks
(including dupUcation of circuits) if used at all, is usually confined to a
particular crucial part of the system. The emphasis is now being placed on
improving the reUabiUty of individual circuits, and the use of programming
to detect errors due to malfunctions. These programs may be either ones
that are written specifically for diagnostic purposes, or programmed

9.2. DETECTING AND LOCATING SOURCES OF ERROR 533

mathematical checks incorporated in a main program. For example, the
residue checks described could be incorporated as part of a running pro­
gram (at the expense of problem running time). In conclusion, it should
be stated that each of the built-in or programmed error detection and
correction procedures described has its deficiencies and that much work
remains to be done in this area.

9.2.2. PROGRAMMED ERROR DETECTION AND CORRECTION

The over-all rehabihty of operation can be improved by supplementing
reUable circuitry, including check circuits, with carefully designed error
detection and correction programs. These programs not only can be
employed where the extra cost of checking circuitry is prohibitive but
also provide a greater variety of checks. The basic procedures are few:
recomputation by the same, an inverse, or diflierent process and com­
parison of the results, tests to see whether the results satisfy certain
mathematical or physical criteria in the solution of problems involving
physical systems, a check based on estimates of behavior of certain vari­
ables, and various special checks that may be possible with a particular
process or machine.

In the various schemes for detection of errors by programmed checks,
there is a basic diflierence between those designed for use with laboratory
computers and those designed for use with computers that comprise part
of a control system. In the former case, the programmed checks used in
conjunction with various computational routines serve simply to detect an
error, whereupon the computer is stopped. At this point, and at the
discretion of the user, the problem may be rerun either completely or
from the last point in the computation where the computer was known
to be operating correctly, or recourse made to some fault locating tech­
nique like a diagnostic program (Section 9.2.3). In many applications a
control computer cannot be stopped, and there is insuflScient time avail­
able to repeat more than a small part of the computation upon detection
of a malfunction. Thus, it would be desirable for the detection process,
which can consume only a small percentage of computing time, to auto­
matically actuate a process that corrects the error in a very short period.

The selection of programmed error detection and correction means
to be employed must be based on several factors, including the probability
of each type of malfunction and its detection and correction by a par­
ticular technique, the probable damage produced by diflierent malfunctions,
and the cost of additional storage and increased computing speed require­
ments. For utilization of many of the analytic checks, the programmer
must estabUsh tolerances on aUowable discrepancies, and the degree of

534 9. THE DETECTION AND CORRECTION OF ERRORS

confidence to be placed in a particular type of check. He must also decide
upon the frequency with which various checks are to be applied, striking
a compromise between machine running time consumed in checking opera­
tions and the relative ease with which an error may be traced to its source.

A point worth mentioning here is that even though many numerical
approximation procedures tend to erase small errors which may acci­
dentally be introduced, the nature of the convergence process requires
careful analysis, for large errors may lead to convergence on another
branch, producing a result which may or may not seem plausible.

9.2.2.7. Analytic Checks

One of the more obvious ways to check the result of a computation is
by recomputation, the check being based on the assumption that if the
two answers agree, the result is correct. However, this method has certain
Umitations. First of aU, any error made in programming or coding wiU
be common to both computations and therefore wiU not be detected.
Also, this type of check is effective only against transient failures rather
than steady state ones. If the machine fails systematically, there is an
appreciable probability of the same error being made on the second run
as on the first. This probability of identical systematic errors may be
almost eliminated by running the problem on two computers. If only
one computer is available, the time between successive runs should be as
long as practicable, assuming that systematic failures of large computers
WÜ1 not persist over periods of one to two days. For increased confidence
in the results of a recomputation check, the second computation should
be made using a different mathematical method or program than that
used in the first computation. Because of its Umitations, this type of check
should only be used as a preliminary one, in conjunction with other checks.

In a control application there may be certain computed quantities that
are critical in the sense that an error in them would have a damaging
effect on the system. Therefore, even though multiple computation (and
storage of critical parameters) and inference of the correct answer on a
majority basis may not be feasible for a whole computation, it may be
warranted in the computation of these critical quantities. Such a routine
wiU also detect and correct certain multiple errors in one quantity (since
the value of each bit is inferred on a majority basis).

A type of check easily made where appUcable is the use of known
relationships between functions. For example, one can compute the
value of a trigonometric function from some type of series expansion of
the argument and then check this value by computing it again in terms
of another function. SpecificaUy, one could compute sin χ from the relation

9.2. DETECTING AND LOCATING SOURCES OF ERROR 535

sinx ^ X - x^/sl + χ^/ζΐ - ... and then check it by means of the relation­
ship sin^x = 1/(1 + ctn^jc) after computing the value of ctn x. Another
scheme is to use the same equation but to arrive at a particular value
from two directions. For example, in the integration of a differential equa­
tion, one uses the given initial conditions and computes successive values
from that point. Then a set of computed values is used to define new
initial conations and the process is reversed, values obtained in this way
being compared with those obtained earlier. Also, the nature of a par­
ticular computation may often allow a useful functional check peculiar
to it to be employed. A major hmitation of functional checking as a
general procedure is that no functional relationships are known for many
of the functions which arise during the solution of a problem.

A test frequently employed, and which is a special type of functional
relationship test, makes use of inverse operations. For example, if the
addition of two quantities is called for, after the sum has been formed
one of the quantities is subtracted from the sum and this difference
compared with the value of the corresponding addend. This procedure
wih detect errors due to either transient or steady state and intermittent
malfunctions of the machine (Fig. 9.1), but the lengthier program means
increased computing time and storage requirements, and more time for
preparation. A variation of this procedure, less costly in respect to the
parameters mentioned, is one wherein the inverse operation of a group of
operations rather than of an individual operation is performed. For ex­
ample, after solution of a set of linear algebraic equations, or differential
equations, the answers would be checked by substitution back into the
original equations. An advantage of the group check is that it checks not
only the arithmetic unk, but also various information transfers, in addi­
tion to parts of the program. However, an important disadvantage is that
the source of error is more difficult to locate because of the variable num­
ber of steps that may take place after the malfunction. Therefore, careful
consideration must be given to the number of operations to be covered
by a single check. In using inverse checks for either individual or groups
of operations, a tolerance should be provided on the differences that may
occur between a direct and inverse operation not due to any machine
malfunction but because of truncation and round-off errors normaUy
introduced (see Section 9.4).

A diflierencing test is one used to determine whether the computed
function is smooth in the sense that it has no discontinuous derivatives of
low order. The test consists of determining the values of higher order
differences of the function. Since the number of values available for
inspection decreases by one with each higher order of difference, the

536 9. THE DETECTION AND CORRECTION OF ERRORS

number of computed values of the function limits the order of difference
that may be taken. Also, since round-off and truncation errors become
more significant as the order of difference increases, a practical limit is
set to the order of difference that can be considered significant. Though a
difference check is sometimes useful in conjunction with the computation
of the values of a function at equidistant intervals of its argument, it
also has serious limitations. First of all, the check is not valid for those
functions for which the differences do not decrease as their order increases,
i.e., where the differences are inherently too large or too variable. It is
not at all effective in detecting systematic errors that influence all com­
puted values equally. For this reason an accompanying spot check of
certain computed values is desirable. There is a possibiUty that even though
all differences of a certain order are small an error has occurred. The
values computed may even be completely incorrect, in that they represent
a wrong function. Also, one cannot be sure that because the value of a
certain order difference is greater than a certain magnitude that an error
has occurred. Finally, smoothness checks cannot be relied upon for func­
tions of more than one variable. Wherever the results of the test are
questionable, the usual procedure is to assume an error has occurred and
to attempt to verify this by a different type of check.

A similar reasonableness type of check which may be useful in the
detection and correction of errors in real time control systems is to com­
pare the value of a quantity computed directly from physical data with the
value found by extrapolating from previous values, and if the computed
value falls outside these bounds to use the extrapolated value. Using the
known error bounds and physical bounds in the system, gross errors
may be detected. Either direct Lagrangian extrapolation (if physical
quantities are varying rapidly), or smoothed extrapolation (if physical
and computational noise is the predominant type of error expected) may
be used. For explicit descriptions of this procedure, including a description
of how the extrapolated value itself may be checked by extrapolating a
second time using a different formula and comparing results, and the
effect on the extrapolation at the π + 1st step if the extrapolated rather
than the computed value at the nth step is used, see Ralston [1957].

The proper choice of scaling (Section 6.7.1) is important not only
to the accuracy of the over-all computation, but also can be used to limit
the magnitude of error produced by a malfunction. For example, assume
that with one value of scaUng, a variable, y, varies over the range
0.000001 (1/64) to 0.000100 (1 /16) . An error occurring in the most
significant bit position could produce an error of 8 y^ax- If the variable
is scaled differently, so that it varies over the range 0.001000 to 0.100000

9.2. DETECTING AND LOCATING SOURCES OF ERROR 537

say, an error in a single bit position could not produce an error greater
in magnitude than one half the maximum value.

92.2.2. Sequencing Checks

We will consider now a check devised to aid in preventing the acci­
dental transfer of control to a storage location other than intended as a
result of an error in computing the address. The method is based upon
setting aside η storage locations, where η is the smallest power of 2 that
exceeds 2x, and χ is the maximum number of locations to which control
might be transferred from a given point in the program. There is the
further restriction that the first address in the sequence be a multiple
of 2n so that the higher order bits need not enter the computation.
The X addresses are chosen from the set of η addresses so that they satisfy
an even (or odd) parity check. A single error in computing any of the χ
entry addresses will produce one of the n/2 incorrect addresses. In each of
these, the same instruction is stored, one which causes a transfer of
control to a correction routine which recomputes the entry address.

A simple method for detecting erroneous entry to a table of constants
is as follows: First of all the entries are separated into two groups, each
entry in a group being of the same sign. Again a consecutive set of
addresses is selected and its members assigned as the addresses of one
group or the other according to whether they satisfy an odd or even
parity check. The sign bit of an entry extracted from the table is tested
and if found to be incorrect, a transfer of control is made to a correction
routine which causes the address of the table entry to be recomputed.

To insure that a computational block is entered at the beginning, one
set of instructions can be added at the beginning and another at the end
of the block to check on whether those at the beginning were performed.
If not, there is an automatic transfer of control to a correction routine.
For example, a simple procedure is to place at the beginning of the block
instructions that cause the contents of a specified storage location to be
copied into another location, and at the end of the block to place instruc­
tions that transfer the contents of both locations into the accumulator,
subtracting one from the other. Control is transferred to a correction
routine if the diflierence is not zero.

9.2.2.3. Data Transfer Checks

Simple parity checks can also be programmed. Indication of failure
could be used either to stop the computer or, in a critical control appli­
cation, to transfer control to the entry of a correction routine, selected

538 9. THE DETECTION AND CORRECTION OF ERRORS

from several in accordance with the contents of the program counter
(indicating in what part of the program a failure occurred). For example,
if the check fails on data read from the store, correction could be attempted
by reading again, with a limit being set on the number of times this is
done since continued failure indicates other than a transient error.

Another type of check, often used as a standard part of a machine's
operation, is the memory sum check used to check a block of instructions
and data entered into a machine's central store from an input storage
medium. The check consists of reading from the store the contents of all
storage locations into which the block of data was entered, producing the
sum of these entries (ignoring overflows to the left of the radix point),
and comparing it with a previously determined value.

9.2.3. PROGRAMS FOR TESTING AND DIAGNOSIS

We will consider here the use of a number of special types of programs;
namely, test, diagnostic, and tracing programs, which are useful in
detecting computer malfunctions.

A test program causes various elements in a computer to function so
that their responses may be tested for error. Specially designed test pro­
grams may be used to provide immediate indication of the approximate
location of a fault. Final location and correction is then easy normally
for failures of a definite nature, e.g., complete tube failures, nonoperating
relays, open-circuited diodes, etc. A simple spot-check test program may
be performed during maintenance time or even programmed for inclusion
in the run of any given problem. A general test program may, for example,
consist of all possible operations of which a computer is capable, fisted
sequentially. At the end of each step the computer compares the results
against known answers. Upon detection of an error, the computer stops,
indicating at what stage in the program something failed, and the
approximate location of the fault. More specific test programs can then
be used to check thoroughly the suspected parts. The source of trouble
is finally located by checking the operation of individual circuits with the
aid of an oscilloscope. Test programs are especially useful where the
error is of an intermittent nature. However, not all parts of a machine may
be tested by this method, e.g., the main control of the machine, where all
fundamental wave forms are generated, must be tested by normal elec­
tronic techniques. However, a fault here means the computer will not
obey the simplest instruction, thereby making the source of the fault
relatively easy to locate.

A diagnostic type of program differs from a test program in that it
is usually employed to locate the soiu-ce of an error once it is known to

9.2. DETECTING AND LOCATING SOURCES OF ERROR 539

exist, whereas a test program is used to determine whether some part or
aU of the computer is functioning properly. The features of any specific
diagnostic program depend on the engineering design of the computer
for which it is intended, although certain requirements are essential to
most. For a diagnostic program to work, the instructions must be executed
properly. This imphes certain parts of the computer must be in working
condition. As a result, diagnostic programs are not generally useful to
detect fauhs such as those in certain important control circuits, or in the
power supply. These usuaUy require test instruments for diagnosis. Also,
it is not generaUy feasible to have one inclusive diagnostic program for
a computer. Instead, a set of specialized programs, aimed at diagnosing
the operation of parts of the computer are employed. In cases where the
approximate location of the fault is known, the appropriate diagnostic
routine may be selected to aid in quickly narrowing the possibilities.
Where the location of the source is not known at aU, the diagnostic pro­
grams are stiU of value, but the entire computer must be examined in
some systematic manner.

In starting a problem, one or two special automaticaUy-computed pUot
problems may be used as test cases. If there are differences between ex­
pected results and these test cases, the program may readily be "traced"
to detect the area of the program where trouble occurs by means of a
tracing program. Once these test cases have been checked out, they may
be stored on some input medium (punched cards, magnetic tape, etc.)
together with the trace routines and thus be avaUable for future testing
of machine rehabihty for that problem. A trace routine is an interpretive
type of program designed to assist the programmer in locating errors in a
program. In this case, the interpretation causes instructions in addition
to those in the main program to be executed. For example, a trace
routine may cause each instruction or specified intermediate instructions
to be printed upon execution. This record may be used for many purposes:
to teU whether jump instructions were obeyed as expected, to indicate
whether desired items of data entered into the computations at specified
points, to provide a record of the contents of arithmetic registers at the
end of a program step so results can be checked. Since the use of a
trace routine increases the time required to execute the main program, the
extent of its use is hmited accordingly.

For intermittent errors which do not repeat during the course of a
trace routine, tracing is unprofitable, and it becomes necessary to continue
computation at the last point where results are known to be correct. To
commence computation at such a point, a so-caUed roU back procedure
must be programmed. Such a program stores aU information necessary

5 4 0 9 . THE DETECTION AND CORRECTION OF ERRORS

to resume the computation in the particular addresses used in the standard
program for a problem. The items of this information may be available
in the input-output medium used at the beginning or middle of the com­
putation or in computed results already printed. The programmer must
foresee where a roll back will start (which may be arbitrarily selected)
and then plan his standard program so as to compute and print or store
on an input-output medium each item of such information. Once the
necessary items are available, a standard roll back program is prepared
on an input medium, which will assign the information to standard
addresses in the problem program. This roll back program includes all
data and instruction codes necessary to provide a configuration of storage
standard to the problem program, such that a standard set of instructions
can then be fed into the computer to continue the computation in a
normal manner.

9 . 2 . 4 . PREVENTFVE MAINTENANCE

The simplest type of preventive maintenance procedure consists of
methodically checking, by means of test instruments, the operation of the
various circuits within a computer. This type of checking procedure con­
sumes a large amount of time, and therefore is usually limited to a check
of the fundamental waveforms only. A common procedure for this type of
checking is to inspect a number of sections each day so that in a specified
period, of the order of several days, all important waveforms will have
been checked.

Another type of preventive maintenance procedure frequently used is
referred to as marginal checking. It requires the inclusion of special fea­
tures in the original design of the machine which enable a displacement
of circuit operating conditions, by a variable amount from the normal, to
be applied to various circuits within a machine. The difference in voltage
between a specified nominal value and that at which the circuit fails is
defined as an operating margin. A marked tendency of a lessening in this
margin in a particular section of a computer is an indication that one or
more components are deteriorating toward a point which would cause
failure. Intermittent faults, caused by slow deterioration of components,
can result in a circuit faihng to operate correctly on certain pulse patterns.
Variations of circuit conditions from the normal by means of a marginal
check can cause a marginal circuit fault to be converted to one which is
well defined and, therefore, more readily identifiable. This permits some
warning to be obtained of the imminence of marginal conditions before
they can cause errors in operation. Though circuits with incipient faults
can be made to fail, others will operate satisfactorily. This type of check-

9.2. DETECTING AND LOCATING SOURCES OF ERROR 541

ing facility may be designed to be applied to the entire computer at once
or to selected groups of circuits, as well as to individual circuits. A
voltage variation scheme is used to vary supply voltages in any of various
isolated sections of the computer to a point where steady failures occur.
These voltages are varied slowly while the computer is executing some of
its test programs. When a fault occurs, its origin may be traced as de­
scribed m Section 9.2.3.

9.3. Error Minimizing Codes

We will present here an example of how selection of a particular code
can influence the probability of error in interpretation of Üie data repre­
sented by the code. To illustrate the point we will consider a type of
encoder widely used to produce a digital representation of a shaft position.
In one of its forms, one or more so-called code disks are mounted on the
shaft. There are several concentric bands on the disk, each corresponding
to a particular bit position of the binary representation of the shaft posi­
tion. The innermost band, which represents the most signiñcant bit posi­
tion, is divided into two segments and each band is divided into twice as
many segments as the one radially inward from it. Each segment in a
band is different in respect to a particular physical parameter than the
segments next to it, e.g., electrically conducting or nonconductmg, if
the segments are to be sensed electrically, transparent or opaque if they
are to be sensed optically. One property represents a 1 and the other a 0.
The resolution of measurement can be no better than the width of the
segments in the band for the least significant bit. The binary coded repre­
sentation of the displacement of the shaft from a reference Une is obtained
by sensing the type of segment in each band on a radial line along which
a set of sensors is located.

If the bands are sensed seriaUy, an error can result from the motion
of the disk from one defined position to the next during the sampUng
period. Thus, the number sensed will consist of the first few bits of the
number present at the beginning of the process while the other bits are
obtained from the succeeding number. This type of error may be avoided
by making the sampUng time less than the minimum time required for
traversal of the disk from one defined position to the next. However, the
source of error in which we are primarily interested here is common to
both serial and parallel sampUng methods. It presents itself when, at the
time of sensing a particular band, the boundary of two segments is
presented to a sensor. The sensor may then produce a signal corresponding
to the value of the segment lying either to the left or the right of the
boundary. The signal produced wiU depend on the sensor's sensitivity.

542 9. THE DETECTION AND CORRECTION OF ERRORS

Decimal Binary
Reflected

binary Decimal Binary
Reflected

binary

0 0000 0000 16 10000 11000
1 0001 0001 17 10001 11001
2 0010 0011 18 10010 11011
3 0011 0010 19 10011 11010
4 0100 0110 20 10100 11110
5 0101 Ol l i 21 10101 11111
6 0110 0101 22 10110 11101
7 O l l i 0100 23 10111 11100
8 1000 1100 24 11000 10100
9 1001 1101 25 11001 10101

10 1010 1111 26 11010 10111
11 1011 1110 27 11011 10110
12 1100 1010 28 11100 10010
13 1101 1011 29 11101 10011
14 1110 1001 30 11110 10001
15 U l i 1000 31 11111 10000

the precision of delineation of the segments, and the degree of aUgnment
of the sensors and disk. In any event, if the two positions defined on
either side of the boundary differ in several bit positions, an error may be
produced in each of these positions, resulting in a value different from
either of the positions by a large magnitude.

Large errors of this type may be avoided by use of codes known as
Gray or cychc codes which have the characteristic that any two coded
representations defined to differ in value by only a single increment differ
in the value of only one bit position. Thus, there can never be ambiguity
in more than one bit position, so the error cannot be greater than a single
increment. A difficulty with the use of a Gray code is that normal arith­
metic operations cannot be performed on numbers expressed in this form,
and conversion to a normal binary code of a number in serial form is
somewhat complicated. However, the translation is simpler for a particular
type of Gray code known as the reflected binary code (shown in Table
9.4). Inspection of Table 9.4 shows that the four right-hand bits of the
representations of 16 through 31 are the same as that of 0 through 15
only in reflected order. Also, inspection of any two adjacent columns
shows that the pairs of bits traverse the following sequence of values:
00, 01, 11, 10, 10, 11, 01, 00 (in which the last four values are in re­
flected order compared to the first four). Other cyclic codes may be
obtained from Table 9.4 by interchanging any two colunms.

TABLE 9.4. A comparison of the binary and reflected binary codes

9.4. ROUND-OFF ERRORS 543

Rn = Bn
Ri = Bi^iBi + Bi^iBi i ^ n.

(9-1)

We wiU now consider how a number in the reflected binary code can be
converted to a number in the normal binary code. At first glance it
appears that the value of Bi depends on the values of Äi+i , . . . / ? « .
TTie conversion process may be simphfied, however, if it is performed in a
serial manner wherein Bn is generated first. In this process the value of fl<
depends only on the values of ß i+ i and SpecificaUy

Bn = Rn
Bi = Bi^iRi + Bi^iRi.

(9-2)

Thus, the conversion can be performed by a single flip-ñop, fl, whose stat^
at any time t depends on its own value at time t — 1 and the value of Ri
at time t.

ActuaUy, it is not absolutely necessary to convert from reflected
binary to a normal binary code in order to perform arithmetic. A method
for operating on numbers expressed in a modified reflected binary code
is described in a paper by H. M. Lucal (see bibUography). The modifica­
tion consists of adding an even parity check bit to ¿ e reflected code
representation. A principal advantage of the modified code is that it can
be used for error detection in arithmetic operations as weU as in data
transmission. A disadvantage is that the adder-subtractor circuitry re­
quired is somewhat more than twice that required for a conventional
binary adder.

It should be pointed out, in passing, that nonambiguous reading is
possible without the use of a Gray code by means of a technique which
employs two sensors for each band except the one for the least significant
bit position. See Susskmd [1958].

9.4. Round-Off Errors

There are two sources of error that commonly occur in any numerical
approximation procedure whether performed manuaUy or by machine.
These are due to the finite length of the numbers carried through the
computation (round-off error) and the finite number of terms used in

Observation of Table 9.4 shows that the value of any bit, in the
reflected code is a function of the corresponding and next more significant
orders of the normal binary code. The foUowing Boolean algebraic equa­
tions expressing the relationship are derivable from Table 9.4 and may
also be checked by reference to the table.

544 9. THE DETECTION AND CORRECTION OF ERRORS

certain operations (truncation error), e.g., computing the vafue of a
function from the first few terms in an infinite series, or representation
of an integral by a finite sum of terms (see Section 8.3 and Fig. 8.5).
Specific techniques for reducing truncation error are outside the scope
of this book and the reader is referred to texts on numerical analysis.
However, in passing, we may mention that once a particular computing
procedure has been selected, the error in the result can be limited to an
acceptable size by adjusting the values of its parameters. The procedure
is somewhat circular in that, if alternate procedures are available, error
estimates can be made for each and selection made on this basis.

It is important to distingush between the absolute round-off error (de­
termined by the number of places carried to the right of the radix point)
and the relative round-ofli error which is the ratio of the absolute round­
off error to the number itself and, therefore, a function of the number of
significant bits retained. One of the most insidious sources of error in a
computation is the large magnitude of relative error produced when the
result of an algebraic addition is a number with fewer significant bits
than either of the operands.

A round-off error m a machine can arise either when a number is
initially entered and terminated at an intermediate point in order to be
accommodated within the machine, or terminated after an arithmetic
operation, e.g., after addition (subtraction) when the sum (difference)
has to be shifted one place to the right to avoid an overflow, after multi­
plication of two n-bit fractional numbers, producing a 2n-bit product,
or a division resulting in a nonterminating quotient. Though round-off
errors cannot be avoided completely, means can be utiUzed to keep them
as small as possible.

If it is desired to carry more bits than the length of a single register
will allow, and to reduce the round-ofli error in arithmetic operations Uke
multipUcation, division, square rooting, etc., recourse may be had to the
use of multiple precision techniques, which wiU be described for double-
precision addition and multipUcation. As a matter of convenience, the
less and more significant halves, / and m, respectively, of each double-
precision number are stored in two consecutive storage locations. To add
two double-precision numbers, mi -f h and m2 + h and h are added
first and the sum stored in a specified location. This is foUowed by addition
of mi and m2 and the carry (if any) produced in the addition of h and
In double-precision multiplication, the partial products /ι/Π2, mih, and
mim2 are produced, the forming of hk being omitted because of its insig­
nificance, and the double-precision product formed by addition (according
to the rules described) of the partial products. These examples show the

9.4. ROUND-OFF ERRORS 545

(xy) = xy = x,y, (9-7)

where the bars refer to mean values. However, if χ and y are closely cor­
related, e.g., if JC = y, there is a bias of the order of r-^« (/· being the
radix). If the quotient x/y is considered in terms of xy~^, it is apparent that
if y is an unbiased estimate of y ,̂ y~^ is not an unbiased estimate of
yrK In fact, (T7y) - 1/y) « y ^ (y " ^ ^ .

Of the round-off procedures described in Section 9.4.1, the two prin-
pical classes are as follows: In one, aU digits beyond the η — 1st are
ignored and the n t h digit is always set equal to r /2 . In the other, r /2 is
added to the η + 1st digit and the first η digits of the sum retained. When
appUed to nonterminating numbers (· 01^2 . . . on · . ·) the round-off error
has the foUowing characteristics (using our earUer assumption about the
nature of discarded digits). In the former case, the error is over the in­
terval — r-'* to r-**, yielding a mean of zero and a standard deviation of
(l /V3) r - ' » . With the other procedure, the interval is - r - ' * » + i ' to r - ' ' » + l ^
also yielding a mean of zero, but a standard deviation of (l /V12) r - ' » . Be­
cause a 2n bit product does not satisfy the condition of being a nonterm-

greatly increased cost in extra storage and increased computing time of
multiprecision arithmetic.

In producing /i-digit approximations to the products and quotients of
two A2-digit numbers, a round-off procedure should not introduce bias and
the standard deviation (used as a measure of the dispersion of the error)
should be minimal. In general, an n-digit number χ entered into a machine
aheady represents a true value Xt which has been rounded off:

Xt = 0 1 0 2 . . . on . . .) (9-3)

X = (' M 2 . . . ftn) (9-4)

where the difference - depends on how χ is formed from Xt. The
product and quotient of two n-digit numbers is:

Xy = (· Ci . . . CnCn+l · · · C 2 «) (9-5)

x/y = (d i . . . d n . . . D 2 N . . .) (9-6)

(although the length of registers in a computer Umits x/y, as weU as x y ,
t o 2 η positions. Before considering how to round off xy and x/y to n-digit
numbers, it is pertinent to inquire whether they are unbiased approxima­
tions of Xtyt and Xt/yt, respectively. If the digits to be discarded are con­
sidered random variables with equally likely values (any two digits being
treated as statisticaUy independent), then

546 9. THE DETECTION AND CORRECTION OF ERRORS

inating number, the mean error may have a bias of the order of r-^»».
Although the preceding discussion has shown biases may enter in

various ways, they are small enough (of the order of Γ"^*») to be con­
sidered neghgible.

9.4.1. MECHANIZATION OF ROUND-OFF PROCEDURES

In this section we will consider first a number of roxmd-off procedures
for use with the binary system. This will be followed by a description of
similar systems for use with the decimal system. The binary round-off
procedures follow:

(1) The procedure described here is the most straightforward of all.
It consists of adding a 1 in the highest order which is to be dropped.
This is equivalent to adding 1 in the least significant bit to be retained if
the bit in the highest order to be dropped is 1, for only then will a carry
be propagated. However, if the 2's complement notation for negative
numbers is used, round-off will occur in a direction opposite to that
desired. This may be avoided by converting the number to its true
representation before rounding. If the I's complement notation for
negative numbers is used, the desired rounding may be produced by
subtracting 1 from the highest order to be discarded. The additional
equipment required may be excessive especially for division, because the
quotient may otherwise be formed in a register having no adding or carry
propagating facility. The bias for this method is essentially zero, the

variance is 1/12(22»»), ^nd the standard deviation 1/VT2(2'*) = 0.29
times the last digit.

(2) This procedure, though simpler, retains the desirable characteris­
tic of producing an unbiased resuh, i.e., the result has an equal probabiUty
of lying above or below the exact result. The procedure is to make the
lowest order bit retained a 1 irrespective of the value of less significant
bits. This method may produce an error twice as great as method (1) ,
but is easily incoφorated into a computer, and the average error over a
large number of round-offs is usually sufficiently smaU. A minor dis­
advantage of this method is that zero is never produced after a round-off
operation. The bias for this procedure is also essentially 0, the variance

is 1/3 (22»»), and the standard deviation is 1 /V3l2'») = 0.58 times the
last digit.

This method has certain advantages in a mechanized process. In mul­
tipUcation, it can be used even though the n + 1st place has been lost
because of a right shift. This method is useful in nonrestoring division
(see Section 6.1.6.1.2) because even though the quotient is formed in a

9.4. ROUND-OFF ERRORS 547

register without carry propagation capabihty, it aUows the approximate
quotient to be formed as soon as its first n - 1 digits are known. Referring
back to the nonrestoring division process, it is seen that the quantity 2-**
(in the correction term [1 + 2-«]) corresponds to this round-off pro­
cedure. One may further justify using this scheme in division while using
the one with a smaller dispersion for multiphcation on the grounds that,
generally speaking, division is a less frequent operation.

(3) In this procedure, a 1 is added to the lowest order bit retained
when that bit is a 1, and nothing is done when it is 0. Consequently, it
is possible to obtain a zero resuh. This method has the feature of not
having to temporarily retain any bits that wiU be dropped subsequently,
but requires an accumulator with carry propagating facilities.

(4) In this procedure a 0 or a 1 is added at random into the lowest
order bit to be retained. This method has the feature of not having to
temporarily retain any bits that wiU be subsequently dropped, but, besides
requiring that the number to be rounded be placed in a unit with carry
propagating facihties, it also requires a random number generator. An
important objection to this method is that it is practically impossible to
repeat computations exactly for checking purposes.

A number of round-oft procedures for the decimal system, similar to
the ones for the binary system are described below in corresponding order.

(1) This procedure consists of adding a 1 to the lowest order digit
retained if the value of the highest order di^t discarded is 5 or greater.
The bias for this method is essentially zero, as for the corresponding
round-off scheme with binary numbers, and the standard deviation is

(1 / v 12)10-»» = .29)10-»»). If it is inconvenient to sense the highest
order digit to be discarded, an alternate, equivalent method may be used.
The number to be rounded off is placed into an accumulator and a 5 is
added to the highest order to be dropped or, what is equivalent, the highest
order digit to be discarded is multiplied by 2. Either way a carry is pro­
duced that adds 1 to the least significant digit to be retained, if the most
significant digit to be discarded is 5 or greater.

(2) The lowest retained digit is made equal to 5 regardless of other
considerations. This procedure satisfies the requirement that the rounded
number has equal probabihty of being greater or smaller than the exact
value, i.e., the error averaged over a large number of round-off operations
approaches zero. The bias for this method too is essentially zero and the
standard deviation is (l /V3)10- '» = .58(10-**).

(3) A 1 is added to the lowest order digit retained if that digit is even,
and 0 if it is odd. This is equivalent to making the last bit always equal
to 1 for a decimal in the conventional binary code. A minor disadvantage

5 4 8 9 . THE DETECTION AND CORRECTION OF ERRORS

9 .4 .2 . SEQUENCING ARITHMETIC OPERATIONS FOR MINIMUM

ROUND-OFF ERROR

In a sequence of arithmetic operations involving addition, multiplica­
tion, and division one particular ordering may be preferable to another
because the cumulative effect of round-off errors is less. That particular
ordering will be considered superior which provides the least maximum
error. In the discussion to follow (based on the treatment and notation of
Von Neumann and Goldstine [1 9 5 7]) our assumptions are as follows: 1)

the digital numbers a, b, c . . , have η places to the right of the radix point,
which is fixed, and may have either a positive or negative sign; 2) the
rounded-off product (of η places), the so-called pseudo-product, will be
denoted by α x ft to distinguish it from the unrounded (true) product ab;
the pseudo-quotient will be denoted by α ^ 6 to distinguish it from the true
quotient a/b. No pseudo operations are involved in addition and sub­
traction.

First of all, it is apparent that the commutative law of multiplication
applies to pseudo-multiplication as well:

of this procedure is that 0 is never produced after a rounding operation.
This disadvantage may be avoided by the following modification: a 1 is
added to the lowest order digit retained when it is odd instead of even.
However, it now becomes necessary to provide for the propagation of the
carry which will occur when the lowest order bit is 9 .

(4) A 0 or a 1 is added in a random manner into the lowest order
retained regardless of other considerations. The average error here too
approaches zero for a large number of operations.

Table 9 .5 summarizes the procedures described.

TABLE 9.5. Listing of corresponding binary and decimal round-off procedures

Binary Decimal

1. Add 1 to Br if B(j = 1

2. Always set Br = 1
3. Add 1 to Br if Br = 1

la. Add 1 to Dr if D(j ~ 5
lb. Add 5 to D(j
2. Always set Dr = 5
3a. Add 1 to Dr if Dr is even
3b. Add 1 to Dr if Dr is odd

4. Add 1 to Br at random 4. Add 1 to Dr at random

Bd, D d : most significant bit (digit) to be discarded
Br, Dr: least significant bit (digit) to be retained

9.4. ROUND-OFF ERRORS 549

axb = bxa (9-8)

However, the distributive and associative laws of multiplication are re­
placed in pseudo-multiphcation by inequalities involving the round-off
error r - V 2 (where r, the radix, may be 2, 3, . . .) . These are shown
as Equations (9-12) and (9-15), respectively. Consider first the two
basic inequaUties:

\(axb) -ab\ ^ (9-9)

| (α -^6) -a/b\ ^ r - V 2 (9-10)

Using Eq. (9-9), it is apparent that

\(a + b) xc - (ac-l·bc)\ ^ 3 (r - V 2) (9-11)

Since the left hand side of the inequality must be an integer multiple of r~**,
Eq. (9-11) reduces to

\(a-hb) Xc - (ac + bc)\ ^ (9-12)

Eq. (9-12) confirms our intuition about the best way to generate ac + be
with the least upper bound for the round-ofli error. Since \(ax c) - ac\
< r - V 2 and \(b X c) - bc\ ^ r - V 2 :

\(axc)-ac\ + 1(6 X c) - bc\ ^ r-^ (9-13)

(Also, adding a and b before multipUcation produces the result with one
less multiplication.)

The efliect of round-ofli error on the associative law of multiplication
wiU be considered next. To obtain an upper bound of the diflierence
\ax (b X c) - abc\, we begin by adding a(b x c) and - a(b X c) to it
and regrouping terms:

\ax (bxc) - a(b X c) 4- a[(b X c) - bc]\
^ \axibxc)-a(bxc)\ + \a\\{bxc)-bc\
^ r - V 2 + | a | r -V2 (9-14)

Since \a\ < 1, Eq. (9-14) reduces to

\ax (bxc) -abc\ < r-^ (9-15)

Two relationships wiU now be derived to show the efliect on the total
round-ofli error of the order in which a multiplication and division are
performed. We start by considering the expression \(a-^b) X b - a\.
Adding (a-^ b)b and - (a-^ b)b, and regrouping terms:

\(a^b) xb - (a-^b)b\ + \[(a-^b) - a/b]b\

^ r - V 2 + \b\ r - V 2 (9-16)

550 9. THE DETECTION AND CORRECTION OF ERRORS

For \b\ < I, the quantity on the right side of Eq. (9-16) is less than r - "
and, since the quantity on the left side must be an integer multiple of r-",
it reduces to zero. (Also, for \b\ = I, the quantity \(a x b) b - a\ must
be zero.) Therefore:

\(a^b)xb-a\ = 0 (9-17)

In the next expression to be considered, namely \(a x b) b - a\, the
order of multiplication and division are reversed. Adding (aX b)/b and
— (a X b)/b, and regrouping terms:

\(axb)-^b- (ax b)/b\ + \[{a + 6) - ab]/b\

^ r - V 2 + |& | -^ r -V2 (9-18)

Since < 1,

\(axb) -^b-a\ ^ \b\-' r-»» (9-19)

The maximum error as shown by Eq. (9-19) compares unfavorably with
that of Eq. (9-17) and even with Eq. (9-16), especially for \b\ « 1. Thus,
it is advantageous to first divide and then multiply.

Let us now return to the subject of double-precision arithmetic intro­
duced in Section 9.4 to consider how it may be effectively used to reduce
round-off error. For an example, consider the generation of a sum of
products:

m

i=l
If each 2n place product is rounded off to η places before addition to
the partial sum:

m m m

l^aA- ^a^Xbi] = \^(aA- a^xbd] ^ r - V 2 (9-20)
i=l t=l i=l

On the other hand, if instead, each 2n place product is retained intact
and only the final sum is rounded-off

m m

Ι ^ α , ί » , - "2^*αφ,\ < r - V 2 (9-21)

m

where ^ * denotes the 2n place sum after round-off. The maxi-
i=l

mum error shown in Eq, (9-21) is actually less than the probabilistic

LITERATURE 551

(mean) error, using single precision arithmetic, namely: .29m^/2r-".
We conclude this section by considering the effect of round-off error

on scaling procedures (described in Section 6.3). First of all, we note
that adjustment of a result by multiplication by an integer (± 2 , ± 3 , . . .)
is not a pseudo-operation since it is equivalent to repeated additions or
subtractions. However, division by an integer is a pseudo-operation. To
eliminate a cumulative effect in successive divisions by a scale factor,
the associative law should hold, namely:

(a -f- j) m = a-^ sm (9-22)

Eq. (9-22) will hold provided only those values are used for s which are
powers of a fixed integer r (= 2, 3,) , and by defining ö ̂ 5 not as
the result of a single division of a by s, but of a ρ times iterated division
of a by r:

a^r^ = (i (a-^r) -^r)) r ρ times

The smaller r, the more precise the adjustments of scale based on it.
Since Γ = 2, 3, . . . this suggests the use of r = 2. Also, matters are
simphfied if r is set equal to the base of the number system employed.
Use of the binary system satisfies both considerations, and this is an
important argument in favor of its use in electronic computers.

LITERATURE

RELIABILrry

Bazovsky, I. [1961] Reliability: Theory and Practice, Prentice-Hall, Englewood
Cliffs, N. J.

Benner, A. H. and Meredith, Β [1954] Designing reliability into electronic circuits,
Proc, 1954 National Electronics Conference, 137-145, National Electronics
Conference, Inc., Chicago.

Bloch, R. M., Campbell, R. V. D. and Ellis, M. [1948] Logical design of the Ray­
theon computers, MTAC, 286-95, 317-23.

Brown, W. G., Tierney, J. and Wasserman, R. [1961] Improvement of electronic
computer reliability through the use of redundancy, IRE Trans. El. Comp., 1 0 ,
407-416.

Dimsdale, B. and Weinberg, G. M. [1960] Programmed error correction in Project
Mercury, Comm. ACM, 3, 649-651.

Flehinger, Β. J. [1958] Reliability improvement through redundancy at various
systems levels, IBM J. Research and Develop., 2 , 148-158.

Holden, P. [1962] The "rate of change factor" in reliability, Electro-Technology, 6 9 ,
No. 1, 53-55.

Läfgren, L. [1958] Automata of high complexity and methods of increasing their
reliability by redundancy, Information and Control, 1 , 127-147.

Landauer, R. [1961] Irreversibility and heat generation in the computing process,
IBM J. Research and Develop., 5, 183-191.

552 9. THE DETECTION AND CORRECTION OF ERRORS

Liddell, D. W. [1962] Integration and automatic fault location techniques in large
digital data systems, Proc. AFIPS Spring Joint Computer Conference, 213-224.

Lloyd, D. K. and Lipow, M. [1962] Reliability: Management, Methods and Mathe­
matics, Prentice-Hall, Englewood Cliffs, N.J.

Pedelty, M. J. [1962] Neuron technology builds reliable circuits from unreliable
components, Control Engrg., 9, No. 5, 115-119.

Schwartz, L. S. [1961] Reliability through redundancy and error-checking codes,
Electro-Technology, 67, No. 2, 123-130.

Scrivner, J. H. and Willey, J. R. [1962] Proving long term reliability (for alloy
transistors) Electronic Industries, 21, No. 5, 102-106.

Swanson, J. A. [1960] Physical versus logical coupling in memory systems, IBM J.
Research and Develop., 4, 305-310.

Weinberg, G. M. [1961] Programmed error correction on a decimal computer.
Comm. ACM, 4, 174-175.

Von Neumann, J. [1956] Probabilistic logics and the synthesis of reliable organisms
from unreliable components, "Automata Studies," Princeton Univ. Press.

Weiss, G. H. and Kleinerman, M. H. [1954] On the reliability of networks, Proc.
1954 National Electronics Conference, 128-136, National Electronics Confer­
ence, Inc., Chicago.

ERROR DETECTING AND CORRECTING CODES

Abramson, N. [1959] A class of systematic codes for non-independent errors, IRE
Trans. Information Theory, IT-5, 150-157.

Baiser, Μ. [1954] IRE Trans. Information Theory, PGIT-4, 50-63.
Brown, D . T. [1960] Error detecting and correcting binary codes for arithmetic

operations, IRE Trans. El. Comp., 9, 333-337.
Calingaert, P. [1961] Two-dimensional parity checking, J. ACM, 8, 186-200.
Elspas, B. and Short, R. A. [1962] A note on optimum burst—error—correcting

codes, IRE Trans. Information Theory, 8, 39-42.
Elias, P. [1954] Error free coding, IRE Trans. Information Theory, ΡΟΓΓ-4, 29-37.
Golay, M. [1954] Binary coding, IRE Trans. Information Theory, PGIT-4, 23-28.
Griesmer, J. H. [1960] A bound for error-correcting codes, IBM J. Research and

Develop., 4, 532-542.
Hagelbarger, D . W. [1959] Recurrent codes: easily mechanized, burst-correcting,

binary codes. Bell Syst. Tech. Jour., 38, 969-984.
Hamming, R. W. [1950] Error detecting and error correcting codes, Bell Syst. Tech.

Jour., 29, 147-160.
Huffman, D . A. [1956] A linear circuit viewpoint on error correcting codes, IRE

Trans. Information Theory, ΓΓ-2, 20-28.
Huffman, D . A. [1953] A method for the construction of minimum redundancy

codes. Communication Theory (W. Jackson, ed.) pp. 102-110, Academic Press,
New York.

Kilmer, W. L. [1959] An idealized over-all error-correcting digital computer having
only an error-detecting combinational part, IRE Trans. El. Comp., 8, 321-325.

Laemmel, A. E. [1953] Efficiency of noise-reducing codes, Communication Theory
(W. Jackson, ed.) pp. 111-118, Academic Press, New York.

Lloyd, S. P. [1957] Binary block coding. Bell Syst. Tech. Jour., 36, 517-535.
Lucal, H. M. [1959] Arithmetic operations for digital computers using a modified

reflected binary code, IRE Trans. El. Comp., EC-8, 449-458.

LITERATURE 553

MacDonald, J. E. [1960] Design methods for maximum minimum-distance error-
correcting codes, IBM /. Research and Develop., 4, 43-57.

Marcus, M. P. [1961] Minimum polarized distance codes, IBM J. Research and
Develop., 5, 241-248.

Meggitt, J. E. [1961] Error correcting codes and their implementation for data
transmission systems, IRE Trans. Information Theory, 7, 234-244.

Meggitt, J. E. [1961] Error-correcting codes for correcting bursts of errors, Trans.
AIEE, Pt. 1, 79, 708-711; IBM J. Research and Develop., 4, 329-334.

Melas, C. M. [1960] A new group of codes for correction of dependent errors in
data transmission, IBM J. Research and Develop., 4, 58-65.

Ralston, A. [1957] Error detection and error correction in real-time digital com­
puters, Proc. 1957 Western Joint Computer Conference, Los Angeles, 179-188.

Reed, I. S. [1954] A class of multiple-error-correcting codes and the decoding
scheme, IRE Trans. Information Theory, PGIT-4, 38-49.

Sacks, G. E. [1958] Multiple error correction by means of parity checks, IRE Trans.
Information Theory, IT-4, 145-147.

Shannon, C. E. [1948] A mathematical theory of communication, Bell Syst. Tech.
Jour., 27, 379.

Siforov, V. I. [1956] On noise stability of a system with error correcting codes,
IRE Trans. Information Theory, ΓΓ-2, 109-115.

Silverman, R. A. and Baiser, Μ. [1954, 1955] Coding for constant data rate systems
—Part I, A new error correcting code, Proc. IRE, 42, 1428-1435; and Part II,
Multiple error correcting codes, Proc. IRE, 43, 728-733.

Slepian, D. [1956] A note on two binary signalling alphabets, IRE Trans. Informa­
tion Theory, IT-2, 84-86.

Slepian, D. [1956] A class of binary signalling alphabets, Bell Syst. Tech. Jour., 35,
203-234.

Susskind, A. K. (ed) [1958] Notes on Analog-Digital Conversion Techniques,
Wiley, New York.

NUMERICAL ANALYSIS

Abramowitz, M. and Stegun, I. A. [1956] Pitfalls in computation, Jour. Soc. Indust.
Appl Math., 4, 207-219.

Alt, F. L. [1958] Electronic Digital Computers, Their Use in Science and Engineer­
ing, Academic Press, New York.

Hartree, D. R. [1952] Numerical Analysis, Oxford Univ. Press, London and New
York.

Hildebrand, F. Β. [1956] Introduction to Numerical Analysis, McGraw-Hill, New
York.

Householder, A. S. [1953] Principles of Numerical Analysis, McGraw-Hill, New
York.

Lanczos, C. [1956] Applied Analysis, Prentice Hall, Englewood Cliffs, New Jersey.
Milne, W. E. [1949] Numerical Calculus, Princeton Univ. Press, Princeton, New

Jersey.
Von Neumann, J. and Goldstine, H. H. [1947] Numerical inversion of matrices of

high order, Bull, Amer. Math. Soc, 53, 1021-1099.

Appendix: Input-Output Equipment

There are many devices which may be used to enter data into a
digital computer and to display or record the results of its computations.
Small amounts of data may be entered by means of a keyboard and
switches, and often by an electric typewriter, on a control console. The
console, which may be situated either at the computer site or remotely,
also usually contains indicator lights and other simple indicators which
allow the operator to monitor certain basic items of information within the
system. The control console is used primarily for monitoring and testing
purposes since too much time would be consumed in entering all data
into a computer manually. Higher speed data entry devices include elec­
tromechanical or photoelectric readers of punched paper tape, punched-
card readers, magnetic-tape readers, automatic graph followers, etc. Data
generated by the computer may also be recorded, printed, or displayed
in a number of ways. Records such as punched cards, punched paper tape
and magnetic tape are of a form that is not only suitable for retention
and availability for future automatic processing by a computer, but can
also be used to produce printed records by means of off-line equipment.
Printed records can be produced either a character at a time (by means
of a typewriter), a Une at a time (by means of medium and high speed
mechanical printers) and a page at a time (by means of electronic print­
ers). Visual displays differ widely in the way characters are formed and
iUuminated. Graphical records may be produced by various types of
automatic plotting devices.

When incorporated into a control system, a computer is also provided
with input-output equipment capable of converting data from measuring
instruments, in analog form, into digital signals, and converting the out­
put of the computer into analog signals acceptable by the controllers and
actuators of the system being controUed. For a survey of analog-digital
conversion equipment, the reader is referred to Susskind [1957] and other
entries in the bibUography of this appendix.

For commercial applications such as the automatic processing of bank
checks and other documents, speciaUy formed characters are printed on
the document. These may be inspected visuaUy and can be read auto­
maticaUy by specially designed reading heads that scan the characters and
produce unique signals for each. The use of a special magnetic ink rather
than printer's ink is used in order to lessen errors in the interpretation

554

A.l . EXTERNAL STORAGE MEDIA 555

process resulting from markings or obliterations of the printed characters
in handling. For a general description of the automatic character recogni­
tion problem, see Chow [1957].

A . l . External Storage Media for Inpuh-Output Functions

Where the medium of storage is readily separable from the sensing
and transport mechanism, it is utilizable not only in conjunction with input
and output devices, but also for external storage of unlimited capacity.
Media that fall in this category are punched cards, punched paper tape,
and magnetic tape. Moderate speed punches and mechanical readers for
paper tape run about $1000, and photoelectric readers up to about $4000.
Card punches and readers for tie-in to a computer vary in price by tens of
thousands of dollars, depending on their complement of switching and stor­
age circuits (though card preparation equipment is much less, e.g., a key
punch is about $2000). High performance magnetic tape units designed
for use with high speed data processors are about $20,()00. These figures
are only approximate, for prices of the newer units are changing, and
there are many items such as the amount of buffer storage and special
control circuitry that may or may not be included with some of these
items that greatly affect the price.

A. 1.1. PUNCHED PAPER TAPE

Punched paper tape used as a data input or output medium for a
digital computer conmionly has 5, 6, 7, or 8 positions across the tape
where circular holes may be punched, as well as a small sprocket hole for
aiding the transport of the tape. A single row of bit positions across the
tape is referred to as a character, and the individual bit positions compris­
ing a character are designated as channels or levels. All bit positions in a
row are punched or sensed simultaneously. Six levels are adequate for the
coding of alphanumeric characters (either upper or lower case). Addi­
tional levels are used either when more than 64 characters are to be coded
or more than 32 characters and a parity check bit are to be provided (see
Chapter 9) . Tape width varies slightly, from 11/16 in. for 5-level tape
to 1 in. for 8-level tape. Holes are usually spaced 10 to the inch along
the length of the tape.

A paper tape punch may be activated either from a keyboard or by
control and data signals from a computer. Paper tapes produced by an
operator for input to a computer are normally prepared off-line in order
to allow the correctness of the data on the tape to be verified before entry
into the computer, and to allow the data to be read in at a faster rate
than an operator can type. When it is desirable, for any number of reasons.

556 APPENDIX: INPUT-OUTPUT EQUIPMENT

to record output data from a computer on paper tape, the tape punch can
be controhed by signals from the computer. Punched paper tapes may
also be produced in conjunction with the preparation of data in other
forms. For example, the keyboard used to produce a typewritten record
on a typewriter or accounting machine may at the same time activate a
paper tape punch. Though typewriter keyboards are primarily designed for
the entry of alphanumeric data, they can also be used for the entry of
binary data. This is accomplished by first dividing the binary numbers to be
entered into groups of 5, 6, or 7 bits, according to the tape format used,
and selecting a particular character to represent each binary coded group.
Binary data may then be entered by depressing a corresponding sequence
of keys, if switches are so chosen and placed that depression of each key
causes a corresponding set of binary signals to be generated. (See Section
A.2.1.)

Paper tape punches operate at speeds of from 10 to 300 characters/sec,
with the majority operating at about 60 characters/sec. Two basic opera­
tions in a paper tape punch are the punching and the tape feed operation.
Synchronization of the internal elements of the punch is obtained by
built-in mechanical and electromechanical means. These internal inter­
locks assure that operations are performed in proper sequence with an
adequate time interval between, e.g., the tape should not be advanced
before the punch pins have been completely withdrawn from it, and the
tape advance sufiiciently completed before the tape is punched. Also,
the input data must be so synchronized with the punch that the electro­
magnets that activate the punching mechanism are energized during the
appropriate part of the punching cycle. Timing signals for this purpose
are commonly obtained from some type of electrical pick-up placed on the
drive-shaft.

A block diagram indicating the timing control for a paper tape punch

Data (from computer)

i i
Buffer register

Clear

Gates
Open

Delay

Input register

Punching
mechanism

Ready
Clear

Punch

control Operate

Punch

control

Punch command
(from computer)

Advance
^ | G a t ^ Tape feed

mechanism

FIG. A. l . Block diagram of paper tape punch timing control

A.l . EXTERNAL STORAGE MEDIA 557

is shown in Fig. A.l . The punch control refers collectively to the internal
source of timing signals. The tape feed mechanism is activated by a
timing signal from the punch control, provided there is a punch com­
mand signal from the computer indicating that a new character is to be
punched. The presence of a ready signal on the line shown indicates that
it is the appropriate time in the cycle for the punching mechanism to be
energized. This signal opens the gates shown, allowing the transfer of
data from the buffer register to the input register, after which the ready
signal is removed. Simultaneously, the operate signal causes activation of
those punch plungers specified by the code in the input register. After
the plungers are withdrawn a new advance signal is generated. There is
buffering of the input data because of timing uncertainties between the
times of its input and use by the punch. Inclusion of the buffering shown
not only leaves the computer free for other operations between data inser­
tions but allows the punch to operate near its maximum rate.

Punched paper tape readers are classified as mechanical or photo­
electric, depending on the means used for sensing the presence of holes.
The reading speed for mechanical readers varies from 20 to 60 charac­
ters/sec, and for photoelectric readers from 150 to 2000 characters/sec.
Two basic operations performed by the reader are sensing and tape
advancement. Synchronization of the internal elements of the reader is
accompUshed by its mechanical design. The tape feed mechanism advances
the tape past a reading station where each character is sensed. The discrete
times at which data may be read are distinguished from the times in
between by an indexing mechanism which generates a signal when the
row of hole positions is opposite the sensing mechanism. The indexing
mechanism is associated with the small sprocket holes which may be
sensed by means similar to that for sensing the data hole positions. The
tape may be advanced either a character at a time or continuously. In
discrete operation, when a signal from the reader indicates it is permissible
to read from the tape, the data fines are sensed and the input gates to a
buflier or static storage register in the computer are opened. At the same
time, an advance signal is sent to the tape feed mechanism, to advance the
next character to the reading station. Continuous operation allows higher
reading speeds. In this case, pulses generated by the reader each time
a character is sensed synchronize the computer to the reader. The dura­
tion of the reading process is controlled by start and stop signals from
the computer.

A. 1.2. PUNCHED CARDS

Punched cards differing in size and format were developed initially
for use with different accounting machines. Only two of these cards have

558 APPENDIX: INPUT-OUTPUT EQUIPMENT

been used to a great extent in digital computer systems. Both are a standard
sized stiff paper card (314 in. x lYs in. X 0.007 in.). The most widely
used one, the IBM card, provides 12 row and 80 columnar positions where
rectangular holes may be punched. The Remington Rand card provides
12 row and 45 columnar positions where circular holes may be punched.

Operating rates for card punches are in the range of 100-200 cards
per minute. The operation of a card punch may be described in terms of
its principal functional units, namely an input station (card hopper), a
card feed and transport mechanism, an indexing mechanism, a punching
mechanism, and an output station (card stacker). Synchronization of
these elements is obtained by built-in mechanical and electro-mechanical
means referred to collectively as the punch control. The events that take
place in order to punch a single card are somewhat as follows: When a
signal appears on the interlock Une of the card indexing mechanism, indi­
cating the punch is ready for a new cycle, the card feed mechanism is
activated. This causes a single card to be extracted from the bottom of the
stack in the hopper and advanced to the punching mechanism. When
the card reaches it, a "card ready" signal appears which deñnes the period
during which the punching operations for the whole card are completed.
When the proper position on the card is reached, the appropriate punch
plungers are actuated. The plunger drive signals are obtained from the
output Unes of a buffer register which holds the data to be punched in
the first row or column, depending on the type of punch. Upon extraction
of the plungers, the indexing mechanism generates a signal that aUows
the next row (or column) of data to be entered into the buffer register.
After the last row has been punched, the "card ready" signal is removed.
Completion of a full cycle causes the reappearance of a signal on the
interlock Une and the start of a new cycle.

A card reader may sense either a row or column or the entire card
simultaneously. Reading rates for card readers are in the range of 100^
1000 cards/min, the higher speed units having been specially developed
for use with high speed computers. The functional units of the reader
are simUar to those of the punch. However, instead of a punching mech­
anism, there is a reading station where the presence or absence of holes
in particular positions may be sensed either electromechanically by sets
of brushes or photoelectrically. In either case, as many data output Unes
are provided as hole positions to be read simultaneously. When a card
reaches the reading station, a "card ready" signal is generated by the
sensing mechanism and when the card is properly positioned for sensing,
a signal is generated by the indexing mechanism which can be used to
gate signals from the data output Unes to their destination. The indexing
mechanism also generates an interlock signal which indicates that a card-

A.l . EXTERNAL STORAGE MEDIA 559

reading cycle has been completed and that a new card may be read.
When a card reader is used as an on-hne input device to a digital

computer, the computer must provide whatever signals are necessary to
sequence the reader through its cycle of operation. To cause a new card
to be read, it must generate a signal to actuate the card feed mechanism.
This signal is generated only after it has been determined, by inspection
of the interlock line, that the reading cycle for the last card has been com­
pleted. A signal indicating the presence of a card at the reading station is
generated by the sensing mechanism. During the time the rows (or col­
umns) are read, the indexing mechanism causes a serial train of indexing
signals to be generated, each of which indicates a time at which there
are signals on the data output lines, i.e., the output lines of the sensing
stations. The computer must also be provided with lo^cal circuitry to
detect the failure of a card to arrive at the read station, indicated by
absence of a card present signal, and to cause the indexing signals to be
ignored. This action can be used to signal to the operator that either no
cards remain in the hopper or the card reader is not operating properly.

A buffer is useful in conjunction with a card punch or reader for two
main purposes. First, it is needed to compensate for the difference in
data rates between these units and the computer. Secondly, it can be used
to translate from computer code and format to one of a number of possible
card codes and formats.

Punched cards are widely used because of the convenience or flexi­
bihty of the card itself, and, also, of the variety of equipment that has
been developed for processing cards. The distinguishing feature of a card
is that it provides a unit record readily separable from data on other
cards. It also offers flexibihty in that various codes may be used on a
card to represent alphabetic characters, special symbols, or binary data.
These features plus the variety of machines available for punching, verifi­
cation, and duphcation of cards facihtates the initial recording of data. To
reduce the time required for data preparation, several key punches may
be employed simultaneously, and the cards collected before entry of the
data into the computer. The unit record feature may be used to advantage
by pimching one instruction to a card and using an assembly program to
assemble them in the right order. If errors are detected or changes required,
it is relatively simple for cards to be replaced or added, after which the
corrected program is assembled.

There are a number of auxihary card processing units which incor­
porate a punch or reader or both in conjunction with printing, sorting,
duphcating, and hmited computing devices. For example, a visual record
of data on a punched card can be provided either by a unit called an
interpreter, which reads a card and prints the corresponding data on the

560 APPENDIX: INPUT-OUTPUT EQUIPMENT

same or different cards, or by a special key punch that prints data on a
card concurrently with the punching operation.

To take advantage of the conveniences of preparation of data on cards
while allowing data to be entered into a computer at the higher data trans­
fer rates of magnetic tape reading, punched card to magnetic tape con­
verters have been developed as an auxiliary unit of off-line equipment.

For detailed descriptions of punched card equipment, the reader is
referred to Cemach [1951] and to various reference manuals of the IBM
Corporation.

A. 1.3. MAGNETIC TAPE

Magnetic tape for computer applications usually has either a cellulose
acetate or polyester (Mylar) base. The magnetic coating consists of about
80% iron oxide (FcsOa or FcaOé or a mixture) in an acetate or vinyl
binder. Tape widths vary from V4 to 1 in. Acetate tapes used have a base
thickness of 1.5 mils while polyester base tapes of only 1.0 mil thickness
can be used because of their greater tensile and yield strength. The co­
efficient of expansion with both humidity and temperature is also less for
the polyester base tape. Another type of magnetic tape that has been
used in computer applications has a magnetic coating consisting of a
nickel-cobalt alloy which is plated onto a nonmagnetic metallic base
having a highly polished conductive surface. However, it has not found
as wide appUcation, being used principally in the Remington Rand Uni-
servo tape unit. A major problem associated with magnetic tape is that
of dropouts of recorded data resulting from tape imperfections. For this
reason the quality of tape for computer usage must be much better than
that for recording sound. A common size for reels is a diameter of lOVi
in. Tape lengths usually vary between 2400 and 3600 ft.

It is common practice for words to be stored on magnetic tape in a
serial-paraUel fashion. For example, if a word in a binary machine has 36
bit positions, and 6 channels are available on the tape for data storage,
the word would be stored in 6 paraUel groups of 6 bits each. Other chan­
nels would also be provided for clock pulses, parity check bits, a n d block
marker signals (defined later in this section).

In general, the considerations that enter into the design of record and
read heads for use with magnetic tape are the same as those for heads to
be used with magnetic drum or disk memories, (see Chapter 5) . One dif­
ference is that the heads are, as a rule, grouped together in a stack which
may contain from 15 to 30 heads/in. This provides a convenient mounting
arrangement while aUowing a reasonable transverse packing density, i.e.,
number of channels per unit width of tape. The head stacks must be made

A.l. EXTERNAL STORAGE MEDIA 561

with great precision for misalignment of the individual heads with respect
to the tape can cause various problems. For example, if the read heads
were not adequately aligned along the channels with the record heads, the
full recorded signal would not be picked up and the output voltage would
vary accordingly. If the tape is placed on another unit whose heads are
not similarly aligned both within the stack and relative to a reference line
external to the stack, there would be incomplete erasure of old data,
which could result in the reading of unwanted data. In addition to the
Hmitations on recording density imposed by the characteristics of the head
and the recording medium, an additional Umit is imposed by the precision
with which the heads and tape can be aligned. For good longitudinal
recording density, there must be precise ahgnment of track gap-center
lines within the head stack. In high quality stacks, the gap scatter is held
to a tolerance of 0.0001 in. The maximum longitudinal density obtainable
is related to the amount of twist of the tape relative to the heads, for
if the bits are packed too close, the head at one side of the tape may be
picking up a bit from one row and that at the other side from another
row. One way of reducing the effect of skew is to pack a given number
of channels into a narrower section of tape. However, this also produces
an alignment problem, for a smaller amount of tape slippage sidewise will
now result in each head reading, erroneously, the contents of the adjacent
channel. As a result of the tape riding in contact with the heads, the
head laminations may be ground by the abrasive action of pigmented
tapes, resulting in widening of the head gap. Also, as oxide particles
accumulate on the head surface, the tape is lifted from the head gap,
causing an appreciable signal loss. One manufacturer has alleviated this
problem by providing recesses between the heads of a stack, in which
loose oxide particles can collect between periodic head cleanings. Metal
tapes are less abrasive and can be lubricated to reduce wear, but present
other problems.

It is common practice to provide self-checking of the data on the tape.
During recording, a parity bit is generated for each row and recorded in
a channel provided for that purpose. In reading, the value of the parity bit
is computed again and checked with the recorded value. Because a simple
parity check like this detects only an odd number of errors in each row
and tape drop-out errors are likely to be correlated, a longitudinal check
is also provided in the form of a parity bit for each column of a block
of data. The longitudinal parity bits are sometimes referred to as a check
sum of the block of data. The use of both transverse and longitudinal
parity bits allows a single error in a block to be corrected, since the bit in
error will be the one at the intersection of the row and column where the
parity bits indicate an error.

562 APPENDIX: INPUT-OUTPUT EQUIPMENT

In utilizing magnetic tape in a computer system, it is necessary to be
able to start and stop the tape at the command of the computer. Since
the tape drive mechanism cannot stop the tape or accelerate it to full
speed in a time short compared with the pulse repetition rate of recorded
information, a certain amount of lead space, referred to as a gap, must
be allowed between the blocks of recorded information. The length of the
gap is the amount of tape moved from the issuance of a stop command
until the tape is again moving at fuH speed after the issuance of a sub­
sequent record or read command. Because of mechanical limitations, the
deceleration and acceleration times are subject to shght variation. There­
fore, after the issuance of a record command, a delay must be introduced
before recording takes place adequate to insure that even under the worst
conditions likely to be encountered the tape wiU have been accelerated to
fuh speed by the end of the delay time. This provides assurance that when­
ever any record is consulted, data is read or recorded only when the tape
is moving at the correct speed.

Because it is not only diflScult to control exactly the start and stop
times, but also to achieve constant tape speed, it is not practical to locate
individual words by means of an indexing scheme based on counting
pulses from an external clock source. A convenient way of locating a
word is by its relative position in a block of data recorded by a single
command. Each block can be located by a specific address or identifying
tag stored within it. The length of blocks may be fixed or variable, depend­
ing on the associated tape control equipment. The extent of each block is
defined by a block marker signal recorded at the beginning and end of
each block. During subsequent reading operations these markers initiate
reading and stopping of the tape.

It is desirable to record a large number of words per block for two
important reasons. First, because the tape is normaUy at rest between
recording and reading operations, each access to a block consumes a start
and stop time during which no information is read or recorded. Therefore,
the more data per block the lower the average access time to a unit of
information. (For eflicient operation, it is also desirable that a block of
data transferred to the computer keeps it busy for a period large compared
to the access time. This is the case, for example, when an iterative sub­
routine stored on the tape is caUed in.) Also, since the gaps between
blocks contain no data, the longer a block the greater the ratio of used to
unused space on the tape. It is apparent that a smaU start and stop time
are desirable both to reduce access time and tape wastage. (The stop
time is more wasteful of tape than the start time because the stop com­
mand that precedes and initiates mechanical action is given while the tape
is running at full speed.)

A.l . EXTERNAL STORAGE MEDIA 563

Measures that may be employed to improve the start and stop times
of various tape transports will be described briefly. We begin by consider­
ing first the basic elements of a tape transport, namely a drive unit that
starts or stops the tape, moves it and controls its speed, and a tape reel
assembly that supplies and takes up tape as required. The inertia of the
loaded reels and their drive motors is considerably more difficult to
overcome than the inertia of a small length of tape. Thus, to provide
quick starts and stops, it is essential to maintain a slack loop of tape
which can be accelerated faster than the reels. The speeds of the reel
drive motors can be controlled by sensing the current amount of slack
tape. Two principal types of slack loop systems are now commonly used.
They differ both in the way the slack is maintained and its amount sensed.
In one arrangement, the tape is formed into several zig-zag loops by means
of guide rollers mounted on two movable arms. (See Fig. A.2.) The tape

Supply ree

Take-up reel

FIG. A . 2 . Magnetic tape transport with slack tape formed by zig-zag loops
and movable arms

passing from the supply reel is formed into several loops on one arm,
passes over a centrally located drive unit, is formed into loops on a
second arm and finally wound on the take-up reel. When sudden changes
in tape speed occur which tend to vary the tape tension, the arms move to
either let out or take up slack, as required. This arm movement is sensed
by a servo system that regulates the supply of tape by controlling the
speed of the reel motors. In another widely used arrangement for main­
taining slack, the tape is drawn into two columns by reduced air pressure
(see Fig. A.3). Whether the slack supply is greater or less than a specified

564 APPENDIX: INPUT-OUTPUT EQUIPMENT

Supply reel Take-up reel

Head
assembly!

Tape
level

sensors

Reduced
pressure

areas

FIG. A . 3 . Magnetic tape transport with slack tape formed by air pressure

amount is sensed by pressure sensitive switches. The outputs of these
switches are used as inputs to a servo system that controls the speed of
the reel motors. Some speed characteristics of certain commercially avail­
able tape transports are hsted in Table A. l .

TABLE A . l .

Normal Starting Stopping
tape speed time time

Model (in/sec) (msec) (msec)

A m p e x — F R - 3 0 0 1 5 0 1.5 1.5
I B M — 7 2 7 7 5 3 . 5 4.5
Potter—906 5 0 - 1 0 0 3 1.5
R C A — 5 0 1 1 0 0 2 2
Sperry Rand—Uniservo 1 0 0 6 . 5 6 . 5

Of the three external storage media described, magnetic tape is the

A.l . EXTERNAL STORAGE MEDIA 565

* An added feature desirable in data recording and reduction is that, for moderate
recorded pulse densities, data may be recorded or played back at any of several

tape speeds with a speed ratio of 10:1 between one system and another being
readily obtainable.

most versatile. It provides the highest storage density and also the highest
data transfer rate for both recording and reading. Also, both reading and
recording functions are readily incorporated within a single unit. Finally,
it is the only one of the three that provides the feature of erasibility.*

Because of its high data transfer rates, the use of magnetic tape for
input-output operations reduces the ratio of time spent by the computer
during these operations to time spent in other operations. For example,
with other output recording media or high speed mechanical printers, the
maximum data output rate is about 2000 characters/sec compared to a
range of about 6000-60,000 characters/sec for present magnetic tape
units. Several of its features make magnetic tape suitable as an external
storage medium for the storage of libraries of programs (subroutines, com­
pilers, etc.) and large files of data for temporary or permanent storage
(where these terms may encompass a range of the order of minutes to
years). The feature of erasibility is essential to its use as an auxiliary store
in conjunction with either a medium speed internal store Uke a magnetic
drum or disk, or a high speed store like a magnetic core array. Some
pertinent points in comparing the use of a magnetic tape unit against a
drum or disk for an auxiUary store are as follows: the tape ofliers a
greater amount of storage (over 30 miUion bits for a 2400-ft reel, assum­
ing a nominal recording density of 200 bits/in., 6 channels, and 10%
tape wastage because of gaps) while the disk and drum are simpler mech­
anisms, and provide higher Unear speeds and a shorter access time to a
selected location.

Even though starting and stopping the tape is time-consuming, the
relatively smaU access time per word obtainable when data transfer opera­
tions are limited to transfers of large blocks of data increases its useful­
ness as an auxiliary store. There are different ways for the computer to
gain access to desired locations. For example, a program may be written
so that blocks of information recorded on the tape can be counted. If
tables of functions are stored, the arguments and values can be stored in
alternate blocks. Then, through programming, the computer can examine,
by a comparison operation, all arguments till it comes to the right one,
at which time it senses the next value of the function. There are also ways
to partially compensate for the relatively long time required by tape opera­
tions. For example, the control circuits of a computer may be so designed
that the computer proceeds to other operations during the period between

566 APPENDIX: INPUT-OUTPUT EQUIPMENT

initiation of a command involving a tape unit and actual execution of the
command. This type of operation calls for some independent control cir­
cuits for the tape unit as well as the inclusion of certain logical interlocks
to prevent any undesirable interaction. Tape wastage may be reduced,
too, by use of particular arrangements of data and programming devices,
e.g., by back spacing at the end of a block in preparation for the next.

Though devices are available for entering data onto a magnetic tape
directly from a keyboard, this procedure is seldom used, principally be­
cause the recording density thus obtainable is much less than that obtain­
able by other methods. Both paper tape to magnetic tape and punched
card to magnetic tape converters have been built that read data from the
specified medium and transcribe it in a continuous manner onto magnetic
tape. Because of the speed differences in processing these media, buffer
storage must be included in these converters. The need for the paper tape
to magnetic tape converter also arises because data transmitted over long
distances by teletype is available on punched paper tape (teletype tape).
The need for punched card to magnetic tape converters arises because
of the large amounts of data presently recorded on punched cards and
the convenience of recording certain sources of data in this form. There
is also a converter which punches cards in punched-card code from the
code read from teletype tape.

There is available commercially a Computer Language Translator
(produced by the Electronic Engineering Co. of California) that provides
at high speed an efficient translation of data from any one of a number
of input media (magnetic tape, punched paper tape, punched cards, an
analog to digital converter) to the form required by one of a number of
output units (magnetic tape, punched paper tape, punched cards, printers,
digital plotters, or a digital to analog converter). In addition to format
and media conversion, various types of code conversion can also be
provided.

A.2. Printers

A.2.1. CHARACTER AT A TIME PRINTERS

The simplest type of printing device usually employed in conjunction
with a digital computer is an electric typewriter. The speed of these ma­
chines may vary from 6 to 20 characters per second, with an average
figure of about 12 for most. As indicated in Chapter 7, an electric type­
writer is often used as an on-Une input-output device to handle limited
amounts of data. A standard electric typewriter may be modified for use
as an input device by the addition of switches so placed that movement

A , 2 . PRINTERS 5 6 7

of the key lever (produced by depression of a key) not only moves a type
bar, but also triggers the corresponding switch. Output signals from the
switches may then be used as inputs to a computer. The typewriter may
be modified for use as an output device by so locating a set of push rods,
each controlled by an electromagnet, that energizing any magnet causes
the push rod to activate a corresponding type bar in the same manner
as if a key on the typewriter had been depressed. A disadvantage of this
type of arrangement is that as many signal lines must be provided as there
are different characters to be printed. To reduce this requirement, there is
incorporated in some electric typewriters a mechanical decoder which,
for each value of a binary-coded input signal, is so actuated (by the
energizing of selected coils) that a particular type bar is depressed. The
control signals required are those used to indicate that a printing operation
is to be started, or that the typewriter is ready to accept another character,
or to produce a carriage return and Hne advance operation. The latter
control signal may be obtained: (a) automatically, when the carriage
reaches a certain position, (b) by the inclusion of circuits which count
the number of characters (and spaces) on a line and produce a signal
when this count exceeds some specified number, (c) by having the com­
puter generate, at appropriate places in the output data, a binary code
group that causes a carriage return and line advance operation.

A . 2 . 2 . LINE AT A TIME PRINTERS

The term "line at a time" is used to distinguish printers which print
a row of characters at a time from typewriters which produce only a
single character at a time. There may be from about 2 5 to 1 2 0 character
positions (columns) per row. A buffer store holds the complete line of
characters which are to be printed at a time.

In the mechanical Hne at a time printers commonly used with punched
card equipment, either type bars or print wheels are used. In the former
case, there is a separate type bar (with a complete set of printing dies)
for each column, and character selection is performed by positioning
each bar verticaUy so that the desired character is opposite the paper. In
the other type of printer, a separate print wheel is provided for each
column and selection is performed by rotating the wheels tiU aU the desired
characters are opposite the paper. The speeds of these machines vary from
about 1 0 0 Unes/min for the type bar printer to about 1 5 0 Hnes/min for
the type wheel printer. Format control may be provided either by plug­
boards or punched paper tape format control programs incorporated
within the printer, or by means of a format control program in a com­
puter that controls the printer.

568 APPENDIX: INPUT-OUTPUT EQUIPMENT

A.2.3. HIGH SPEED (ON THE FLY) PRINTERS

The speed of the accounting machine type of line at a time printers
is limited by the time required to accelerate the type bars or wheels.
A high speed mechanical printer developed subsequently overcomes this
hmitation by the device of continuously keeping the print wheels rotating.
A separate hammer for each wheel strikes the paper against the ribbon
and wheel as the desired character passes underneath. Each character on
a wheel is located by its relative position from a fixed reference point.

In a printer of this type manufactured by the Potter Instrument Com­
pany, there is only one print wheel, and it rotates in a horizontal rather
than vertical plane, passing by as many hammers as there are columns
per row. Though the mechanical arrangement is different, the operating
principle is similar to that of the multiwheel printer. An important dif­
ference is that in this case the time at which a particular character arrives
in front of a hammer depends not only on the fixed reference point but
also on the columnar position of the particular hammer.

Printers of this type, which are usually operated off-line from mag­
netic tape inputs, are capable of printing from 300 to 900 hnes of alpha-
muneric data per minute.

A.2.4. HIGH SPEED MATRIX PRINTERS

In matrix printers the characters are formed not by type font but
according to the selection of a pattern of dots in a rectangular array,
usuaUy with five columnar and seven row positions. The actual printing
operation takes place by means of smaU wires that transfer ink to the
paper by striking it. These printers are intrinsically capable of greater
speed than the type-bar or print-wheel printers because the character
forming elements do not have to be moved into position, and the wires
are of low mass. These units may be operated off-line from magnetic tape
or punched card inputs and printing speeds of from 500 to 1000 hnes per
minute are obtainable.

In one type of arrangement, as many 35-wire matrices are provided
as there are columns of data to be generated. This allows a complete row
of data to be printed simultaneously. In another type of arrangement, only
a single row of five wires is provided for each character column, these
wires being actuated seven times (as the paper is advanced) to form a
single row of characters.

At present, the quahty of matrix printing is somewhat inferior to
conventional printing, but for comparable printing speeds the registration
is better than for on the fly printers.

A.3. CHARACTER-GENERATING CATHODE-RAY TUBES 569

A . 3 . Character-Generating Cathode-Ray Tubes with Light
Sensitive Recorders

Three basic methods have been used for the generation of characters
(numeric or alphanumeric) on the face of cathode-ray tubes. In the
Lissajous method, each character is drawn by the simultaneous application
of specified voltage waveforms to the horizontal and vertical deflection
plates. In the raster scan method, control of the intensity of the cathode-
ray beam during each sweep enables characters to be produced in matrix
form. Both of these methods are unsatisfactory in regard to the quaUty
of the characters, the resolution obtainable, and the complexity of cir­
cuitry and programming required to generate the pieces that combine to
produce a single character.

A great improvement was provided by the development of special
cathode-ray tubes that form any of a set of specified characters by means
of a stenciled mask incorporated within the tube and placed in the path
of the beam from the electron gun. Two of the most widely used character
generating cathode-ray tubes are the Charactron, produced by the Strom-
berg-Carlson division of General Dynamics, and the Typotron (see Fig.
A.4) produced by Hughes Aircraft Company. Both can generate characters

Character
being written

Flood
electrons

Deflection
plates

Magnetic lens
(convergence coil)

Writing
gun

Character
selection plates

Character nr̂ atrix

Viewing
screen

Compensation
plates

Flood guns
Character shaped
writing beam

Storage target

FIG. A . 4 . Simplified schematic of the Typotron (courtesy of Hughes Aircraft Co.)

at the rate of about 20,0(X) characters/sec. In each, a metal stencil

570 APPENDIX: INPUT-OUTPUT EQUIPMENT

containing a full set (64) of characters to be used is built into the tube.
To display any particular character the diffused cathode beam is first
deflected, by voltages applied to electrostatic deflection plates, to the
appropriate position on the stencil. The resulting image is focused with a
magnetic lens and directed to a desired position on a long persistence
screen by a second deflection system. Since one of the characters cut in
the stencil may be a round hole, it is also possible to use these tubes as
conventional cathode-ray tubes, and to generate data in graphical form.
An added capability of the Typotron is provided by an electron flood gun
mounted in the vicinity of the deflection plates that position the shaped
beam on the screen. The low velocity electrons from this gun serve to
regenerate, by means of secondary emission, the characters formed on
the screen by the high velocity shaped beam. Thus, information on the
screen can be held indefinitely or erased by disabhng the holding function.

Although picture tubes may be viewed directly, such operation does
not take advantage of the high potential data output rate of the tube
because of the limit imposed by the rate at which the human observer can
absorb or record the data. For this reason, when character-generating
tubes are used for the generation of large quantities of data at high output
rates (either on-hne, or off-hne with a magnetic tape input) means are
provided for automatically recording the data displayed on the tube face.
The most obvious method is to record each set of output data on suc­
cessive frames of photographic film. One electronic printer, produced by
the Stromberg-Carlson division of General Dynamics, projects the charac­
ters from the tube face onto 35-mm microfilm, and can record at rates
up to 15,000 characters/sec. Hard copy can then be produced either by
conventional film printing or by a high speed automatic film processor.
Another printer produced by the same company uses the Charactron in
conjunction with a Xerox printer (produced by Haloid Xerox, Inc.). In
the Xerography process, a latent image produced on a specially prepared
surface is developed by a dry developing process. The characters from
the tube face are projected onto a section of the surface of a drum coated
with a photoconductive material such as selenium. The surface is always
charged just before exposure to Ught, and the effect of the exposure is to
cause those areas exposed to lose their charge. Then the drum surface is
brought in contact with a fine powder developer (electrically charged
opposite to the initial charge on the drum surface) which carries a black
thermoplastic toner which adheres to the areas of the surface where the
light has discharged the selenium. The printing is produced by placing
in contact with the drum a roll of paper with a charge of the same sign as
the initial charge on the drum. This causes transfer to the paper of a

A . 4 . DISPLAY DEVICES 5 7 1

toner image which is fixed by heating and melting in a fuser. Both of the
electronic printers described can be operated either on-hne, or off-hne
with a magnetic tape input. Off-line operation permits better use to be
made of computer time especiaUy when each frame contains less than the
maximum amount of data.

A.4. Display Devices for Small Quantities of Slowly Changing
or Static Information

Methods for displaying individual characters (letters, numbers, or
special symbols) can be classified according to the basic methods used for
storage, selection, and display of the character.

A . 4 . 1 . MOVING INDICATOR DISPLAYS

In the moving indicator methods, a particular character is selected and
displayed by moving a drum or belt on which characters are imprinted
until the character to be displayed is positioned behind a window.

A . 4 . 2 . LAMP SWITCHING DISPLAYS

One of the earUest tJφes of lamp switching displays provided as many
characters and associated lamps for illumination as there were choices
of characters. For example, to display any of the numerals 0 through 9 ,
a separate character, lamp, and viewing window were provided for each
of the 1 0 numerals, and selection performed by energizing a particular
lamp. In a more compact arrangement, a sin¿e, ground-glass viewing
screen is provided on which one of a set of characters is projected. Selec­
tion is obtained, as before, by energizing the lamp that iUuminates the
character to be displayed. In another scheme, no individual characters
are provided but instead a group of window segments each with its own
source of iUumination. In this arrangement, a particular character is
selected and formed by iUuminating, by means of filamentary or neon
lamps, a particular pattern of segments. In a similar scheme, instead of
window segments and lamps, a group of segments of a fluorescent material
is provided, and a fluorescent character is displayed by activation of
selected segments.

A . 4 . 3 . THE EDGE-LIT ETCHED PLASTIC DISPLAY

This is a type of lamp-activated display which is widely used for the
display of decimal digits. Each assembly has in a stack as many thin
transparent plastic wafers as there are symbols to be displayed, a different

572 APPENDIX: INPUT-OUTPUT EQUIPMENT

symbol being frost etched into each wafer. A separate filamentary lamp
is provided to edge light each wafer. A particular symbol is made visible
by activation of its associated lamp. Light transmitted through the plastic
is diffused by the etched symbol which thereby becomes visible. (Symbols
not selected can also be seen, though faintly.)

A.4.4. NEON TUBE DISPLAYS

In the simplest type of neon tube used for digital display purposes, an
indication of two voltage levels is provided by whether a glow discharge is
produced in the tube or not. These tubes are useful where it is only neces­
sary to give a binary indication of the voltage states of bistable elements.

A number of specialized neon display tubes have been developed to
provide direct displays of decimal digits, letters of the alphabet, or other
symbols. Such tubes hold a number of character-shaped wire elements in
an atmosphere of neon. Any particular element is displayed by applying
a negative voltage to it with respect to the other elements in excess of the
breakdown voltage. This causes the element to act as a cathode and
produces a glow discharge about it corresponding to its outline. (Symbols
not selected can also be seen, though faintly.)

Another type of neon tube used for display is a combination counting
and display device. Upon the application of each trigger pulse to a single
input terminal, a glowing gaseous discharge spot is advanced from one
element to another in a ring. There are usually 10 elements in the ring,
and the tube is provided with a suitable mask which causes the glowing
spot to illuminate a different decimal digit at each position. By means of
appropriate circuitry, as many of these decade counters can be connected
in cascade as desired.

LITERATURE

Angel, A. M. [1957] A very high speed punched paper tape reader, IRE 1957
Wescon Convention Record, Pt. 4, 218-227.

Bauer, F. [1959] The Burroughs 220 high speed printer system, Proc. 1959
Western Joint Computer Conf., San Francisco, IXl-lXl.

Baybick, S. and Montijo, R. E., Jr. [1957] An RCA high performance tape trans­
port system, Proc. 1957 Western Joint Computer Conf., Los Angeles, 52-56.

Barker, R. A. [1960] Techniques of dynamic display, Part I: Cathode ray tubes,
Control Engrg., 7, No. 2, 100-105.

Barker, R. A. [1960] Techniques of dynamic display Part I I : Optics at work, Con­
trol Engrg., 7, No. 4, 121-125.

Bower, G. G. [1957] Analog-to-digital converters, Control Eng., 4, 107-118.
Burkig, J. and Justice, L. E. [1957] Magnacard—magnetic recording studies, IRE

1957 Wescon Convention Record, Pt. 4, 214-218.

LITERATURE 573

Buslik, W. S. [1952] IBM magnetic tape reader and recorder, Proc. Joint AIEE-IRE-
ACM Computer Conference, New York, 86-90.

Carroll, J. M. [1956] Trends in computer input-output devices, Electronics, 2 9 ,
142-149.

Cemach, H. P. [1951] The Elements of Punched Card Accounting, Pitman, London.
Chow, C. K. [1957] An optimum character recognition system using decision func­

tions, IRE Trans. El. Comp., EC-6, 247-254. (Comments on this article by
I. Flores appear on p. 180 of the June 1958 issue and by C. K. Chow on p. 230
of the June 1959 issue of the same journal.)

Davies, D. W. [1956] Sorting of data on an electronic computer, Proc. Inst. Elec.
Engrs., 1 0 3 , Pt. B, Supplement 1, 87-93.

Di Giulio, E. M. [1956] Burroughs G-101 high speed (matrix) printer, 1956 IRE
National Convention Record, Pt. 4, 94-100.

Ferguson, D. E. [1960] Input-output buffering and Fortran, / . ACM, 7, 1-9.
Forgie, J. W. [1957] The Lincoln TX-2 input-output system, Proc. 1957 Western

Joint Computer Conf., Los Angeles, 156-160.
Hayes, R. M. and Wiener, J. [1957] Magnacard—a new concept in data handling,

1957 IRE Wescon Convention Record, Pt. 4, 205-209.
Josephs, J. J. [1960] A review of panel-type display devices, Proc. IRE, 4 8 , 1381-1395.
Kilbum, T., Hoffman, G. R., and Wolstenholme, P. [1956] Reading of magnetic

records by reluctance modulation, Proc. Inst. Elec. Engrs., 1 0 3 , Pt. B, Supple­
ment 2, Convention on Digital Computer Techniques, 333-336.

MacDonald, D. N. [1956] Datafile—a new tool for extensive file storage, Proc.
1956 Eastern Joint Computer Conf., New York, 124-127.

Mee, C. D . [1958] Magnetic tape for data recording, Proc. Inst. Elec. Engrs., 1 0 5 ,
Pt. B, 373-382.

Nelson, A. M., Stem, H. M., and Wilson, L. R. [1957] Magnacard—mechanical
handling techniques, I.R.E. 1957 Wescon Convention Record, Pt. 4, 210-213.

Nordyke, H. W. [1952] Magnetic tape recording techniques and performance,
Proc. Joint AIEE-IRE-ACM Computer Conference, New York, 90-95.

Partos, P. [1956] Industrial data-reduction and analogue-digital conversion equipment,
Brit. Inst. Radio Engrs., 1 6 , 651-678.

Pike, J. L. and Ainsworth, E. F. [1955] Input-output devices for NBS computers,
NBS Circular 551, Computer Development at the NBS, 109-118.

Robinson, A. Α., McAulay, F., Banks, A. H., and Hogg, D. [1955] A magnetic-
tape digital-recording equipment, Proc. Inst. Elec. Engrs., 1 0 3 , Pt. B, Supple­
ment 2, Convention on Digital Computer Techniques, 346-353.

Rubinoff, M. and Beter, R. H. [1956] Input and output equipment. Control Eng., 3 ,
115-123.

Shaw, R. P. [I960] Techniques and equipment for digital data conversion. Control
Engrg., 7, No. 3, 107-114.

Staff of Cresap, McCormick and Paget [1961] Punched card equipment for medium
sized computers. Control Engrg., 8 , No. 10, 108-112.

Staff of Cresap, McCormick and Paget [1961] Punched card equipment for inter­
mediate and large size computers. Control Engrg., 8 , No. 11, 115-121.

Staff of Crtsap, McCormick and Paget [1961] Punched paper tape equipment for
medium, intermediate and large computers. Control Engrg., 8 , No. 12, 105-109.

Staff of Cresap, McCormick and Paget [1962] Printing equipment for medium, in­
termediate, and large size computers, Control Engrg., 9, No. 1, 91-95.

574 APPENDIX: INPUT-OUTPUT EQUIPMENT

Staff of Cresap, McCormick and Paget [1962] Magnetic tape equipment for medium
size computers, Control Engrg., 9, No. 2, 124-128.

Staff of Cresap, McCormick and Paget [1962] Magnetic tape equipment for inter­
mediate and large size computers, Control Engrg., 9, No. 3, 105-109.

Smith, H. M. [1955] The Typotron, a novel character display storage tube, 1955
IRE National Convention Record, Pt. 4, 129-134.

Susskind, A. K. [1957] Notes on analog-digital conversion techniques, Technology
Press of Μ.Ι.Τ., and Wiley, New York.

Taylor, J. H. W. [1958] A medium speed transistorized tape reader, Brit. Com.
and Elec, 5, 149-151.

Taylor, K. [1961] Get maximum reliability from digital magnetic tape, Control
Engrg., 8, No. 10, 113-115.

Welsh, H. F. and Lukoff, H. [1952] The Uniservotape reader and recorder, Proc.
Joint AIEE-IRE-ICM Computer Conference, New York, 47-53.

Wildanger, E. G. [1957] Tape recording systems for computers. Automatic Control,
7, 36-42.

Wilkes, M. V. and Willis, D. W. [1956] A magnetic-tape auxiliary storage system
for the EDSAC, Proc. Inst. Elec. Engrs., 103, Pt. B, Supplement 2, Convention
on Digital Computer Techniques, 337-345.

A u t h o r I n d e x

Numbers in italics show the page on which the full reference is listed.

Abbott, H. W., 261
Abhyanker, S., 97
Abramowitz, M., 552
Abramson, N., 551
Adams, C . W., 5 /9
Aiken, H., 259
Ainsworth, E. F. , 573
Akers, S. B., 193
Albers-Schoenberg, E., 259
Alexander, M. Α., 259
Alexander, S. N., 122, 188
Alphonse, G . W., 262
Alrich, J. C , 258
Alt, F . L., 552
Amble, O., 5 /9
Amundson, N. R., 520
Anderson, A. G. , 189
Anderson, H. Α., 262
Anderson, J. R., 264, 265
Angel, A. M., 572
Angelí, J. B., 189
Arenberg, D. L., 264
Arsenault, W. R., 26/
Ashenhurst, R. L., 260, 370, 371
Aspinall, D., 371
Auerbach, A. Α., 447
Auerbach, I. L., 189, 191, 259, 264
Avizienis, Α., 370

Bacon, G . C , 257
Baker, R. H., ¡89
Baiser, Μ., 551, 552
Banks, A. H., 573
Barkan, H. E., 256
Barker, R. Α., 572
Barnes, R. C . M., 189
Bartik, W. J., 259
Bartky, W. S., 125
Bashkow, T. R., 189
Bauer, E . W., 260
Bauer, F. , 572

Bay, Z., 188
Baybick, S., 572
Bazovsky, I., 551
Beatson, T. J., 97
Beck, E. R., 193, 263
Beck, R. M., 265
Beckman, F . S., 447
Begun, S. J., 256
Bell, P. R., 256
Benfield, A. E., 264
Benner, A. H., 521, 55/
Berry, D. L., 263
Best, R. L., 222, 259
Beter, R. H., 189, 573
Bethel, H. W., 188
Beveridge, H. N., 264
Beyer, R. T., 191
Bigelow, J. H., 447
Bindon, D. G . , 260
Birkhoff, G . , 97
Bittmann, Ε , Ε., 261, 262
Bivans, Ε . W.. 258
Blaauw, G . Α., 447
Blachman, N. M., 259
Blattner, D. J., J93
Bloch, R. M., 551
Blois, M. S., Jr., 262
Bobeck, A. H., 261
Bonn, T. H., 191, 259
Boole, G. , 97
Booth, A. D., 258, 334, 370
Booth, G . W., 189
Bothwell, T. P., 189
Bower, G . G. , 572
Bozorth, R. M., 19/, 256
Bradbury, E. H., 265
Bradley, R. E. , 503, 5/9
Bradley, W. E., /89
Bradspies, S., 792, 260
Braun, Ε . L., 465, 504, 5/9
Bremer, J. W., 262

575

576 AUTHOR INDEX

Brenneman, A. E., 263
Brenza, J. G., 370
Brigham, R. C , 370
Brillouin, L. N., 264
Brooks, F. P., Jr., 447
Brower, D. F., 257
Brown, A. J., 265
Brown, D. R., 188, 259
Brown, D. T, 552
Brown, G. W., 265
Brown, R. B., 189
Brown, R. M., 188
Brown, W. G., 55/
Buck, D. Α., 193, 260, 262, 264, 265
Burkig, J., 572
Burks, A, W., 289, 447
Burla, Ν., 577
Burns, L. L., 262
Bush, v . , 520
Buslik, W. S., 573
Butler, S. Α., 193

Caldwell, S. H., 69, 97, 759. 52Ö
Calingaert, P., 552
Campbell, C. M., Jr., 189
Campbell, D. S., 265
Campbell, R. V. D., 557
Carey, W. M., Jr., 797
Carlson, A. W., 79Ö
Carne, Ε. Β., 203, 258
Carroll, J. Μ., 573
Carroll, W. N., 189, 370
Carter, I. P. V., 260
Carter, W. C , 447
Cemach, H. P., 559, 573
Chance, B., 188
Chao, S. C , 190
Chapin, D. M., 259
Chaplin, G. B. B., 130, 790. 797, 263,

265, 370
Chen, W. H., 98
Chien, R. T., 259
Chow, C. K., 554, 573
Chow, W. F., 79i
Christopherson, W. Α., 259
Chruney, M., 263
Clapp, L. C , 256
Clark, D. L., 257
Clayden, D. O., 258, 264

Coblenz, Α., 190
Cohen, A. Α., 258
Cohen, M. L., 263
Constantine, G., Jr., 259
Conway, A. C , 264
Cooke-Yarborough, E. H., 189, 190, 257
Cooper, J. N., 262
Cooper, R. Α., 189
Copi, I. M., 447
Couleur, J. F., 370
Crane, H. D., 191, 192
Crank, J., 520
Critchlow, D. L., 193
Crittenden, E. C , 262
Crosby, R. L., 797
Crowe, J. W., 262
Crowther, T. S., 262
Curtis, P. C , Jr., 370

Darr, J. H., 264
Davidsohn, U. S., 79.?
Davies, D. W., 573
Davies, P. M., 262
De Barr, Α. Ε., 260
De Buske, J. J., 261
Deering, C. S., 520
DeLano, R. B,, Jr., 263
De Turk, J. E., 188
Devenny, C. F., 797
Dickinson, W. E., 258
Dietrich, W., 262
Di Giulio, E. M., 573
Dimsdale, B., 557
Di Nolfo, R. S., 259
Disson, S. B., 797
Dodd, S. H., 263
Domenico, R. J., 190
Donan, J. F., 520

Eadie, D., 257
Easley, J. W., 790
Ebers, J. J., 190
Eckert, J. P., Jr., 262, 264, 447
Edwards, D. B. G., 262, 263, 371
Edwards, H. H., 262
Elbourn, R. D., 122, 188
Elias, P., 557
Ellis, M., 557
Elspas, B„ 552

AUTHOR INDEX 577

Emslie, A. G., 264
Epstein, G., 97
Epstein, H., 264
Esaki, L., 172, ¡93
Estrin, G., 370

Fagen, M. D., 264
Fairclough, J. W., 265
Fan, G. J., 257
Felker, J. H., ¡90
Ferguson, D. E., 573
Fisch, Ε. Α., 263
Flehinger, Β. J., 55/
Fleisher, Η., ¡90
Forbes, G. D., 256
Forgie, J. W., 573
Forrester, J. W., 259
Foss, E. D., 259
Fraenkel, A. S., 370
Frank, M. E., 370
Frank, W., 260, 37¡
Frankel, S. P., 447
Freiman, C. V., 370
Friedman, D. C , 264
Friedman, M. J., 260
Fruin, R. E., 262
Fuller, H. W., 257

Gact, J. K , 256
Garner, H. L., ¡88, 370
Garwin, R. L., 262
Genna, J. F., 503, 5¡9
Ghazala, Μ. J., 97
Giacoletto, L. J., ¡90
Gibbons, J. F., ¡88
Gilchrist, B., 296, 370
Gill, A , 482, 520
Ginsburg, S., 97
Gluck, S. Ε., I l l , ¡88
Golay, M., 55 /
Goldey, J. M., ¡90
Goldstine, H. H., 289, 330, 447, 548,

553
Goodenough, J. G., 260
Graham, M., 263
Gray, H. J., I l l , ¡88
Greenwald, S., 122, ¡88
Griesmer, J. H., 552
Grimsley, J. D., 264

Grisamore, N. T., ¡88
Guterman, S. S., / 9 / , ¡92
Gutwin, O. Α., 26/

Haeff, A. V., 263
Hagelbarger, D. W., 552
Hageman, D. H. Α., 259
Hammel, D. G., 26/
Hammer, P. C , 356
Hamming, R. W., 55 /
Harris, J. R., ¡90
Härtel, R. R , 203, 211,257
Hartree, D. R., 97, 520, 552
Harwood, W. J., ¡92, 264
Hastings, C , Jr., 356, 503
Haueter, R. C., 122, ¡88
Hayes, R. E., 265, 370
Hayes, R. M., 573
Haynes, M. K., 259
Hendrickson, Η. C , 370
Henegar, H. B., 520
Henle, R. Α., ¡90
Henney, F. C., ΠΙ, 390
Herndon, T. O., 262
Hershberg, P. I., 256
Heuer, Α., 260
Hildebrand, F. Β., 552
Hiñes, Μ. Ε., 263
Hoagland, Α. S., 258
Hock, R. Ε., ¡88
Hoffman, G. R., 259, 263, 573
Hogg, D., 573
Holden, P., 55/
Hollander, G. H„ 258
Holonyak, N., Jr., ¡90, ¡93
Holt, A. W., 264
Homan, C. J., 520
Hong, K., 203, 258
Householder, Α. S., 552
Howard, R. Α., 258
Howells, G. Α., ¡89
Huffman, D. Α., 90, 98, 124, 55/
Hughes, E. S., Jr., 258
Hughes, V. W., 264
Hunter, L. P., ¡90, 260
Huntington, E. V., 98
Huntington, H. B., 264
Hurley, R. B., ¡88

578

K a h n , W . , 447

K a i s e r , H . R., 1 6 0 , ¡92

K a m m , V . C , ¡93

K a n e , B. , 260

K a r n a u g h , M., 6 4 , 98, ¡92, 260

K a u f m a n , J . , ¡88

K a u f m a n , M. M.. 264

K a z a n , B . , 262

K e i p e r , F . P., ¡89

K e i s t e r , W . , 98

K e i t h , W . W . , 264

K e i n e r , R. C , 257

K i l b u r n , T . , 258, 259, 263, 37¡, 573

K i l m e r , W . L . , 552

K i n g , G . W . , 265

K i s e d a , J . R. , 260

K i t t e l , C , 256

K l e e n e , S. C , 98

K l e i n e r m a n , M. H . , 5 2 1 , 55¡

K l e m p e r e r , H . , 263

K n o l l , M., 262

K n u t h , D . E . , 3 9 3 , 447

K o d i s , R . D . , 7 9 2
K o e l s c h , A . C , 263

K o g b e t l i a n t z , E . G . , 370

K o o n s , F . , 37¡

K u d l i c h , R . Α. , ¡90

L a e m m e l , A . E . , 552

Läfgren, L . , 551

L a n c z o s , C , 552

L a n d a u e r , R., 5 5 /
L a w l e s s , W . J . , J r . , 447

L e a r y , F . , 7 9 i
L e e k , G . W . , 262

L e d e r m a n n , W . , 98

AUTHOR INDEX

L e d i e y , R. S. , 37¡

L e e , C . Y . . 6 9 , 98
L e h m a n , M . , 260, 37¡

L e i c h n e r , G . Η.. ¡90

L e i n e r , Α . L . . 447
L e o n d e s , C T . , I I I . ¡88

L e s k , L Α., 79.?
L e w i n . M . H . , ¡93

L e w i s , 1. A . D . , 98

L e w i s , W . D . , ¡93

L i d d e l l , D . W . , 552

L i n d q u i s t , A . B . , 262

L i n v i l l , J . G . , ¡88, ¡90

L i p o w , M . , 552

L i t t i n g . C . N . W . . 263

L l o y d , D . K . , 552

L l o y d , S. P., 552

L o , Α . W . , 1 6 3 , ¡92, ¡93, 2 6 /
L o b e r m a n , Η., 447
L o e v , D . , 1 5 5 , ¡92

L o g u e , J . C , 263

L o o n e y , D . H . , 26¡

L o u r i e , N . , 447

L o v e l l . C . Α., 265
L u b k i n , S . , 257, 37¡

L u c a l , H . M . , 5 4 3 , 552

L i i k o f f , H . , 263, 574

M c A u l a y , F . , 573

M c C a r t h y , J . Α. , 263
M c C I u s k e y , E . J . , J r . , 98
M c C u l l o c h , W . , 98
M a c D o n a l d , D . N . . 573
M a c D o n a l d , J . E . , 553
M c D u f f i e , G . E . , J r . , 264
M c G u i g a n , J . H . , 258
M a c L a n e , S . , 9 7
M a c N i c h o I s , E . F . , J r . , 256, 262
M a c S o r l y , O . L . , J 7 7
M a g i n n i s s , F . J . , 520
M a p l e t o n , R . Α. , 264
M a r c o v i t z , M . W . , 7 9 ^
M a r c u s , M . P., 260, 553
M a r o l f , R . , ¡93

M a s o n , S . J . , ¡88

M a u d s l e y , B . G . , 258

M a y , J . E . , 264
M a y , M . , 258
M e a g h e r , R . E „ J89

M e a l y , G . H . , 9 0 , 98

H u s m a n , P. Α., 257
H u s s e y , L . W . , 1 1 1 . 188

J a c k s o n , R . C , 370
J a c o b i , G . I . , 9 9
J a c o b y , M., 2 1 0 , 257
J a n i k , J . . J r . , 26Í
J a y n e s , E . T . , 256
J o h n s o n , K . C , 7 9 2 . 264
J o h n s o n , R. F . , 189
J o h n s o n , S. J . , 265
J o s e p h s , J . J . , 573
J u s t i c e , L . E. , 572

AUTHOR INDEX 579
Mebs, R. W., 264
Mee, C. D., 573
Meggitt, J. E., 553
Meier, D. A,, 262
Melas, C. M., 553
Mendelson, M. J., 520
Menyuk, N., 260
Meredith, B., 521, 55/
Merrill, L. L., 257
Merry, I. W., 258
Merwin, R. E., 260
Merz, D. M., 465, 520
Metropolis, N., 370, 371
Michel, J. G. L., 520
Michel, P. C , 257
Miehle, W., Í92
Miller, G. H., 191
Miller, G. L., 263
Miller, G. P., 258
Miller, S. L., 190
Millership, R., 265
Milne, W. E, 552
Minnick, R. C , 192, 260, 371
Minsky, M., 16
Mitchell, J. M., 503, 520
Miyata, J. J., 203, 211, 257
Moll, J. L., 190
Montijo, R. E., Jr., 572
Moore, E. F., 98
Morgan, L. P., 191
Morgan, W, C , 261
Mueller, R. K., 99
Muerle, J. L., 190
Muller, D. E., 98, 125

Nash, J. P., 189
Naylor, R., 265
Neff, G. W., 193
Nelson, A. M., 573
Nelson, D. J., 520
Nelson, J. C , 125, 190
Nelson, R. J., 95
Nemanic, D. J., 520
Netherwood, D. B., 98
Newhouse, V. L., 192, 227, 260, 262
Newman, E. Α., 264
Nordyke, H. W., 573
Notz, W. Α., 447
Noyes, Τ., 214, 258

O'Connor, D. G., 259
Olsson, J. K. Α., 227, 260
Osborne, C. P., 258
Owen, P. L., 503, 520
Owens, A. R.. 265, 370
Owens, H. L., 190

Page, L. J., 258
Paivinen, J., 189, 192
Palevsky, M., 520
Papian, W. N., 260
Papoulis, Α., 261
Partos, P., 573
Partridge, M. F., 503, 520
Partridge, R. S., 259
Pate, H. R., 263
Pauli, Μ. C , 98
Pearson, R. Τ., 259
Pedelty, M. J., 552
Peil, W., 193
Pennell, E. S., 265
Perkins, R. L., 259
Petersen, H. E., 260
Petschauer, R. J., 262
Pietenpol, W. J.. 191
Pike, J. L., 573
Pitts, W., 98
Pohm, A. v., 262
Pollard, B. W., 259
Pomerene, J. H., 296, 370
Pope, D. Α., 371
Post, G., 579
Potter, J. Τ., 257
Pressman, A. I., 191
Pressman, R., 189
Preston, K., Jr., 261
Proebster, W. E., 262
Prom, G. J., 191
Prutton, M., 265
Prywes, N. S., 792
Pucel, R. Α., 79i
Puckle, O. S., 797
Pullen, Κ. Α., Jr., 188
Pulvari, C. F., 265

Quine, W. V„ 61, 98, 99

Rabinow, J., 214, 259
Rabinowitz, P., 371
Raffel, J. L, 792, 260, 262

580 AUTHOR INDEX

Rajchman, J. Α., 163, 192, 257, 260, 261,
264

Ralston, Α., 536, 552
Ramey, R. Α., 192
Rapp, A. K., 191
Ratz, A. G., 189
Reach, R., 447
Reed, I. S., 520, 552
Reichenbach, Η., 99
Reitwiesner, G. W., 371
Renwick, W., 447
Rhoades, W, T., 193
Rhoderick, Ε. Η., 262
Rhodes, W. Η , Jr., 370
Ridenour, L. N., 265
Ritchie, A. E., 98
Ritchie, D. K., 189
Robbins, R. C , 265
Robertson, J. E., 189, 371
Robinson, A. Α., 260, 371, 573
Rochester, N., 188
Roger, G. H., 191
Rogers, T. P., 265
Rosenberg, M., 260
Rosenfeld, J. L., 192
Rosenheim, D. E., 189
Rosin, R. P., 262
Roth, J. P., 99
Rothbart, Α., 265
Rowe, W. D., 191
Rowley, G. C , 520
Rubens, S., 259, 262
R u b i n o f f , Μ . , 99, 1 1 1 , 188, 189, 573
Ruhman, S., 192, 503, 520
Rumble, W. G., 261
Ryan, R. D., 265

Sack, H. S., 191
Sacks, G. E., 552
Saltman, R. G., 371
Salzberg, Β., I l l , 188
Samusenko, A. G., 193
Sands, E. Α., 192
Savitt, D. Α., 263
Scarrott, G. G., 192, 264, 265
Schaffer, R. R., 258
Schlaeppi, H. P., 260
Schmidlin, P. W., 262
Schrimpf, H., 447

Schwartz, L. S., 552
Schy, S. T., 370
Scobey, J. E., I l l , 188
Scrivener, J. H., 552
Seader, L. D., 213, 214, 258, 259
Seeber, R. R., 262
Seelbach, W. C , 260
Seif, Ε., 190
Serrell, R., 99
Shannon, C. E., 99, 516, 519, 552
Shapiro, H., 264
Shaw, R. P., 264, 371, 447, 573
Shea, R. P., 191
Sheffer, H. M., 99
Shell, D. L., 371
Shelman, H. B., 520
Shemeta, E. Α., 520
Sheppard, C. B., 264
Sherertz, P. C , 189
Shevel, W. L., Jr., 235, 261
Shifrin, G, Α., 258
Shockley, W., 191
Shoenberg, D., 193, 257
Short, R. Α., 552
Sidnam, R. D., 261
Siforov, V. I., 552
Silverman, R. Α., 552
Simkins, Q. W., 191,261
Simons, B. H., 261
Sims, R. C , 193
Sizer, T. R. H., 503, 520
Sklansky, J., 371
Slade, A. E., 263
Slepian, D., 69, 99, 552
Slutz, R. J., 264
Smallman, C. R., 263
Smith, D. O., 262
Smith, H. M., 574
Smith, J. L., 371, 447
Smoliar, G., 263
Spaeth, D. Α., 265
Sparks, M., 191
Spinrad, R., 263
Spitzbart, Α., 371
Sprague, R. E., 520
Stabler, E. P., 193
Staehler, R., 99
Stegun, Γ. Α., 552
Stein, M. L., 371

AUTHOR INDEX 5 8 1

Stephen, J. H., 189, 257
Stephenson, W. L., 191
Stern, H. M., 573
Sterzer, F., 193
Straley, R., 260
Stram, O., 264
Stringer, J. B., 447
Stuart-Williams, R., 260
Suran, J. J., 261
Susskind, A. K., 543, 552, 553, 574
Swanson, J. A , 257, 552

Tanenbaum, M., 190
Taylor, J. H. W , 574
Taylor, K., 574
Teal, G. K., 191
Teig, Μ., 260
Thompson, L. G., 79/
Thompson, P. M., 263
Thompson, Sir William (Lord Kelvin).

451, 520
Thorensen, R., 261
Tierney, J., 520, 551
Tillman, R. M., 261
Tkach, G., 260
Tocher, K. D., 371
Traub, J. F., 371
Trischka, J. W., 191
Turing, A. M., 99
Turner, R. J., 191
Turnquist, R. D., 262

Ulrich, W., I l l , 188
Unger, S. H., 98, 124
Urbano, R. H., 99

Van der Poel, W. L., 447
Van Sant, O. J., 192
Veitch, E. W., 63, 99
Vinal, A. W., 261
Vogelsong, J. H., 191
Vogl, N. G., Jr., 260
von Laue, Μ., 257
von Neumann, J., 193, 289, 330, 447,

548, 552, 553
Vorndran, J. W., 160, 192

Wadey, W. G., 371
Wallace, R. L., Jr., 191, 203, 258
Walsh, J. L., 191

Wang, Α., 192, 259
Wang, Hao, 99
Wanlass, C. L., 261
Wanlass, S. D., 261
Warnock, J., 191
Warren, C. S., 261
Washburn, S. H., 69, 98, 99
Wasserman, R., 557
Weinberg, G. M., 557, 552
Weinberger, Α., 371, 447
Weiner, J. R., 447
Weiss, E., 520
Weiss, G. H., 521, 551
Weisz, R. S., 260
Welsh, H. F., 574
West, J. C , 258
Wheeler, D. J., 447
White, E. Α., 191
White, W. Α., I l l , 188
Whiteside, A. E., 263
Widrow, B., 227, 261
Wiener, J., 573
Wier, J. M., 267
Wildanger, E. G., 574
Wilkes, M. v., 447, 574
Willey, J. R., 552

Williams, F. C , 130, 79/ , 258, 259, 263,
371

Williams, R. C , 265
Willis, D. W., 574
Wilson, J. B., 371
Wilson, L. D., 447
Wilson, L. R., 573
Winger, W. D., 370
Witt, R. P., 122, 188, 264
Wolf, P., 262
Wolfendale, E., 797
Wolstenholme, P., 259, 573
Wong, S. Y., 797, 263, 296
Woo, W. D., 792, 259
Wright, M. Α., 264
Wylen, J., 792

Yokelson, B. J., I l l , 188
Younker, E. L., 260
Yourke, H. S., 797
Youtz, P., 263

Zimbel, Ν., 759
Zimmerman, Η. J., 188

S u b j e c t I n d e x

A b a c u s , 3 , 4
p o s i t i o n a l n o t a t i o n , 4 - 5

d e f i n i t i o n o f , 4
i m p o r t a n c e o f , 4 , 5

A b s o l u t e c o m p u t e r , 2 0
A b s o l u t e v a l u e o f a f u n c t i o n

g e n e r a t i o n i n a D D A , 4 8 5 - 4 8 6
A c c e s s t i m e

g e n e r a l r e m a r k s , 195
i n a D D A , 4 7 5
i n a m a g n e t i c t a p e s t o r e , 5 6 2
i n m u l t i d i s k s t o r e s , 2 1 6
o f d i f f e r e n t s t o r a g e a r e a s i n a G P

c o m p u t e r , 4 2 8
A c c u m u l a t o r

b l o c k d i a g r a m o f a s h i f t i n g a c c u m u ­
l a t o r , 3 2 1

f u n c t i o n s o f , 2 4
i n a d i g i t a l i n t e g r a t o r , 4 6 3
i n a s i m p l e G P c o m p u t e r w i t h a s t a t i c

s t o r e , 4 1 7
p a r a l l e l a c c u m u l a t o r s w i t h a u t o m a t i c

c a r r y p r o p a g a t i o n , 3 0 2 - 3 0 7
a c c u m u l a t o r s w i t h n o c a r r y c o m ­

m a n d i n p u t s , 3 0 5 - 3 0 7
a c c u m u l a t o r s w i t h s e p a r a t e c a r r y

s t o r a g e , 3 0 4 - 3 0 5
t y p i c a l s t a g e o f a n a c c u m u l a t o r w i t h

a 0 a n d 1 c a r r y p r o p a g a t i o n
c i r c u i t , 3 0 7

t y p i c a l s t a g e o f a p a r a l l e l a c c u m u ­
l a t o r , 3 0 3

u s e d as a d i g i t a l s e r v o i n a D D A ,
4 9 4

A c o u s t i c d e l a y l i n e s t o r a g e
b l o c k d i a g r a m , 2 4 5

A c q u i s i t i o n p e r i o d
d e f i n i t i o n o f , i n a s y n c h r o n o u s c o n t r o l ,

3 8 9
A c t i v e s ta te o f a c o m p u t e r

c o n d i t i o n s t h a t d e f i n e , 4 3 1 - 4 3 2
d e f i n i t i o n o f , 4 2 5

A d d e r (s e e A d d i t i o n)
a d d e r f o r use w i t h r e c i r c u l a t i n g t y p e

o f m a i n s t o r e , 2 7 9
h a l f - a d d e r s , 2 7 8 - 2 7 9
l o g i c a l e q u a t i o n s f o r s u m a n d c a r r y ,

2 7 8 , 2 7 9 , 2 8 0 , 2 8 1
p a r a l l e l a d d e r w i t h b i s t a b l e c o u n t e r

s t o r a g e a n d a n a n t i c i p a t o r y c a r r y
c h a i n , 2 9 4

p a r a l l e l a d d e r w i t h flip-flop s t o r a g e a n d
a n a n t i c i p a t o r y c a r r y c h a i n , 2 9 4

s e r i a l a d d e r u t i l i z i n g a d e l a y l i n e f o r
a u g e n d - s u m s t o r a g e , 2 8 4

s e r i a l a d d e r u t i l i z i n g a s h i f t r e g i s t e r
f o r a u g e n d - s u m s t o r a g e , 2 8 5

s e r i a l e x c e s s - t h r e e c o d e d e c i m a l
a d d e r , 3 0 0 - 3 0 2

s e r v o a d d e r , 4 6 4 , 4 7 7
s u c c e s s i v e s ta tes o f flip-flops i n a

p a r a l l e l a d d e r , 2 9 0
t h r e e a d d e r s u t i l i z i n g a c a r r y flip-flop,

2 8 2
A d d i t i o n (see B i n a r y a d d i t i o n , 2 7 5 - 2 9 7

a n d D e c i m a l a d d i t i o n , 2 9 7 - 3 0 7)
o f n u m b e r s i n floating p o i n t n o t a t i o n ,

3 6 1
o f r a t e s b y a d i g i t a l s e r v o i n a D D A ,

4 8 8
A d d r e s s

b l o c k a d d r e s s , 4 0 3
d e c o d i n g i n a s i m p l e G P c o m p u t e r

w i t h a s t a t i c s t o r e , 4 1 6 - 4 1 7
field, f u n c t i o n s o f , 2 4 , 2 5
r e g i s t e r (see C o n t r o l r e g i s t e r)
r e t u r n a d d r e s s (i n p r i o r i t y i n t e r r u p t

c o n t r o l) , 4 1 2
s y m b o l i c a d d r e s s , 3 0
use o f l i t e r a l s y m b o l s f o r , 2 9 , 3 0

A d d r e s s r e g i s t e r (s e e I n s t r u c t i o n r e g i s t e r)
A d d r e s s i n g c h a n n e l

i n a s e r i a l D D A , 4 7 5 - 4 7 6
i n a s p e c i a l p u r p o s e D D A , 5 0 2

5 8 2

SUBJECT INDEX 583

Addressing system
in a GP computer

different addressing systems, 393
effect of number of addresses on the

control unit, 393-394
in a magnetic drum or disk store, 428

Admissible values
in error detecting and correcting codes,

525, 530
Air bearing

for a magnetic head, 212
in IBM RAMAC disk memory, 216

Algebraic and trigonometric function
generation, 349-358

derivation of a general iterative for­
mula, 349-350

iterative formulas for the reciprocal,
350

Algorithms and logical designs for mech­
anization of basic arithmetic opera­
tions, 266-349

binary addition, 275-297
counting, 266-273
decimal addition, 297-307
division, 340-349
multiplication, 316-340
representation of negative numbers and

the subtraction process, 308-316
Ambiguity

in shaft position encoding, 541-542
Amplifiers, in dynamic magnetic record­

ing read circuits
DC, 205
wide band, 209

Analog computer
applications, 504
description of analog machines, 448-

454
maximum frequency of sine wave

generation, 503
Analogous systems, 448
Analytic checks, 534-537
Analytic function generation

in a differential analyzer, 454-462,
477, 484

Analytical engine (of Charles Babbage),
11

Apertured ferrite plate, 230-231
Applicability of the DDA, 502-504
Applications of computers, 15, 16, 17

business, industrial, and military, 16
Arithmetic

instructions, examples of, 374-375
operations in a computer, 266-371

algebraic and trigonometric function
generation, 349-358

algorithms and logical designs for
mechanization of basic arithmetic
operations, 266-349

binary, decimal conversion, 364-371
scaling, 358-364

serial and parallel operations in a
computer, 14

Arithmetic computer (see GP computer),
16-17, 19, 20, 22-32, 372-447, 503

Arithmetic processes (in a digital com­
puter), 14

Assignment of integrator numbers in a
serial DDA, 479-480

Associative law (multiplication)
effect of round-off error, 549

Asynchronous (revertive) control
comparison of synchronous and asyn­

chronous control, 389-391
nature of, 382, 386, 388 '
schematic of asynchronous control for

a single-address GP computer, 388
Asynchronous operation of a computer

effect on control unit, 385-391
Asynchronous systems

completion signals in, 123
decoupled circuits in, 124
degrees of asynchronous operation,

123
hazards in, 123
races, 124, 125
speed independence, 123-127

University of Illinois design tech­
niques, 126, 127

Asynchronous use of a computer
priority interrupt control, 411

Automata
mechanical, 9, 10

Automatic computation
fundamental nature of, 20-23

584 S U B J E C T INDEX

A u t o m a t i c s w i t c h i n g o p e r a t i o n s
b y a d e c i s i o n u n i t i n a D D A , 4 8 7 - 4 8 8

A u x i l i a r y c i r c u i t s
s i g n a l l e v e l c o n v e r s i o n , 188
t r i g g e r c i r c u i t s , 186 , 187

A u x i l i a r y s t o r a g e
m a g n e t i c t a p e , 5 6 5 - 5 6 6

B - b o x (see I n d e x r e g i s t e r s) , 3 9 4 - 3 9 9
B i a s (o f r o u n d - o f f e r r o r) , 5 4 5 - 5 4 7
B i n a r y a d d i t i o n , 2 7 5 - 2 9 7

p a r a l l e l a d d e r w i t h c a r r y flip-flops,
2 9 1 - 2 9 3

p a r a l l e l a d d e r w i t h f a s t c a r r y , 2 9 5 - 2 9 7
p a r a l l e l a d d e r s w i t h f u l l l e n g t h a n t i c i ­

p a t o r y c a r r y c h a i n s , 2 9 4 - 2 9 5
p a r a l l e l b i n a r y a d d e r s , 2 8 6 - 2 9 1
s e r i a l a c c u m u l a t o r , 2 8 6
s e r i a l b i n a r y a d d e r s , 2 7 5 - 2 8 3

a d d i t i o n b y c o u n t i n g , 2 7 5 - 2 7 8
b y a n a l o g s u m m a t i o n o f i n c r e ­

m e n t s , 2 7 5 - 2 7 8
b y d i g i t a l s u m m a t i o n o f i n c r e ­

m e n t s , 2 7 5 - 2 7 6
a d d i t i o n b y use o f l o g i c a l o p e r a t i o n s ,

2 7 8 - 2 8 3
use o f a d e l a y l i n e f o r a u g e n d - s u m

s t o r a g e , 2 8 4
use o f a s h i f t r e g i s t e r f o r a u g e n d - s u m

s t o r a g e , 2 8 4 - 2 8 5
B i n a r y - c o d e d d e c i m a l s

d e f i n i t i o n o f , 2 9 7
e x c e s s - t h r e e c o d e , 2 9 9 - 3 0 0
s e c o n d a n d fifth m u l t i p l e s o f t h e

s t r a i g h t b i n a r y - c o d e d d e c i m a l s ,
3 3 7

s t r a i g h t b i n a r y c o d e , 2 9 7 , 2 9 8
w e i g h t e d f o u r - b i t c o d e s , 2 9 7

B i n a r y c o d e s
s e l f c o m p l e m e n t i n g c o d e s , 3 1 4

B i n a r y c o m m u n i c a t i o n (see B i n a r y t r a n s ­
f e r) , 1 3 , 4 6 4 , 4 6 8

B i n a r y c o u n t e r
n o n s a t u r a t i n g D C T L c i r c u i t , 1 4 1
s u c c e s s i v e s ta tes i n a t h r e e - s t a g e u n i t ,

2 6 7
d i o d e g a t i n g n e t w o r k s f o r R-S, a n d

Τ flip-flops, 2 6 8

B i n a r y d a t a
k e y b o a r d e n t r y o f , 5 5 6

B i n a r y , d e c i m a l c o n v e r s i o n , 3 6 4 - 3 7 1
b i n a r y t o d e c i m a l , 3 6 8 - 3 6 9
c o m p a r i s o n o f b i n a r y a n d b i n a r y - c o d e d

d e c i m a l r e p r e s e n t a t i o n , 3 6 9 - 3 7 0
d e c i m a l t o b i n a r y , 3 6 4 - 3 6 8

B i n a r y d i v i s i o n , 3 4 0 - 3 4 7
n o n r e s t o r i n g m e t h o d , 3 4 3 - 3 4 7

d e r i v a t i o n o f d i v i s i o n a l g o r i t h m ,
3 4 3 - 3 4 5

e x a m p l e s , 3 4 5 - 3 4 6
t r i a l a n d e r r o r (r e s t o r i n g m e t h o d s) ,

3 4 0 - 3 4 3
d e t e r m i n a t i o n o f c o r r e c t o r d e r s o f

t h e d i v i d e n d f r o m w h i c h t h e d i v i ­
s o r is t o b e s u b t r a c t e d i n i t i a l l y ,
3 4 0 - 3 4 1

d i s p o s i t i o n o f t h e r e m a i n d e r , 3 4 2 -
3 4 3

e x a m p l e , 3 4 2
m o d i f i c a t i o n s r e q u i r e d f o r n u m b e r s

i n a t w o ' s c o m p l e m e n t f o r m , 3 4 3
p r o c e d u r e a f t e r a n e g a t i v e r e s u l t ,

3 4 1
B i n a r y e l e m e n t s

r e a s o n s f o r use i n e l e c t r o n i c d i g i t a l
c o m p u t e r s , 6

B i n a r y m u l t i p l i c a t i o n , 3 1 8 - 3 3 5
a s y n c h r o n o u s m u l t i p l i e r , 3 2 7 - 3 2 8
b y p a r a l l e l a c c u m u l a t i o n , 3 1 9 - 3 2 1
b y s e r i a l a c c u m u l a t i o n , 3 2 1 - 3 2 3
m u l t i p l i e r s f o r o p e r a t i n g o n n e g a t i v e

n u m b e r s i n t w o ' s c o m p l e m e n t
f o r m , 3 3 0 - 3 3 5

s c h e m e i n d e p e n d e n t o f o p e r a n d
s i g n s , 3 3 4 - 3 3 5

t w o s c h e m e s r e q u i r i n g s p e c i a l c o r ­
r e c t i v e a c t i o n d e p e n d e n t o n s i g n s
o f t h e o p e r a n d s , 3 3 0 - 3 3 3

s e r i a l - p a r a l l e l m u l t i p l i e r s , 3 2 3 - 3 2 7
s i m u l t a n e o u s m u l t i p l i e r , 3 2 8 - 3 3 0

B i n a r y r e p r e s e n t a t i o n
a d v a n t a g e s i n a d i g i t a l c o m p u t e r , 5 5 1
d e f i n i t i o n o f b i t , 5

B i n a r y t o d e c i m a l c o n v e r s i o n , 3 6 8 - 3 6 9
B i n a r y t r a n s f e r , 13

i n a D D A , 4 6 4 , 4 6 8

S U B J E C T INDEX 585

B i t p e r i o d , d e f i n i t i o n o f , 4 3 0
B l o c k a d d r e s s , i n a n e x t e r n a l s t o r e , 4 0 3
B l o c k d i a g r a m s

uses o f , 4 4 3 - 4 4 4
B l o c k t r a n s f e r i n s t r u c t i o n , w i t h e x t e r n a l

s t o r a g e d e v i c e s , 4 0 3
B l o c k e d s t a t e , o f a c o m p u t e r , 4 0 9 , 4 3 9
B l o c k i n g o s c i l l a t o r

b i a s e d b l o c k i n g o s c i l l a t o r , 187
B l o c k s o f d a t a

o n m a g n e t i c t a p e , 5 6 2
B o o l e a n a l g e b r a

a s s o c i a t i v e l a w , 4 1
c o m m u t a t i v e l a w , 4 1
c o m p a r e d w i t h n u m b e r a l g e b r a , 3 8 , 3 9
c o n j u n c t i v e n o r m a l f o r m , 4 3
D e M o r g a n ' s t h e o r e m , 4 3
d i s j u n c t i v e n o r m a l f o r m , 4 3
d i s t r i b u t i v e l a w , 4 1
e l e m e n t a l f o r m , 4 3
l o g i c a l f u n c t i o n s o f , 3 9 , 4 0
m i n i m a l set o f i n d e p e n d e n t o p e r a t o r s ,

4 9
o p e r a t o r s , 4 6

e x c l u s i v e o r , 4 9
NOR, 4 9
NOT—AND (S c h e f T e r s t r o k e) , 4 9

p r i m i t i v e o p e r a t o r s (AND, OR, NOT),

4 9
d e r i v a t i o n f r o m u n i v e r s a l s w i t c h i n g

f u n c t i o n s , 4 9 , 5 0
s u m (m o d u l o 2) , 5 0

p r i n c i p l e o f d u a l i z a t i o n , 4 2
p r o d u c t o f s u m s , 4 3
s u m o f p r o d u c t s , 4 3
t a u t o l o g i e s , 4 3 - 4 5
u n i v e r s a l s w i t c h i n g f u n c t i o n s , 4 9

B o o l e a n a l g e b r a i c d e s c r i p t i o n

a d v a n t a g e s o f , f o r a d i g i t a l c o m p u t e r ,
9 2 - 9 5

as a n a i d t o p r o d u c i n g l o g i c , u s a g e a n d
w i r i n g t a b u l a t i o n s , 4 4 4 - 4 4 5

c o m p a r e d w i t h b l o c k d i a g r a m d e s c r i p ­
t i o n s , 4 4 4

B o o l e a n a l g e b r a i c e q u a t i o n s , r e a r r a n g e ­
m e n t a n d s i m p l i f i c a t i o n , 5 2 - 6 9

c h a r t m e t h o d s , 5 9 - 6 3
c h a r t f o r t h r e e v a r i a b l e s , 5 9

H a r v a r d m e t h o d , 5 9 - 6 1
Q u i n e s i m p l i f i c a t i o n , 6 1 - 6 3
s i m p l i f i e d f o r m o f c h a r t , 6 0

c o n v e r t i n g a s u m o f p r o d u c t s t o a
p r o d u c t o f s u m s o r v i c e v e r s a ,
5 4 - 5 9

i n t e r c h a n g i n g AND a n d OR f u n c ­
t i o n s b y r e d e f i n i n g v a l u e s o f t h e
i n p u t v a r i a b l e s , 5 8

superñuous t e r m s p r o d u c e d b y
d o u b l e c o n v e r s i o n , 5 7 , 5 8

e x p a n s i o n o f t e r m s i n e q u a t i o n , 5 3 , 5 4
i n t r o d u c t i o n o f r e d u n d a n t t e r m s , 5 4
m a p m e t h o d s , 6 3 - 6 9

K a r n a u g h m a p s , 6 4 - 6 8
s e l e c t i o n o f g r o u p s , 6 5 - 6 8
V e i t c h m a p s , 6 4

t r i a l a n d e r r o r m e t h o d s , 5 3 , 5 4
B r e a k p o i n t

i n s t r u c t i o n , 3 7 5 , 4 2 6
s w i t c h e s , 4 2 6

B u f f e r
i n p u t , o u t p u t b u f f e r s , 4 0 2
f o r c a r d p u n c h e s a n d r e a d e r s , 5 5 9

Bu f l f e r r e g i s t e r
l o c a t i o n o f , 4 2 6

B u f f e r s t o r a g e
s h i f t r e g i s t e r s , 1 8 0 - 1 8 6

B u f f e r z o n e
b e t w e e n a d j a c e n t w o r d s i n m a g n e t i c

s u r f a c e r e c o r d i n g , 4 2 9

C a r r i e s
a v e r a g e n u m b e r o f s u c c e s s i v e c a r r i e s

i n a d d i t i o n o f n u m b e r s , 2 8 9
c i r c u i t t o p r o p a g a t e 0 a n d 1 c a r r i e s i n

a p a r a l l e l a d d e r , 2 9 5
l o g i c f o r s e n s i n g c o m p l e t i o n o f (i n

p a r a l l e l a d d e r s) , 2 9 1 , 2 9 3 , 2 9 6 ,
3 0 7

l o g i c a l e q u a t i o n f o r , 2 7 8
s i m p l e c a r r y c i r c u i t i n a p a r a l l e l a d d e r ,

2 9 5
t r a n s i e n t s i n p r o p a g a t i o n o f , 2 8 7
t r u t h t a b l e f o r c a r r y g e n e r a t i o n , 2 9 6
use o f flip-flops t o r e d u c e g a t i n g e l e ­

m e n t s , 2 9 1
C a s t i n g o u t 9 's , c h e c k i n g b y , 5 3 1 - 5 3 2

586 S U B J E C T INDEX

C a t h o d e f o l l o w e r c i r c u i t , 1 1 8 , 119
C a t h o d e - r a y t u b e

d i s p l a y d e v i c e s , 5 6 9 - 5 7 1
s t o r a g e , 2 3 9 - 2 4 3

C e n t r a l s t o r e (see S t o r e , m a i n)
i n a D D A , 4 6 4

C h a n n e l s
i n i n p u t - o u t p u t m e d i a , 5 5 5

C h a r a c t e r g e n e r a t i n g c a t h o d e - r a y t u b e ,
5 6 9 - 5 7 0

c h a r a c t r o n , 5 6 9 - 5 7 0
t y p o t r o n , 5 6 9 - 5 7 0

C h a r a c t e r r e c o g n i t i o n , 5 5 4
C h a r a c t e r s

i n i n p u t - o u t p u t m e d i a , 5 5 5
C h a r a c t r o n , 5 6 9 - 5 7 0
C h e b y s h e v p o l y n o m i a l s

f u n c t i o n g e n e r a t i o n b y , 5 1 4
g e n e r a t i o n o f t r i g o n o m e t r i c f u n c t i o n s

b y , 3 5 6
C h e c k b i t s

f o r s i n g l e e r r o r c o r r e c t i o n , 5 2 7
C h e c k i n g

r e s i d u e c h e c k s , 5 3 1 - 5 3 2
r e s u l t s o f c o m p u t a t i o n s i n a D D A ,

5 1 2 - 5 1 3
r u n n i n g a p r o b l e m i n r e v e r s e , 5 1 3
v a r y i n g s c a l e f a c t o r s o n s u c c e s s i v e

r u n s , 5 1 2 - 5 1 3
s p o t c h e c k , 5 1 2
s u b s t i t u t i o n c h e c k , 5 1 2
s u m c h e c k o f a m e m o r y , 5 3 8

C h e c k i n g (a u t o m a t i c m e t h o d s) , 5 2 4 - 5 4 0
(see a l s o : E r r o r d e t e c t i o n a n d c o r r e c ­

t i o n)
b u i l t - i n c h e c k s , 5 2 4 - 5 3 3

a r i t h m e t i c c h e c k s , 5 3 0 - 5 3 3
s t o r a g e a n d t r a n s f e r c h e c k s , 5 2 4 - 5 3 0

p r o g r a m m e d c h e c k s , 5 3 3 - 5 3 8
a n a l y t i c c h e c k s , 5 3 4 - 5 3 7
d a t a t r a n s f e r c h e c k s , 5 3 7 - 5 3 8
d i a g n o s t i c p r o g r a m s , 5 3 8 - 5 3 9
r o l l - b a c k p r o g r a m s , 5 3 9 - 5 4 0
s e q u e n c i n g c h e c k s , 5 3 7
tes t p r o g r a m s , 5 3 8
t r a c e p r o g r a m s , 5 3 9

C h e c k i n g f u n c t i o n
i n a n e r r o r c o r r e c t i o n s c h e m e , 5 2 8

C i r c u i t d e s c r i p t i o n s o f s w i t c h i n g a n d
s t o r a g e e l e m e n t s

i n t r o d u c t i o n t o , 1 0 0 - 1 0 1
C i r c u i t l o g i c

g e n e r a l r e m a r k s , 1 0 1 , 1 0 2
m a g n e t i c c o r e s y s t e m s , 1 5 2 - 1 6 6

c o m p u t i n g e l e m e n t s f o r g i g a c y c l e
o p e r a t i o n , 1 7 1 - 1 7 3

g a t i n g c i r c u i t s , 1 5 8 - 1 6 0
g e n e r a l r e m a r k s , 1 5 2 - 1 5 5
m u l t i - i n p u t c o r e g a t e , t r a n s i s t o r flip-

flop s y s t e m s , 1 6 0 - 1 6 2
s u p e r c o n d u c t i v e s w i t c h i n g e l e m e n t s ,

1 6 6 - 1 7 1
t r a n s f e r l o o p s f o r c o u p l i n g o f m a g ­

n e t i c c i r c u i t s , 1 5 5 - 1 5 8
N O R c i r c u i t s , 1 3 7
S B T N O R a n d S h e f f e r s t r o k e l o g i c ,

139
t r a n s i s t o r s y s t e m s , 1 2 7 - 1 5 2

j u n c t i o n t r a n s i s t o r c i r c u i t s , 1 3 3 - 1 5 2
D C T L (d i r e c t c o u p l e d t r a n s i s t o r

l o g i c) c i r c u i t s , 1 3 9 , 143
e m i t t e r f o l l o w e r s , 1 3 5 , 1 3 6
g a t i n g c i r c u i t s , e x a m p l e s o f , 1 3 6 ,

137
g e n e r a l r e m a r k s , 1 3 3 , 1 3 4
i n v e r t e r s , 1 3 4 - 1 3 5
N O R l o g i c c i r c u i t s , 1 3 7 , 1 3 8
T R L (t r a n s i s t o r - r e s i s t o r l o g i c)

c i r c u i t s , 1 3 8
p o i n t - c o n t a c t t r a n s i s t o r c i r c u i t s , 1 2 7 -

133
s e m i c o n d u c t o r d i o d e , p o i n t c o n ­

t a c t t r a n s i s t o r s y s t e m o f c i r c u i t
l o g i c , 133

s i n g l e t r a n s i s t o r flip-flops, 1 2 8 - 1 3 0
t w o - t r a n s i s t o r flip-flops, 1 3 0 - 1 3 2

v a c u u m t u b e s y s t e m s , 1 1 6 - 1 2 7
A C s y s t e m , 1 2 0 - 1 2 3
d i o d e g a t e , flip-flop s y s t e m , 1 1 9
g e n e r a l r e m a r k s , 1 1 6 - 1 1 9
p e n t o d e g a t e s y s t e m , 1 1 9 - 1 2 0
s y n c h r o n o u s D C s y s t e m , 1 2 3 - 1 2 7

C i r c u i t s , a u x i l i a r y , 1 8 6 , 1 8 8
C i r c u l a r n u m b e r s y s t e m

i n a D D A , 4 8 9
C i r c u l a t i n g l o o p s , i n a d e l a y l i n e s t o r e ,

4 2 8

S U B J E C T INDEX 587
Circulating registers

arithmetic and control functions in a
GP computer, 431

in mechanization of integrators for a
serial DDA, 473

Clipping
by a decision unit in a DDA, 486-487

Clock channel (see timing channels),
429-430

Clock pulse generation
in synchronous control of a GP com­

puter, 386
Clock pulse generators (see Timing

signals), 95, 96
multiphase clocks, 95

in AC system of circuit logic, 122
Codes

error minimizing, 541-543
for error detection and correction,

525-530
basic codes for error detection, 525

Coding
nature of, 34

Coefficient of a number in floating-point
notation, 360

Coercive force, 217
Coercivity (temperature coefficient of)

for ferrite cores, 229
Coincident current magnetic core mem­

ory, 218-223
core storage cycle, 222-223
disturb signals, 221-222
drive system for, 223-226
schematic of a coincident current

array, 218
selection of a word at a time, 220
selection ratios, 219

Coincidence gates
in a DDA, 475

Coincident current selection
disadvantages of, 219-220

Collection networks (see Switching
matrix) 178-180

Column check (see Parity checking), 526
Combinational circuits

AND (Boolean multiplication), 40, 42
NOT (complementation or negation),

40
OR (inclusive or), 39, 42

reduction of the level or number of
elements by use of storage, 113,
114

Commands
acquisition (look-up), 418-419
definition of, 383
elementary, 404
execution, 418-419
instruction look-up, 383
preparatory, 405

Common states
of an instruction register, 422

Communication
limiting in a special purpose DDA,

502
Commutative law of multiplication, 549
Comparators

carryless determination of equality by
a circuit with 1 and 0 carry prop­
agation chains, 297

logical equations of, 315-316
use in division, 341

Complementary current switches, 148,
150

Complementary numbers, 310-315
nine's complement, 313-315
one's complement, 311-312
self complementing codes, 314
two's complement, 310-311

Computation
by a stored program computer

example of, 23, 24
important characteristics of, 27

of higher order roots, 355-356
of trigonometric functions, 356-358

Computational checks, 512-513
Computer design

comparison criteria, 445-447
general remarks on representative de­

sign criteria, 374
Computer synthesis problem

general remarks on subdivision of, 96,
97

Computers
mechanical, 9

Computing aids
evolution of, 9-11

Conditional stop instruction
(see Break-point instruction), 375, 426

588 S U B J E C T INDEX

C o n d i t i o n a l t r a n s f e r i n s t r u c t i o n s
e f f e c t o n d e s i g n o f c o n t r o l u n i t , 3 8 3
e x a m p l e s o f , 3 7 5

C o n d i t i o n s
f o r g e n e r a t i n g f u n c t i o n s a n d s o l v i n g

o r d i n a r y d i f f e r e n t i a l e q u a t i o n s b y
m e a n s o f a d i f f e r e n t i a l a n a l y z e r ,
5 1 6 - 5 1 9

C o n s t a n t o f p r o p o r t i o n a l i t y i n a d i g i t a l
i n t e g r a t o r , 4 6 4

C o n s t a n t f r e q u e n c y r e c o r d i n g
i n a m a g n e t i c d i s k s t o r e , 2 1 6

C o n t r o l
c i r c u i t s (m a i n) , 3 8 2
c o m p u t e r (p r o g r a m m e d e r r o r d e t e c ­

t i o n a n d c o r r e c t i o n i n) , 5 3 3
c o n s o l e (o f a c o m p u t e r) , 4 0 0 - 4 0 1
c o u n t e r (i n a G P c o m p u t e r) , 3 7 9
r e g i s t e r (i n a s i m p l e G P c o m p u t e r) ,

4 1 6 - 4 1 7
r e g i s t e r (i n a G P c o m p u t e r) , 3 7 9 - 3 8 2
r e g i s t e r (i n m u l t i - a d d r e s s c o m p u t e r s) ,

3 9 3 - 3 9 4
C o n t r o l r e g i s t e r (see C o n t r o l , r e g i s t e r ,

3 7 9 - 3 8 2 , a l s o 3 9 3 - 3 9 4 , 4 1 6 - 4 1 7 ,
4 1 9 - 4 2 1)

C o n t r o l u n i t , 3 7 8 - 4 1 2
c r i t e r i a a f f e c t i n g m i n i m u m n u m b e r o f

a c t i v e s t o r a g e e l e m e n t s r e q u i r e d ,
3 8 2 - 3 8 3

e f f e c t o f
i n c l u s i o n o f s p e c i a l c o n t r o l f e a t u r e s ,

3 9 4 - 3 9 9
i n t e g r a t i o n o f i n p u t - o u t p u t e q u i p ­

m e n t , 3 9 9 - 4 0 3
m i c r o p r o g r a m m i n g , 4 0 4 - 4 1 0
n u m b e r o f a d d r e s s e s i n a n i n s t r u c ­

t i o n , 3 9 3 - 3 9 4
n u m e r i c a l r e p r e s e n t a t i o n i n t h e

a r i t h m e t i c u n i t , 3 9 0 - 3 9 2
p r o g r a m - i n t e r r u p t c o n t r o l , 4 1 0 - 4 1 2
s e r i a l o r p a r a l l e l o p e r a t i o n , 3 8 4 - 3 8 5
s y n c h r o n o u s o r a s y n c h r o n o u s o p e r a ­

t i o n , 3 8 5 - 3 9 0
f o r a m a g n e t i c t a p e s t o r e , 4 0 3
i n t r o d u c t o r y r e m a r k s , 3 7 8 - 3 8 4
m i c r o c o n t r o l u n i t , 4 0 6
m o d i f i c a t i o n s o f f o r u s e o f i n d e x

r e g i s t e r s , 3 9 5

o f a s e r i a l D D A , 4 7 3
s c h e m a t i c o f a m i c r o p r o g r a m m e d u n i t ,

4 0 4
C o n v e r s i o n , b e t w e e n

b i n a r y a n d d e c i m a l c o d e s (see B i n a r y ,
d e c i m a l c o n v e r s i o n) , 3 6 4 - 3 7 1

d y n a m i c a n d s t a t i c s t o r a g e , 1 7 8 - 1 8 0
r e f l e c t e d a n d n o r m a l b i n a r y c o d e s , 5 4 3
s e r i a l a n d p a r a l l e l r e p r e s e n t a t i o n , 1 7 8 -

1 8 6
C o n v e r s i o n , f o r m a t

o n m a g n e t i c t a p e , 5 6 6 , 5 6 7
C o n v e r t e r s

p a p e r t a p e t o m a g n e t i c t a p e , 5 6 6 , 5 6 7
p u n c h e d c a r d t o m a g n e t i c t a p e , 5 6 0 ,

5 6 1 , 5 6 6 , 5 6 7
C o r r e c t i o n , a u t o m a t i c

o f a s i n g l e e r r o r , 5 2 7 - 5 3 0
C O R S A I R c o m p u t e r , 5 0 3
C o u n t e r

b i s t a b l e c i r c u i t s , 2 6 8 - 2 7 3
c a s c a d i n g c i r c u i t s t o f o r m a m u l t i ­

s t a g e c o u n t e r , 2 6 8
c o u n t - u p a n d c o u n t - d o w n l o g i c , 8 4
d y n a m i c b i n a r y c o u n t e r s , 2 7 1
m u l t i - b i t d e l a y l i n e c o u n t e r , 2 7 1 - 2 7 3
m u l t i - s t a g e c o u n t e r s , 2 6 9 - 2 7 0

w i t h a n t i c i p a t o r y c a r r y , 2 6 9 - 2 7 0
r e p e a t , 3 9 9
Σαγ (i n a D D A) , 4 6 3

C o u n t i n g , 2 6 6 - 2 7 3
i n a s e r i a l b i n a r y a d d e r , 2 7 5 - 2 7 8
w i t h se t - r ese t flip-flops, 2 6 6 - 2 6 8

C r i t i c a l m a g n e t i c field
c u r v e s f o r s u p e r c o n d u c t o r s , 1 6 7
i n s u p e r c o n d u c t i v e t h i n film s t o r e , 2 3 6

C r i t i c a l t e m p e r a t u r e , f o r a s u p e r c o n ­
d u c t o r , 1 6 6

C r y o t r o n , 1 6 7 - 1 7 1
c r o s s e d - f i l m c r y o t r o n , 1 6 8 - 1 7 0
w i r e - w o u n d , 1 6 8 , 1 7 0

C u r i e t e m p e r a t u r e (o f b a r i u m t i t a n a t e) ,
2 5 3

C u r r e n t s h a r i n g i n a s e q u e n t i a l n e t w o r k ,
111

C y c l e t i m e , f a c t o r s a f f e c t i n g i n a r a n d o m
access m e m o r y , 2 2 3

C y c l i c c o d e s , 5 4 2 - 5 4 3

S U B J E C T INDEX 589
Data entry devices, 400
Data preparation, off line

advantages of, 400
Data preparation machines, 400
DDA (see Digital differential analyzer),

19, 20, 448-520
Decimal

addition, 297-307
parallel decimal adders, 302
serial decimal adders, 297-302

division, 347-349
multiplication, 335-340

a serial-parallel multiplier, 338-339
by halving the multiplier and dou­

bling the multiplicand, 339-340
by repeated addition, 336-338

parallel adders, 302
parallel accumulators with automatic

carry propagation, 302-307
serial adders, 297-302

Decimal, binary coded representation of
(see Binary coded decimals)

Decimal, binary conversion, 364-371
(see Binary, decimal conversion)

Decimal to binary conversion, 364-368
examples using binary-coded decimal

notation, 366-368
examples using binary notation, 365-

366
examples using decimal notation, 364-

365
Decision unit (in a D D A) , 484-488

as a digital servo, 494
examples of use, 485-488

automatic switching, 487-488
nonanalytic function generation,

485-487
general uses, 484
type 1, 484-485
type 2, 485

Decoder (see Switching matrix)
Delay, in signal transmission, 125
Delay line storage, dynamic, 243-251

acoustic delay lines, 244-248
fuzed quartz delay lines, 247-248
mercury delay lines, 246-247

electrical delay lines, 244
general remarks, 243-244
magnetostrictive delay lines, 248-251

Delta noise, in a
coincident current core memory, 222
superconductive memory, 237
thin film memory, 235

Difference equations
to generate analytic functions in a GP

machine, 514
Differencing test, 535-536
Differential amplifier, 148
Differential analyzer

conditions for generating functions
and solving ordinary differential
equations, 516-519

digital, 448-520
electronic analog, 452

auxiliary elements, 453
function generation, 454-462
idealized elements, 448-449
mechanical, 449-450, 451-452

Differential equations
advantages of machine solution, 454
general remarks, 448
mapping of, in a DDA, 477
solution of, by integrators and adders,

450-452
Differential gear, in a mechanical dif­

ferential analyzer, 450
Digital diflferential analyzer (D D A) ,

448-520
addressing channels, 475
analysis of an integrator network for

multiplication, 494-498
Appendix: conditions for generating

functions and solving ordinary
differential equations, 516-519

applicability of the DDA, 502-504
arithmetic and control operations in a

serial DDA, 473
Bendix D-12, 484
central store in a serial DDA, 475
checking results of computations, 512-

513
compared to a GP machine, 473, 475
CORSAIR, 503
decision units, 484-488
digital integrators, 462-472
digital servos, 488-494
distinguishing features, 452-453
functional structure of, 472-476

590 S U B J E C T INDEX

g e n e r a l c a p a b i l i t i e s , 4 5 2 - 4 5 3 , 4 7 6 -
4 7 7 , 4 9 9

g e n e r a l d e s c r i p t i o n o f uses , 1 9 , 2 0
g e n e r a t i o n o f f u n c t i o n s , 4 5 4 - 4 6 2
i n f o r m a t i o n flow i n a s e r i a l D D A ,

4 7 3 - 4 7 7
i n t e r c o n n e c t i o n o f e l e m e n t s

b y a n a d d r e s s i n g c h a n n e l , 4 7 5 - 4 7 6 ,
4 7 7

b y a p l u g b o a r d , 5 0 3
i n t r o d u c t o r y r e m a r k s , 4 4 8 - 4 5 4
l i m i t i n g c o m m u n i c a t i o n i n a s p e c i a l

p u r p o s e D D A , 5 0 2
m a p p i n g , 4 7 7 - 4 8 0
m e c h a n i z a t i o n o f i n t e g r a t o r s i n a

s e r i a l D D A , 4 7 2 - 4 7 3
m o r e c o m p l e x (m u l t i - r e g i s t e r) o p e r a ­

t i o n a l u n i t s , 4 9 8 - 5 0 2
n o r m a l i z a t i o n o f e q u a t i o n s , 4 8 2 - 4 8 3
o p e r a t i o n o f a s e r i a l D D A , 4 7 4
o r g a n i z a t i o n a l b l o c k d i a g r a m , 4 7 4
o u t p u t m u l t i p l i e r s , 4 8 3 - 4 8 4
p r e p a r a t i o n o f p r o b l e m s f o r s o l u t i o n ,

4 7 6 - 4 8 4
s c a l i n g , 4 8 0 - 4 8 2
s i m u l a t i n g a D D A w i t h a G P m a c h i n e ,

5 1 3 - 5 1 7
s o u r c e s o f e r r o r , 5 0 4 - 5 1 2
S P E D A C , 5 0 3
t r a d e - o f f b e t w e e n p r e c i s i o n a n d s o l u ­

t i o n t i m e , 4 8 2
T R I C E , 5 0 3
v a r i a b l e i n c r e m e n t m a c h i n e s , 4 6 5

D i g i t a l i n t e g r a t o r s , 4 6 2 - 4 7 2
b a s i c d e s i g n , 4 6 3
v a r i a t i o n s , 4 6 4

D i g i t a l s e r v o (see S e r v o , d i g i t a l) , 4 8 8 -
4 9 4

D i o d e
m i c r o w a v e d i o d e , 1 7 2
t a b l e o f n u m b e r r e q u i r e d f o r d i f ­

f e r e n t f o r m s o f a t r a n s l a t i o n a l
n e t w o r k , 1 7 7

t u n n e l d i o d e
as a s w i t c h i n g e l e m e n t , 1 7 2 - 1 7 3
i n a m e m o r y , 2 3 8 - 2 3 9

D i o d e b r e a k d o w n
s i l i c o n j u n c t i o n d i o d e s

i n D C T L c i r c u i t s , 1 4 0

i n NOR c i r c u i t s , 1 3 7 , 138
u s e d t o p r e v e n t s a t u r a t i o n i n a c i r c u i t ,

1 4 0 , 141
v o l t a g e - c u r r e n t , c h a r a c t e r i s t i c s o f , 141

D i o d e c a p a c i t o r s t o r a g e , 2 5 1 - 2 5 3
s c h e m a t i c o f s t o r a g e a r r a y , t r a n s f o r m e r

AND g a t e s e l e c t i o n m a t r i x , 2 5 2
D i o d e r e c o v e r y t i m e , 111
D i s k s

f o r s h a f t p o s i t i o n e n c o d i n g , 5 4 1 - 5 4 2
m a g n e t i c (s e e M a g n e t i c d i s k s t o r e)

D i s p l a y d e v i c e s (f o r i n d i v i d u a l c h a r a c ­
t e r s) , 5 7 1 - 5 7 2

e t c h e d p l a s t i c , 5 7 1 - 5 7 2
l a m p s w i t c h i n g , 5 7 1
m o v i n g i n d i c a t o r s , 5 7 1
n e o n t u b e , 5 7 2

D i s t r i b u t i o n a n d c o l l e c t i o n n e t w o r k s
(see S w i t c h i n g m a t r i x) , 1 7 8 - 1 8 0

D i s t r i b u t i v e l a w (m u l t i p l i c a t i o n)
e f f e c t o f r o u n d - o f f e r r o r , 5 4 9

D i s t u r b s i g n a l s
i n c o i n c i d e n t c u r r e n t m a g n e t i c c o r e

m e m o r i e s , 2 2 1 - 2 2 2
D i s t u r b e d s ta tes (s e e , a l s o . D i s t u r b s i g ­

n a l s a n d p a r t i a l s e l e c t i o n) i n a
m a g n e t i c c o r e , 2 2 1 - 2 2 2

D i v i s i o n
a u t o m a t i c t es t o f w h e t h e r q u o t i e n t

e x c e e d s o n e , 5 3 1
b i n a r y , 3 4 0 - 3 4 7
d e c i m a l , 3 4 7 - 3 4 9
o f n u m b e r s i n floating-point n o t a t i o n ,

3 6 0 - 3 6 1
D o m a i n

i n a f e r r o m a g n e t i c m a t e r i a l , 2 2 6
r o t a t i o n , 2 2 6 , 2 2 7 , 2 3 4

D o t n o t a t i o n , f o r m a g n e t i c c o r e g a t e s , 1 5 4
D o u b l e p r e c i s i o n

a r i t h m e t i c , 5 5 0 - 5 5 1
n u m b e r s , 5 4 4 - 5 4 5

D r i v e s y s t e m s f o r m a g n e t i c c o r e m e m ­
o r i e s , 2 2 3 - 2 2 6

D y n a m i c d e l a y l i n e s t o r a g e (see D e l a y
l i n e s t o r a g e , d y n a m i c) , 2 4 3 - 2 5 1

D y n a m i c m a g n e t i c s t o r a g e (s e e M a g n e t i c
s u r f a c e s t o r a g e , 1 9 9 - 2 1 6 a n d M a g ­
n e t i c d r u m a n d d i s k s t o r e , 2 1 1 - 2 1 5 ,
4 7 3 , 4 7 4) , 1 9 7 , 1 9 8

S U B J E C T INDEX 591

Dynamic storage
general description of, 197
magnetic disk, 214-216
magnetic drum, 211-213
synchronous and asynchronous types

and selection schemes, 197-198
two principal types, 197

dz generation
in a DDA with binary transfer, 464
in a DDA with ternary transfer, 464

dz store (in a D D A) , 464

Effective instruction, 395
Electronic digital computers

primary basis of utility, 22, 23
Electron storage (in an n-p-n transistor),

134
Emitter follower junction transistor cir­

cuits, 135, 136
Encoder (see Switching matrix)
Encoder, shaft position, 541-542

ambiguity in reading, 541-542
nonambiguous reading, 543

End around borrow
in operation on nine's complement, 313
in operation on one's complement, 312

ENIAC computer, 10
Equality, test for (see Comparators)
Equations (see Boolean algebraic equa­

tions. Flip-flop input equations.
Logical design, Timing signals)

Erasability, 195
Error

in rectangular integrations, 465
sequencing operations to reduce round­

off error, 548-551
sources of (in a D D A) , 470, 504-512

affect of assignment of numbers to
integrators, 506

general remarks, 504
in digital servos, 511
in generation of a higher order

derivative, 510-511
in generation of specific functions,

508-509
in mathematical statement of prob­

lem and way it is programmed,
505-506

in schematic representation of map­
ping, 511-512

phase error, 507-508
round-off error, 470, 505
scaling of the problem, 506-507
start-up error, 508
truncation error, 505

truncation, 544
Error, detection and correction, 521-551

error minimizing codes, 541-543
general remarks, 521-523
round-off errors, 543-550
techniques for detecting and locating

sources, 523-541
built-in checks, 524-533
data transfer checks, 537-538
diagnostic programs, 538-539
differencing (smoothness) test, 535-

536
extrapolation checks, 536
functional relationships, 534-535
inverse checks, 535
multiple computation, 534
multiple error detection, 526-527
programmed checks, 533-540
residue checks, 531-532
roll-back programs, 539-540
sequence checks (built-in), 532
single error correction scheme, 527-

530
single error detection, 526
sources of error, 523
test programs, 538
trace programs, 539

Excess-three code
description, 299-300
parallel decimal adder, 302
serial decimal adder, 300-302

Execution cycle, in a GP computer, 379
Exponent index (of a floating-point

number)
definition of, 360
representation in a computer, 361-362

Externally programmed computer, 37
External store

function of, 194
External storage media, 400-402

organization of data in, 402-403

592 S U B J E C T INDEX

E x t r a p o l a t i v e m o d e o f o p e r a t i o n (i n a
d i g i t a l i n t e g r a t o r) , 4 7 9

F a i l u r e
b a s i c t y p e s o f , 5 2 2

F a u l t
i n t e r m i t t e n t , 5 4 0 - 5 4 1
l o c a t i o n (u t i l i t y o f a r e v e r t i v e s i g n a l

f o r) , 3 8 9
F e e d b a c k

c o n n e c t i o n s i n d i f f e r e n t i a l a n a l y z e r s ,
4 5 0 - 4 5 1

F e r r o e l e c t r i c s t o r a g e , 2 5 3 - 2 5 6
c h a r a c t e r i s t i c s a n d e x a m p l e s o f s u i t ­

a b l e m a t e r i a l s , 2 5 3 - 2 5 4
d y n a m i c c a p a c i t a n c e , d e f i n i t i o n o f , 2 5 3
p a r t i a l s e l e c t i o n i n , 2 5 5
p o l a r i z a t i o n h y s t e r e s i s c u r v e , 2 5 4
r e a d o u t c i r c u i t , 2 5 4
s c h e m a t i c o f a s t o r a g e a r r a y , 2 5 5
s t o r a g e c e l l , 2 5 4

F i l e
e x t e r n a l s t o r a g e , 4 0 2

F i l l i n g a c o m p u t e r
l o g i c a l r e q u i r e m e n t s f o r , 4 2 5 - 4 2 6

F i x e d - p o i n t c o m p u t a t i o n , s c a l i n g f o r ,
3 5 8 - 3 6 0

c o m p a r i s o n w i t h ñoat ing-point o p e r a ­
t i o n , 3 6 2 - 3 6 4

Fl ip-ñop (c i r c u i t s)
b a s e g a t e d D C T L , 141
D C T L flip-flop, 1 4 0
f o r m e d f r o m a c o m p l e m e n t a r y c u r r e n t

t r a n s i s t o r s w i t c h , 1 4 9
f o r m e d f r o m t w o c r y o t r o n s , 171
n o n s a t u r a t i n g D C T L , 1 4 3
n o n s a t u r a t i n g D C T L R C , 143
s a t u r a t i n g D C T L e m i t t e r f o l l o w e r

c o u p l e d flip-flop, 1 4 3
s i m p l i f i e d t r a n s i s t o r c o m p l e m e n t a r y

c u r r e n t , 1 5 1
t r a n s i s t o r c o m p l e m e n t a r y c u r r e n t , w i t h

f o u r o u t p u t s , 1 5 2
F l i p - f l o p (f u n c t i o n a l d e s c r i p t i o n) , 7 2 - 8 7

a p p l i c a t i o n e q u a t i o n , g e n e r a l f o r m , 7 6
d e r i v a t i o n o f a s p e c i f i c a p p l i c a t i o n

e q u a t i o n , 7 6 , 7 7

c h a r a c t e r i s t i c e q u a t i o n s , d e r i v a t i o n f o r
7 , R-S-T a n d RT-ST flip-flops,
7 9 - 8 2

d i f f e r e n c e e q u a t i o n , d e f i n i t i o n , 7 5 , 7 6
d y n a m i c , 8 5 - 8 7

R-S, T, R-S-T t y p e s , 8 6 , 8 7
g e n e r a l d e s c r i p t i o n , 7 2 - 7 3
s t a t i c , 7 3 - 7 5

R-S, T, R-S-T a n d RT-ST t y p e s , 7 4
F l i p - f l o p (i n p u t e q u a t i o n s)

d e r i v a t i o n f o r R-S, T, R-S-T a n d
RT-ST t y p e s , 7 7 - 7 9

d e r i v a t i o n o f s p e c i f i c e q u a t i o n s f o r a
p a r t i c u l a r a p p l i c a t i o n

f r o m a K a r n a u g h m a p o f a p p l i c a ­
t i o n e q u a t i o n , 8 2 , 8 3

f r o m c o n s i d e r a t i o n o f c o n d i t i o n s
p r e c e d i n g a c h a n g e , 8 3 - 8 5

i n a s i m p l e G P c o m p u t e r w i t h a d y ­
n a m i c m a i n s t o r e , 4 3 7 - 4 4 0

i n a s i m p l e G P c o m p u t e r w i t h a s t a t i c
m a i n s t o r e , 4 2 3 - 4 2 5

F l i p - f l o p (s p e c i f i c f u n c t i o n s)
c o n t r o l flip-flops (i n a D D A) , 4 6 3
f u n c t i o n s i n a D D A , 4 7 3 - 4 7 4
m a j o r f u n c t i o n s i n a G P c o m p u t e r , 4 3 2
use o f m o r e t h a n t h e m i n i m u m n u m ­

b e r , 4 3 3
F l o a t i n g - p o i n t o p e r a t i o n

c o m p a r i s o n w i t h fixed-point o p e r a t i o n ,

3 6 2 - 3 6 4
n o t a t i o n f o r n u m b e r s , 3 6 0 - 3 6 1
r e p r e s e n t a t i o n o f floating-point n u m ­

b e r s w i t h i n a c o m p u t e r , 3 6 1 - 3 6 2
F l u x , t r a p p e d

i n a s u p e r c o n d u c t i n g film, 2 3 6 , 2 3 7
F l u x l o k s y s t e m , 2 2 7
F l u x p a t t e r n (m a g n e t i c s u r f a c e r e c o r d ­

i n g) , 2 0 0
F o r m a t f o r r e p r e s e n t a t i o n o f a floating­

p o i n t n u m b e r i n a c o m p u t e r , 3 6 2
F o r m a t c o n t r o l

o n a l i n e - a t - a - t i m e p r i n t e r , 5 6 7
F o u r - a d d r e s s s y s t e m i n a G P c o m p u t e r

d e s c r i p t i o n o f , 3 9 3
F r a c t i o n a l c o m p u t e r

d e f i n i t i o n o f , 3 1 1
r e s t r i c t i o n o n s i ze o f o p e r a n d s i n

d i v i s i o n , 3 4 0 - 3 4 1

S U B J E C T INDEX 593
Function generation

by Chebyshev polynomials, 514
by difference equations, 514
by power series, 514
errors peculiar to generation of cer­

tain functions, 508-509
function inversion by a digital servo

in a DDA, 492-495
generation of by a digital inte­

grator, 467-468
in a differential analyzer, 454-462,

477, 484
non-analytic function generation by

decision units in a DDA, 485-487
Function table, encoding and decoding

(see Switching matrix)
Functional relationships

as an aid to error detection, 534-535

Gates (see also Gating circuits)
functional representations of AND

and OR gates, 103
general description of, 102-104
pyramid gates, 112
reduction of higher to lower level

gates, 113
Gating circuits

diode gating circuits, 104-112
equivalent circuits of a semicon­

ductor diode, 104
finite back resistance of diodes,

effect of, 109, 110
load on gating circuit, effect of, 110
multi-level gating circuits, design

of, 106-110
two-level diode gates, 107, 108

nonzero forward resistance of
diodes, effect of, 109

single level gates, design of, 105,
106

switching speed, factors affecting,
111, 112

voltage and current requirements in,
110, 111

voltage current characteristic of a
semiconductor diode, 104

formed from complementary transistor
switches, 148, 149

magnetic gate, 153, 154
OR and AND gates, 159, 160
transfer loops for coupling gates,

155, 159
parametric oscillator circuits, 171-172
pulse-pedestal gate circuits, 114, 115
superconductive switching elements,

166-171
symbolic representation of magnetic

core logic circuits, 154-159
tunnel diode circuits, 172, 173

General purpose computer (see GP com­
puter), 16-17, 19, 20, 22-32, 372-
447, 503

Gigacycle computer operation
increasing speed by means of local in­

formation processors, 385
Gigacycle, definition of, 171

gating circuits for operation at giga­
cycle frequencies, 171-173

GP computer (system design), 372-447
applications, 16-17
basic parameters in organization, 372
concluding remarks, 442-447
control unit, 378-412
fixed program type, 19
general description, 19, 22-32
instructions, number and type of, 372-

376
logical designs of GP arithmetic com­

puters, 412-442
main store, 376-377
sine wave generation, maximum

frequency of, 503
system design, 372-447
word format, 377-378

Gray code (see Cyclic codes), 542-543

Half-selection (see also Partial selection)
minor hysteresis loop produced by

half-select signals, 221
Harvard Mark I calculator, 10, 28
Hazards

in asynchronous networks, 390
Head selection matrix

in magnetic surface recording, 429
Head trailing effect, 211
Histogram, of error free operating in­

tervals, 521

594 S U B J E C T INDEX

H o l e s t o r a g e (i n a p - n - p t r a n s i s t o r) ,
1 2 9 , 134

H y s t e r e s i s l o o p
m i n o r , p r o d u c e d b y h a l f - s e l e c t s i g n a l s ,

2 2 1
o f a f e r r o m a g n e t i c m a t e r i a l , 1 5 2 - 1 5 3

i d l e s ta te
a u t o m a t i c s e t t i n g t o , 5 3 1
o f a c o m p u t e r , 4 2 5 , 4 3 9

I m p l i c a n t s , p r i m e , 6 2
I n a c t i v e s ta te (see I d l e s t a t e)
I n c r e m e n t a l a n a l y z e r (see D i g i t a l d i f f e r ­

e n t i a l a n a l y z e r) , 19 , 2 0 , 4 4 8 - 5 2 0
I n c r e m e n t a l c h a n g e

i n a n i n t e g r a t o r , 4 4 9
I n c r e m e n t a l c o m p u t e r (see D i g i t a l d i f f e r ­

e n t i a l a n a l y z e r) , 1 9 , 2 0 , 4 4 8 - 5 2 0
v a r i a b l e i n c r e m e n t m a c h i n e s , 4 6 5

I n c r e m e n t a l t r a n s f e r c o m p u t e r (see
D i g i t a l d i f f e r e n t i a l a n a l y z e r) , 1 9 ,
2 0 , 4 4 8 - 5 2 0

I n c r e m e n t s
r e s t r i c t i o n s o n s ize i n a D D A , 4 6 5
v a r i a b l e , 4 6 5

I n d e x r e g i s t e r s , 3 9 4 - 3 9 9
e x a m p l e o f a p r o g r a m u s i n g i n d e x

r e g i s t e r s , 3 9 6 - 3 9 7
m e a n s f o r a d d r e s s i n g , 3 8 1
m o d i f i c a t i o n s r e q u i r e d i n c o m p u t e r i n ­

s t r u c t i o n r e p e r t o r y , 3 9 5
r e p r e s e n t a t i v e c o m p u t e r s i n w h i c h i n ­

c o r p o r a t e d , 3 9 9
uses o f , 3 9 8 - 3 9 9

I n f o r m a t i o n p r o c e s s i n g s y s t e m s
a p p l i c a t i o n s o f , 15 , 1 6 , 17 , 4 9 8 - 5 0 1 ,

5 0 2 - 5 0 4
e l e m e n t s o f , 18

c e n t r a l p r o c e s s o r s , 18
i n f o r m a t i o n c o l l e c t i n g d e v i c e s , 18
o u t p u t t e r m i n a l s , 19
t r a n s m i s s i o n l i n k s , 18

n a t u r e o f , 18
I n h i b i t w i n d i n g (i n a c o i n c i d e n t c u r r e n t

m a g n e t i c c o r e m e m o r y) , 2 2 0
I n h i b i t i n g s w i t c h i n g f u n c t i o n , 8 6 , 1 2 2
I n h i b i t o r

t r a n s i s t o r c o m p l e m e n t a r y c u r r e n t , 1 5 1

I n p u t e q u a t i o n s (see F l i p - f l o p i n p u t
e q u a t i o n s)

I n p u t - o u t p u t
b u f f e r s , 4 0 2
i n s t r u c t i o n s , e x a m p l e s o f , 3 7 6
r a t i o o f i n p u t - o u t p u t t o i n t e r n a l o p e r a ­

t i o n s , e f f e c t o f o n c o m p u t e r
o r g a n i z a t i o n , 4 0 1 - 4 0 2

I n p u t - o u t p u t e q u i p m e n t , 3 9 9 - 4 0 3 , 5 5 4 -
5 7 2

c a t h o d e - r a y t u b e s , 5 6 9 - 5 7 1
e f f e c t o f o n c o n t r o l u n i t , 3 9 9 - 4 0 3

o f f - l i n e o p e r a t i o n , 3 9 9
o n - l i n e o p e r a t i o n , 3 9 9

e x t e r n a l s t o r a g e m e d i a , 5 5 5 - 5 6 6
m a g n e t i c t a p e , 5 6 0 - 5 6 6
p u n c h e d c a r d s , 5 5 7 - 5 6 0
p u n c h e d p a p e r t a p e , 5 5 5 - 5 5 7

g e n e r a l r e m a r k s , 5 5 4 - 5 5 5
i n d i v i d u a l c h a r a c t e r d i s p l a y d e v i c e s ,

5 7 1 - 5 7 2
i n t e g r a t i o n i n t o a c o m p u t e r s y s t e m ,

3 9 9 - 4 0 3
p r i n t e r s , 5 6 6 - 5 6 8

c h a r a c t e r - a t - a - t i m e , 5 6 6 - 5 6 7
h i g h s p e e d , 5 6 8
l i n e - a t - a - t i m e , 5 6 7

I n s t r u c t i o n a c q u i s i t i o n (l o o k - u p) c o m ­
m a n d s , 3 8 3 , 4 1 8 - 4 1 9

i n a m i c r o p r o g r a m m e d c o n t r o l u n i t ,
4 0 5

I n s t r u c t i o n c o u n t e r (s e e C o n t r o l , c o u n t e r ,
3 7 9)

I n s t r u c t i o n e x e c u t i o n c o m m a n d s , 4 1 8 -
4 1 9

I n s t r u c t i o n r e g i s t e r (s e e C o n t r o l , r e g i s t e r ,
3 7 9 - 3 8 2 , 3 9 3 - 3 9 4 , 4 1 6 - 4 1 7 , 4 1 9 -
4 2 1)

I n s t r u c t i o n r e p e r t o r y
o f a s i m p l e G P c o m p u t e r , 2 4 , 4 1 5

I n s t r u c t i o n s
B - b o x i n s t r u c t i o n s

Β c o n d i t i o n a l , 3 9 6
Β m o d i f i a b l e , 3 9 5 - 3 9 6
n o n - B m o d i f i a b l e , 3 9 5 - 3 9 6

b l o c k t r a n s f e r , 4 0 3
d u m m y , i n use o f B - b o x i n s t r u c t i o n s ,

3 9 6

S U B J E C T INDEX 595
effective, 395
example of, 29, 30, 31
general types of, 23
modification of, 28
number and type of, 372-376
presumptive, 395
representative set for a GP computer,

374-376
tally, 396
three basic categories of, 383-384

integral transfer computer (see GP com­
puter), 16-17, 19, 20, 22-32, 372-
447, 503

Integration formulas
choice of, 470-472
rectangular summation, 465, 467-470,

497, 515-516
example of function generation,

467-468
in multiplication, 497

trapezoidal summation, 465-466
in multiplication, 498

Integrator
bases for use, 451
digital (see Integrator, digital)
functional schematic, 449
general properties, 449
idealized equation, 450
mechanical, 449-450

Integrator, digital
assignment of a number to, 479-480,

502, 506
example of function generation, 467-

468
interconnection of (mapping), 477-

480
interpolative mode of operation, 466
mechanization of serial integrator,

472-473
simulation of in a GP machine, 515
sources and limits of inputs, 477
theory of, 467-472
used as a digital servo, 494
variations in design, 464

Intelligence (artificial), 16, 17
Interlock

for an external storage device, 403
system for nonregular networks, 390

intermittent
errors, 523
faults, 540-541

Internal store
function of, 194

Interpolative formulas
in trigonometric function generation,

357-358
interpolative mode of operation (in a

digital integrator), 466, 479
interrogation

of a magnetic core memory, 218
Interrupt control (see Program interrupt

control), 410-412
inverse check, 535
inverter circuit, 116, 117

AND and OR gates formed from in­
verters, 117

junction transistor circuits, 134, 135
parallel inverter, 117

iteration rate
in a serial DDA, 474
in parallel DDA's, 503

iterative formulas, 349-352
derivation of a general formula, 349-

350
formula for the reciprocal, 350
formulas for higher order roots, 355-

356
formulas for the square root, 351-352

Junction transistor circuits
current switching circuits, 147-152

non-saturating complementary cur­
rent switching and inhibiting cir­
cuits, 150-152

non-saturating complementary cur­
rent switching systems, 147-150

dynamic pulse circuits, 143, 144
gated-pulse amplifier circuits, 144, 147

Language, machine (see Machine lan­
guage), 444, 445

Latency time
figures for typical rotating magnetic

stores, 215
in a magnetic disk store, 216

Level discrimination in adders, 277

596 S U B J E C T INDEX

L i m i t i n g o f a f u n c t i o n
i n a D D A , 4 8 6 - 4 8 7

L i n e a r se lec t m e m o r y
(see W o r d o r g a n i z e d m e m o r y) , 2 2 8 -

2 3 0
L o c a t i n g d a t a

i n a m a g n e t i c t a p e s t o r e , 5 6 2
L o g i c t a b u l a t i o n , 4 4 4 - 4 4 5
L o g i c a l

i n s t r u c t i o n s , e x a m p l e s o f , 3 7 5
p r o d u c t , t y p e o f i n s t r u c t i o n s , 3 7 5

L o g i c a l d e s i g n
a i d s i n d e s c r i p t i o n o f , 4 4 3
d e f i n i t i o n o f , 4 4 3
g e n e r a l d e s c r i p t i o n o f , 9 4

L o g i c a l d e s i g n , m o d i f i c a t i o n o f d i f f i c u l ­
t i es i n t r o d u c e d b y s c h e m e s f o r
e q u i p m e n t m i n i m i z a t i o n , 4 4 6

L o g i c a l d e s i g n s , o f G P a r i t h m e t i c
c o m p u t e r s , 4 1 2 - 4 4 2

G P c o m p u t e r w i t h a s t a t i c m a i n s t o r e ,
4 1 5 - 4 2 6

a r i t h m e t i c u n i t , 4 1 7 - 4 1 8
d e s c r i p t i o n o f c o n t r o l u n i t , 4 1 6 - 4 1 7
e l e m e n t a r y c o m m a n d s , 4 1 8 - 4 2 0
flip-ñop i n p u t e q u a t i o n s , 4 2 3 - 4 2 5
flow d i a g r a m o f i n s t r u c t i o n e x e c u ­

t i o n , 4 2 2
i n s t r u c t i o n r e p e r t o r y , 4 1 5
o t h e r s p e c i f i c a t i o n s , 4 1 5
w o r d f o r m a t , 4 1 6

G P c o m p u t e r w i t h a d y n a m i c m a i n
s t o r e , 4 2 6 - 4 4 2

b l o c k d i a g r a m o f o r g a n i z a t i o n , 4 2 7
c i r c u l a t i n g r e g i s t e r s , 4 3 1
flip-flop i n p u t e q u a t i o n s , 4 3 7 - 4 4 0
i n s t r u c t i o n r e p e r t o r y , 4 2 6
o t h e r s p e c i f i c a t i o n s , 4 2 6
p e r m a n e n t t i m i n g t r a c k s , 4 3 0
r e c o r d i n g e q u a t i o n s , 4 4 0 - 4 4 2
t i m e d u r a t i o n s i g n a l s , 4 3 0 - 4 3 1
use o f p a s s i v e s t o r a g e e l e m e n t s f o r

i n f o r m a t i o n p r o c e s s i n g a n d c o n ­
t r o l , 4 2 7

w o r d f o r m a t , 4 2 8 - 4 2 9
L o g i c a l e l e m e n t s (see G a t e s a n d G a t i n g

c i r c u i t s)
L o o p s , h i g h s p e e d (see R e v o l v e r s) , 4 2 8

L o s s e s i n d y n a m i c m a g n e t i c r e c o r d i n g
s y s t e m s , 2 0 3 - 2 0 4

g a p l o s s , 2 0 4
s e l f - d e m a g n e t i z a t i o n , 2 0 4
s p a c i n g losses , 2 0 3
t h i c k n e s s l o s s , 2 0 3 - 2 0 4

M a c h i n e l a n g u a g e
d e f i n i t i o n o f , 4 4 4
use i n a c o m p u t e r s i m u l a t i o n p r o g r a m ,

4 4 5
M a g n e t i c c o a t i n g s

e f f e c t o n r e a d v o l t a g e v a r i a t i o n w i t h
r e c o r d i n g d e n s i t y , 2 1 0 - 2 1 1

o n a d r u m s u r f a c e , 2 1 2
M a g n e t i c c o r e l o g i c c i r c u i t s , 1 5 2 - 1 6 6

s y m b o l s f o r , 1 5 4 , 1 5 9
M a g n e t i c c o r e s t o r a g e , 2 1 6 - 2 2 9

c o i n c i d e n t c u r r e n t c o r e m e m o r y , 2 1 8 -
2 2 3

d e s i r a b l e c h a r a c t e r i s t i c s o f t h e c o r e
m a t e r i a l f o r m e m o r y a p p l i c a t i o n s ,
2 1 7

g e n e r a l r e m a r k s , 2 1 6 - 2 1 8
w o r d o r g a n i z e d c o r e m e m o r y , 2 2 8 -

2 2 9
M a g n e t i c c o r e s w i t c h e s (f o r m e m o r y

d r i v e s y s t e m s) , 2 2 3 - 2 2 6
a n t i - c o i n c i d e n t c u r r e n t s w i t c h , 2 2 5
b i a s e d c o i n c i d e n t c u r r e n t s w i t c h , 2 2 4
b i a s e d m u l t i - c o i n c i d e n c e s w i t c h , 2 2 5 ,

2 2 6
m u l t i - c o i n c i d e n c e s w i t c h , 2 2 5

M a g n e t i c d i s k s t o r e (s e e M a g n e t i c s u r ­
f a c e s t o r a g e , a l s o 1 9 9 - 2 1 6)

g e n e r a l d e s c r i p t i o n o f , 2 1 4 - 2 1 6
c h a r a c t e r i s t i c s o f t y p i c a l m u l t i - d i s k

u n i t s , 2 1 5
i n a s e r i a l D D A , 4 7 3 , 4 7 4

M a g n e t i c d r u m s t o r e (s e e M a g n e t i c s u r ­
f a c e s t o r a g e , a l s o 1 9 9 - 2 1 6)

c h a r a c t e r i s t i c s o f t y p i c a l u n i t s , 2 1 5
g e n e r a l d e s c r i p t i o n , 2 1 1 - 2 1 3

access t i m e , m e a n s f o r i m p r o v i n g ,
2 1 3

h e a d - t o - s u r f a c e s p a c i n g v a r i a t i o n ,
2 1 2

r e c o r d - r e a d s y s t e m f o r o n e c h a n n e l ,
2 1 1

S U B J E C T INDEX 597
head selection matrix, 213
in a serial DDA, 473, 474

Magnetic heads
air bearings for, 212

in IBM-RAMAC memory, 216
design of, 200, 201
switching matrix for selection of, 213

Magnetic recording (see Magnetic sur­
face storage), 199-216

Magnetic reluctance
definition of, 201

Magnetic surface (rotating) storage,
199-216

coding techniques, 204-211
comparison of NRZ and RZ record­

ing, 208-209
general remarks, 204-205
NRZ recording, 207-208
RZ recording, 205-207
phase modulation recording, 209-

210
efficiency of, 202-203
general remarks, 199
memory transfer function, 203-204
recording process, 200-201

Magnetic tape, 560-566
advantages of, 564-565
comparison with disks and drums, 565
composition, 560
head stack design, 560-561
organization of data, 560
storage capacity, 565

Magnetic tape control unit
facilities for searching operations, 403

Magnetic tape transport
start and stop times, 562-566

schemes for reducing, 563-564
Magnetostrictive delay line

schematic of, 248
typical amounts of delay, 251

Magnetostrictive effect, 248, 249
Main store (see Store, main), 376-377,

387-388
Maintenance

difficulties introduced by schemes for
equipment minimization, 446

logic and usage tabulations as an aid
to, 445

preventive, 540-541

Mantissa
definition of, 360
representation in a computer, 361-362

Many-to-many networks (see Switching
matrix), 178

Many-to-one networks (see Switching
matrix)

Mapping (in a D D A) , 477-480, 506
errors producible by schematic repre­

sentation of, 511-512
in a special purpose DDA, 502

Marginal
checking, 540-541
operation, 523

Marker bits
in an addressing channel, 475-476

Mass storage units
characteristics of typical multi-disk

units, 215
Matrix printer, 568
Matrix switch (see Switching matrix)
Mean (round-off error), 545-547
Mean-time-to-failure, 522
Mechanical differential analyzers

accuracy, 452
auxiliary elements, 453
general description, 449-450

Meissner effect (in superconductors),
168

Memory (see Storage systems and Store,
main)

advantages of storing numbers and
instructions in a common unit, 28

differentiation between numbers and
instructions, 27, 28

Memory cores (ferrite)
typical dimensions, 216, 217

Microcontrol unit, 406
Microprogrammed control unit

control register unit, 404-405
Microprograms

effect of on control unit, 404-410
execution of microprogrammed in­

structions, 406-410
flow diagram of, 408
means of access to, 410

Micro-operations (see Microprograms),
404

598 S U B J E C T INDEX

M i c r o w a v e c i r c u i t s , 1 7 1 - 1 7 3
p a r a m e t r i c o s c i l l a t o r s , 172
t u n n e l d i o d e c i r c u i t s , 1 7 2 , 173

M i n i m i z a t i o n o f e q u i p m e n t
d i s a d v a n t a g e s o f , 4 4 6

M i n i m u m access p r o g r a m m i n g
f o r a n o n r a n d o m access m a i n s t o r e ,

3 9 3
M i n i m u m t r a n s l a t i o n a l n e t w o r k , 177
M i n o r i t y c a r r i e r s t o r a g e , 1 3 2 , 1 3 4 , 135
M i r r o r s y s t e m o f n o t a t i o n f o r m a g n e t i c

c o r e c i r c u i t s , 2 2 5 , 2 2 6
Μ I T C o m p u t e r L a b o r a t o r i e s

p e n t o d e g a t e s y s t e m , 1 1 9 , 120
M o d u l o c h e c k s (see R e s i d u e c h e c k s) ,

5 3 1 - 5 3 2
M u l t i a p e r t u r e d e v i c e s

t r a n s f l u x o r g a t e s , 1 6 3 - 1 6 6
M u l t i p l e c o m p u t a t i o n , 5 3 4
M u l t i p l e p a r i t y b i t s , 5 2 7
M u l t i p l e - p r e c i s i o n

a r i t h m e t i c , 5 5 0 - 5 5 1
n u m b e r s , 5 4 4 - 5 4 5

M u l t i p l e x i n g , 4 1 4 - 4 1 5
i n a D D A , 4 1 4

M u l t i p l i c a t i o n (see B i n a r y m u l t i p l i c a ­
t i o n , 3 1 8 - 3 3 5 a n d D e c i m a l m u l t i ­
p l i c a t i o n , 3 3 5 - 3 4 0)

a n a l y s i s o f a n i n t e g r a t o r n e t w o r k f o r
m u l t i p l i c a t i o n i n a D D A , 4 9 4 -
4 9 8

b y s p e c i a l o p e r a t i o n a l u n i t s i n a D D A ,
4 9 9 - 5 0 2

g e n e r a l r e m a r k s , 3 1 6 - 3 1 8
i n c o m p u t e r s f o r s o l v i n g n a v i g a t i o n

p r o b l e m s , 4 9 9 - 5 0 2
i n c r e m e n t a l (i n a D D A) , 4 5 3 - 4 5 4

•o f n u m b e r s i n floating-point n o t a t i o n ,
3 6 0 - 3 6 1

t a b l e f o r b i n a r y n u m b e r s , 3 1 7
M u l t i p l i e r (see M u l t i p l i c a t i o n)

b i n a r y
s e r i a l b i n a r y m u l t i p l i e r w i t h d e l a y

l i n e s t o r a g e , 3 2 2
s e r i a l - p a r a l l e l b i n a r y m u l t i p l i e r ,

3 2 3 - 3 2 5
s e r i a l - p a r a l l e l b i n a r y m u l t i p l i e r c o n ­

t r o l l e d b y p a i r e d b i t s o f t h e
m u l t i p l i e r , 3 2 5 - 3 2 7

t y p i c a l s t a g e o f a n a s y n c h r o n o u s
b i n a r y m u l t i p l i e r , 3 2 7

s i m u l t a n e o u s m u l t i p l i e r , 3 2 8 - 3 3 0
d e c i m a l

s e r i a l - p a r a l l e l m u l t i p l i e r , 3 3 9
i n c r e m e n t a l , 4 5 3 - 4 5 4
o u t p u t m u l t i p l i e r s i n a D D A , 4 8 3 - 4 8 4

N a n o s e c o n d
d e f i n i t i o n o f . 111

N a t i o n a l B u r e a u o f S t a n d a r d s
A C s y s t e m o f c i r c u i t l o g i c , 1 2 0 - 1 2 3

N a v i g a t i o n
d i g i t a l c o m p u t e r s as a n a i d t o , 4 9 8 -

5 0 1
N e g a t i v e n u m b e r s , r e p r e s e n t a t i o n o f ,

3 0 8 - 3 1 5
b y a b s o l u t e v a l u e p l u s a s i g n , 3 0 8 - 3 1 0
c o m p l e m e n t a r y n o t a t i o n , 3 1 0 - 3 1 2

n i n e ' s c o m p l e m e n t , 3 1 3 - 3 1 5
o n e ' s c o m p l e m e n t , 3 1 1 - 3 1 2
t e n ' s c o m p l e m e n t , 3 1 2 - 3 1 3
t w o ' s c o m p l e m e n t , 3 1 0 - 3 1 1

N e g a t i v e r e m a i n d e r i n d i v i s i o n , 3 4 1
N e t w o r k s , r e g u l a r

a s y n c h r o n o u s o p e r a t i o n o f , 3 9 0
d e f i n i t i o n o f , 3 9 0

N o i s e
d e l t a n o i s e i n a c o i n c i d e n t c u r r e n t

c o r e m e m o r y , 2 2 2
d e l t a n o i s e i n a t h i n film m e m o r y , 2 3 5
e l i m i n a t i o n o f , i n a s u p e r c o n d u c t i v e

m e m o r y , 2 3 7
r e d u c t i o n o f , i n a m a g n e t i c c o r e

a r r a y , 2 1 9
N o n a n a l y t i c f u n c t i o n g e n e r a t i o n

b y d e c i s i o n u n i t s i n a D D A , 4 8 4
N o n d e s t r u c t i v e r e a d o u t

i n a m a g n e t i c c o r e m e m o r y , 2 2 6 - 2 2 8
b y e l a s t i c m o t i o n o f d o m a i n w a l l s ,

2 2 7
q u a d r a t u r e field m e t h o d s , 2 2 7

F L U X L O K , 2 2 7
R F s e n s i n g , 2 2 7
z e r o flux, 2 2 7 , 2 2 8

i n a t r a n s f l u x o r m e m o r y , 2 3 1
i n a t u n n e l d i o d e m e m o r y , 2 3 9

N o r m a l i z a t i o n o f e q u a t i o n s
i n a D D A , 4 8 2 - 4 8 3

S U B J E C T INDEX 599
NRZ recording, 207-208

read waveforms, 208
Numbers

binary coded, II, 12
binary information transfer, 13
circular number system in a digital

integrator, 489
floating point notation, 360-361
parallel representation, 11-13
serial representation, 11-13
sign designation, 13, 14
ternary information transfer, 13
unitary weighted, II, 12

Numerals
cardinal, 1
display devices, 570-572
external storage media, 556-567
ordinal, 1
printers, 567-569

Numerical representation
in an electronic digital computer, 11,

13
in the arithmetic unit

effect on control unit, 390-392
Numerical symbols

development of, 2, 3
Roman numerals, 3
uses of, 1

Off-line
data preparation, 400, 555
operation of input-output equipment,

399
On-line

operation of input-output equipment,
399

One-address system in a GP computer
description of, 393

One cycle of operation, 439
One-shot delay circuit (delay multi­

vibrator), 187
One-to-many-networks (see Switching

matrix)
Operand storage register, 417-418
Operating speed (of a storage system),

194
Operating time

consistency of, in various computer
elements, 390

Operation codes
basic types and their effect on decod­

ing and encoding function tables,
381-382

Operation field, 24
Operation period

minor and major periods in syn­
chronous control of a GP
machine, 386-387

Operation time
in asynchronous circuits, 124

Operational units (in a D D A)
basic units, 475
more complex units, 498-502

Order codes (see Operation codes), 381 -
382

function of, 432
Order register (see Instruction register)

416-417
Ordering of arithmetic operations

for minimum round-off error, 548-551
Organization

of a serial DDA, 472-476
Orthogonal fields (see Nondestructive

readout), 227
Output data

considerations in choice of output re­
cording devices, 401

forms of, 401
Output devices (see Input-output equip­

ment), 554-572
Output rate

of data in magnetic tape units, 566
Overflow (in an accumulator)

automatic checking of, 531
logical conditions describing, 440
of R accumulator in a DDA, 464,

468-469

Parametric oscillator, 171, 172
Parity checking, 525-530

array, 526
even parity, 525
hardware requirements, 529-530
multiple error detection, 526-527
multiple parity bits, 527
odd parity, 525
on magnetic tape, 562

600 S U B J E C T INDEX

single error correction scheme, 527-
530

single error detection, 526
Partial selection

in a coincident current memory, 218-
219, 221-222

Passive storage elements
in a serial DDA, 475

Pattern generators, 273-275
Peripheral equipment (see Input-output

equipment), 553-571
Persistent-supercurrent storage elements,

236-238
Phase error (in a D D A) , 507-508
Phase-locked subharmonic oscillator, 172
Phase modulation recording

record and read waveforms, 209
Phases of operation, in a computer,

432-436
Photoelectric readers

of paper tape, 557
Playback voltage (see Read voltage)
Plugboard controlled computer, 37
Point contact transistors

nonsaturating flip-flops, 132
saturating flip-flops, 128-132

Polish notation, 107
Positional notation

advantages of, 4, 5, 15
Post-write-disturb pulse (in a coincident

current core memory), 222, 223
Power series

for function generation, 514
Precision

trade off with solution time in a DDA,
482

Preparation of problems
for a DDA, 476-484
general remarks, 476-477

Presumptive instruction, 395
Preventive maintenance, 540-541
Prime implicants, 62
Princeton Institute for Advanced Study,

127
type of operation code in IAS com­

puter, 382
Printers, 566-568

character-at-a-time, 566-567
film, 570

high speed, 568
line-at-a-time, 567
Xerox, 57

Priority interrupt control (see Program-
interrupt control), 410-412

Priority number, in program-interrupt
control, 410-411

Problem preparation for a DDA, 476-
484

assignment of integrator numbers in a
serial DDA, 479-480

mapping (establishing interconnection
of units), 477-480

normalization of equations, 482-483
scaling, 480-482

Program-interrupt control, 410-412
effect of on control unit, 411-412
examples of types of demands, 411

Programmed error detection and correc­
tion, 533-538

analytic checks, 534-537
data transfer checks, 537-538
general remarks, 533-534

basic procedures, 533
comparison of criteria for labora­

tory and control computers, 533
sequencing checks (programmed),

537
testing and diagnostic programs,

538-540
Programming

minimum access, 393
search operations on magnetic tape,

565-566
Programs

debugging routines, 34
flow diagrams

example of, 34-36
function of, 33

procedures in preparation of, 32-34
production running, 34
program for determining the highest

factor of an integer, 25-27
program for simulating a DDA on a

GP machine, 513-517
subprograms (subroutines), 31-34
tracing, 523, 539
test, 523

S U B J E C T INDEX 601
Propagation time

importance of, 173
Pseudo-operations

due to round off, 548-549
Pulse density (magnetic recording)

effect on read voltage, 211
in typical mass storage units, 216

Punched card
advantages of, 559
Hollerith, 10
IBM, 558
Remington Rand, 558

Punched paper tape readers and re­
corders, 555-557

Punches
card, 558-560
paper tape, 555-557

Pyrimidal switching matrix
many-to-one, 175-177
one-to-many, 177-178

Pyramiding
in multi-input core gating circuits, 162

Quantization
binary, 8
nature of, 7, 8
reasons for, 7, 8

Quartz (fused), velocity and attenuation
figures for RF transmission, 247,
248

Read-around ratio
(in a cathode-ray tube store), 242

Read voltage (magnetic surface record­
ing)

variation with head spacing, 201
variation with recording density for

different magnetic coatings, 211
waveforms from induced positive and

negative poles, 202
waveforms in phase modulation re­

cording, 209
Readers

card, 558-559
magnetic tape, 560-566
punched paper tape, 557

Reciprocal, computation of, 350
Recomputation

for error detection, 534

Recording flux pattern, 200
Recording, magnetic (see Magnetic sur­

face storage, 199-216 and Magnetic
drum and disk store, 211-215, 473,
474)

Rectangular switching matrix, 174-178
Redundancy

definition of, 52
in built-in storage and transfer checks,

525, 530
in initial designs of new equipment,

15
in numerical representation, 14
in primitive notations, 15

Reflected binary codes (see Cyclic
codes), 542-543

Regeneration cycle, 195
Register

buffer register, location of, 426
circulating registers, 431, 473
control register, 416-417
instruction register, 419-421
operand storage register, 417-418
Zdy (in a D D A) , 463
shift register, 85, 180-186

Relay computers, 10
Reliability, 521
Remanence, magnetic, 153
Remanent state, of a magnetic core, 222
Repeat counter, 399
Residue checks, 531-532
Return address

in priority-interrupt control, 412
Return-to-bias magnetic recording, 209
Revertive signal, in asynchronous con­

trol, 389
Revolvers, in a dynamic memory, 428
Rollback program, 539-540
Roots, method of computing, 351-356

higher order roots, 355-356
square root, 351-355

Rotating magnetic memory (see Mag­
netic surface storage, 199-216 and
Magnetic drum and disk store, 2 1 1 -
215, 473, 474)

Round off (of a product), 318
Round-off error, 543-550

absolute, 544
bias, 545-547

602 S U B J E C T INDEX

effect on multiplication, 549
effect on scaling, 551
in a DDA, 505
in a digital integrator, 470
mean, 545-547
multiple-precision operations, 544-545
relative, 544
standard deviation, 545-547

Round-off procedures
mechanization of, 546-548

in a binary system, 546-547
in a decimal system, 547-548
summary of binary and decimal

schemes, 548
Row check (see Parity checking), 526
RZ magnetic recording, 205-207

head arrangement in, 205
read waveforms for various recording

densities, 206

Sawtooth function generation
by decision units in a DDA, 486

Scale factors
in a DDA, 480-482

derivation of an optimal set, 482
in fixed-point operation, 359

Scaling
effect in limiting magnitude of errors,

536
in a DDA, 480-482

checking solutions by runs with
different scaling, 512

effect on computational error, 506-
507

effect on solution time, 482
scaling relationships for a set of in­

tegrators, 481-482
scaling relationships within an inte­

grator, 480-481
summary of steps, 482
systematic generation of an optimal

set of scales, 482
in a GP computer, 358-364

comparison of fixed and floating­
point operation in a computer,
362-364

fixed point computation, 358-360
floating point notation for numbers,

360-361

representation of floating point
numbers within a computer, 361-
362

influence of round-off error, 551
Search and acquisition cycle

in a GP computer, 379
Search operation

in an external store, 403
in a GP computer, 433-434

Secondary emission coefficient of a
phosphor surface, 240-241

Sector number
of an address in a dynamic store, 430

Selection
of a word in a dynamic store, 380-381
of a word in a static store, 380

Selection network for a static storage
system

general remarks, 195-197
Selection ratio

in a coincident current memory, 219,
221, 222

Self checking
of data on magnetic tape, 561

Self demagnetization
in dynamic recording media, 204, 210,

551
Sense instructions, examples of, 375-376
Sense voltage

strobing of in a coincident current
core memory, 221, 222

Sense winding
in a coincident current array, 219

Sequencing, automatic methods of, 37
Sequencing of arithmetic operations

for minimum round-off error, 548-
551

Sequencing checks
built-in, 532
programmed, 537

Serial or parallel operation
comparison of, for certain figures of

merit, 385
effect on control unit, 384-385

Servo adder (in a D D A) , 464, 477
Servo, digital (in a D D A) , 488-494

addition of rates by, 488-491
hard servo (integrator), 488-491
soft servo (integrator), 490-491

SUBJECT INDEX 603
errors produced by, 5U
function inversion, 492-495
servo action from an accumulator,

494
servo action from a decision unit, 494
servo with gain, 491-492

Set, determination of
elements in by counting, 2

Shift operations
in scaling of problems, 361-362

Shift register, 180-186
arrangements for vacuum tubes or

transistors, 180-182
magnetic core shift registers, 182-186
transistor-magnetic core shift register,

185-186
Significant digits, loss of through incor­

rect scaling, 363-364
Signum function, 485
Simulation

of a continuous differential analyzer
by a digital computer, 514

of a DDA by a GP machine, 513-517
of an integrator by a GP machine, 515

Simulation programs as an aid to
computer design, 445

developing maintenance procedures,
445

Sine wave
maximum frequency of generation by

different computers, 503
Single-address GP computer

schematic of over-all control arrange­
ment, 383

Skew effect in magnetic tape, 561
Smoothness test, 535-536
Solution time

trade off with precision in a DDA,
482

Space domain storage (see also Storage
systems)

general remarks, 195-197
Special purpose computer, 20
SPEDAC computer, 503
Speed, of

card punches, 558
card readers, 558
cathode-ray tube displays, 569
character-at-a-time printers, 566

electronic printers, 570
high speed printers, 568
line-at-a-time printers, 567
magnetic tape units, 564
paper tape punches, 556
paper tape readers, 557

Speed independence
in asynchronous circuits, 123-127
University of Illinois design tech­

niques, 126, 127
Spot check, 512
Square root, methods for computation

of, 351-355
interpolative formula, 352
iterative formulas, 351-352
odd series approximation, 352-355

in the binary system, 354-355
in the decimal system, 352-354

Standard deviation (or round-off error),
545-547

Starting a computer's operation
logical scheme for, 425

Start-up error (in a D D A) , 508
State of a computer

conditions that define active states,
431-432

Static magnetic storage, 216-236
apertured ferrite plate, 230-231
magnetic core storage, 216-229

coincident current memory, 218-
223

word organized memory, 228-229
thin film elements, 234-236
transfluxor, 231, 232
twistor, 232-234

Static storage (see also Storage systems)
general remarks, 195-197

Stibitz (Bell Telephone relay computer),
10

Storage cycle
in cathode-ray tube store, 242
in coincident current magnetic core

memory, 222-223
Storage media

external (see also Input-output equip­
ment), 400-402, 555-566

internal (see Storage systems)
Storage systems

access time, 195

604 S U B J E C T INDEX

c r i t e r i a f o r e v a l u a t i o n , 1 9 4
e r a s i b i l i t y , 195
g e n e r a l r e m a r k s , 1 9 4 - 1 9 9
o p e r a t i n g s p e e d , 194
r e g e n e r a t i o n c y c l e , 1 9 5
t y p e s c u r r e n t l y d o m i n a n t , 1 9 9 - 2 5 6

c a t h o d e - r a y t u b e s t o r a g e , 2 3 9 - 2 4 3
d i o d e , c a p a c i t o r s t o r a g e , 2 5 1 - 2 5 3
d y n a m i c d e l a y l i n e s t o r a g e , 2 4 3 - 2 5 1
d y n a m i c m a g n e t i c s t o r a g e , 1 9 9 - 2 1 6
f e r r o e l e c t r i c s t o r a g e , 2 5 3 - 2 5 6
s t a t i c m a g n e t i c s t o r a g e , 2 1 6 - 2 3 6
s u p e r c o n d u c t i v e s t o r a g e , 2 3 6 - 2 3 8
t u n n e l - d i o d e s t o r a g e , 2 3 8 - 2 3 9

v o l a t i l i t y , 195
S t o r e (see S t o r a g e s y s t e m s)
S t o r e , m a i n (see a l s o S t o r a g e s y s t e m s)

c o n t r o l o f s e l e c t i o n c i r c u i t s , 3 8 7 - 3 8 8
g e n e r a l r e m a r k s , 3 7 6 - 3 7 7

S u b s t i t u t i o n c h e c k , 5 1 2
S u b t r a c t i o n , 3 0 8 - 3 1 5

b y use o f c o m p l e m e n t s (see C o m ­
p l e m e n t a r y n u m b e r s , 3 1 0 - 3 1 5)

o f b i n a r y c o d e d d e c i m a l s , 3 1 2 - 3 1 5
S u b t r a c t o r s

l o g i c a l e q u a t i o n s f o r d i f f e r e n c e a n d
b o r r o w d i g i t s , 3 0 9

t r u t h t a b l e f o r a f u l l - s u b t r a c t o r , 3 0 9
t r u t h t a b l e f o r a h a l f - s u b t r a c t o r , 3 0 9

S u m c h e c k (o f a m e m o r y) , 5 3 8
S u m m a t i o n

o f r a t e s i n a D D A (see S e r v o a d d e r s)
r e c t a n g u l a r (i n a D D A) , 4 6 5 , 4 6 7 -

4 7 0
e x a m p l e o f , 4 6 7 - 4 6 8

S u p e r c o n d u c t i v e e l e m e n t s
s t o r a g e e l e m e n t s , 2 3 6 - 2 3 8
s w i t c h i n g e l e m e n t s , 1 6 8 - 1 7 1

S u p e r c o n d u c t i v i t y
g e n e r a l d e s c r i p t i o n o f , 1 6 6 , 1 6 7

S w i t c h e s
c o m p l e m e n t a r y c u r r e n t , 1 4 8
s i m p l i f i e d c o m p l e m e n t a r y c u r r e n t , 1 5 0

S w i t c h i n g
i n a D D A p r o g r a m (b y d e c i s i o n

u n i t s) , 4 8 7 - 4 8 8
S w i t c h i n g c o n s t a n t , 2 1 7
S w i t c h i n g f u n c t i o n s

c o m p l e m e n t a r y f u n c t i o n s , g e n e r a t i o n
o f , 1 1 5 , 1 1 6

use o f i n v e r t e r s i n , 1 1 6
r e p r e s e n t a t i o n b y B o o l e a n a l g e b r a ,

4 5 - 5 0
S w i t c h i n g m a t r i x

d e c o d e r a n d e n c o d e r i n a s y n c h r o n o u s
c o n t r o l u n i t , 3 8 7

d i o d e s r e q u i r e d f o r d i f f e r e n t f o r m s o f
a t r a n s l a t i o n a l n e t w o r k , 1 7 7

f o r m a g n e t i c c o r e m e m o r y d r i v e sys ­
t e m s , 2 2 3 - 2 2 6

f o r m a g n e t i c h e a d s e l e c t i o n , 2 1 3 , 4 2 9
g e n e r a l d e s c r i p t i o n , 1 7 3 - 1 7 8
p y r a m i d a l s w i t c h i n g m a t r i x , e x a m p l e s

o f , 1 7 5 - 1 7 8
r e c t a n g u l a r s w i t c h i n g m a t r i x , e x ­

a m p l e s o f , 1 7 4 - 1 7 8
S w i t c h i n g n e t w o r k s , c o m b i n a t i o n a l

a n a d d e r as a n e x a m p l e o f a m u l t i p l e -
o u t p u t n e t w o r k , 2 8 3

d i s t r i b u t i o n a n d c o l l e c t i o n n e t w o r k s ,
1 7 8 - 1 8 0

m a n y - t o - m a n y n e t w o r k s , 1 7 8
m i s c e l l a n e o u s f o r m o f (m u l t i p l e

l e v e l) , 5 9
m o d e l o f , 5 1
s e l e c t i o n n e t w o r k f o r a s t a t i c s t o r e

g e n e r a l r e m a r k s , 1 9 5 - 1 9 7
t r a n s l a t i o n a l n e t w o r k s , 1 7 3 - 1 7 8

S w i t c h i n g n e t w o r k s , s e q u e n t i a l
a s y n c h r o n o u s o p e r a t i o n , 9 0
e q u i v a l e n t s t a t e s , d e f i n i t i o n o f , 9 1
e q u i v a l e n t s t a t e s , e l i m i n a t i o n o f , 9 1
g e n e r a l d e s c r i p t i o n o f , 8 7
g e n e r a l n a t u r e o f , 7 2
i n t e r c o n n e c t i o n o f s w i t c h i n g a n d s t o r ­

a g e e l e m e n t s g e n e r a l d e s c r i p t i o n ,
7 2

m i n i m i z a t i o n o f s t o r a g e e l e m e n t s i n ,
9 1

H u f f m a n - M e a l y m e t h o d , 9 1
m o d e l o f , 8 8
r e a s o n s f o r use o f m o r e t h a n a m i n i ­

m u m n u m b e r o f s t o r a g e e l e ­
m e n t s , 9 2

s t o r a g e e l e m e n t s i n , 6 9 - 7 2
s u p e r s t a t e s , g e n e r a l d e s c r i p t i o n o f , 8 9
s y n c h r o n o u s o p e r a t i o n , 9 0

S U B J E C T INDEX 605

Switching time
in a magnetic core, 217

Symbols for magnetic core logic circuits,
154, 159

Synchronizer
definition of, 96

Synchronous (clock) control
comparison of synchronous and asyn­

chronous control, 389-391
nature of, 382, 385-386
schematic of synchronous control for

a single address GP computer,
387

Synchronous operation of a computer
effect on control unit, 385-391
effect on microprogrammed control,

410

Tabulations
logic, wiring and usage tabulations in

a computer, 444-445
Tags, identifying

for data in a magnetic tape store, 562
Tally instruction, 396
Tally number, 397
Taylor series expansion, in trigonometric

function generation, 356-357
Temperature coefficient

of coercivity for ferrite core materials,
229

Temperature range
transfluxor memory, 231

Ternary transfer, 13
in a DDA, 464

Test programs, 523
Thin film memory

continuous plane type of supercon­
ductive film memory, 238

superconductive film storage elements,
236-238

Three address system in a GP computer,
393

Time domain storage (see Dynamic
storage), 197-198

Time sharing
example of use in a GP computer,

427 ff
of arithmetic unit in a serial DDA, 473
of storage elements, 413-415

Timing channels
in a dynamic magnetic memory, 429-

430
Timing control

paper tape punch, 556-557
Timing pattern generator

for a synchronous control unit, 386,
387

Timing signals
binary counters for generation of, 95,

96
derivation from permanent timing

tracks, 430-431
logical equations of, 435
multiple timing sources for magnetic

core gating systems, 160
purpose of, 95, 96
synchronous control of a GP com­

puter, 386
Timing tracks (in a rotating magnetic

memory), 430-431
Tracing programs, 523, 539
Track number

of an address in a dynamic store, 430
Trade-off

between precision and solution time in
a DDA, 482

Transfer checks, 537-538
Transfer loops

for magnetic gates, 155-159
Transfer of control instructions, ex­

amples of, 375
Transfluxor memory, 231, 232
Transfluxors

gating circuits, 165-166
general description, 163-165

Transients
in carrying propagation, 287

Transistor
alloy, 134
electron storage in an n-p-n transistor,

134
epitaxial, 134
hole storage in a p-n-p transistor, 129,

134
mesa, 134
micro-alloy, 134
minority carrier storage, 132, 134, 135

6 0 6 S U B J E C T INDEX

Transit time
use of local information processors to

alleviate effects of, 385
Transition temperature for a supercon­

ductor, 166
Translation, computer language, 566
Translational networks (see Switching

matrix)
TRICE computer, 503
Trigger circuits

relaxation oscillator circuits, 186, 187
single-stable-state circuits, 187
two-stable-state circuits, 187

Trigonometric function generation, 356-
358

Truncation error
description of, 544
in a DDA, 505

Truth table, 39
Tunnel diode

characteristic curve of, 239
logic circuits, 172, 173
memory, 238-239

Twistor memory, 232-234
Two-address system in a GP computer,

393
Typewriter, electric

as an on-line data entry device, 400
Typotron, 569-570

University of Illinois Digital Computer
Laboratory

asynchronous computer design, 125-
127

University of Manchester computer
organization of serial-parallel multi­

plier, 324-325

Variable increment computers, 465
Verification of input data, means of, 400
Volatility (of a storage medium), 195

Williams storage system (cathode-ray
tube storage), 239-243

Wiring tabulations
uses of, 445

Word format in a computer
criteria affecting, 377-378

Word organized memory, 228-229
apertured ferrite plate, 230
magnetic core, 228-229
tunnel diode memory, 239
twistor memory, 233

Xerox printer, 570

Ζ line
in a DDA, 475

Zero access time
in a DDA, 475

Zero rate
generation in a DDA with binary

transfer, 464-465
Zero, representations of in comple­

mentary number systems, 312

