
Digital Design
--- -------'

FOURTH EDITION

M . Morris Mana
Emeritus Professor of Computer Engineering

California State University, Los Angeles

Michael D. Ciletti
Deportment of E1ectricol and Computer Engineering

University of Colorado at Colorado Springs

•Uppe r Saddle River, NJ07458

Contents

Preface

Digital Systems and Binary Numbers

1.1 Digital Systems
1.2 Binary Numbers
1.3 Number-Base Conversions
1.4 Oct al and Hexadecim al Num bers
1.5 Complements
1.6 Signed Binary Numbers
1.7 Binary Codes
1.8 Binary Storage and Registers
, .9 Binary Logic

2 Boolean Algebra and logic Gates

2.1 Introdu ction
2.2 BasicDefinit ions
2.3 Axiomatic Definit ion of Boolean Algebra
2.4 Basic Theorems and Prop erties

of Boolean Algebra
2.5 Boolean Functions
2.6 Canonical and Standard Forms
2.7 Other logic Operations
2.8 Digital Logic Gates
2.9 Integrated Circuits

ix

,
3
5
8
9

14
11
25
28

36

36
36
38

41
44
48
55
57
63

iii

lv Contents

3 Gate -Level Minimization 70

3.1 totrcducuco 70
3.2 The Map Method 70
3.3 Pou r-Variable Map 76
M Five-Variable Map 81
3.5 Product-of-Sums Simplification 83
3.6 Don't-Care Conditions 86
3.7 NANn and NOR Implementation 89
3.B Oth er rwo-teveumptementeticns 96
3.9 Exclusive-ORFunction 10'
3.10 Hardware Description Language 106

4 Combinational logic 122

4.1 Introduction 122
4.2 Combinational Circuits '22
4.3 Analysis Procedure ' 23
4.4 Design Procedure 126
4.5 BinaryAdder-Subtractor 130
4.6 Decimal Adder 139
4.7 Binary Multiplier 142
4.8 Magnitude Comparator ' 44
4.9 Decoders ' 46
4.10 Encoders '50
4.11 Multiplexers 152
4.12 HDl Modelsof Combinational Circuits 159

5 Synchronous Sequential Log ic 182

5.1 Introduction 182
5.2 Sequential Circuits 182
5.3 Storage Elements: latches 184
5.4 Storage Elements: Flip-Flops '88
5.5 Analysisof Clocked SequentialCircuits '95
5.6 Synthesizable HDLModelsof Sequential

Circuits 207
5.7 State Reduction andAssignment 221
5.B Design Procedure 225

6 Registers and Counters 242

6.1 Registers 242
6.2 Shift Registers 245

Contents v

6.3 Ripple Counters 253
6.4 SynchronousCounters 258
6.5 Other Counters 265
6.6 HDL for Registersand Counters 269

J Memory and Programmable logic 284

7.1 Introduction 284
7.2 Random-AccessMemory 285
7.3 Memory Decoding 291
7.4 Error Detection and Correction 296
7.5 Read-Only Memory 299
7.6 Programmable Logic Array 305
7.7 Programmable Array Logic 309
7.8 Sequential Programmable Devices 311

8 Design at th e Register
Transfer Level 334

8.1 Introduction 334
8.2 Register Transfer level (RTl) Notation 334
8.3 Reqister Transfer Level in HDl 336
8.4 Algorithmic Stale Machines(ASMs) 345
8.5 Design Example 352
8.6 HDl Description of Desiqn Example 361
8.7 Sequential Binary Multiplier 371
8.8 Control Logic 376
8.9 HDl Description of Binary Multiplier 382
8.10 Design with Multiplexers 390
B.l l Race-Free Design 40 1
B.12 latch-FreeDesign 403
8.13 Other l anguage Features 404

9 Asyn chronous Sequential logic 415

9.1 Introduction 415
9.2 Analysis Procedure 4 17
9.3 Circu itswith la tches 425
9.4 Design Procedure 433
9.5 Reduction of Stateand FlowTables 439
9.6 Race-Free StateAssignment 446
9.7 Hazards 452
9.8 Design Example 457

vi Contents

10 Digital Integrated Circuits 471

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10

Introduction
Special Characteri stics
Bipolar -Transistor Characteristics
RTl and DTL Circuits
Transistor-Transistor l ogic
Emitter-Coupled Logic
Metal-Ox ide Semiconductor
Com plementary MOS
CMOS Transmission Gate Circuits
Switch -Level Model ing with HDL

471
413
477
48 1
484
493
4'5
4' 8
50 1
505

11 Laboratory Experiments
with Standard ICs and FPGAs SI1

11.1
11.2
11.3
11.4

11.5
11.6
11.7
11.8
11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17

11.18
11.19

11.20

Introduction to Experiments
Experiment 1: Binary and Decimal Numbers
Experiment 2: Dig ital logic Gates
Experiment 3: Simplification of Boolean
Functions
Experimen t 4: Combinational Circuits
Experiment 5: Code Converters
Experiment 6: Design with Multiplexers
Experiment 7: Adders and Subt ractors
Experimen t B: Flip-Flops
Experiment 9: Sequential Circuits
Experiment 10: Counters
Experiment 11: Shift Registers
Experimen t 12: Serial Addition
Experiment 13: Memory Unit
Experiment 14: Lamp Handball
Experiment 15: Clock- Pulse Generator
Experiment 16: Parallel Adder and
Accumulator
Experiment 17: Binary Multiplier
Experiment 1B: Asynchronous Sequential
Circuits
Verilog HDl Simulation Experiments
and Rapid Prototyping with FPGAs

511
5 16
5"

520
522
524
526
527
530
532
534
535
538
53'
541
545

547
54'

553

553

12 Standard Graphic Symbols SS9

12.1
12.2
12.3

Rectangu lar-Shape Symbols
Qualifying Symbols
Dependency Notation

55'
562
564

12.4
12 .5
12.6
12.7
12.8

Symbols for Com bina tional Elements
Symbols lor Flip-Flops
Symbols for Registers
Symbols for Counters
Symbol for RAM

Contents vii

566
56B
570
573
575

Answers to Se l e c t e d Problems

Index

577

597

Preface

Digi tal electro nic ci rcuits An: the e ngines o f cell phones. M PEG players, d igital cameras. cu m­
pe te rs. data serv e rs. personal d ig ital devices. CPS displ ays. and many oth er con su mer prod .
UCIS thai proces s and use in form atio n in a d igital format. Th is boo k presents a basic treauue ut
o f digi tal circuits and the fund am en tal co nce pts used in the ir de sign . It is wilable for use as a
lextho ok in an introd uctory co urse in an electrical en gineering. co mputer engi nee ring. or corn­
purer scie nce curriculum .

Eac h significa nt adva nce in ind ustry practice ullimatcl y wor ks its way into the e nginee ring
curricu lum. Si nce the mid-1 9HO's. the use of computer -based des ign rool-, has transformed the
el ect ron ics ind ustry wor ldw ide . Ap plica tion speci fic integrated circ uits (AS IC,,) are designed
tod ay hy using a hard ware de scri ption langua ge nI OL). suc h as Verilog \lr V UOL, to write
a be ha viora l model o f the circuit's functio nalit y. and then ..ynthes il.ing thllt de scrip tio n into
a hard war e reulizution in a part icu lar tec hno logy. e.g.. Ct\.10S integrated ci rcuits o r field ­
progra mmable ga te arrJ.ys (FPGA...). No longer a novehy, these design too ls arc nnw readily
ava ilable to universities. a nd are mig rat ing in a strategic way from grad uate level curric u la
into unde rgrad uate co urses. It is clear that HD Ls have an e~semial. signific ant ro le in educat ­
ing ou r future enginee rs. Learn ing to design with an HO L is as impo n antm today's stude nts.
we think. as osc illosco pes. bread board s. and logic anal yzers were to pre vio us generations of
engineers . so this ed ition o f the te xt adds more weight to the use o f hardware description lan­
guag e.. in designing digita l ci rcuits .

We note that introd uci ng HDts in a firs t course in designi ng digi tal ci rcuit.. is nut intend­
ed to replace funda me ntal unders tand ing of the building bloc kv o f such ci rcuit"> or to eliminate
a di <;cussion o f manual methods of de sign . It is still essential for a s tude nt to under stand how
lumJlI"u rt' w(Jrh . Thus. we retain a thoro ugh tre utmcnr o f com bina tio nal and seque ntiallogic
devices. Manua l de..ign prac tices arc pre sented . and the ir results are compared with those ob­
l:tineJ with a HDL·hased paradigm . wb.u we are pre~cn t ing . ho we ver. is a shift in emphas is

x Preface

on how hardware iI designed, a shift that. we think. better prepares a student for a career in
tcday's industry here HOL-ba~ed design practices are prevalent.

FLE X I BILIT Y

The sequence of topics in the text can accommoda te courses th:!t adhere to traditional. man u­
al-based. treatments of d igital design. COUf1;e5 that trea t design using an HDL, and courses tha t
arc in transition between or blend the two approaches. Because modem synthes is tools auto­
matica lly perform logic minlmization. Karnaugh maps and related topics in op timization can
be presented at the beginning of utrcatme m of digi tal design. or they can be presented after cir­
cuits and their appl ica tions are examined. designed . and simulated with an HDL. T he tex t in­
cludes both man ual and Hljl.chascd design examples. Our end-of-c hapte r problems further
fac ilitate this flexibilityby crow-referencing problemsthat addres.sa trad itional manual desig n
task with a companion proble m that uses an HDL to accomplish the task. Additionally. we link
manual and HOL ·based approaches by presenting anno tated res ults of simulations in the text .
in answers to selected pro blems at the end of the text . and in the sol utions manual.

WHAT 'S NEW ?

Th e previous edition of this text recognized the importa nce of ha rdware descr iption languages
in the design of digital circ uits. and incorporated new material and examples introducing stu­
dents to the Verilog language. as defined by IEEE Stan dard IJM -1995. This revision updates
and expands that treatment by:

• revis ing Hlj k-based examples to presentthe ANS I-C like syntax that was adop ted in the
standards IEEE I3M-2oo1 and IEEE 13M -2oo5

• ens uring that ali i rDL exam ples conform to industry-acceptedpractices for mod ellin g dig­
ital circu its

• providing a sys tematic met hodology for designing a darapath controller

• prese nting selec ted exercises and solu tions to end-of-chapter pro blems in Verilog 1995
and Veri log 200112005 syntax

• introd ucing an importa nt des ign too l - the algorithmic slate machi ne and dara path
(ASMDI chan

• revising the end-of-chap ter problems and ex panding the set o f prob lems by includ ing
over 75 addi tiona l prob lems

• prov iding students with full) ' developed answers to selec ted problems. including sim u­
lauon resu lts

• prov iding stude nts with a CO- RO M containing simu lato r-ready HDL solutions of an­
swe rs to selecte d problems

• expanding the treatme nt o f prog rammable logic devices to include FPG As

Prefa ce xl

re viving the solunonc manual and web- based ma ler ial\ and ensuring tha t solutions of
HOL· ba<.ed exercoev conform to ind ustry pracuccs fo r modelling with an HOI.

• di..cu\sing and de monstrating the import ance of te"l plans for \''--rifying HDI. models of

circuus
• providing instru ctors with veri fied . simulalor -ready source cllde and tes t bcecbe, I'll.. all

end-of chapter pruhlems

maling al l fil!urt' \ . lab ks. and HDL examples a\'ailable (0 instructorv f(1f do\\.nltlddlOg
in PDF format from the publ i~her

incl ud ing \\.ilh the book a CO- RD ""! with tUltll"iab and simulalon. for the IEE E- I995 and
IF.EE· .:!OOI Sland,lI'lh of she Ve:riIO{! language

In addi tion to the abo ve c:: nhancemenh. lhe text incorporate- more: gr4ph ical material to be l­
ter serve kame.... \\.be are orientedtowar d a graphica l med ium . Annoeated graphical recuhs and
e xplananonv of simulation' are prescnrcd m he lp uuoc m.. under-aand digital circ uits and to Ia ­
cilucte classroom dtscu....inn" of them. Kam augh map' are presen ted with addi tional gra phlcv.

DESIGN METHODOLOGY

Th i" edition of lhe text extends lhe previous edition-s trcarr ncnr of sy nchm mut-, finite ";tle r na­
chinc'>by presenting a , ys lemi\ll\; mcthodology 1" '1' J e, igning a \ lille mach ine 10 cont rot the data­
path of a d igi tal sys tem. Moreov er, the fram ework in which lh i\ mmcrinl i, pre vented treats the
reali stic situation in whic h Ihe co ntroller use-, ,>igna ls fro m lhe datapalh. i.e .. the syste m has feed­
back. Th e met hodology i' app licab k to man ual and HDL-ba"Cd approaches to dc,>i l!n.

HDl -BA SED APPROACH

II i.. not sufflciem for an intrcdecticn 10HDL~ 10 dwell on lunguage synla.\ . We pre-em only
lho-.c elements of the \'erilo~ lan l!uill!e Ihal arc matched 10 the jeve l and scope uf !hi\> tex r.
Al so . co rrect "yn la\ doe .. nol.l!uarantee thaI a model mecb a tu nctional vpecification or that
il ca n be \y nthesil-ed into php ical ha rd...are . We introduce ,>luJenl'>10 a di...:ipliJK'd u-e of
indu\try.ba-.ed pra cti ces for \\.ri linj! model" to ens ure that a behavioral de'>t.-ripl ion can be syn­
Ike , ilCd in to phy'"ica l har dwarc . and Ihill the behavior 01 thc 'y nthesized circuit will march
that of the bcha' ioral dcscnplion . Failu re In follow Ihi" disc ipline ca n lead 10 sonware race con ­
dition s in the HOI. modele o f -uch mach ines. race cnml ition, in the tevtbe nch used 10 \erify'
them . and a mism atch between Ihe re,ull.. of sim ulat ing. a be havioral mod el and it, syn the ­
sized physical coc nterpcrt. S imilarly. f;lilurc III abide by' inductry pract ice.. may lead 10 dc\i gn,
thaI ..imulate co rrec tly. tlul \\.hil"h have hard ware Iarchev (hal are: introduced into the Je, i~n

acc ide ntally 3'> a consequence of the mod ellin g style used by the lIc ,>il!ner. Th e indu stry-based
rnethed olcgy we prc cemIcads tn race-free und latc h-free de~igns . If j" ir nport unr rha r students
learn and foll ow ind ust ry practices in u"in!! HOL mod els . independen t of whether a student'
curric ulum has access to sy'nlhe,is tool s.

xii Pr e fa ce

V ER IFICATION

In induSlJ)'. significant effort is expended 10 verity that the functionalit)' of a circuir is COlTeI:1 . Yet
nut much attentionis given10veliflCalion in inU1XluetoryleXB on digital design. where the focus
is on design itself. and te~ling is perhaps viewed as a secondary undertaking. Our experience is
thai this view can lead to premature declarations that "'the circuit worXs beauufully," Likewise.
industry gains repeated returns on its investment in an HDL model by ensuring thaI it is readable.
poruble and reusable. We demonstrate naming practices and the use ofparameters. We also peo­
vide test benches for all of the solutions and exercises 10 (I) verify the functionality of the cir­
cuit. (2) underscore the importanceof thorough testing. and (3) mcodocestudents to important
concepts. suc h a, self-checking Ie \(benches. Ad vocatin g and illustrating the de\'c1opment of a
r~sl ploll to guide the development of a test benc h. we meodoce them in the text and expand
the m in the soleuons manua l and in die answers to selected problems at the end of the text

HOl CONTE NT

Th is ed itio n of the text updates lind e xpan ds its tre at me nt of the Veri log Hardware Descrip­
lion La nguage (~lDL) and ex ploi ts key e nha nce ments available in IEEE Standard s 1364-200 I
and 1364-2005. We have e nsured that all ex amp les in the text and all an swers in the solu tion
ma nual confor m 10 accepted industry practices for mod elin g d igit al hard ware . As in the pre­
vio us ed ition. HDL ma terial is inserted in separate sect ions so it ca n he covered or skipped
as desi red. doe s not di min ish treatment of man ua l-based design. and does not dic tate the J.('­

que nc e of presentat ion. The treatme nt is a t a leve l suitable fo r beg inning students that are
learni ng d igital circui ts and a hardare descript ion language ar the same time. The text pre­
pares st ude nts to wor-k on significant indepe ndent de~ign projects and to suceed in a later
course in computer architecture.

Dig ita l circuits are introduced in Chaplcr.. I through 3 with an introduction 10 Verilog
HDL in Section 3.10.

Funher di"oCUssion of modeling wit h HD Ls occurs in Section ..l.12 following the ~Iud)

of combtnauooat circuits.

• Sequential circuits are covered in Chapters 5 and 6 with coere ...ponding HDL examples
in Sections 5.6 and 6.6 .

• The HDL description of memory is presented in Section 7.2.
• The RTL sy mbols use d in Verilog are irurcduced in Section...8 .3.

• Examples of RTL and structural models in vernog are provided in Sections 8.6 and 8.9 .
Cha pte r 8 also presents a new, com pre hensive tre atment of HDL· bascd de sign of a data­
path co ntroller.

Sect io n 10.10 covers switch- leve l modeling corres pon ding to CMOS circuits.

Sec tio n 11.20 sup ple me nts the ha rdware e xpe riments of Chapter I I with HDL experi­
ments. Now the circuits des ig ned in the la bo ratory can be chec ked by mod eli ng them in
Verilog and simulating their behavior. Then they canbe synthcvized and implemented with
an FPGA on a prctoty ping board.

Pre face ",iii

HDL SIMULATORS

The CD-R01\1 in the bad. o f the book contains the Verilog HDL source cod e file s for the ex ­
amples in the book and two vimu taror s provided by Syna ptiCAD . The first simulator i\
veril.ogger Pro.a traditional Verilog simulator that can he used to simulate the Hnt. exempie-,
in the hook and to veri fy the solutions of HDL problems. Th is ..imula tor accepts the synta x o f
the IEEE - I995 Standard and will he usefu l 10 those who have legacy models. As an interac­
tive simu lator. Verilogger Extreme. acce pts the s) nla., o fIEEE -:!OOI as well as lEEE· 1995. al­
lowing the designer to simulate and analyze design ideas before a co mplete simulation model
or schem atic is available. Th is technology is part icularly useful for stude nts. because they can
quickly enter Boo lean and D nip-flo p or larch input equ ations to check equivale ncy or 10 ClI ­

perirnenr with flip -flops and latch designs.

INSTRUCTOR RESOURC ES

Instructo rs can download the following classroom-ready reso urces from the pub lisher
(www.prenhall.co mlmano):

• Sour ce code and tel,l benches for all Veri log HDL examp les in the lest

• All figur es and table s in the te xt

• Sour ce code for all HD t. mod els in the solutions manual

A solution manual in typed hardcopy form at with gra phics. suirable for clue-room presen­
tat ion. will atso be provided instructors.

CHAPTER SUMMARY

The fo llowing is a brief summary of the topics that are covered in each chapter.
C ha pter I presents the variou s binary sys tems suitable for repre-entin g ie forrmuion in dig­

ital sys tems. The binary num ber sys tem is explained and binary code s are illustra ted , Exa mples
arc gi ven for addition and suhrrucno n of signed binary num bers and decima l numbe rs in BCD

C ha pter 2 introd uces the hu ~ ic postulates of Boolean algehrJ. and show, the correlation be­
tween Boolean expr essions and their corr es ponding logic diagrams. All possible logic opcrJ­
tlon s fo r two variables are inves tigated and from that. the mos t usefullogic gales used in thc
design of d igital syste ms are determined. The charac teristics o f integ rated e i r~'u it gates arc
mentioned in this chapter bUI a more detailed analysis of there the electronic circ uits of the gates
ilt don e in Chapter 10.

C ha pter J cove rs the map method for simplifyi ng Boolean exp ress ions , The map met hod
is also used to simplify digital c ircuits construc ted with AND ·OR , NA~D. or NOR gates. All
other powiblc two -lev el gate circuits are considere d and their method of implementation is
explained . verilo g HDL is introduced toget her with simple gate-level modeling e lluillples.

C h:tpte r ~ \lutline, the form al procedu res for the anal ysis and design o f combinational cir­
cuits. Som e basic components u,cd in the design o f digital 'y,tems. suc h as adders and code

xlv Preface

conveners. are introduced as design examples. Frequently used dig ital logic funcuon, such as
para llel adders and subtractors . decoders. encoders. and multiple xers are explained . and their
use in the design of combinational circui ts is illustrated. HDL examples are given in the gate­
level. dataflow, and behav ioral modeling 10show the alternative ways avai lable for describing
combinational circuits in Verilog BDL. The procedure for writing a simple test bench to pro­
vide stimulus to an HDL design is presented.

Chapter 5 outlines the formal procedures for the analy sis and de sign of clocked (synchro­
nous) sequential circuits. The gate structure of several types of flip-flop s is presented rogcrh­
er with a discussion on the difference between level and edge triggering. Specific examples are
used to show the derivation of the state table and state d iagram when analyzing a sequential
circ uit. A number of design examples are presented with emphasis on sequential circuits that
use D.type flip-flops. Behavioral modeling in Verilog HDL for sequential circui ts is e xplained.
HDL Examples are given to illustrate Mealy and Moore models of sequential circ uits.

Chapter 6 deals with various sequential circuits components such as registers, shift registers,
and counters. These d igital components are the basic building blocks from which more complex
digital systems arc constructed . HDL descriptions of shift registers and counter arc presented .

C hapter 7 deals with random access memory (RAM) and programmable logic devices.
Memory decoding and error correction schemes are discussed . Com binat ional and sequen tial
programmable devices are presented such as ROMs. PLAs. PALs. CPLDs. and FPGAs.

Chap ter 8 deal s with the register tran sfer level (RTL) representation of digital systems .
The algorithmic state machine (AS M) chan is introduced. A numbe r of examples demo nstrate
the use of the ASM chan. ASMD chan, RTL represe ntation, and HDL description in the de­
sign of digital systems. The desi gn of a finite stale machine to control a datapath is presented
in detail, inclUding the realistic situation in wh ich status signals from the datapath are used by
the slate machine that controls it. This chapter is the most important chapter in the book as it
provides the studen t with a systematic approach to more advanced design projects.

Chapter 'J present s formal procedures for the analysis and design of asynchron ous sc­
q uential circuits. Methods are outl ined to show how an asynchronous sequential ci rcuit can be
imp lemented as a combinational circuit with feedback. An alternate implemen tation is also de­
scribed that uses SR latches as the storage elements in asynchron ous sequential circu its.

Chapte r 10 presents the most common integrated circuit digital logic families. The electron ic
circuits of the common gate in each family arc analyzed using electri cal circuit theo ry. A basic
knowledge of electronic circuits is nece ssary to fully unders tand the material in this chapter.
Examples of Verilog switch-level description s demonstrate the abi lity to simulate circu its con­
structed with ~IOS and CMOS transistors.

Chapte r II outlin es experiments thai can be performed in the laboratory with hardware
that is readily available commercially. The operation of the integrated circuits used in the e x­
pcrimcms is explained by referri ng to diagram s of similar co mponents introduced in prev ious
chapters. Each experiment is presente d Informally and the student is expected to produce the
c ircuit diagram and formulate a procedure for chec king the ope ration of the circui t in the lab­
oratory, The [ast section supplements the experiments with co rrespo nding HOI. expcrirncms.
Instead of. or in addition 10, the hardware construction, the student can use the Verilog HOL
software provided on the CD-RO~1 to simulate and verify the design.

Chapte r 12 presen ts the standard graphic symbo ls for logic funct ions recommended b)'
an ANS I/ IEEE Sta ndard . T hese graphic symbols ha ve bee n de veloped for SSI and MSI

Preface xv

com ponent s so that the user can recogniz e each function from the unique graphic symbo l
assig ned. The chapter ,hllw~ the stan dard graphic s)'lIlbols of the integrated circuits used in
the laboratory exper iments. Th e various digital com ponents that arc repr esented through ­
out the book arc similar to commercia l integrated ci rcui.... However. the text doe s not men­
tio n speci fic in tegrated circuit, except in Chapters I I and 12. Doin g the <, ugg l"sted
expe rime ms in Chapter II while studying the theory prcsemcd in the te xt will en hance the
practica l appl ication of digi tal devig n.

LAB EXPERIMENTS

The book rna)' be usee in a stand-a tone course or with a companion lab based on the lab ex­
periment s included with the text. The Iah experiments can be used in a stand-a lone manner IIx).

and can be accomplished by a traditional approac h. with a breadboa rd and TTL circuits, or with
an HDU synthesis approach u ~ i ng FPGAs. Today. software fur :.ynthesil-ing an IIDL model and
implementin g a circuit with an FPGA Is available at no CIN from vendors of fl'G As. allowi ng
students to conduct a significant amo unt of work in their persona l envi ronment before using
prototyping boards and other resources in a lab. Cirt:uit ttoard , for rapidly pWlIJtyping circuits
with FPGA, arc available ill nomina! CO<.l. and typically include puvh huuons, vwitchcs.•md
seven-segment dicplays. LCD~ . keypads and other UO devices. With these reso urces. students
can work prescribed lab exercises or their ow n projects and get results immediately ,

The operation of the integrated ci rcuit, used in the experi ment" ivexplained tty referring to
diagrams of similar components introd uced in prev ious chapters. Each expe riment is present­
ed informally and the student is expected to produce the ci rcuit diagram and formu late a pro­
cedure for verifying the operation of the circu it in the laboratory. The last section vupplemcnt-,

the experiments with correspon ding HOL experi ments. lnvtcud of, or in addition to. the hard­
ware concrrucuon. thc student can use the Verilog HDL software provided on the CD-RO\ lto
simulate and check the de sign . Synthesis tools can then be used tu implement the ci rcuit in an
FPGA on a prototyping board.

Our thanks go to the edito rialteam at Prentice Hall for com mitting to this timely revis ion
of the text. Finall y. we arc grateful 10 our wives. Sandra and Jcrilynn. for encouraging our pur­
suit of thi" project.

M . l\1 () ~ Rt S \1A~{)

Emeritus Proff'J.wr ofComputer Engineering
Clilifomil/ SllII t' University. LO.I tl ll ge-It'.{

M ICHAEL D . C1U ,TTI

Drpartmrnt of Elrctricai and Compll fer Hnginerring
University ofCoto raao at ColortuJ" Spri ll}:I

Chapter 1

Digital Systems and Binary Numbers

1.1 DIGITAL SYSTEMS

Digital systems have such a prominen t role in everyday life that we refer to the present tech­
nological period as the digital (IKe. Digital S)' SICm S are used in communication. business trans­
actions. traffic control. "pace guidance. medical treatment. weather mon itoring, the Internet, and
many other commercial. industrial. and scientificen terprises. We have digitaltelephones. dig­
iral television. digital versatile discs. digital cameras. handheld devices. and. of course. digi­
tal computers. The most striking property of the digital computer is ils generality. It can follow
a sequence of instructions. ca lled a program. that operates on give n data. The user can specify
and change the program or the data according to the specific need. Because of this flexibifiry,
general-purpose digi tal computers ca n perform a variety of Information-processing tasks that
ranBe ove r a wide spectrum o r applications.

One characteristic of digital sys tems is their ability to represent and manipulate discrete el­
e ments of informa tion . Any set that is restricted In a finite numbe r of clements co ntains dis­
cre te information. Exam ples of d iscrete sets are the 10 decimal dig its. the 26 letters of the
alphabe t the 52 playing cards. and the 6-t squares of a che ssboard . Early digital computers
were used for numeric computatio ns. In this case. the discrete elements were the d igits. From
this application. the term digita! co mputer e merged. Discrete clements of information are rep­
resented in a digital system by physical quantities ca lled sig nals. Elect rica l sig nals such as
voltages and currents arc the most co mmon . Electronicdevices called transistorspredominate
in the ci rcuitry that implements these signals. The signa ls in most present-day electronic d ig­
ital systems use j ust two discrete values and are the refore said to be biliary. A binary d igit.
called a bit. has two values: 0 and I. Discrete clements of infonn ation are represented with

groups of bitscalled binary codes. Forexamp le. the deci mal dig its 0 through 9 are represemed

in ' disit, l ' r'temwith a code of four bits (e.g.. the number7 is represented by0111).

2 Chapter 1 Digital Systemsand Binary Numbers

Through various techniques, groups of bits can be made to represent discrete symbols, which
are then used to develop the system in a digita l fermat. Thus, a digital system is a system that
manipulates discrete clements of information represented internally in binary fonn .

Discrete quant ities of information either emerge from the nature of the data being processed
or may bequantized from a continuous process. On the one hand, a payroll schedule is an in­
herently discrete process that contains employee names, soc ial sec urity numbers, weekly
salaries, income taxes, and so on. An employee's paycheck is processed by means of discrete
data values such as letters of the alphabet (names), digits (salary), and special symbols (such
as $). On the other hand. a research scientist may observe a continuous process, but record
only specific quantities in tabular fonn . The scientist is thus quantizing continuous data. mak­
ing each number in his or her table a discrete quantity. In many cases, the quantization of a
process can be performed automatically by an ana log-to-dig ital convene r.

The general-purpose digital computer is the best-known example of a digital system. The
major pans of a computer arc a memory unit, a central processing unit, and input-output units.
The memory unit stores programs as well as input. output, and intermediate data. The central
processing unit performs arithmetic and other data-processing operations as specified by the
program. The program and data prepared by a user are transferred into memory by means of
an input device such as a keyboard. An output device, such as a printer, receives the results of
the computations, and the printed results are presented to the user. A digital computer can ac­
commodate many input and output devices. One very useful device is a com munication unit
that provides interaction with other users through the Internet. A digital computer is a power­
lui instrument that can perform not only arithmetic computations. but also logical operations.
In addition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reaso ns that commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmab le. By changing the program in
a programmable device, the same underlying hardware can be used for many different appli­
cations. Dramatic cost reductions in digital devices have come about because of advances in
digital integrated circuit technology. As [he number of transistors that can be put on a piece of
silicon increases to produce complex. functions, the cost per unit decreases and digi tal devices
can be bought at an increasingly reduced price. Equipment built with digital imegruted cir­
cuits can perform at a speed of hundreds of millions of operat ions per second. Digital systems
can be made to operate with extreme reliability by using error-correcting codes . An example
of this strategy is the digital versatile disk (DVD), in which digital information representing
video, audio, and other data is recorded without the loss of a single item. Digital information
on a DVD is recorded in such a way that, by examining the code in each digital sample before
it is played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of
each digital module , it is necessary to have a basic knowledge of digital circuits and their logi­
cal function. The first seven chapters of this book present the basie tools of digital design, such
as logic gate structures, combinational and sequential circuits, and programmable logic devices .
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and to deal
with asynchronous sequential circuits and the various integrated digital logic families. Chapters
I I and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.

Section 1.2 Binary Numbers 3

A major trend in digital design method ology is the use of a hardware description language
(HDL) 10 describe and simulate the func tionali ty of a digita l ci rcuit. An HDL resembles a pro­
gramming language and is suitahle for describing digita l circuits in textual forrn. It is used to
simulate a digital sys tem 10 verify its operation before hardware is built in. It is also used in
co nj unction with logic synthes is tools to automate the design process. Because it is important
that stude nts become familiar with an HDL·based design methodology, HDL descrip tions of
digital c ircuits arc presented throughout the book. While these examples help Illustrate the fea­
turex IIf an HDL. they also de monstrate the best practices used by indu stry Iu exploit HDLs.
Ignorance of these practices will lend 10 cut e. but worthless. HDL models that may simulate a
phenomenon. but that cannot he synthes ized by design tools. or to model s tha t waste silicon
area or synthes ize to hardware that cannot ope rate correctly.

As previously stated. digital syste ms manipulate discrete quantities of information that a rc
represented in binary form. Ope rand s used for calculations may be ex presse d in the binary
number syste m. Other discrete clements. including the deci mal digits. are represented in binary
cedes. Digital circuits. a lso refe rred 10 as logic circuits. process data by means of binary logic
elem ents (logic gates) using binary signals. Quantit ies are stored in binary (two-valued) sror­
age ele ments (flip- flops). The purpo se of this chapter is to introduce the various binary con­
cepts cs a frame of reference for further study in the succeeding chapte rs.

1. 2 BINAR Y NUMBERS

A decimal number such as 7.392 rep resents a quant ity equal to 7 thousand s. plus 3 hundreds.
plus 9 lens. plus 2 units. Th e thousa nds. hundreds. etc .. are power!'> of 10 implied by the posi­
tion of the coefficie nts in the number. To be more exac t. 7.392 is a shorthand notation for what
should be written as

7 X I O ~ + -' X 102 + t} X 10' + 2 X 10°

However. the convention is to write only the coe fficients and. fro m their position. ded uce the
necessary powers of 10. In general. a numbe r with a decimal point is represented by a series
of coe fficients :

The cce fflcie ms e j arc any o f the 10 digits (0. I. 2• 9). and the subscript valucj gives the
place value and. hence. the power o f 10 by which the coefficientmust he multipl ied. Thu s. the
preceding deci mal numb er can he exp resse d as

IO-'a ~ + lO~a... + 10\)3 + I02al + IOt a] + IOll
tl() + 10- 1"_1 + 1O-2u _2 + 10- 3° _3

The decim al number system is said 10he of base, or radix. 10 because it uses 10 digits and
the coe ffic ients are mult iplied by pow ers of 10. The binary sys tem is a di fferen t number S)' S­

tern. The coe fficie nts of the binary number syste m have on ly two [Kls ..ible values: 0 and I.
Each coefficient u) is multipl ied by 2). and the rcsults are added to obtain the decim al equiv­
alent of the number. The radix point Ie.g .. the decimal point when 10 is the radix) distinguishes
posit ive powers of 10 from negative powers of 10. For example. the decimal equivalent of the

4 Chapter 1 Digital Syste ms and Binary Numb ers

binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients by pow­
ers of 2:

I x 24 + I X 23 + 0 X 22 + I X 21 + 0 x 2° + I X 2- \ + I X 2- 2 = 26.75

In genera l. a num ber expressed in a base-r system has coefficients multiplied by powers of r:.

a
lt

' , " + a "_I ,,,,-1 + .. . + {l2 ,,2 + ai " + ao + a_ I , , - 1

- 2 + + -.+ a _2 " . .. a _m' T

The coe ffic ients a } range in value from 0 10 T - I . To distinguish between numbers of d iffer­
ent bases, we enclose the coe fficients in parentheses and write a subscript equal to the base used
(exce pt sometimes for decimal numbers. where the co ntent makes it obvious that the base is
decim al). An example of a base-S number is

(4021.2)5 = 4 X 53 + 0 X 52 + 2 X 51 + I x 5° + 2 X 5-1 = (5 11.4) 10

The coefficient values for base 5 can be only O. 1, 2, 3. and 4. Th e octal number system is a
base-S system that has eight digits: 0, 1, 2. 3, 4, 5, 6. 7. An exa mple of an oc tal num ber is
127.4. To determine its equivalent decimal value. we expand the num ber in apo wer series with
a base of 8:

(127.4)8:::: I X 82 + 2 X 81 + 7 X gO + 4 X 8- 1 = (87.5) 10

Note that the digits 8 and 9 cannot appear in an octal num ber.
It is customary to borrow the needed r digits for the coe fficients from the decimal system

when the base of the number is less than 10. The letters o f the a lphabet are used to supplemem
the 10 decimal d igi ts when the base of the num ber is greater than 10. For example, in the
hexadecimal (base - t o) num ber sys tem, the first 10 digits are borrowed from the decimal sys­
tem. The letters A, B. C, D, E, and F are used for the digits 10. I I, 12, 13, 14, and 15. rcspcc ­
live ly. An example of a hexadecimal num ber is

(B65F) ltl = 11 X 163 + 6 X 162 + 5 X 161 + 15 X 16° = (46.687) 10

As noted before . the digits in a binary number are called bits. When a bit is equal to O. it does
nOI contribute 10 the sum during the conversion. Therefore, the co nversion from binary to dec­
imal can be obtained by add ing o nly the numbers with powers of two corresponding to the bits
thai are equal to I. For example,

(1lOJO lh = 32 + 16 + 4 + I = (53) 10

There are four l 's in the binary number. The corresponding decimal num ber is the sum of
the four powers of two. The first 24 numbers obtained from 2 to the power of n arc listed in
Table 1.1. In computer work, 210 is referred to as K (kilo), 220 as M (mega), 230as G (giga),
and 240 as T (tera). Thus. 4K =212

:= 4,096 and 16M = 224 = 16.777.216. Computer ca­
pacity is usually given in bytes. A byte is equal to eight bits and can accommod ate (i.c., repre­
scnt the code of) one keyboard character. A computer hard disk with four gigabytes of storage
has a capacity of 4G = 232 bytes (approximately 4 billion bytes).

Section 1.3 Number-Base Conversions 5

Tablet.1
Powers of Two

n Z" n Z" n Z"

0 I , 256 " 65.536
I 2 9 5 12 17 131.072
2 4 10 I .O~~ 18 26~.I~

3 8 " 2.0·111 19 52~.288

4 ie 12 4.1..196 20 1.048.576, 32 13 8.192 21 2.097.152
6 64 14 16.384 22 4. 1 94.3~

7 128 " 32.768 23 8.388.608

Ari thmeti c ope rations with numbers in base r follow the same rule s as for dec imal num­
bers. When a base other than the familiar base 10 is used. one must he careful to use only the
r-allo weble digit s. Examples of add ition. subtraction . and multiplicatio n of two binary num­
bers are as follows :

augend: 10 1101 minuend: 10 1101 multip licand : 1011
addend: + 100111 subtrahend: - 100 111 mult iplier : ~
sum: 1010100 di fference: 0001 10 1011

0000

101 1
prod uct: l lD l ll

The sum of two binary numbers is calc ulated by the same rules as in decim al. exce pt that
the digits of the sum in any significant position can be only 0 or I . Any carry obtained in a given
significant posi tion is used by the pair of digits one sig nifica nt position higher. Subtractio n is
slightly more complica ted. The rules are still the same ax in decimal. exce pt Ihal the borrow in
a given significant position adds 2 10 a minuend dig it. fA bo rrow in the decimal system add s
10 to a minuend digit.) Mult iplication is simple: The mult iplier d igits are always I or 0: there­
fore. the part ial products arc equal either to the multiplicand or to o .

1.3 NUMBER-BASE CONVERS IONS

The co nversion of a number in base r to decimal is done by expanding the number in a power
series and adding allthe terms as shown previously. We now present a ge neral proced ure for
the reverse ope ratio n of co nverting a decimal number to a number in base r. If the numbe r in­
cludes a radix po int. it is necessary to separate the number into an integer part and a fraction
part. since each part mU~ 1 be conve rted differently.The conversion of a decimal integer 10 a num­
ber in base ,. is don e by dividing the num ber and all successive quotie nts by r and accu mulat­
ing the remainders. This procedure is best illustrated by example.

6 Chapter 1 Digital Systems and Binary Numbers

Convert decimal 4 1 10 bin ary. First, 4 1 is di vided by 2 to give an integer quotien t of 20 and a
remainde r of!. Then the quot ien t is agai n divided by 2 to give a new quotien t and remainder.
The process is continued until the integer quotient becomes O. The coefficients of the desired
binary number are obtained from the remainders as fo llows :

Int eger
Quotient Remainder Coefficil'nt

4 1/2 :=: 20 + l Uo :=: 1

20/2 = 10 + 0 U I = 0

1012 :=: 5 + 0 U2 :=: 0

512 = 2 + 1
U3 :=: 1,

212 = 1 + 0 U4 :=: 0

112 :=: 0 + 1 (.1 5 :=: 1,
Therefore , the answer is (4 1) 10 = (USU4UY I 2(.1I Uoh :=: (101001h.

Th e ar ithmetic process can be manipulated more conve niently as follows:

Integer

41

20

10

5

2

I

o

Remainder

I

o
o
I

o
I 101001 = answe r

Conv ersion from decimal integers to any base-r system is similar to this exam ple. except that
divi sion is don e by r instead of 2.

•
Convert decimal 153 to oc tal. The required base ' is 8. First, 153 is divided by 8 to give an in­
teger quot ient of 19 and a rema inde r of 1. Then 19 is di vided by 8 to give an intege r quotient
of 2 and a rem ainder of 3. Fin ally, 2 is divided by 8 10 give a quotient of 0 and a rem ainder of
2. Thi s process ca n beconve nie ntly man ipulated as follow s:

153

19 I

2 3

o 2 = (H i ls

Section 1.3 Number-Base Conversions 7

The conversio n of a decimal / ra elion to binaryis accomp lished by a me thod similar 10 that
used for intege rs. However. multiplication is used instead of divi sion . and integers instead of
remainder s are accumulated. Again. the method is bes t explained by example.

•
·,a4tjiQ"'.

Con vert (0 .6875) JOto binary. First. 0.6875 is mull iplied by 2 10 give an imeger and a fraction .
Then the new fraction is multiplied by 2 to give a new imeger and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits have sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient

0 .6875 x 2 = I + 0.3750 (/ - 1 = I

0.3750 X 2 = 0 + 0.7500 (/ - 2 = 0

0.7500 x 2 = I + 05000 {I- ~ =

05000 x 2 = I + O.UOOO "-4 =

Therefore. the ans er is (0.6875)10 = (0.1I-111 -21l-YI_4b :=. (0. 10 11h
To convert a decimal fraction 10 a number ex presse d in base r, a similar procedure is used.

However. multiplicat ion is by r instead of 2. and the coe fficie nts found from the Integers may
range in value from 0 to r - I instead of 0 and I.

•
·"%1'9····

Convert (0 .5 13)10 10oc tal.

0..513 X 8 = 4.104

0 ,10-1 X 8 = 0.832

0.832 X 8 = 6,6.56

0.656 X 8 = 5.248

0.248 X 8 = 1.98-1

0.984 X 8 = 7.872

The answer . to seven significant figures. is ob tained from the integer part of the product s:

(0.5 13l lll = (OA06 5 17 . .. lH

8 Chapter 1 Digita l Systems and Binary Number s

The conve rs ion of decimal numbers with both integer and frac tion parts is done by con­
vening the integer and the fraction separately and then combining the two answers. Using the
results of Examples 1.1 and 1.3. we obtain

(4 1.6875)10 - (10 100 1.10 11),

From Examples 1.2 and 1.4, we have

(153.5 13) 10 = (2 3 1.4065 17Js

•
1.4 OCTAL AND HEXADECIMAL NUMBERS

The conve rsion from and to bina ry. oc ta l. and hexadecimal plays an important ro le in digital
computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digi ts and
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal,
binary. octal, and he xadecimal number sys tems are listed in Table 1.2.

Th e convers ion from binary to octal is eas ily accomplished by part itioning the binary num­
ber into groups of three digit s each. starting from the binary point and proceedin g to the left
and to the rig ht. The corresponding octal digit is then assigned to eae h group. The follo wing
example illustrates the procedure:

(10 110 00 1 101 011 I II 100 000 110), = (26 153.7406),

2 6 I 5 3 7 4 0 6

Ta bl e 1 ,2
Numbers wi th Different Bases

Ded m al Binary Oct a l Hexadec im a l
(base 10) (base 2) (ba se 8) (base 16)

00 0000 00 0
01 0001 01 I
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0 110 06 6
07 0 111 07 7

0' 1000 10 8
09 1001 II 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
IS lI ll 17 F

Section 1.5 Compleme nts 9

Convers ion from binary to hexadecimal is similar, except that the binary number is di vided into
groups o f/our digils :

(10

2
11 00

C

0 1If)

6

10 1[

Il

111 1

F
OO lOh "" (:!C6B.F2)lfI

2

The co rrespo ndi ng he xadecimal (or ()cta!) digit for each group of binary digils is ea.~ i ly re­
membered from the values lis ted in Table 1.2.

Conversio n from oct al or hexadeci mal to binary is done by reversing the preced ing proce­
dure . Each oc tal d ig il is convened to irs three-d ig it binary eq uivalent. Similarly, each hexu­
deci mal d igit is co nve rted to ih four-d igit binary eq uivalent. The procedure is illustrated in
thc fo llowing e xamples;

(673.12.). ~ (110 I I I 011 (X)) 010 100),
6 7 3 I 2 •

aod

(306. D) 16 "" (00 11 O<XIO Ol IO I/O /rz
3 0 6 D

Binary numbe rs are difficult In work wi th because they require three or four limes a.. many
digit.. a.. their decimal eq uival ents. For example, the bin ary num ber I J1111111111 is equivalent
to dec imal .J095. However. d ig ital computers usc binary numbe rs, and it is sometimes necessary
for the human ope rator or user to conuuumcatc directly with the mac hine by mean s of such num­
hers. One scheme that retains the binary sys tem in the com puter. but reduces the number of dig­
its the human must consider, utili/es the relation..hip be twee n tho: binary num ber system and Ihe
uc la l ~lr he xall ed rnal :.)':.1\:111. By th i:. 1I1\:lh"o.I. thc hUI1l,u lthil)k... ill len l1""foClal o r hc Jl. ad....~i rlla l

numbe..... and perfor ms the req uired con version by inspection when di rect communication with
the machine i.. ncce....ary. Thu... the binary number 11111 11111 11 has 12 digits and is expressed
in oc tal as 7777 (.J digits) or in hexadecimal as Ff -F (3 digits). During com munication betwee n
peo ple (about binary num bers in the com pute rj. jhc fIClal or hexadecimal repres entatio n is more
de..irable because it ca n be expre..sed more compactly with a third or a quarter of the numbcr of
digits required for (he eq uivalent binary number. Thu s. most computer manuals use e ither octal
or hexadeci mal number s to specify binur y q uunthic... The cho ice be tween them is arbitrary,
although hexadecimal tend.. to win OUl, since it can rcprc..cnr a byte with two digits.

1.5 COMPLEMENTS

Co mplements arc u..cd in d igital computers to sim plify the subtraction ope ration and for log­
ical man ipulation. Simplifying ope ration s leads to simpler. less expensive circ uits to implement
the operations. There are IWO types o f complem ents for each base-r sys te m: the radi x: com­
plement and the di minished radi x com ple ment. The first is refe rred to as the r's com plem ent
and the seco nd as the (r - I)'s comple ment. When the value o f the base r is substituted in the
name. the two types are referred to as the 2's co mplement and I's ccmptemen r for bina ry num­
hers and the 10\ comple ment and 9's co mplement for deci mal numbers.

10 Chapte r 1 Digita l Systems and Binary Numbers

Diminished Radix Complement

Given a number N in base r having n digits, the (r - I)' lo co mplement of N is defined as
(r" - I) - N . For decimal numbers, r == 10 and r - I "" 9, so the 9' s complement of N is
(10" - I) - N, In this case. 10" repre sents a number that consists of a single I followed by
nO's. 10" - I is a number represented by n 9 's. For example, if n "" 4. we have I~ = 10,(0)
and I~ - I "" 9999 . II follos that the 9's complement of a decimal number is obtained by
subtracting each digit from 9. Here are some numeri cal examples :

The 9 ' s complement of 54-6700 is 999999 - 54-6700 "" ..$53299 .

The 9' s co mplement of 0 12398 is 999999 - 012 398 == 987601 .

For binary numbers.v "" 2andr - I "" Lso tbe l 's complemen r ofN is (2" - I) - N .
Agai n, 2n is represented by a binary number that consists of a I followed by nO's. 2n - I is
a binary number represented by n I's. For example, if 11 "" 4 ,e have 24

"" (l (X)()()h and
24 - I "" (1111h Thus, the l 's complement of a binary number is obtained by subtract ing
eac h digit from 1. Howe ver, when subtrac ting binary dig its fro m I, wc ca n ha ve e ither
I - 0 "" I or 1 - I == 0, which ca uses the bit to change from 0 to 1 or from I to 0, respec­
tively. Therefore, the l's complement of a binary number is formed by changing l ' s to D's and
O's to J's . The followi ng are some numerical examples:

The t 's complemcnt of 1011OOO isO lOO I I I.

The I's co mpleme nt of 0 101101 is 1010010.

The (r - I)' s compleme nt of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decim al 15), respec tively.

Radix Complement

The r's complement of an a-digit number N in base r is defined a.. rn - N for N "F- 0 and as
o for N "" O. Comparing with the (r - I)' s complement. we note that the r's complement is
obtained by add ing I to the {r - I)' s complement, since r" - N "" [(r" - I) - N] + I.
Thus, the lO's compleme nt of decimal 2389 is 7610 + I "" 76 11 and is obtai ned by adding I
to the c's-complernent value . The 2's comp lement of hinary 10 11 00 is 0 10011 + I "" 010 100
and is obtained by adding I to the t 's-co mple meru value.

Since 10 is a number represented by a 1 followed by II a 's , 10" - N, w hich is the tu's co m­
plement of N. can be formed also by leaving all least significant n's unch anged , subtrac ting
the first nonzero least significant digit from 10, and subtracting all highe r significant digits
from 9. Thu s,

the 10 's complement of 0 12398 is 987602

and

the In's complement of 24-6700 is 753300

Sectio n 1.5 Complements 11

The lO's complem ent of the first num ber is obta ined by subrrccting 8 from 10 in the leas t sig­
nificant position and subtrac ting all ot her digi ts from 9. Th e- lO's complement of the second
num be r is obta ined by leaving the two least significant O's unch anged . subtracting 7 from 10,
and subtract ing the othe r three d igits from 9.

Similarly, the Z'sco mplement ca n be formed by leaving all least signifi cant u's and the first
I unch anged and replacing I 's with O's and 0\ with J'!'. in all other higher sig nificant digits.
For exa mple,

the- :!'s com plement o f 1101100 is 00 10100

and

the 2\ com plement of 0 110 1J I is 100100 1

The 2's co mplement of the first number is obtained by leaving the two least significant O's and
the first I uncha nged and then replaci ng l's with O's and O's with ls in the other four most sig­
nificunt d igits. The 2's co mplement of the second num ber is obtained by lea ving the least sig­
nific ant I unchanged and complementi ng all other digits.

In the pre vious defin it ions, it was ass umed thai the numbers did not have a radix po int. If
the origina l numbe r N contain s a radix poi nt. the point should be removed temporarily in order
10 form the-r's or (r - I)'s co mplemen t. The rad ix poi nt is then restored to the co mplement­
ed num be r in the same relative posi tion. It is also wort h mentionin g that the co mple ment of the
complement restores the number to its or iginal va lue. To see this relationship. note that the r 's
co m ple me nt o f N is r" - N, so that the co mp le me nt o f (he com plem ent is
rn - (r" - N) = N and is equal to the original numbe r.

Subtraction with Complements
The dire ct method of subtraction taught in elementary schools uses the b OrTOW conce pt. In this
melhod . we h O rTOW a I from a highe r sigrnficum posi tion when the minuend digit is smaller
(han the subtrahend digit. The method wor ks well when people perform subtrac tion with paper
and pencil. However. when subtraction is implemented with digital hardwar e. the- method is less
efficie nt than the method that uses com plements .

The subtrac tion of two II-d igit unsigne-d numbers 1\.1 - ,V in base r can be done as follows:

I. Add the m inuend AI 10 th e r's comp le ment of the subtrahend N. Mathematica lly,
M + (r " - N) = ,\1 - N + r",

2. If !of 2 N, the sum will prod uce an end carry r", which ca n be discarded : whal is left is

the res ult M - N.

3. If M < N, the sum doc s not produce an end carry and is equal to r" - (N - M),
which is the r's co mplcm cnr of (N - AI). To obtain the answer in a familiar form . tak e
the r's co mplement of (he sum and place a nega tive sign in front.

12 Chapter 1 Digital Systems and Binary Numbers

The following examples illustrate the procedure :

Using 10's complement. subtract 72532 - 3250.

M = 72532

lO's complement of N = + 96750

Sum = 169282

Discard end carry lOs = - 1 ooסס0

Answer = 69282

Note that M has five digits and Nhas only four digits. Both numbers must have the same num­
ber of digits, so we write N as 03250. Taking the 10's complement of N produces a 9 in the most
significant position. The occurrence of the end carry signifies that M ~ N and that the result
is therefore positive.

•

Using lO's complement, subtract 3250 - 72532.

M = 03250

lO's complement of N = + 27468

Sum = 30718

There is no end carry, Therefore, the answer is - (IO's complement of 307 18) = - 69282.
Notc that since 3250 < 72532, the result is negative. Because we are dealing with unsigned

numbers, there is really no way to get an unsigned result for this case, When subtracting with
complements. we recognize the negative answer from the absence of the end carry and the
complemented result. When working with paper and pencil, we can change the answer to a
signed negative number in order to put it in a familiar (ann .

Subtraction with complements is done with binary numbers in a similar manner, using the
procedure outlined previously.

•

Given the two binary numbers X = 1010100 and Y = oo11סס1 , perform the subtract ion
(8) X - Y and (b) Y - X by using 2's complements.

(a) X '"

2's complement of Y '"

Sum '"

Discard end carry 2' '"

AII.m'er: X - Y '"

(b) y ",

2'" complement of X ""

Sum =

1010100

+J!!..!..!..!Q!
100 10001

- / ()()()()()()()

1)() IOOOI

10000 11

+ 0 101100

1101111

Section 1.5 Complements 13

There is 110 l'" d carry. Therefore, till' answer h Y - X = - (2' s comple tucm of 1101 I I I) =
- OO IOlXII.

•
Subtraction (If unsigned numbers can also be done by means of the (r - J)' s complement.
Remember th<l l the (r - I)'s complement is one less than the r's complement. Because of
this, the result of :u.lding rhe minuend to the complement of the subtrahend produces a sum that
is one less than the correct difference when ntil end carry occurs. Removing the end carry and
adding I to the sum is referred 10 as an end-around carry.

M1tAmQIII:1I
Repeat Example 1.7, bUI this time using t's complement.

fa) X - Y = 1010100 - 100001 I

X = 1010100

I' s complement of Y = + OJ11100
Sum = l OO IOfX){)

End-around carry = + I

Al1.m er: X - Y = 00 HX)() I

(b) Y - X = jOfX){)11 - IOlOHXI

Y = 100XIOII

I'scomrlcment ofX = + 0101011

Sum = 1101110

There is no end carry. Therefore. the answer is Y - X "" - (I' s complement of 1101110) =
- 00 tooo I.

•
Note thaI the negative result j 'i.obtained hy taking the I's complement of the sum, since this is
the type of complement used. The procedure with end-around carry is also applicable to sub­
tracting unsigned decimal numbers with 9's complement.

14 Chapter 1 Digital Systems and Binary Numbers

1.6 SIGNED BINARY NUMBERS

Positive integer s (including zero) can be represented as unsigned numbers. However, to rep­
resent negative integers, we need a notation for negative values. In ord inary arithmetic, a neg­
ative number is indicated by a minus sign and a positive number by a plus sign. Because of
hardware limitations. computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost position of the number. The convention
is to make the sign bit 0 for positive and I for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string
of bits when represented in a computer. The user determines whether the number is signed or
unsigned. If the binary number is signed, then the leftmost bit represents the sign and the rest
of the bits represent the number. If the binary number is assumed to be unsigned. then the left­
most bit is the most significant bit of the number. For example, the string of bits 0 100 1can be
considered as 9 (unsigned binary) or as + 9 (signed binary) because the leftmost bit is O. The
string of bits 11001 represents the binary equivalent of 25 when considered as an unsigned
number and the binary equivalent of - 9 when considered as a signed number. This is because
the 1 that is in the leftmost position designates a negative and the other four bits represent bi­
nary 9. Usually, there is no confusion in identifying the bits if the type of representation for the
number is known in advance.

The represe ntation of the signed numbers in the last example is referred to as the signed­
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+
or -) or a bit (0 or I) indicating the sign. This is the representation of signed numbers used in
ord inary arithmetic. When arithmetic operations are implemented in a computer, it is more
convenient to use a different system, referred to as the signed-complement system, for repre­
senting negative numbers. In this system, a negative number is indicated by its complement.
Whereas the signed-magnitude system negates a number by changing its sign, the signed-com­
plcrncnr system negates a number by taking its complement. Since positive numbers always start
with 0 (plus) in the leftmost position. the complement will always start with a I, indicating a
negative number. The signed-complement system can usc either the l 's or the 2's complement.
but the 2'" complement is the most common.

As an example, consider the numbe r 9, represented in binary with eight bits. + 9 is repre­
sented with a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9,
which gives 0000 100 1. Note that all eight bits must have a value; therefore, O's are inserted fol­
lowing the sign bit up 10 the first I. Although there is only one way to represent + 9, there are
three different ways to represent - 9 with eight bits;

signed-magnitude representation:

signed- f 's-complement reprcsemano n:

signcd-Z's-complement representation:

1000 100 1

11 110110

11 110 11 1

In signed-magnitude. - 9 is obtained from + 9 by changing the sign bit in the leftmost position
from () to I. In signed-Fa complement, - 9 is obtained by complementing all the bits of + 9,
including the sign bit. The signed-J's-complc mcnt representation of - 9 is obtained by taking
[he 2's complement of the positive number, including the sign bit.

Section 1.6 Signed Binary Numbers 15

Table 1.3
SJgntd Binory Numbers

Slgned.2'$ Slgned .1 '$ Signed
Oedma l Comp lem ent Complement Magnitude

+7 0111 0 111 0 1II
+h 0110 0 110 0110

+' 0101 0 101 0101
+4 0100 0 100 0100
+3 oon 00 11 00 "
+ 2 00 10 0010 0010
+ 1 OO()[000 1 ooo t
+ 0 O(JU(} 0000 00'"
- 0 I II I 1000
- I 1111 1110 1001
- 2 1110 1I0 ! 1010-., 1101 "'" lOl l
- 4 "00 1011 "'"-, 1011 lOW 1101
- 6 1010 1"'1 1110
- 7 100! 1000 1111-, IUOO

Tabl e: 1.3 lists all possib le four-b it signed bin ary nu mbers in the three representations.
The equiva lent decimal numbe r is also shown for reference . Note tha t the posi tive numbers
in all three rep resen tatio ns are: ident ical and ha ve 0 in the lefuuost position. The signed-z's­
complement syste m has only nne representation for O. which is alw ays positive . The oth er
two sys tems have eit her a positive 0 or a negat ive O. something not enco untered in ord inary
arirhmcric . Note that all negativ e numbers have a I in the le ftmost b it position: that is the
way we distinguish them from the positive numbers. With four hits. we can represent 16 binary
num bers. In the signed- mag nitude and the ls-ccm ple rnent representations. there are e ight
posi tive nu mbers and eig ht negnnve number s. incl ud ing two zeros . In the 2's-co mple ment
represe ntati on. the re a re eig ht positive numbers, including on e ze ro. and e ight negative
numbers.

The signed-mag nitude sys te m is used in ordinary arit hme tic. but is awkwa rd when em­
ployed in computer arit hmetic because of the separate handlin g of the sign and the magni tude .
Therefo re. the signed-complement system Is normally used. The Fs complement imposes some
diffic ulties and is seldo m used for arithmetic o perations . It is usefu l as a logical operation.
since the change of I to 0 or 0 10 I is equivale nr ro a log ical complement ope ration. as will be
shown in the next chapter. The d iscus..ion of signed binary arithmetic that fo llows deals ex­
clu sively with the sig ncd-z's-cornplement representation of negative numbers . The same pro­
cedures can he app lied to the sigued-!"..-complemer usystem by including the end-around carry
as is do ne with unsigned numbers.

16 Chapter 1 Digita l Systems and Binary Numbers

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary arith ­
metic. If the signs are the same, we add the two magnitudes and give the sum the common sign.
If the signs are different, we subtract the smaller magnitude from the larger and give the differ­
ence the sign of the larger magnitude. For example, (+ 25) + (- 37) = -(37 - 25) = - 12
and is done by subtrac ting the smaller magnitude, 25. fro m the larger magn itude, 37, a nd
appending the sign of 37 to the result. Thi s is a process tha t req uires a comparison of the
signs and magni tudes and then performing either addition or subtraction. The same procedu re
applies to binary numbers in signed-magnitude representa tio n. In contrast, th e rule fo r
adding numbers in the signed-comple ment system doc s not require a comparison or sub­
tract ion. but only addition. The proce d ure is very simple and can be stated as follow s for
binary nu mbers:

The additi on of two signed binary numbers with negative numbers represe nted in signed­
Z's-complement forrn is obtained from the add ition of the two numbers , including their sign bits.
A carry out of the sign-bit position is discarded .

Numerical examples for addition follow:

+ 6 00000110 - 6 11111010

+ 13 00001101 + 13 0000 1101

+ 19 000 10011 + 7 000001 11

+ 6 O()()OO 110 - 6 111 11010

- 13 11110011 - 13 111100 11

- 7 1111100 1 - 19 1110 1101

Note that negative numbers must be initial ly in Z's-complement form and that if the sum ob­
tained after the additi on is negative, it is in z 's-complement form .

In each of the four cases, the operation performed is add ition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negat ive results are automatically in z's­
complement form.

In order to obtain a correct answer, we must ensure that the result has a suffic ient number
of bits to accommodate the sum. If we start with two u-bit numbers and the sum occupies
n + I bits, we say that an overfl ow occurs . When one performs the addi tion with paper and
pencil , an overflo w is not a problem, becau se we are not limited by the width of the page . We
j ust add another 0 to a positive number or another I 10a negative number in the most signifi­
cant position to extend the num ber to n + I bits and then perform thc addi tion. Overflow is a
problem in computers because the number of bits that hold a num ber is finite, and a result that
exceeds the fin ite value by I cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system. To determine the value of a negative number in signcd-z 's comple­
ment, it is necessary to convert the num ber to a positive number to place it in a more famil iar
form . For example, the signed binary number 1111100 1 is negati ve because the leftmost bit is
1. Its 2's complement is 00000 111, which is the binary equivalent of +7. We therefore recog­
ni...'e the orig inal negative number to beequal to - 7.

Sec tion 1.7 Bina ry Codes 17

Arith metic Subtract io n

Subtraction of ''''''0signed binary numbe rs when nega tive numbers are in J 's-cornplemcnr form
is simple and can he stated as follow s:

Take the 2's co mplement of the subtrahend (including the sign bill and add it to the minuend
(includ ing the sign biu. A carry out of the sign-bit position is d isca rded .

Thi s proced ure is adopted because a subtract ion operation ca n he changed III an addi tion
o peration if the sign of the subtrahend is c hanged . as i!'. d emo ns tra ted by the foll owing
relationshi p:

(±A) - (T8)

(± A) - (- 8)

(±A) T (- 8):

(± A) T (+ 8) .

But changi ng a pos itive number to a negative number is eas ily done by taki ng the 2's comple­
ment of the posi tive number. The reverse is also true, because the complement of a negative num­
ber in complement form produces the equivalent pos itive number. To see this. co nside r the
subtrac tion (- 6) - (- 13) "" + 7. In binary with eig ht bits, this operation is wriue n as
(11111010 - l l l lO(}J I). The subtraction i!'. changed to addition by taking the 2's complement
of the subtrahend (- 13), giving (+ 13). In binary, this is 11111010 + 00001 101 = 10000011L
Removing the end carry, we obtain the correct answer: 00000 111 (+7).

II is wort h noting that binary numbers in the signed -co mpleme nt syste m arc added and sub­
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com­
puters need only one common hardw are circu it to handle both types of arit hmeti c. The user or
programmer must interpretthe results of such addi tion or subtraction differently, depe nding on
wheth er it is assumed thai the numbers are signed or unsigned .

1.7 BINAR Y COD ES

Digital systems use signals that have two d istinct value.. and circ uit element s thai have two sta­
ble slates, There is a direct analogy among binary signals. binary circ uit elements, and binary
digits. A binary number of /I digits, for example, may be represemcd by n binary ci rcuit ele­
mems. each havin g an output signal equivale nt 10 0 or I. Digital syste ms represent and ma ­
nipulate not o nly binary numbers, but also many other d iscrete elements of information. Any
discret e ele ment of information that is distinct among a gro up of quanti ties can he represented
with a binary code (i.e. , a pattern of D's and I 's). The codes must be in binary because, in
today's techno logy, only circuits thut represe nt and manip ulate patterns of D's and I 's ca n be
manu factured economically for use in computers. However. it must be realiz ed that binary
codes merely change the symbols, nor rhe meaning of the elements of informatio n that they rep­
rese nt. If we Inspect the bits of a computer at randum, we will find that most of the time they
represent some type of coded informatio n rather than binary num bers.

An n-bit binary code is a group of 11bits that ass umes up to r distinct combinations o f l 's
and 0 '5. with each combination representing one elemem of the set that is bei ng coded . A sci
of four elem ents can be coded with IW O biu. with eac h eleme nt assigned one of the follo wing
bit combinations: 00 . 01. 10. 11. A set of eight elem ents requires a three-b it cod e and a set of

18 Chapter 1 Digital System s and Binary Numbers

16elements requires a four-bit code. The bit combinat ion of an n-bit code is determined from
the count in binary from 0 to 2" - I. Each element must be assigned a unique binary bit com­
bination, and no two elements can have the same value; otherwise, the code assignmem will
be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is n, there is
no maximum number of bits that may be used for a binary code. For example. the 10 decima l
digits can be coded with 10 bits, andeach decimal digit can be assigned a bit combination of
nine O's and a I. In this particul ar binary code , the digit 6 is assigned the bit combination
0001000ooo.

BCD Cod e

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert dec­
imal numbers to binary, perform all arithmetic calculations in binary, and then convert the bi­
nary results back to decimal. Th is method requires that we store decimal numbers in the
computer so that they can be converted to binary. Since the computer can accept only binary
values. we must represent the decimal digits by means of a code that contains l ' s and D's. It is
also possible to perform the arithmetic operations directly on decimal numbers when they are
stored in the computer in coded fonn .

A binary code will have some unassigned bit combinations if the number ofelements in the
set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that dis­
tinguishes among 10elements must contain at lea..t four bits. hut 6 out of the 16 possible com­
binations remain unassigned. Different binary codes can be obtained by arranging four bits
into 10 distinct combin ations. The code most commonly used for the decimal digits is the
straight binary assignment listed in Table 1.4. This scheme is called binary-c oded decimal and
is commonly referred to as BCD. Other decimal codes are possible anda few of them are pre­
sented later in thi.. section.

Table 1.4
Binary -Cod«J D«. lmol (BCD)

Dedmal
Symbol

o
1
2
3
4,
6
7
8
9

BCD
Digit

ooסס

()()() 1

0010
0011
01 00
0101
0110
011 1
1()()()
1001

Section 1.7 Binary Codes 19

Table 1.4 gives the fou r-bit code For o ne decimal digit. A number wi th k dec imal J igils will
requ i re -t* b it" in n CD. [)..,c ;"",1 .1% is rc p ,·c s " ," c d ;11 n CD w id , 1.2 h it .s " .s (lO ll 100 1 0 1 10 .
with each group of 4 bits represen ting one deci ma l d igit. A ucctmut num ber in BC D Is the
"a m e a s it" e q u iv a le nt bi nary number only w he n the numbe r is be twee n 0 a nd 9 . A BC D n U IIl ­

be r greater than 10 looks different from jh equ ivalent bina ry num be r. eve n thou gh both con­
tain f's and O '~ . Moreo ver. the binary co mbinatio ns 1010 throug h II II arc not used and have
no meaning in BCD. Con..ide r deci mal 185 and its co rres ponding value in BCD an d binary:

(185)1f) = ((XXII HJ()(l 0101 hK'D = (1O l l lOOlh

The BCD value has 12 bil" to enco de the characters o f the dec imal value . hUI the equivale nt
binary nu mbe r needs only 8 bits. II i:..obv ious that the representation of a BCD number needs
more bits then il';.equivale nt binary valu e . Howe ver. there is an adva ntage in the use of deci ­
mal numbers. because co mputer input and outp ut data are ge nerated by people who use the de c­

imal sys tem.
II is importan t to reali ze that BCD numbe rs lire decimal numbe rs and nOI bi nary nu mbe rs.

althoug h they use bits in their represe ntation. The only differen ce betwee n a decimal number
and BC D is that deci mal" arc wnuen wi th the sym bol.. O. I. 2•. .. • 9 and BCD numbers use
the binary code 0000. 000 1. 00 10. 1001 . The decimal valu e is e xactl y the sa me. Decimal
10 is repre sent ed in BCD with eight b it.s as 000 10000 and decimal 15 as 000 10101. The cor­
respo nd ing binary value... are 10 10 and I I1I and have only four bits .

BCD Addition

Conside r the addition of two decimal digits in BCD .lOgether with a possible carry from a pre ­
vious less signific ant pai r of dig its. Since cad i dig it doe s not e xceed 9 . the sum cannot be
grea ter than 9 + 9 + I = 19......ith the I be ing a previous carry. Suppose we add the BCD dig .
its a.. if they were binary numbers. Then the bi nar y sum w ill produ ce a result in the range
fro m 0 to 19. In binary. th i.. ra nge will be from (XKX) to 1001 1. but in BCD. it is from 0000 to
I 100 1. with the first (i.e.• letrmo..t) J being a carry an d the next fo ur bits be ing the BCD sum.
When the binary sum is equa l to or less than I(X)I (w itho ut a ca rry). the corresponding BC D
digit is correct. However. when the bina ry sum is greater than or equ al 10 10 IO. the result is an
invalid BCD digit. The addition of 6 = (0 110) 210 the binary sum converts h ro the co rrect digit
and also produ ce .. a carry as required . This is because a carry in the most sig nificant bit posi­
t ion of the bina ry surn and a decima l carry d iffer by 16 - 10 = 6 . Con side r the foll owing

three BCD add itions :

~ 01 00 ~ 0 100 8 1000

+5 + 0 101 + 8 + 1000 + 9 --.lQQ!
9 100 1 12 1100 17 1000 1

+ 0 110 + 0 110

10010 101 11

In eac h case. the two BCD d igits are added as if they were two binary numbe rs . If the bina ry
sum is greeter than or equal to 10 10. we add 01 10 to obtain the correct BCD sum and a carry.
In the first exa mple. the sum i.. equa l 109 and is the corr ec t BCD sum. In the second example.

20 Chapter 1 Digita l Systems and Binary Numbe rs

76()

184

+ 576

I I
0001 1000 0 100

+ 0 101 0 111 0 110

0 111 10000 10 10

0 110 OllO

0 111 Ol iO 0000

Binary sum

Add 6

BC D sum

the binary sum produ ces an invalid BCD digit. The addi tion of 0 110 produ ces the correc t BCD
sum, 00 10 (i.e., the number 2), and a ca rry. In the third example, the binary sum produces a carry
Th is condi tion occurs when the sum is greater than or equal to 16. Although the other four bits
are less than jOO I. the binary sum req uires a correction because of the carry. Add ing Oli O, we
obtain the required BCD sum Ol ll (i.e.. the number 7) and a BCD carry.

The add ition of two n-digit unsigned BCD num bers follows the sa me procedure . Co nsider
the add ition of 184 + 576 = 760 in BCD:

BCD

The first , least significa nt pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next pair of digit s. The second pa ir of BCD d igits plu s a previous carry produ ces a digi t
sum of a110 and a carry for the next pair of digits. The third pair of digits plus a carry produces
a binary sum o f 0 111 and doe s not req uire a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the rep resentation of signed
numbers in binary. We can use either the famil iar signed-magnitude system or the signed-com­
plement sys tem. The sign of a deci mal number is usually rep resented with four bits to conform
to the four-bit code of the dec imal dig its. It is customary to designate a plus with four O's and
a minus wi th the BC D equivalen t of 9 , which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement sys tem
can be either the 9's or the lO's compleme nt, but the lO's comp lement is the one most often
used. To obtain the lO's co mplement o f a BC D num ber, we first lake the 9 's complement and
then add 1 to the least significan t digit. The 9 's compleme nt is calc ulated from the subtrac tio n
of each digit from 9.

The procedur es develope d for the signed-2's-complement sys tem in the previous sectio n
also apply to the signed- IO's-comple ment sys tem for decima l numbers . Add itio n is don e by
summing all digits, incl uding the sign digit, and discard ing the end carry. Th is o peration
assume s that all negative numbers are in lO' s-co mple me nt fonn. Consider the add itio n
(+ 375) + (- 240) = + 135, done in the signed-c omplement sys tem:

o 375

+9 760

o 135
The 9 in the leftmost po sition of the second number represents a minus, and 9760 is the 10's
comple me nt of 0240. T he two num bers are added and the end carry is d iscard ed to obtain
+135. Of course, the decim al numbers inside the computer, includin g the sign d igits, must be
in BCD. The add ition is done with BCD digits as described pre viously.

Section 1.7 Binary Codes 21

Th e subtractio n o f decim al numbers. either un signed or in the slgncd- tu's-com ple me nt
sys tem. is the same as in the binary case : Take the 10' l> comple me nt of the subtrahend and add
it to the minue nd. Man y computers have special hard ware 10 perfo rm ari thm etic ca lcu lation s
dir ectly with deci ma l numbers in BCD. The user of the co mpute r can speci fy programmed
instruction s 10 perform the arithme tic operation wi th decimal numbers d irec tly. without having
10 convert them to binary.

Other Decimal Codes

Binary codes for deci ma l digits requi re a minimum of four bib per digit. Many different code s
ca n be form ulated by arranging four bits into 10 d istinct combinatio ns. BCD and thn..-c other
representati ve cod e s are shown in Tab le 1.5. Each cod e uses only 10 o ut of a po ssib le 16 bit
co mbina tions that can he arranged with fo ur bits. The othe r six unu sed comb inat ions have no
meaning and sho uld be avo ided.

BCD and the 2·U I code an:examples orweighted codes. In a weighted code. each bit position
is ass igned a weighting factor in such a way Ihat each digit ca n be evaluated by add ing the wei~hb

of all the I '~ in the coded combination. The BCD code has weights of8. 4. 2. and I. which COITe­

spend to the power-o f-two values of each hit. The bit assignment 0110. for example. is interpreted
by the weights to represent dccimalf because 8 x 0 + 4 x 1 + 2 x I + I x 0 == 6.The bit
combination 110 1. when weighted by the respective digits 2421. gives the deci mal eq uivalent of
2 x I + 4 x I + 2 x 0 + I x I == 7. Note that so me digits can be coded in two possible
ways in the 242 1 code .. For instance. decimal 4 ca n beassigned to bit co mbination 0 100 or 1010.
since both combinations add up to a total weight of 4.

Table 1.5
four Differtmt Binary Codesfor the Decimal Digiti

Decimal BCD
Digit 8421 2421 Excess ·] 8,4, - 2, - 1

0 0000 0000 ruu " " 0
I ClOOl 11001 OIlXI 011 1, (XlIO 0010 0 101 0110
.1 00 11 0011 0 11 0 0 101, 0 100 Ol/ XI 0111 0 100, 0101 1011 11100 1011
6 0110 1100 IlXlI 10 10
7 Di ll 1101 1010 1001, 1000 111 0 lUll 1000

• IOUI 1111 nco 11J1

lOW 0101 0000 000 1
Unused 1011 0110 (XXII 00 10

bil 1100 0111 (XIIO 00 11

combi- 1101 1000 11 0 1 1100

nations 11 10 100 1 111 0 11 0 1
1111 IOIU 11 11 11 10

22 Chap ter 1 Digital Systems and Binary Numbers

The 242 1 and the excess-J codes are examples of sel f-complementing codes. Such codes
have the property that the 9 's complement of a decimal number is obtained di rectly by chang­
ing I 's to D's and D's to I 's (i.e., by complementing each bit in the pattern). For example. dec­
imal 395 is repre sent ed in the excess-S code as 0 II0 1100 1000 . The 9 's complement of 604
is represent ed as 1001 00 11 0 111, which is obtained simply by complementing each bit of the
code (as with the I 's complement of binary numbers) .

The excess-Scode has been used in some older computers because of its self-complement­
ing prope rty. Excess-S is an unweighred code in which each coded combination is obtained from
the correspo nding binary value plus 3. Note that the BCD code is not self-complementing.

The 8, 4, -2, -I code is an exa mple of ass igning both positive and negative we ights to a
decimal code. In this case, the bit combination 0 I I0 is interpreted as decimal 2 and is catcu­
latedfrom 8 X O + 4 X I + (- 2) X I + (- I) x O =2.

Gray Code

The out put dat a of many physical systems are quantities that are continuous. These data must
be convened into digital form before they are applied to a digital system. Co ntinuous or analog
information is converted into digital form by means of an ana log-to-digital converter. It is some­
times convenient to use the Gra y code shown in Table l.oto represent digital data that have been
converted from analog data. The adva ntage of the Gra y code over the straight binary num ber
sequence is that on ly one bit in the code group changes in go ing from one number to the next.
For example, in going from 7 to 8, the Gray code changes from 0 100 to 1100. Only the first bit
changes, from ato I ; the other three bits rema in the same. By contrast. with binary numbers the
change from 7 to 8 will be from 0111 to 1000 , which causes all four bits to change values.

Table 1.6
Gray Code

Gray
Code

0000
0001
0011
0010
0110
Oll t
0101
0100
11 00
1101
ti ll
11 10
10 tO
tOil
1001
1000

DecImal
Equival ent

o
I
2
3
4
5
6
7
8
9

10
II
12
13
14
IS

Section 1.7 Binary Codes 23

The Gray code is used in applications in which the normal sequence of binary numbe rs may
produce an error or ambig uity during the transition fro m one numbe r to the next. If binary
numbers are used. a change. for example. from 0 111 to 1000 rna)' prod uce an inter mediate er­
roneous numbe r 1001 if the value of the rightmost bit takes longer to cha nge than do the val­
ues of the ot her three bib . Th e Gray cod e eliminates this problem. since only one bit cha nges
ils value du ring any transiti on between two num bers .

A typical app licatiu n uf the Gray code t, the repre sentation of analog da ta by a cont inu­
ous change in the angular posi tion of a shan. The shaft is pa rtitioned into segments. and
each segment is assig ned a number. If adja cent seg ments are made to co rres pond with the
Gray-code sequence . ambiguity is eliminated be twee n the angle of the shaft and the value
encode d by the se nsor.

ASCII Character Code

Man)' applications of digital computers requ ire the hand ling nul only of numbers. but also of
other characters or ..ymbols . such as the leiters ofthe alphabet. For instance , an insurance com­
pany with thousands of policyholders will use J computer to process ils files. To represent the
name" and other pertine nt information . it is nece:--"af)' to formu late a binary code for the let­
ters of the alphabe t. In add ition. the same binary code IIlU"t represen t numerals and spec ial
characters (such as 5). An alphan umeric character set is a set of c lements that includes the 10
decimal digits. the 26lcuI.'rsof rhe a lphabet. and a number of special characters . Such a set COII­

tuin -, bel ween 36 and 64 clements if onl y ca pital letters are incl uded. or be lween 64 and 12S
cle ments if both uppercase and lowercase letters are includ ed . In the first cuse. we need a bi­
nary code of six bits. and in the second. we need a binary code of seven bits.

The standard binary cod e for the alphanumeric chuructcrs is the Amer ican Standard Cod e
for Info rmation Interchange (ASC II), whic h uses seve n bits 10 code 128 characte rs. as shown
in Table 1.7. The seven bils of the code are designa ted by h i throu gh [,7. with h7 the most sig­
nificant bit . The lett er A. for example. is represented in ASCII a:,> 100000 1 (co lumn 100 . row
000 1). The ASCII code also contains 94 graphic characters that can be pr inted and J4 non ­
printing characters used for various control functions. The graphic cha racters co nsist of the 26
uppercase letters (A through Z). the 26 lowercase leit ers (a throug h n. the 10 numerals (0
thro ugh 9). and 32 "ped a l printable cha racters, such a" C'k , ". and S.

The Jot control characters arc designa ted in the ASC II table with abbreviated names. They
are listed agai n below the table with their functiona l names. The control characters are used for
routing data and arra nging the primed text into a prescribed for mat. There are three type s of
co ntrol characters: forma l effecto rs. information scparmors. and commu nica tion-control char­
actcrs . Format effectors arc characters that control the layout of printing . T hey include the fa­
miliar word proc essor and typew riter contro ls such as backspace (BS I. horboma lrabuhnion
(HTl. and carriage return (CR). Information separators lire used 10 sepc rure the data into di vi­
sions such as paragra phs and pages. TIley include cha racters such a... record separato r (RS) and
fi le separator (FS). The communica tion-control characters are useful during the transmission
of tex t between remote terminals . Examp les of communtcarion-comrol characters are STX
tstan ofr exu and ETX (end of text I. which are used 10 frame a textmessage transmitted through
telephone wires.

24 Chapter 1 Digital Syste ms and Binary Numbers

Table 1.7
American Standard Code for Information Interchange (ASCII)

b,b,bs

b4bJbzb , 000 001 010 011 100 101 110 111

OOOJ l\"UL OLE SP 0 " P P
(0) , SOH DC. 1 A Q • q
0010 STX DC2 1 B R b r
00 11 ETX DC3 • 3 C S c ,
0100 EDT DC. S , 0 T d
010 1 El'Q ~AK .. , E U , u
0110 ACK SYN & 6 F V f v

011 1 BEL ETB 7 a w , w
1(0) BS CA:-.i (s H X b ,
1001 HT EM) 9 I Y ,
lOW LF SUB • J Z j z
1011 VT ESC + K [k {
11 00 FF FS < L \ • I
110 1 CR as • M 1 m }
1110 SO RS > N A n

1111 $I US I ? 0 0 DEL

Control c:ha raders

/,\UL ~ull OLE Data-link escape
SOH Sian of heading DCI Device comrol I
STX Stan of lell DCl Device comrot 2
ETX End of lexl DC3 Device con trol 3
EDT End of tran<;,mi!>sioo DC. Device comrol 4
E"\Q Enquiry :'\A K l'\egative acknowledge
ACK Ackno..... ledge SYN S)nchronous idle
BEL Rdl ETB End -o(-lran ~mi ssion block
BS Backspace CAS Cancd
HT Horizontal tab EM Endof medium
LF Line feed SUB Subsumte
VT Vertica l tab ESC Eo;cape
FF Fonn feed FS f-i le separator
CR Carriage return as Group separator
SO Shift OUI RS Record separator
$I Shift in US Unit separa tor
SP Space DEL Delete

ASCII is a seven-bit code. but most computers ma nipulate an eight-bit quanti ty as a single
unit called a byte, Therefore. ASC II characters most often are stored one per byte. Th e extra
bit is sometimes used for other purposes. depending o n the application. For example . some
printers recognize eight-bit ASCII characters with the most significant bit set to O. An additional

Section 1.8 Binary Sto rage and Registers 2S

128 eig ht-bit characters with the most significant bit set to I are used for othe r symbo ls, such
as the Greek alphabet or italic type font.

Error-Detecting Code

To detect errors in da ta communication and processing. an eighth bit is sometimes added to the
ASCII character to indicate its parity.ApI/dry bit is an extra bit included witha message to make
the tota l num ber of ls either even or odd. Co nside r the following IWO characters and their
even and odd purity:

ASC II A = 1000001
ASCII T = 1010100

With even par ity
0100000 1
11010 100

With odd parit y
1100000 1
0 1010 100

In each case , we insert an extra bit in the leftmost posi tion of the code to prod uce an eve n
number of ls in the cha racter for eve n parity or an odd num ber of ls in the charac ter for
odd pari ty. In general, one or the ot her parity is adop ted. wit h eve n parit y be ing more
co mmon.

The parity bit is he lpful in detecting error s durin g the transmission of information from one
locution to another. This function is handled by generating an even pari ty bit at the sending end
for each character. The eight-bit characters that includ e parit y bits are transmitted to their des­
tinaticn. The parity of each character is then checked at the receiving end. If the parity of the
received character is no t eve n. then at lea..t one bit has changed va lue during the transmission.
This method detects one, three. or any odd co mbination of errors in each character that is trans­
mitted. An even combination of errors . however. goes undetected. and additional error detec­
tion codes may he needed to take care of that possibility.

What is dune afte r an er ror is detected depends on the particu lar application. O ne possi­
bility is to reques t rermnsmiss lon of the message on the ass umption that the erro r was ran­
do m and will not occ ur again. Thus. if the rece iver detects a parit y error. it sends bac k the
ASC II NAK (negative ackn owledg e) control charac ter cons isting of an eve n-parity e ight
bits 100 10 101. If no error is de tectedthe receive r sends bac k an AC K (acknow ledge) COII­

trol character. namely. 00000 110. The sending end will respo nd to an NAK by transmitt ing
the message aga in until the co rrec t parity is recei ved. If. after a nu mber of at te mpts. the
transmission is still in err or. a message ca n he sent to the opera tor to check for ma lfunc tions
in the tra nsmissio n path.

1. 8 81NARY STORAGE AND REG ISTERS

The binary information in a digital computer must have a physical existence in some medium
for storing indiv idua l bits. A hillary cell i.. a device that possesses two stable states and is ca­
pab le of storing one bit (0 or I) of info rmation. The input to the cell receives excitation sig·
na l.. that set it to one of the two states. The output of the ce ll is a physical quantity thai
d istinguishes between the two states. The informat ion stored in a ce ll is I when the ce ll is in
one stable ..tate and () when the ce ll is in the other stable state.

26 Chapter 1 Digital Systems and Binary Numbers

Registers

A register is a group of binary cells. A register with n cells can store any discrete quantity of
information that contains n bits. The stale of a register is an n-tuple of l 's and O's. with each
bit designating the state of one cell in the register. The content ofa register is a function of the
interpretation given to the information stored in it. Consider. for examp le. a 16-bit register
with the following binary content:

II ()()()() 1111()()1()()1

A register with 16 cells can be in one of 216 possible stales. If one assumes thai the content
of the register represents a binary integer. then the register can store any binary number from
oto 216 - I . For the particular example shown. the content of the register is the binary equiv­
alent of the decimal number 50. 121. If one assumes instead that the register stores alphanu­
meric characters of an eight-bit code. then the content of the register is any two meaningful
characters. For the ASCII code with an even parity placed in the eighth most significant bit
position. the register contains the two characters C (the leftmost eight bits) and I (the right­
most eight bits). If. however. one interprets the content of the register to be four decimal dig­
its represented by a four-bit code. then the content of the register is a four-digit decimal
number. In the excess-S code. the register holds the decimal number 9.096. The content of the
register is meaning less in BCD. because the bit combination 11 00 is not assigned to any dec­
imal digit. From this example. it is clear that a register can store discrete elements of infor­
mation and that the same bit configuration may be interpreted differently for different types
of data.

Register Transfer

Adigital system is characterized by its registers and the components that perform data pro­
cess ing. In digital systems. a register transfer operation is a basic ope ration that consists of
a transfer of binary information from one set of registers into another set of registers. The
transfer may be direct . from one register to another. or may pass through data-processing
circuits to perform an operat ion. Figure 1.1 illustrates the transfer of information among reg­
isters and demonstrates pictorially the tran sfer of binary information from a keyboard into
a register in the memory unit. The input unit is assumed to have a keyboard. a control cir­
cuit. and an input register. Each time a key is struck. the control circui t enters an equiva­
lent eight-bit alphanumeric character code into the input register. We shall assume that the
code used is the ASCII code with an odd-parit y bit. The informatio n from the input regis­
ter is transferred into the eight least significant cells of a processor register. After eve ry
transfer, the input register is cleared to ena ble the control to insert a new eight-bit code
when the keyboa rd is struck again . Each eight-bit character transferred to the processor
register is preceded by a shift of the previous character to the next eight cells on its left. When
a transfe r of four characters is completed. the processor register is full. and its contents are
transferred into a memory register. The content stored in the memory register shown in Fig. 1.1
came from the transfer of the cha racters "J:' "0:' "H:' and "N" after the four appropriate
keys were struck.

Sect ion 1.8 Binary Storage and Registers 27

InpUI
RegiMer ::'

",-,•or
Rcgi<,! ('r

('OSTROl

~:

','..,.

i'::'::=::±=:-:-c:':"::=~::::c=:'1 AI.......,·
Re~C'r

Keyboard

FIGURE 1 .1
Transfer of Information among reg lslers

To process discre te quantities of information in binary for m. a computer rnuvt be pro ­
vided with devices thai hold the data 10 be processed and with ci rcu it elements that manip­
ulate individual bits of informal ion. The device most common ly used for holding data is a
register. Binary variables are manipulated by means of digital log ic circuits . Figure 1.2 il­
lustrates the process of adding two ID-bit binary nu mbers. The memory unit which nor­
mall y co n..ists of millions of registers. is shown with only three of it.. reg ister s, The pan of
the proces ..or unit shown co n..i..l, orr nree rcgi ..lt.:rs-RI . R1. and R3-togclhcr with digilal
logic circ uits that man ipul ate the hits of RI and R2 and tran ..fer into RJ a bin ary number
cqcalto their arithmetic " UIlI . Memory regi..tc rs store information anti arc incapable of pro­
cessi ng the two operands. However. the informa tion stored in memory can be transferred to
proce ssor registers. and the results obtained in proce....or registers can he transferred back iruo
a memory register for storage until needed aga in. The dia gram she w.. the contents of IWO

operands transfer red from two memory registers into RI and R2. The digitallogic ci rcuits
produce the sum, which is transferred to regi ster R3. T he contents of RJ can now be trans­
(erred back 10 one of the memory regis ters .

The laS! two exa mples demonstrated the information -flow capabilities of a digital system
in a simple manner; The registers of the system are the ba..ic eleme nts for Moring and hold ing.
the binary informatio n. Digital logic circui ts process the binary information stored in the

28 Chapter 1 Digital System s and Binary Numbers

~1EMORY uxrr

10000000000
Sum

Operand I
0011100 0011

Ope reed 2
000 10000101

OOO I OOOO I O I RI

1
Digitallogic
circuits for -...j 0 1 OO1 0 0 01 1 1R3

binaryaddition

1
0011lOOOO1l R2

PROCESSOR !.N IT
-

FIGURE 1.2
Example of binary information processing

registers. Digital logic circuits andregisters are covered in Chapters 2 through 6. Tbememory
unit is explained in Chapter 7. The description of register operations at the register transfer
level and the design of digital systems are covered in Chapte r 8.

1.9 BINARY lOGIC

Binary logic deals with variables that take on two discrete values and with operations thai as­
sume logical meaning. The two values the variables assume may be called by different names
(true and/alse. yes and no, erc.). but for our purpose, it is convenient to think in terms of bits
and assign the values I and O. The binary logic introduced in this section is equivalent to an
algebra called Boolean algebra. The formal presentation of Boolean algebra is covered in more
detail in Chapter 2. The purpose of this sect ion is to introduce Boolean algebra in a heuristic
manner and relate it to digitallogic circuits and binary signals.

Sect ion 1.9 Binary Logic 29

Definition of Binary Logic

Binary logic constsrs of bina ry variables and a set of logical operations. The variables are desig­
outed by letters of the alphabet. such as A, H. c. x.y .Z.etc .. with each variable havi ng two and only
Iwodistinet possible values : I and O.The re are three baste logical operations:ANO.OR , and NOT.

1. AND: This operation is represented by a dor or by the absence of an operator. For
exam ple. .r ' y = z or xy = z is rcad-r Af\D y is equal to z."The logical operation Af\ D
is inte rpre ted 10 mean that z = I if and only if .r = I and .v = I; o the rwise ;: = O.
(Reme mber that .r, y. and z arc binary varia bles and ca n be equ al either to I or O. and
nothing else.)

2. OR:This operation is represemed by a plus sign. For exa mp le. .r + ." = :: is read vr OR
yls cqual ro z.vmea ntng that z e l if x = l o r if y = l ori f both x = l and y = 1. lf
both .r = D and y = uthen c = O.

3. NOT: Th is ope ration is represented by a prime (som etimes by a n overbar). For e xample ,
.r " == z (or x = c) is read "not x is eq ual 10 : :. mea ning that z is what .r is not. In other
words . if .r = I. then z = 0, bUI if .r = O. then z = 1. The NOT operatio n is also re­
ferre d to as the co mplement operation. since it changes a I to 0 and a 0 to I.

Binary log ic resem bles binary arit hme tic. and the ope rat ions AN D and OR have similari­
lie s to multiplication and add ition. respectiv ely, In fact. the symbols used for Al\'D and OR are
the same as those used for multiplication and additio n. Howe ver, binary logic should nOIbecon­
fused wi th binary arithmetic. One sho uld rea lize tha i an arith meti c varia ble designa tes a num ­
ber that may co nsis t of many d ig its. A logic variable is alway s e ither I or O. For exa mple. in
binary arithmetic. we hove I + I = 10 (read "one plus one is equal 10 2"), whereas in binary
logic, we have I + I = I (read "one O R one is equa l to one").

For eac h combination of the va lues of .r and j', the re is a value of z spec ified by the defini­
lion of the logical operation . Definition s of log ical ope rations may he listed in a compact form
call ed lr11l11 tab les, A tru th table is a table of all possible combination s of the var iables . sho w­
ing the relat ion betwee n the values tha t me variable s may take and the result o f the ope ration .
Th e truth tables for the operat ions AND and OR with var iable s .r and .v arc obtained by list ing
:111 pos sible values that the varia bles may have whe n combined in pai rs. For eac h co mb ination.
the result o f the ope ration is the n listed in a separate row. The truth table s for AN D. OR . and
NOT are given in Tab le 1.8. These tables clearly dem onstrate the definition of the ope rations .

Table 1 .8
Truth Tablesof Logical Operations

AND OR NOT

.r Y .t · Y X Y .t + .1' m0 0 0 0 0 0
0 I 0 0 I I I II
I 0 0 I 0 I
I I I I I I

30 Chapter 1 Dig ital Systems and Binary Numbers

Logic Gates
Logic ga tes are electronic ci rcuits that operate on one or more input signals to produce an
OUtput signal. Elec trica l signals such as voltages or currents e xist as ana log signals having
values over a given range. say. 0 to 3 V. but in a d igital syste m are interp reted 10 be e ither of
two recog nizable value s. 0 or I. Volt age-operated logic circ uits respo nd to two separate volt­
age levels that represent a binary variable equal to logic I or logic O. For example . a part ic­
ular digita l system may define logic 0 as a signal equal to 0 vo lts and log ic I as a signal
equal to 3 volts. In prac tice. each volt age le ve l has an acceptab le range . as shown in Fig. 1.3.
The input terminals of d igita l circuits acce pt binary signals within the allowable range and
res pond at the output terminals with binary signals that fall within the specified range. The
intermediate region betwee n the allowed regions is crossed only duri ng a state transition. Any
des ired informati on for co mputing or control can be operated on by passing binary signals
thro ugh various comb ination s of logic gates. with each signal representing a particular binary
variable .

The graphic symbo ls used to designate the three types of gates are show n in Fig. 1.4. The
gates are block s of hardware that prod uce the eq uivalent of logic- I or loglc-Ooutput signals

Volts

IS;,,,1
range for

logic 0

ISi,,,1
range for
logic I

I
Transitio n occurs

1

betweenr ese limits

o

3

2

FIGURE 1.3
Example of binary signals

:~y

(a) T wo-input AND gate

:~)'
(b) Two-input OR gate (c) NOT gate or inverte r

FIGURE 1.4
Symbols for digitalloglc circuits

Prob lems 31

{J{J-.!!.In-'L-,,-_.!!.-r

lJ o

FIGURE 1.5

Inpul -ouiput signals for gates

(8) Th ree -input A;-';O gate

~~" A .,. n + C + f)
C
D

(h) Four-input OR gate

FIGURE 1.6
Gate s with multip le Inputs

if input logic requirements arc satisfied . The input signal~ x and y in the Al"\D and O R gates may
exist in one of four pos sible states: 00 . 10. I I. or OI. These input signals are shown in Fig . I j to­
ge ther with the correspo nding ou tput signal for each gale. The tim ing d iagram s illustrate the re­
sponse of each gate to the four input signal combinations.The horizontal axis of the liming diagram
represent s time. and the vertical axis shows the signal as it changes be tween the two possih lc volt ­
age level s. 'm e low level represents logic O. the high levellogic 1.Th e A!\1) gate respon ds with
a logic I output signal when hoth input signals are logic I. The OR gate responds with a log ic I
output signal if any input signal is logic I. The NOTgate is commonly referred to as an inverter.
TIle reaso n for this name is apparent from the signal respon se in the tim ing diagram . which shows
that the output signal inverts the logic se nse of the inp ut signa l.

AND and O R gales may have more than two inputs. An AND gale with th ree inputs and an
O R ga te with four inp uts arc show n in Fig . 1.6. T he three-input A~D ga le responds with logic
1output if all three inputs arc logic I. T he outp ut produces logic 0 if any input i:-, log ic O. T he
four- Input OR gate responds wi th log ic 1 if any input is logic I: irs ou tput beco mes logic 0 on ly
when all inputs arc logi c O.

P RO BLEMS

Answers In problcmv markednh • appear at the end uf the book.

1.1 Li" the octal and he xadecimal numbers from 16 to 32. Using A. B. and C fo r the lust three
J ig!ls. listthe numbers from II 1\ 1 28 in base 13.

1 .2- What is the exact number otbyres in a system that contatne la) J 2K hytcS. lh) (wM hyIC" and
(e) 6AG bytes?

32 Chapter 1 Digita l Systems and Binary Numbers

1.3 Convert the following numbers with the indicated bases to decimal:
(a)* {43 10h (b)* (198)12
~) { lli) 8 W) (5~ lb

1.4 What is the largest binary number that can be expressed with 14 bits? What are the equivalent dec­
imal and hexadecimal numbers?

1 .S · Determine the base of the numbers in each case for the following operations to be correct :
(a) 14/2 "" 5, (b) 54/4 = 13,
(c) 24 + 17 "" 40.

1 .6* The solutions to the quadratic equation x 2 - II x + 22 "" 0 are x = 3 and x = 6. What is the
base of the numbers?

1 ,7* Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal.

1 .8 Convert the decimal number 43 1 to binary in two ways: (a) Convert directly to binary; (b) con­
vert first 10 hexadecimal and then from hexadecimal to binary. Which method is faster?

1.9 Express the following numbers in decimal :
(a)* {1011O.OIOlh (b)* (16.51Ib
(c)* {26.24)g (d) (FAFA)16
(e) (lO IO.lOlOh

1.10 Convert the following binary numbers to hexadecimal and 10 decimal: (a) 1.100 10, (b) 110.010.
Explain why the decimal answer in (b) is 4 times that in (a).

1 ,11 Perform the following division in binary: 111011 + 101.

1 ,1 2*' Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and 101.
(h) Hexadecimal numbers 2E and 34.

1 ,1 3 Do the following conversion problems:
(a) Convert decimal 27.3 15 10 binary.
(b) Calculate the binary equivalent of 213 out to eight places. Then convert from binary to dec­

imal. How close is the result to 213?
(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the

answer the same?

1 ,14 Obtain the I' s and 2's complements of the following binary numbers:
(a) I()()()()OO() (b) OOOOOOOO

(c) 11011010 (d) 0 11 10110
(e) 10000 101 (f) 1111 111 1.

1 .15 Find the c's and the to's complement of the following decimal numbers:
(a) 52,784,630 (b) 63,325,600
(c) 25,000.000 (d) 00,000,000.

1 .1 6 (a) Find the 16's complement of B2FA.
(bl Conv ert B2FA to binary.
(c) Find the 2's complement of the result in (b).
(d) Convert the answer in (e) 10 hexadecimal and compare with the answer in (a).

Problems 33

1.17 Perf orm subu ecuo n on lht given unvigned num bers u\in ll lilt 10's co mplemen t of the: subera­
hend . Where the re\u1l ~houlJ be negalive.lind it' IO·~ complemenl and affh a minu\lI ign, Ver ­
ify)our an..wers.
(a) 6.428 - 3.409 Ib) 125 - 1.Il.OO
(c) 2.0..0 - 6. 152 (d) 1.63 1 - 745

1.18 Perform wbtraction on the given unsigned binary numberv u..ing ltat 2's complement of the !tUb­
lrahend . Where the re..uh ..hoo ld be I1C'f alive. find itv 2'.. ccm plemen r and affi x a minu s sign.
(a) 10011 - J(XJ()J Ib) I(O) JO - IMII
(e) 1001 - 101000 fd) I I(J(XJO - 10101

1.1 9'" The following decima l numbers ;'l~ ..hown in dg n-magnitude form: +9.286 and + 80 1. COO\'crt
the m 10 <,ignai. 1O'l>-eomp lcmcnl form and perform tbe following operat ions (note thai the sc m
is + JO.627 and requ irelo five digib and a sigm.
(a) (+\.1. 21\6) + (+ 80 1) (b) (+9.286) + (- SOl)
(c) (- 9.286) + (H OI) Cd) (- 9 .2X6) + (- 80 1)

1 .20 Convert decimal + 46 and + 29 to binary. using the signed-2' \-compleme nl representation and
en oug h digil' tu accommodate the numbe rs. The n pcrfonn the binary equivalent o f
(+ 29) + (-49). (- 29) + (+49) . and(- 29) + (- 49) . Convert the ans wers back In deci mal
and verify lhal they arc correct.

1.21 If the number.. (+ 9.742)10 and (+64 1he are in sig ned magnitude formal. the ir sum is
(+ 10.383 110 and rtquire' five d igits and a ..ign, Co nvert the numbers II) signed. I O·~-eomple.

mem form and find lhe following sum..:
fa) (+ 9.742) + (+ 64 1) (b) (+ 9.142) + (-6.JI)
lc t (- 9.14!) + (+M I) tdl (- 9.142) + (- 641)

1 .22 COO\'et1 decimal 11.123 to bo!:h BCD and ASCII codes. For ASC II. an even parity bit is 10 be ap­
~nded at lhe Iefl.

1. 2 ! Represent tbe unvigned Oecnlla l numbers 8-l! and 5.'7 in RCD. and then sbo.... rbe steps 11C'Cer..­

'kil')' to fonn their vum,

1.24 Formulate 3. eigbted I:linary code for lhe decimal di~ i t" u,ingeigh t..

(a)- b. 3. I. I

Ib , b. 4 . 2.1

1 .2.5 Represcnl lhc dfi: imal numhl:r 5.1.\7 in (a) BCI>. (h j e~(e~ ,- 3 (od e. fc) 242 1 code . and (d) a
6.\ l l wde.

1.26 Find th...9\ com plement ofdecim:115. 137 and expre~<, it in 242 1 cooe . Sho.... th3.1 the result is
lhe 1"s. complement of the answer 10 tc) in Problem 1.25. This dernon-ararcs that the 2421 code
i, self-complememing .

1.27 As~i~n 3. binary code in some orderly manner to the :'l2 playing cards. Use the minimum number
ofbits.

1.28 wnre the ex presvicn "G. Hoole" in ASC II. using an e i~ lll - bil sde. Incl ude the po.: riud and the
space. Trt3.1 the leftmn,1 bil of each character as a panty bil. Each eight-bit code lohould have
e..en parily. lGc orgc Boote was a 19th (en lul) marhemaucia n. Boo lea n algebra . introduced in
the neXlchapeer. bean. his name.)

Chapter 1 Digital Systems and Binary Numbers

1 .29'" Decode the following ASCII code :

1000010 110100 1 1101100 1101100 100011111000011110100 110010111 1001 1.

1.30 The following is a string of ASC II characters whose bit patterns have been converted into hella­
decimal for com pactnes s: 7J F4 E5 76 E5.fAEF62 73 . Of the eight bus in each pair of dig its.
the leftmos t is a parity bit. The remainin g bits are the ASCII code.
(a) Convert tlv: string to bit form and decooe the ASCII.
(b) Determine the parit y used : odd or even ?

1.31 · How many printing characters are there in ASCI I? How many of them are special charac1ers
(noI: letters or numera ls)?

1-32" What bit must be com plemented 10 change an ASC II leiter from capital to lowercase and vice
versa?

1.33· Thestate of a 12·bit register is 1000 100 1011 1. What is ns contenr if it represents
(a) three decimal dig its in BCD?
(b) three dec imal digits in the excess-a code ?
(c) three decimal digib in the 84-2· 1 code ?
(d) a binary number?

1 .34 List the ASCI I code fur the 10 decimal digits with an odd parity bit in the leftmost position .

1.35 By means of a timing diagram sirnilar to Fig. 1.5. M10w the signals of the oolpUlS f and g in Fig. PI .35
as functions of the three inputs a. b. and c. Use all eight possible comb inations of a.b.:UIdc.

• b c

H '- r

FIGURE Pl.35

1.36 By mean s of a timing diagram similar to Fig. 1.5. show the signals of the outpu ts f and g in Fig.
PI .36 as functions of the two inputs a and b. Use all four possible combinations of a and b.

• b

FIGURE. P1 .36

References 3S

REFERENCES

1. CAVANAGH. J. J. 19K4 . lJigital COli/pilfer A rithmet ic. New York: .'-.k Graw-Hill.
2. MA7'lO. M. ~1 . 19K8 . CO/lll' lIter Engineering: Hardware Design. Englewood Cliffs. NJ: Pren tice ­

Hall.
1. N!:LSO:-;. V. P.. H. T. NAGLe, J. D. IRWIN. and B. D. CARROLL. 199 7. Digital Logic CircuitAnuly­

sis mtd Design. Upper Saddle River, NJ: Prentice Hall.

4 . SCHMID. H. 1974 . Decimal Computation . New York: John W iley.

Chapter 2

Boolean Algebra and Logic Gates

2 .1 I N T RO D U CTI O N

Because binary logic is used in all of toda y's digital computers and devices. the cost of the
circuits that implement it is an important factor addressed by designers. Finding simpler and
cheaper. but equivale nt. realizations of a circuit can reap huge payoffs in reducing the over­
all cost of the design. Mathematical methods that simplify circuits rely primari ly on Boolean
alge bra . Therefore , this chapter provides a basic vocabulary and a brief founda tion in
Boolean algebra that will enable you 10 optimize simple circuits and 10 understand the pur­
pose of algorithms used by software tools to optimize complex circuits involving mill ions
of logic gates .

2.2 BASIC DEFINITIONS

Boolean algebra. like any other deductive mathematica l system. may bedefined with a SCi of
elements. a set of operators. and a number of unproved axioms or postulates. A set of elements
is any collection of object s. usually having a common property. If S is a set, and x and y are cer­
tain objec ts. then x E 5 means that x is a member of the set 5 and y Ii!: 5 means thai }' is not an
element of 5. A set with a denumerable number of elements is specified by braces:
A = {I, 2. 3. 4 } indicates that the elements of set A are the numbers 1, 2, 3, and 4. A binary
operator defined on a set 5 of elements is a rule that assigns, to each pair of elements from S,
a unique element from 5. As an example, consider the relation a · b = c. We ~y that .. is a
binary operator ifit specifies a rule for finding c from the pair (a. b) and also if a, b, C E S. How­
ever... is not a binary operator if a. b E 5, if C Ii!: S.

36

Section 2.2 Basic Definitions 37

The postula tes of a mathemat ical ..ysrern form the basic assumpt ions from which it is pos­
sible to deduce the- rules. theorem s. and prope rtie s of the s),..tern . The most common po..tula tes
used to formu late vanou .. alge braic struc tures are as fol low..:

I. Closure, A se t S is closed with re..peer to a binary ope rator if. (or ever)' pair of e lements
of S. the binary o perator specifies a role for ob taini ng OJ. unique element of S. For example.
Ih~ set of natural numberv N = r1.2. J• ..a•••• } i.. closed with re..pee r to the bin ary
operator + by the rule ..of arithmetic addition. since. for any Q. b e N, there is a unique
c E N such that a + b = r, The set of nat ural numbers i.. IWI closed with respect to the
binary o perato r - by the ru les of arithmetic subtraction. because 2 - J = - I and 2.
JeN. bU1 (- I) .N.

2. Associative full' . A binary operato r '" on a "C'I S i.... aid 10 be associative whene ver

(x " y) · .: = x * (y * .:) for ullx. .". : .e S

J. Comnuaattve law. A bina ry opcrator > on a sci S i.. sa id to be commutative wheneve r

x · y = y ·x for all .\', y e S

~ . Idt'ntity element. A set S is said 10 ha ve a n ide ntity element with respect to a binary op­
eration • on S if there exi sts an ele ment r e S with the-propert y that

e· x = x· t':::: x for everyr e S

Example: The ele ment 0 is an identity element with respec t 10 the binary opera tor + on
the set of intege rs 1 • { - 3. - 2. - I. O. I. 2. 3•. .. }...ince

.r + 0 = 0 + .r = .r for anya e r

The ~1 of natural numbers. N. has no Identity ele me nt. ..ince 0 is excl uded from the set .

5. Inve rse , A set S hav ing the identity element t' with respect to a binary operator • is sa id
10 have an Inverse 'A bcncver. for every .r e S. tbere exists an element ye S such that

x"',r = t'

Example: In the set o f integers . I. and the ope rator + . with t.' = O. the inverse of an ele­
rneru a is {r-«}. since n + (- a) = O.

6. Distributive law. If • and • are IWO binary ope-rato rs on a set S• • is sa id 10 bedistrib­
uti vc over • whenever

x "'(Y ' :) = (x"'y) · (x".:)

Afield is an exa mple of an a lgeb raic structure. A field is a set o f ele ments. together with two
binary ope rators. each having propert ies I thro ugh 5 and bo th o perators combining 10 g ive
pro pert y 6. The set of rea l num be rs. together with the binary ope rators + and - . fonns the
field of real numbers. Th e fie ld of rea l numbe rs. Is the ha.\ is for ari thmetic and o rdinary alge­
bra. The operators a nd postula tes ha ve the foll owin g meaning..:

The binary operator + defines add ition .

The add itive identity is O.

38 Chapter 2 Boolean Algebra and logic Gates

The add itive inverse defin es subtraction.

The binary operator • defin es multiplication .

The multiplicative identity is I .

For a * O. the multipli cative inverse of a = Ila defi nes division (i.e.• a ' l l a = I).

The only distributive la..... applicable is that of . over +:

a · (b + c) ~ (a · b) + (a · c)

2 .3 AXIOMATIC DEFINITION
OF BOOLEAN ALGEBRA

In 1854. George 8 00le de veloped an algebra ic system now called Boolean algebra. In 1938.
C. E. Shannon introdu ced a two-valued Boolean algebra called switching algebra that repre­
sented the propert ies of bistabl e electri ca l switching circuits. For the form al definition of
Boolean algebra.e shall employ the postu lates formulated by E. V. Huntington in 1904 .

Bool ean algeb ra is an algebraic structure defined by a set of e lements. B. toget her w ith
t.....o binary ope rato rs. + and - , provided thai the follo ing (Huntington) postulates are
satisfied;

I. (a) The structure is closed w ith respect to the operator +.
(b) The structure is closed w ith respect to the operator - .

2. (a) The element 0 is an identity eleme nt w ith respect to +; thai is. x + 0 = 0 + x = x .
(b) The element I is an identity element w ith respect to -: that is. x · I = I · x = x.

3. (a) The structure is commutative with respect to +: that is. x +)' =)' + .r.
(b) The structure is commutative with respect to - : that is. x ')' =)' . x .

... (a) The operator . is distributi,·eover + : thatis.x · ()' + :) = (x ')') + (x ' ;),
(b) The operator + is distributive over - : that is. x + (y - c} = (x + y) . (x + z).

5. For every element .r e B. there exists an element x' e 8 (cal led the compl~m~nt of x)
such that (a) x + x' :::: I and tbjx - x' :::: O.

6. There exist at least two elements x; y e B such that x :;:.)'.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num ­
bers). we note the following differences:

I. Huntington postulates do not include the associa tive law. However. this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over' (i.e .• .r + (y . z) - (x + y) . (x + z» . is valid fo r
Boo lean algebra. but not for ordinary algebra.

3. Boo lean algebra does not have addi tive or multiplicative inverses: there fore. there are no
subtraction or division operations.

Sect ion 2.3 Axiom at ic Definition of Boolean Algebra 39

.a. Postulate 5 defines an operator ca lled the complement that is not ava ilable in ordi nary
algebra.

S. Ordina ry alge bra deal s with the real numb ers. which constitute an infinite se t of ele­
ments. Boo lean algeb ra dents with the as yet undefined set of clements. B, but in the
two-valued Boolean algeb ra defined next (and of interest in our SUbsequent usc of that
algebra). H is defined as a set with only two elements. 0 and I.

Boolean algebra resembles ordinary algeb ra in some res pects. The cho ice of the
symbols + and , is inte ntio nal. to fac il itate Boo lean algebraic man ipulati on s by persons
already familiar with ordinary algebra . Although one can use some knowledge from ordinary
algebra 10dea l with Boolean algebra. the beg inner must he ca reful not to substitute the rules
of ord inary algebra where they are not applicable.

It is important to d istinguish between the c lements of the set o f an algebraic structure and
the variables of an algebraic system. For example . the clements of the field of rea l numbe rs are
numbe rs. whereas variables such as a , h. c. etc.• used in ordinary algebra. arc symbo ls that
.\'Iandfor rea! numbers. Similarly, in Boolean algebra, one defines the cle ments of the SCi H, and
variables such as .r. j-, and ; are merely sym bols that represent the cle ments. At this point. it is
important to realize that . in order to have a Boolean algebra, one must show thai

1. the clements of the set 8 .

2. the rules of operation for the two binary operators. and

3. the set of elemen ts. B. together with the IWO ope rators. satisfy the six Huntington
postulates.

One ca n formulat e many Boo lean algebras, depending o n the choice of elements of fl and
the ru les of operation. In our subseq uent work , we deal only with a two-valued Boolean alge ­
bra ti.e.• a Boole an algebra with on ly two ele ments}, Two-valued Boole an a lgebra has appli­
cations in set theory (the algebra of classes) and in propo sitional log ic . Our interest here is in
the applica tion of Boo lean algebra to gme-typc circuits.

Two-Valued Boolean Algebra

A two-valued Boolean algeb ra is def ined on a set of two elements. 8 :::: {O, I}. with rules for
the two binary operators + and, as shown in the following ope rator table s (the rule for the
complement operator ls for verification of postulmc 5):

~ x y x + y

lo n o o o n o I
o I o o I I I o
I o o I o I
I I I I I I

40 Chapter 2 Boolean Algebra and logic Gates

These rules are exactly the same as the AND. OR. and NOT operations. respectively. defined
in Table 1.8. We must now show that the Huntington postulates are valid for the set 8 "" {D. I }
and the two binary operators + and ".

1. That the structure is clou d with respect to the two operators is obvious from the tables.
since the result of each operation is either I or 0 and I. 0 E B.

2. From the tables. we see that
(a) 0 + 0 = 0 0 + 1 = I + 0 = I ;
(b») ') = 1 1' 0 =0' 1 = 0.

This establishes the two identi ty elements. 0 for + and I for ' . as defi ned by postu­
late 2.

3. The commutative laws are obvious from the symmetry of the binary operator tables.

4. (a) The distriblltive law x ' (y + z) = (x · y) + (x ' e) can be shown to hold from the
operator tables by forming a truth table of all possible values of .r, y. and z. For each
combination. we derive x · (y + z} and show that the value is the same as the value of
(x 'y) + (x ',),

x y x y + x x o(r + z)

0 0 0 0 0
0 0 I I 0
0 I 0 I 0
0 I I I 0
I 0 0 0 0
I 0 I I I
I I 0 I I
I I) I I

x · y X ' x (x ' r) + (x ' z)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 I I
I 0 I
I I I

(b) The distributive law of + over' can beshown to hold by means of a truth table sim­
ilar to the one in part (a).

5. From the complement table. it is easily shown that
(a) .r + x' = I. since 0 + 0' = 0 + I = I and 1 +) ' = I + 0 = I.
(b) x - x ' = O. since 0 · 0 ' = O' I = 0 and I ' I ' = I ' 0 = O.

Thus, postulate I is verified.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, I and
O. with I 'F O.

We have j ust established a two-valued Boolean algebra having a set of two elements. I and O.
two binary operators with rules equivalent to the AND and OR operations. and a complement op­
erator equivalent to the NOT operator. Thus, Boolean algebra has been defined in a fonnal math­
ematical manner and has been shown to beequivalent to the binary logic presented heuristically
in Section 1.9. The heuristic presentation is helpful in understanding the application of Boolean
algebra to gate-type circuits. The formal presentation is necessary for developing the theorems

Section 2.4 Basic Theorem s and Properties of Boolean Algebra 41

and propert ies of the algebraic system. The two-valued Boo lean algebra de fined in this section
is also called "switching algebra" by engi neers . To emphasize the similari ties betwee n two-value d
Boo lean algebra and other binary systems , that algebra wa ... culled "'hinary logic" in Section 1.9.
From hen: on . we shall dro p the adjective "two-valued' Ir om Boo lean algebra in subsequent
discuwions.

2 .4 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALG EBRA

In Sect ion 2.3. the Hunt ington po...tulutes were listed in pa irs and designat ed by pan (a) and pan
(b l. One pari may he obt a ined from the oth er if the binary operato rs and the ide ntity elements
are interchanged . T his important properly of Boolean algebra is called the duality principle
and slates that every algebraic expre ssion deducible from the postula tes o f Boo lean a lgebra re­
mains valid if the operators and ide ntity elements arc interchanged. In a two-valued Boo lean
algebra. the ide ntity e lements and the clement s o f the se t B are the same: I and O. Th e duality
prin ciple has ma ny npplicatiuns . I f the dual of an algebraic e xpres sion is desired. we simply
interchange OR and AND o perators and replace I 's hy O's and O' s by ls.

Basic Theorems

Table 2.1 lists six theorems o f Boo lean algebra and four of its po..tulates. T he notation is slm­
plifi ed by omitting the binary ope rator whe never do ing so does not lead to confusio n. The the­
orems a nd postul ate s listed are the most basic re lationships in Boo lean alge bra . The theorem s.
like the po stu lmcs , are listed in pairs: each relation is the dual o f the one paired with it. The
pos tula tes arc basic axioms of the algebraic structure and need no proo f. Th e theorems must
be proven from the po..tulares. Proofs o f the theorems with one variab le are presented next .
At the right is listed the number of the postu late which ju..rifl es tha t particu lar step o f the
proof.

Table 2.1
Postulates and Theorems of Boolean Algebra

Postulate 2
Po ..tulare 5
Theorem 1
Theorem 2
Theorem :\. invol ution
Postulate .l , co mmu emve
Theorem a, acsoclauve
Postulate -f. d ictribunve
Theorem 5. DeMorgan
Theorem 6. absorpt ion

(a) .r + 0 '" .r
(a) x + .r" '"

Ca) .1 +.I" .t

(a) .r + I '" I
(x ')' '" .r

(a l .r + Y '")'l
(a l x + (y + .:) '" (.l + r) + :
la) .1(Y + .:) '" .l." + .l :
(a l (x + .1')' '.1'

(a l x + xy '" x

Ib) .I ' 1 - .r
Ib) x·x' '" 0
(b) I "X '= .r

(b) .1"0= 0

(b l .l.'y "')'x
(b) .fer:) '" (x.\'):
(b) .\ ... y: '" (.t + Y)(,l' + z)
(bJ (.1',1')' = \., + \
(b) .1(X + y) = .r

42 Chapter 2 Boolean Algebra and Logic Gates

THEOREM l (a) : x + x = x.

Statement

x+x = (x +x) ' 1

= (x + x)(x + x ')

= x + xx'

= x + O

THEOREM 1(b): x · x = x.

Sta tement

x 'x =xx +O

= xx + xx'

= x(x+ x')

= x · 1

= x

Just ifica tion

postulate 2(b}

5(a)

4(b)

5(b)

2(a)

Justinca tion

postulate 2(a)

5(b)

4(a)

5(a)

' (hI

Note that theore m I(b) is the dual of theorem I(a) and that each step of the proof in pan (b)
is the dual of its counterpart in pan (a). Any dual theorem can be similarly derived from the
proof of its corresponding theorem.

THEOREM 2(a): x + I = I.

Statement

x + I = I · (x + l)
~ (x + x')(x + 1)

= x + x' · l

= x + .e'

= 1

THEOREM 2 (b) : x · 0 = 0 by duality.

J ust inca tlon

postulate 2(b)

5(a)

4(b)

2(b)

5(a)

THEOREM 3 : (x')' = x. From postulate 5. we have x + x ' = I and X" x' "" O. which
together define the complement of .r. The complement of x ' is x and is also (x'}'. Therefore.
since the complement is unique. we have (x ')' = x. The theore ms involving two or three
variables may be proven algebraically from the postulates and the theorems that have
already been proven . Take. for example. the absorpt ion theorem:

Section 2.4 BasicTheo rems and Prope rties of Boolean Algebra 43

THEOREM 6(0) : , + .fYr.

SlJIh,.menl J iWincaUon

.r + .r)' x-I + .ry f'O!'lulate 1lb)

., (1 + ;\,) .,,,

.r (y + 1) 3(.)

"'" .1 '1 2(a)

= • 2(bl

THEOREM 6(b): .r (x y) "" x by duality.

The theore ms of Boole an algebra can be proven by means of truth tables. In truth tables,
both sides of the rela tion are checked to sec whether they yield identical results for all
possible combinations of the variables involved. The following (ruth table verifies the first
absorptio n theorem:

x , 3 x + xy

" 0 0 o
o I n o
I 0 0 I
I I I I

Tbe algebraic proofs of the associa tive law and lXMorgan 's theore m are long and will not
be shown here . However. their validity is easily shown ith truth tables , For example. the IJUth
tab le tor tbe liN Dl:Morgan 's theorem. (.r + yY "" x'y ' . is as follows:

.< , x + , (x , r
o 0 0 1
0 1 I 0
I 0 I 0
I I I 0

Operator Precedence

x '

" x ' , '

) 1 I
I 0 0
0 1 0
() () 0

The operator precedence for evaluating Boolean exp ress ions is (I) parentheses. (2) NOT, (3)
AND. and (~) O R, In other words, expressio ns inside paren theses must be evaluated before
all other operations. The nell. l operation thai holds precedence is the complement. and then fol­
lows the Ar\D and, finally, (he OR. As. an exa mple. consider the truth table for one of De­
Morgan' s theorems. The left "ide of the exp ression is (.f + v}'. Therefore, the express ion
inside the pare ntheses i .. evaluated first and the result then co mplemented. The righl side of

44 Cha pter 2 Boolean Alge bra and logic Gates

the expression is x'y ' , so the complement of x and the complement of y are bothevaluated first
and the result is thenANDed. Note that in ordinary arithmetic, the same precedence holds (excepl
for the complement) when multiplication and addition are replaced by A!'o1) and OR. respectively,

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an alge bra that dea ls with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
I , and the logic operation symbols. For a give n value o f the binary varia bles, the function ca n
be equ al to either I or 0" As an example, consider the Boo lean function

F] = x + y 'z

The funct ion F] is equal to 1 if x is equal 10 I or if bot h y ' and z are equal to I . F] is equal to
ootherwise. The complement operation dictates thai when y ' = I, Y ... O. Therefore. F I "" I
if x = I or if y =0 andz = I . A Boolean function e xpresses the logical re lationship between
binary variables and is evaluated by determining the binary value of me expression for all pos­
sible value s o f lhe variables.

A Boolean function can be represented in a truth table. The number o f rows in me truth
tab le is 2", where n is thenumber o f variables in the function. The binary combinations for the
truth tab le are obtained from the binary numbers by cou nting from Othroogh 2" - J. Table 2.2
shows the truth table for the function Fl ' There are eig ht possible binary combinatio ns for as­
signing bits 10 the three variables .r, y, and z. The co lumn labeled F) contains either 0 or I for
each o f these com binations. Th e tab le shows that the funct ion is eq ual to I when x = I or
when YZ :>II 0 1 and is eq ual to 0 otherwise.

A Boolean function can be transformed from an algebraic ex press ion into a circuit diagram
composed of logic gates connected in a particular structure. The logic-circuit diagram (a lso
called a schematic) for F) is show n in Fig. 2.1. There is an inverter for input)' to generate its
comple ment . There is an AND gate for the term y' Z and an OR gate that co mbines .r with y ' z.
In logic-ci rcuit diagrams. thevariables of the funct ion are taken as the inputs of the circuit and
the binary variable F1 is taken as the output of the circuit

There is onl y one way that a Boolean function can be repre sented in a truth table . However.
whe n the funct ion is in algebraic fonn. it can be expressed in a variety of ways, all of which

Table 2,2
Truth Tobin for F1 and ' 2

x r x " "
0 0 0 0 0
0 0 I I I
0 I 0 0 0
0 I I 0 I
I 0 0 I I
1 0 1 I I
1 1 0 I 0
1 1 I I 0

Sectio n 2.S Boolean Funct ion s 45

Ffc;.URE 2 .1
Gate impleme-ntallo" of F 1 '" x + ., ':

:~_--i----,D-F'
FIGURE 2.2
Impl em enta t io n of Boo lea n funct ion F1 with gates

have equivalent logic. The particula r expression used [0 represent the function will dictate the
interconnect ion of gates in the logic-ci rcuit d iagra m. Here is a key fact that motivates our usc
of Boole an algebra : By manipulat ing a Boolean ex pression accordi ng to the rule s of Boolean
algebra. it is sometimes possi ble to obtain a simp ler expre ssion fo r the same func tion and thus
red uce the number of gates in the ci rcui t and the number of inputs to the gate . Designers Me'

motivated to reduce the co mplexity and numbe r of gates because the ir effort can significa ntly
redu ce the COSI of a c ircuit. Con sider, fo r exa mple. the following Boolean function:

FZ = x 'y'.:: + .f ' y .:: + .r j -

A scbemanc of an implementa tion of this funct ion with logic gates is shown in Fig. 2.2(a l.

46 Chapter 2 Boolean Algebra and l ogic Gates

Input variables .r and y are complemented with inverters to obtain .e' and y', The three terms
in the expression are implemented with three AND gates. The OR gate forms the logical OR
of the three terms. The truth table for F2 is listed in Table 2.2. The function is equal to I when
.rvz = 001 orOl 1or when xy = 10 (irrespective of the value of z) and is equal to ootherwise.
This set of conditions produces four I' s and four O's for F2•

Now consider the possible simplification of the function by applying some of the identities
of Boolean algebra:

F2 = x' y'Z + x'YZ + xy' = x'z{y' + y) + xy ' = x ' z + xY'

The function is reduced to only two terms and can be imple mented with gates as shown in
Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both imple­
ment the same function. By means of a truth table, it is possible to verify that the two
expressions are equivalent. The simplified expression is equal to I when xz = 01 or when
xy = 10. This produces the same four I 's in the truth table. Since both expressions produce
the same truth table , they are equivalent. Therefore, the IWO circuits have the same outputs
for all possible binary combi nations of inputs of the three variables . Each circuit implements
the same identical function. but the one with fewer gales and fewer inputs 10 gates is prefer­
able because it requires fewer wires and components. In general , there are many equivalent
representations of a logic function.

Algebraic Manipulation

When a Boolean expression is implemented with logic gates, each term requires a gate and each
variable within the term designates an input to the gate. We define a literal to be a single vari­
able within a term, in complemented or uncomplemented form. The function of Fig. 2.2(a) has
three terms and eight literals, and the one in Fig. 2.2(b) has two terms and four literals. By re­
ducing the number of terms, the number of literals, or both in a Boolean expression, it is often
possible to obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of re­
ducing an expression for the purpose of obtaining a simpler circu it. Functions of up to five
variables can be simplified by the map method described in the next chapter. For complex
Boolean functions, designers of digital circuits use computer minimization programs that are
capable of producing optimal circuits with millions of logic gates. The concepts introduced in
this chapter provide the framework for those tools. The only manual method available is a cut­
and-try procedure employing the basic relations and other manipulation techniques that be­
come familiar with use, but remain, nevertheless. subject 10 human error. The examples that
follow illustrate the algebraic manipulation of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals.

l. x(x' + y) = xx' + .ry = 0 + xy = xy.

2. x + .ry = (x + x ')(x + y) = I(x + y) = x + y,

xy + x ' ;:: + y :: = xy + .r , + y::(x + x')

xy + x ' ;: + xy:: + x·y.:

Section 2.5 Boolean Functions 47

3. (x + y)(x + r') = .r + .rj- + xy' + yy' = x(I + Y + y') = .r.

~ ,

xy(1 + ::) + x' ;:(1 + y)

xy + x ' ::.

5. (x + y)(.t ' + ;::)(y + ::) = (x + y)(x ' + .:). by duality fro m function 4.

•
Functions I and 1 are the dual of each other and l) ~e dual ex press ions in co rres ponding steps.
An easie r way 10 simpli fy functio n 3 is by means of postulate 4(b) fro m Table 2.1:
(x + y)(x + y') = x +)'Y' = .r. The fourth function illustrates the fact that an increase in
the number of literals someti mes leads to a simpler fina l ex pression. Funct ion 5 is nor mini­
mized directly, bUI can be derived from the dual of the steps used 10 deri ve function 4 . Func­
tions 4 and 5 are together known a.~ the CO!lsen.tII,t theorem.

Complement of a Function

The comp lement of a function F is F' and is obtained from an interchange of Il's for l 's and
l 's for O'sin the value of F.The co mplement of a function may be derived algebraica lly through
Dejvlorgan' s theorem s. listed in f ab le 2,1 for IWO variables. Delvlorgan's theo rems ca n be ex­
tended to three or more variables . The three-variable form of the first DeMorgan' s theorem is
derived as follows. from postulates and theorems listed in Table 2.1:

(A + B + C}' = (A + x)'

= A' x '

= A' (R + C) '

= A' (B 'C)

= A'B 'C'

let B + C = x

by theorem 5(a) (DeMorgan)

subst itute B + C = .r

by theorem 5(a) (DeMorgan)

by theorem 4 (b) (assoc iative)

Debtorgan 's theorems for any number of var iab les rese mble the two-var iable case ill form and
ca n bederived by success ive substitutions similar to the method used in the preced ing derive­
tlon. These t~l,)(ems can be generalized as follows:

(A+ B+ C+ D+· " + F)' = A'B'C 'D· . . . F'

(ABe D .. . F)' = A' + B' + C' + D' + .., + F '

The ge neralized fonn of Dej-lorgan' s theorem s states that the complement of a funct ion is
obtained by interchanging AND and OR ope rator!' and co mple menting eac h literal.

48 Chapter 2 Boo lean Algebra and logic Gates

Find the complement of the funct ion s F1 = x 'y ;: ' + x 'y';: and F2 ~ x(y ';:' + yz). By ap­
plying DeMorgan '!io theorems as many times as necessary. the complements art obtained as
follows:

Fj = (x 'yz ' + _,'y'z)' = (x 'yz')'(x'y'z)' = (x + .'" + z)(x + Y + z')

Fi = [x(y ' z' + YZ)J' = x' + (y't + y<:)' = x' + (y' <:')' (yz)'

: x ' + (y + ' Hy' + , ')

=x ' + y z' + y'Z

•
A simpler procedure for deriving the complement of a function is to take the dual of the func­

tion and complement each litera l. This method follows from the genera lized forms of Dej dor­
gan's theorems. Remember that the d ual of a function is obtai ned from the interchange of AND
and OR operators and I's and D's.

Find the complem ent of the functions F. and F2of Example 2.2 by taking their duals and com­
plementing each litera l,

I. F1 = x'yz' + x 'y' z.

The dual o f F. h. (x' + .'1 + z')(x' + y' + z).

Co mplement each literal : (x + y' + z)(x +). + ;:') = Fl.
1. F2 = x (y ' z' + j'z}.

The dual o f F2 is x + (y' + z')(y + z).
Complement each litera l: x' + (y + z)(}" + z') = Fi.

•
2 .6 CANONICAL AND STANDARD FO RM S

Mlnternu and Maxterms

A binary variable may appear either in its normal forrn (x) or in its complement form (x ' }.
Now consider two binary variables x and y combined with an AND ope ration. S ince each vari­
able may appear in either form, there are four poss ible co mbinations: x' y', x'y. xy ' , and x)'.
Each of these four AND term s is called a minterm, or a standard product. In a similar manner.
n variables can be combined to form 2/1 minrerms. The 2" different mintenns may be determi ned
by a method similar to the one shown in Table 2.3 for three variables. Th e binary numbers
from 0 to 2" - I art listed under the 11 variables. Each mintenn is obtained from an AND term
of the n variables. with each variable bein g primed if the corresponding bit of the binary num­
ber is a 0 and unprimed if a I . A symbol for each minterm is also shown in the tab le and is of

Section 2.6 Canonical and Standard Forms 49

Tabl e 2.1
Mint~rms and Max rerms for Three Binary Variab/~s

Mlnterms Milixterms

• y z Term Designation Ter m De signat ion

0 0 0 x'y' : ' /110 .f + ," +: AI,
0 0 I .t'y' : ni l x + }' + c' AI,
0 I 0 X',l':' nl2 x + y' + : M~

0 I I .t'y: m) .r + ,\" + : ' AI,
I 0 0 .1) ':' m, .\., + Y + : 'I,
I 0 I xy'z m, x' + y + c' AI,
I I 0 xyz' m, x'+y'+: AI,
I I I X) ':; m, x' + y' + c' 'I,

Table 2.4
Functions of Three Variab l~s

• y z Functlon'1 Function 12

0 0 0 0 0
0 0 I I 0
0 I 0 0 0
0 I I 0 I
I 0 0 I 0
I 0 I 0 I
I I 0 0 I
I I I I I

the form m j ' where the subscript) denote s the decimal equi valent of the binary numbe r of the
minrerrn des ignated,

In a similar fashion. 11 var iables formin g an OR tern}. with each variable being primed or
unprimed. pro vide 2" po ssible combinations. calle d IIUJxterms. or standard sum.~ , The eight
maxrerms for three variables. together with their symbolic designat ions. are listed in Table 2,3.
An) ' 2" max terms for fI variab les may be de te rmined similarly. It is important to note thai
(I) each maxterm is obtained from an OR term of the 11variables. with each variable being un­
primed if the corresponding bit i.. a 0 and primed if a I. and (2) eac h maxterm is the co mple­
ment of its corresponding mintenn and vice versa.

A Boolean funct ion can be expr essed algeb raically from a given truth table by forming a
minterrn for each combination of the variables that produces a I in the function and then tak­
ing the OR of all those terms. For example. the function I t in Table 2.4 is dete rmined by ex­
pressing the combinations 001. 100. and I I I as .r'y'z. .ev'z'. and X)"z. respectively, Since each
one of these minterms results in 11 = I. we have

I I = .t 'y ' ;: + .tY'Z' + .ty: = ni l + 1114 + 111 7

50 Chapter 2 Boolean Algebra and Logic Gates

Similarly, it may be eas ily verified that

f2 =.ryz + xy' z + xYZ' + xYZ ="'3 + 11/5 + 11I6 + "'1

These examples demonstrate an important property of Boolean algebra: Any Boolean function
can be expressed as a sum of rnlnterms (with "sum" meaning the ORing of tenns).

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing
those terms. The complement of / 1 is read as

/i = .t' y' z' + x' yz' + x 'yZ + xy' z + .tyZ'

If we take the complement of Ii. we obta in the function / t:

/1 = (x + y + z)(x +).' + z)(x' + y + z')(x' + y' + a)

= M'O·M'2· M3· Ms· M6

Similarly. it is possible to read the expression for f2 from the table:

h = (x + y + z)(x + y + z')(x + r' + z)(x' + y + z)

= MOMtM2M4

These examples demonstrate a second property of Boolean algebra: Any Boolean function can
be expressed as a produc t of ruaxterrns (with "product" meaning the ANDing of terms). The
procedure for obtaining the product of maxterms directly from the truth table is as follows:
Form a maxterm for each combination of the variables that produces a 0 in the function. and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minrerms
or product of maxterms are said to be in canonical/ ann.

Sum of Mlnterms

Previously. we slated that. for " binary variables. one can obtain 2" distinct minterms and that
any Boolean function can be expressed as a sum of rninterms. The mintenn s whose sum de­
fines the Boolean function are those which give the ls of the function in a truth table. Since
the function can be either 1 or 0 for each minterm. and since there are 2" minterms. one can
ca lculate all the functions that can be formed with n variables [Q be 2211. It is sometimes con­
venient to express a Boolean function in its sum-of-minterms form. If the function is not in this
form. it can bemade so by first expanding the expression into a sum of AND terms. Each term
is then inspected to see if it contains all the variables. If it misses one or more variables. it is
ANDed with an expression such as .r + x', where .r is one of the missing variables. The next
example clarifies this procedure.

Express the Boolean function F = A + R'C as a sum of minrerms. The function has three
variables: A. R. and C.The first term A is missing two variables: therefore.

A ~ A(B + 8 ') = A8 + AB'

Section 2.6 Canonical and Standard forms 51

This function is still missing one variable, so

A = AB(C + C) + AB' (C + C')

= ABC + ABC' + AB'C + AB'C'

The second renn B'C is missing one variable: hence.

B'C = B'C(A + A') = ,I B'C + A' B'C

Combining all terms. we have

F = A + B'C

= ABC + ABC + AB'C + AWe ' + A' B'C

Bur AB'C appears twice. and according 10 theorem I (x -+ .r -- .\'), it is possible 10 remove
one of rho..e occurrences. Rearranging the mintcrms in a..cending order. we finally obtain

F = A' B'C + AH'C + AB'C + ABC' + ABC

•
When a Boolean function is in its sum-ot-minter mstorm. it is sometimes convenient to express
the function in the fo llowing brief notation:

F(A.B. C) - ~ (1.4 .5 . 6 . 7)

The summation symbol ~ stands for the DRing of terms; the numbers following it are the
mintcrms of the function. The letters in parentheses follo wing F form a list of the variables in
the order taken when the minrerm is converted 10 an AND term.

An alternative procedure for deriving the minterms of a Boolean function is to obtain the
truth table of the function directly from the algebraic expression and then read the minrerms
from the truth table. Con..ider the Boolean function given in Example 2A :

F ::$ A + H'C

The truth table shown in Table 2.5 can be derived directly from the algebraic expression by list­
ing the eight binary combinations under variables A. B. and C and inserting ls under F for those

Tab le 2 .S
Truth TobIe for F = A + H'C

A B (f

0 0 0 0
0 0 I I
0 I 0 0
0 I I 0
I 0 0 \
I 0 I I
I I 0 I
I I I I

52 Chapter 2 Boolean Algebra and logic Gates

combinations for which A = I and BC = 01. From the truth table, we can then read the five
mintenns of the function to be 1, 4, 5, 6. and 7.

Product of Maxterms

Each of the 22
/1 functions of n binary variables can bealso expressed as a product of maxterms.

To express a Boolean function as a product of maxterms, it must first be brought into a form
of OR terms . Thi s may be done by using the distributive law, x + yz = (x + y)(x + z) .
Then any missing variable x in each OR term is ORed with xx' . The procedure is clarified in
the following example .

Express the Boolean function F "" xy + x' z as a product of maxterms. First, convert the func­
tion into OR term s by using the distributive law:

F = xy + x 'z = (xy + x')(xy + z)
~ (x + x')(y + x')(x + ,)(y + z)

- (x' + y)(x + ,)(y + a)

The function has three variab les: x. y. and z, Each OR term is missing one variable; therefo re,

x' + y "" x' + y + zz' = (x' + y + z)(x' + y + a')
x + z = x + Z + yy' = (x + y + z)(x + y' + a)
)' + Z "" Y + z + xx ' = (x + y + z)(x' + y + z)

Combining all the terms and removi ng those which appear more than once. we finally obtain

F "" (x + y + z)(x + y' + z)(x' +)' + z)(x' + y + z')

"" MoM2M4Mj

A convenient way to expre ss this function is as follows:

r t». y,a) - nro, 2, 4. 5)

The product symbol, Il , denotes the ANDing of maxterms: the numbers are the maxterms of
the function.

•
Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms
missing from the original function . This is because the original function is expressed by those
minterms which make the function equal to 1, whereas its complement is a I for those mintenns
for which the function is a D. As an example, consider the function

F(A,B , C) ~ ~ (1 ,4 , 5,6.7)

This function has a comp lement that can be expressed as

F' (A , B, C) = I(D, 2. 3) = rno + '"2 + m3

Sect ion 2.6 Canonical and Standard Form s 53

Now. if we take the complement of F' by DeMorgan' 'i,theorem . we ob\ain F in a dif ferent form ;

F = (mo + 1112 + 11/;) ' = I1lU'm 2' /IIj = .\-fnlth "'l.; = n (O.2, J)

The last conversion follo ws from thedefinitionof rninterms and maxterms a" shown in Table 2.3.
From the table . it is d ear tha i the following relation holds:

m) = ,1,,11
That is. the maxtcmt with subscript} is a co mplement of the mi ntenn with the same subsc ript
} and vice versu.

The last exa mple demon strate s the conversion between a function ex pressed in sum -of­
mlnrerms form and its equivale nt in produ ct-of-maxtcrm s form . A similar argument wil l show
tha i the conversio n between the product of maxtc rms and the sum of minterms is similar. We
now state a genera l conve rsion proced ure: To co nvert from one cano nical form to another. in­
terc hange the symbols ! and n and list those num bers missing from the or igi nal form. In
order to find the missing terms. one must realize I llil l the total num ber of mintcrmv or r nuxtcrms
is 2". where " is the number of binary variables in the functi on .

A Boolean funct ion can be conve rted from an algebraic expression to a product of mall­
tcnn.. by means of a truth table and the ca nonica l conversion proc ed ure. Co nside r, for exam­
ple. the Boo lean expression

F = xy + x ' .:

First. we de rive the truth table of the function. as shown in Tahle 2.6. The l 's under F in the
table are determined from the combination of the variab les for which .l ,\' = I I or x ;: = a I .The
minrermsof the function are read from the truth table to he J. 3. 6. and 7. The funct ion expressed
a.. a sum of mintenns i"i

f ·(x. y• c} = ~ (I , J. 6. 7)

Since there is a total of eig ht mililenns o r marterm s in a function of three variables, we deter­
mi ne the missing.terms to be 0.2. 4. and 5. The funct ion expressed as a prod uct of rnaxtcrm s i..

F(x. y. :) = n (O.2. •. 5)

the same answer as obtained in Example 2.5 .

Table 2 .6
Truth Tobie fo r F = xy + IC 'Z

• y z F

0 0 0 0
0 0 I I
0 I 0 0
II I 1 1
I II 0 II, II \ l\
I I l\ I
I I I I

S4 Chapter 2 Boolean Algeb ra and logic Gates

Standard Forms

The two canonical forms of Boolean algebra are basic forms tha i one obt ains from reading: a
given function fro m the truth table . Tbese forms are very se ldom the ones with the leasl num ­
ber of literals. because eac h minterm or maxterm must con tain. by defin ition. all the variables.
either com plemented or uncomplemented.

Another way 10 express Boolean functi ons is in standard form. In this con figuration. the
terms that form the function may contain one . two, or any number of literal s.There are N,O types
of standa rd forms: the sum of products and prod ucts of sums.

The sum of products is a Boolean expression containing AND term s, called product tnms.
with one or more literals eac h. The sum denotes the DRin g of these terms. An exam ple of a func­
tion ex pressed as a sum of products is

FI = Y' + xy + x'yz'

The expression has three product term s. with o ne. two. and three literals. Th eir sum is. in ef­
fee t. an OR operation.

The logic diagram of a sum-of-prod ucts expre ssio n consists of a group of AND gales fol ­
lowed by a singleOR gute. This configuration pattern is shown in Fig. 2.3(a). Each product term
requ ires an AND gate . except for a term with a single literal. The logic sum is formed with an
OR gate whose inputs are the outputs of the AND gates and the single literal. It is assumed that
the input variables are directly available in their complements. so inverters are not included in
the diagram. Thi s circuit configuration is referred to as a two-level implementation,

A product ofSilins is a Boolean expression containing OR terms. called sum tt'n ns. Each term
may have any num ber o f litera ls. The product denotes the ANDing of these terms. An e xam ­
ple of a function expressed as a product of sums is

F, ~ x(y' + ,)(x' + ,. + , 'j

This expression has three sum terms. with one. two. and three literal s. The product is an Al'D
operation. Th e use of the words product and sum stems from the similarity of the AA"D oper­
arionto the arithmetic product (multiplication) and the similarity of the OR opera tion to the arith­
met ic ..urn (addition). The gate structure of the product -of-sums expression con sists of a group
o f OR gates for the sum term s (except for a single literal). followed by anANU gate. as shown
in Fig . 2.3(b). Th is standard type of expression results in a two- level gat ing structure .

,.--~
) .

z - """t-_'

,._ - - - ..,

;'=::[::::)-~==t=: F,,. _ f---

, _-r--,
,

(a) Sum of Products

FIc;UR£ 2.)

Two-level Implementation

., - - --,

(b) Prod uct of Sums

Sect ion 2.7 Other logic Operations SS

la) AB .. Cl D + E)

f iGURE 2 .4
Three- and twc-jevet lmpte mentaucn

A_ ...r- ,
B

~ =:[=)-~=:[::::
c - ...r-,
F.

tto)A B + CD ... CE

F,

A Boolean (unction may he e xpressed in a non standard form . For exa mple. the funct ionf,= AS + C(D + f:)

is nei ther in sum-of-prod ucts nor in product-of-sun» form . The implemen tatio n of this ex ­
pression is shown in Fig . 2.4(a) and requ ires two A:'oJD gates and IWOOR ga tes. There are three
levels of gating in this circuit. II can be c hanged to a standard form by using the distributive
law to remove the paren theses:

F.1 = AS + C(D + £) = AH + CD + CE

The sum-of-prod ucts ex press ion is impl ement ed in Fig. 2Alb l. In gene ral. a two-level imple­
mentation is preferred bec ause it produces the least amount of delay through the gale.. when
the signa l propagates from the inputs to the ou tput. However. the numbe r of input s to a given
ga te might not be pract ica l.

2.7 OTHER LOGIC OPERATIONS

When the binary operators AND and O R are placed betwee n two variables •.\ undv. they form
IWO Boo lean function s. .r "," and .' + .". respectively, Previously we ..rated that there are 2211

functi ons for 11 binary variables. Th us. for IWO variables. II = 2. and the number of possible
Boo lean funct ion.. is 16. Therefore. IheA..'\JD and OR function s an: only 2 of a 101011 o f 16 pus­
sible functions fo rmed with IWObinary variab les. II would be instructive 10 find the other 14
functions and inve stigate thei r prope rties.

The truth tables for the 16 functio ns formed with l WO binary variables are listed in Table 2.7.
Each of the 16 co lumns. ' 010 FI ~ ' represents a truth table of one possib le function for the two
variables, .r and y. Note thai the functions are de ter mined from the 16 binary combinations that
can be as..igned 10F.The 16 functions ca n be expressed algebraica lly by mean s of Boolean func­
lion s. a.. is sho wn in the first co lumn of Table 2.R. The Boolean expressions listed are simpli­
fled to thei r minimum number of literals.

Althou gh each function ca n be e xpressed in terms of the Boo lean ope rators AND. OR. and
f'OT. tbere is no reason onecannota...sign special operat or symbols for expre..... ing theoihc r tunc­
lions. Suchoperator symbols are li..red in the secondco lumn of Table 2.8, However. of all the new
..ym bol-, ..hew n. only the e xclu..ive-O R symbol . ttl, is in co mmon use b)' digital de...igncrs,

56 Chapter 2 Boolean Algebra and logic Gates

Table 2 .7
Truth Tabl~j for the' 6 Functions of Two Binary Variables

• y F, F, F. F. F. F, F. F, F. F, F.. F" Fu F" F,. F"

0 0 0 0 0 0 0 0 0 0 I I I I I I I
0 I 0 0 0 0 I I I I 0 0 0 0 I I I
I 0 0 0 I I 0 0 I I 0 0 I I 0 0 I
I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0

Ta ble 2 .8
Booleon Express/ons for the 76 Functions of Two Variables

Operator
Boolean Functions Symbol Name Comments

Fo '" 0 Null Binary co nstant 0
F[;; .ry X'y AND xand y
F2 '" xy' "" Inhibit ion .r, but not)'
F3 ,. x Tran sfer •
F4 '" x'y }/x Inhibition y, but not x
Fs "")' Transfer y
F/) - xy ' + x ')' xED)' Excl usive-Og, x or) ; bUI nm both
F7 - x + y x +y OR xor J
Fa '" (x + y)' x ! y NO R Not-OR
F9 = X)' + x ')" (x e y)' Equivalence .r equals),
FlO = Y' y' Complement Not)'
F I t == X + s: xC)' Implication If)~ then x
Fl2 - x· x' Complement No..
F I3 - X' +)' x::Jy lmplicanon If x: then)'
Fl ~ "" (A)')' .1"1)' NAND Noc·AND
F1S "" I Identity Binary constant I

Each of the functions in Table 2.8 is listed with an accompanying name and a comment that
explains the function in some way. The 16 functions listed can be subdivided into ihree categories:

I. Two functions that produce a constant aor I.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND. OR.
NAND. NOR. exclusive-OR. equivalence. inhibition. and implication.

Constants for binary functions can be equal to only I or O. The complement function pro­
duces the complement of each of the binary variables. A function that is equa l to an input vari­
able has been given the name transfer. because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary opera tors. two (inhibi­
tion and implication) are used by logicians. but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are used extensively in the design of digita l systems.

Section 2.8 Digit al logic Gates 57

The NOR function is the co mpleme nt of the OR function. and its name i"i an abbrevia tio n
of Iw t·OR. Sim ilar ly. NAND is the compleme nt of AND and is an abbreviation of /lot -AND .
The exclusive-OR. abbrevia ted XOR. is simila r 10 OR . but exc ludes the combination of both
.r and y bei ng equal to I ; it hold s only whenr and." di ffer in value. (It is somet imes referred
to a, the bin ary difference opera to r.I Equ ivalence is a function tha t is I when the two binary
variables are eq ual Ii.e.• when both are ()or both are I). The exclusive-OR and equivalence func­
tions arc the complements of each other, Thi s can be eas ily verified by inspec ting Table 2.7:
The truth table for exclus ive-OR is F6 and for eq uivale nce is 1-"9 . and these two function s are
the complemen ts of eac h other. For this reason . the eq uivalence function is ca lled ex clusive ­
:"lOR. ab breviated XNOR.

Boo lean algebra. as defin ed in Section 2.2. ha ... two hinary o perators . which we have ca lled
AND and OR. and a unary opera tor, SOT (complcmenn. From the definitions. we huve deduced
a number of prope rties of these operators and now have defined other binary ope rators in tenus
of the m. There i... nothing un ique abo ut thi s procedure . We co uld ha ve j ust as well starte d with
the o perator NOR (l). for ex ample. and later de fined AND . OR. and NOT in terms of it. There
are . nevertheless. 800d reasons for introd uci ng Boo lean algebra in the way it has bee n intro­
duced . The:concep ts of "and." "or:' and "not" are fam iliar and are used by people to express
evcryda y log ical ideas. Moreo ver. the Huntington postulate s refl ect the dual natur e of the a l­
ge bra. em phasizin g the sy mmetry of + and' with respec t 10 cucb other.

2 .8 D IGITAL lOG IC G ATE S

Since Boo lean funct ions arc expresse d in terms of AND. OR . anti NOT operations. it is easier
to imple ment a Boolean function with these type of gates. Still. the possibility of co nstruc ting
gates for the other logic o perations is o f practical interes t. Factors 10 be weighed in conside r­
ing the construction of o ther types of logic gates are (I) the feasibili ty anti ecollomy of producing
the gate with physical co mponen ts. (2) the poss ibility of cxtend ing the gale 10 more tha n two
inputs. (3) the basic prope rties of the binary operator. such as commutativity and associativi­
ty. anti (4) the abil ity of the: gate to implement Boo lean funct ions atone or in co nj unction ith
other ga les.

Of the: 16 funct ions defi ned in Table 2.8. two are equal to a constant and four are:repeated.
The re are only 10 functio ns le ft to be conside red as cand idates for logic gates . Two-c-inhibi ­
tion and implication- are not co mmutative or associative and thus are imp ract ical 10 use as stan­
da rd log ic ga tes. Th e o ther cigb t-c-complemc m. transfe r. AND. OR . NAN D. I\'O R.
excl usive- OR. and eq uivale nce- are used as standard gates in d igita l design .

The graphic sy mbo ls and truth tables of the eig ht gates are sho wn in Fig. 2.5. Each gate has
one o r IWO bi nary input variab les. designated by .r and y. and one binary o utput varia ble. des­
ign ated by F. The AN D. OR . and inverter ci rcuits were defined in Fig . 1.6 . The: invert er ci r­
cuit inve rts the logic sense of a binary variab le. prod ucing the NOT. or co mplement. function.
The sma ll circle in the o utput of the graphic ...ymbol of an inverter (referred to as a bllbble)des­
ign arcs the log ic complement. The triangle symbol by itself designates a buffer cir cuit . A buffer
produces the transfer function. but doe s not produ ce a logic ope ration. since the binary va lue
of the output is equal to the bina ry va lue (11' the: input. Thi s ci rcuit is used for po wer amphfl ­
cat ion of the sig nal and is equivalent to two inve rters co nnec ted in casc ade .

58 Chapter 2 Boolean Algebra and logic Gates

G raphic Algebraic
~arne ')"Dlbol function

Trulh
table

x y F

0 0 0
0 I 0
1 0 0
1 I 1

x y F

OR

Inverter

Buffer

X~F F -x + y
Y~

x-----{)o--- F F - x·

x---t>--F F -x

o 0 0
o 1 1
1 0 1
I 1 1

~:I ~

x y F

:-lAND x l~~ F F .. (xy)' 0 0 1
y ~"$~ . ' 0 1 1

1 0 1
1 1 0

x y F

x~ F .. (x y)' 0 0 INO R ' FY . 0 I 0
I 0 0
I I 0

x y F

Exciush'e·OR x~ F - x,·' + x'y 0 0 0
(XOR) ,,-~. F

- x $ y 0 I IY ~

I 0 I
I I 0

x y F

Exclusive-NO R
x~ F .. xy+x 'y' 0 0 1or ~<,. F - (x ffi y)' 0 1 0equivalence
y .~..,

1 0 0
1 I I

FIGURE 2.5
Dlg ltal log lc gates

Sect ion 2.8 Digit al l og ic Gates 59

The NA ND function is the co mplement of the AN D funct ion. as ind icated by a graphic
symbol that cOl\l;ists of an AN D ~r<lphk symbol fo llowed by a small circle. The r-;OR function
is the complement of the OR funct ion and uses an O R graphi c symbol followed by a small cir­
cle. NAND and NO R gates arc used extensively as standard logic gates and nre in fact far more
pop ular than the AND and OR gates. This is because NAND and NOR gates arc eas ily co n­
struc ted with transistor ci rcuits und because d igita l c ircuit s can he cavily imple mented with
them.

Th e ex clus ive -O R gate has a graphic symbol similar 10 that of me OR gate . except for
the add itional curved line on the input side . The equ ivalence . or exclusive-NOR. gate is the
complement of the exclus ive-Og. as ind icated by the small circle on the o utput side of the
graphic symbo l.

Extension to Multiple Inputs

The gate s show n in Fig . 2.5-except for the inverte r and buffer-s-can he ex tended to ha ve
more tha n two inputs. A gate can he e xte nded 10 have multiple inputs ift he binary operation it
represents is commutative and associa tive. The ASD and O~ ope ratio ns. defined in Boolean
alge bra. possess these two properties. For the OR functio n. we have

x + y = y + .t (c~lmm\ltati ~e)

and

(x + .\.) + c = .r + (y + =) == .r + y + :: (assoc iative)

which indicates that the ga te inputs can re interchanged and that the OR funct ion can beex­
tended 10 three or more var iables.

The NA:"IlD and NOR functions are com mutative . and their gates can be extended to have more
than two inputs. provided that the definition of the operation i ~ modified slightly. The difficulty is
that the NAND and NOR operators arc not associative (i.e.. (x ! y) ! = #- .r 1 (y ! z)). a....huwn
in Fig. 2.6 and the follo wing equations;

Ix j v) I , ~ [Ix + v)' + , I' ~ Ix + y), ' ~

.r I Iy I :) = Ix + (y + c)'!' = x ' ly + c) =

x : + y:'

v'v + x ' ;::

To ove rco me thi s difficulty. we defi ne the multiple NO R (or NAN D) gate as a co mple mented
O R (or AND) ga te. Thus, by de finition. Vieha ve

.r ! y ! t: == (x + y + =)'

of Ty T:. = (xy:.)'

The graphic symbols (or the three -input gates are shown in Fig . 2.7 . In writing ca..ended NO R
anJ NAN D o peratio ns. one must use the correc t parenthese s 10signify the proper seque nce of
the gates. To demon strate this principle. consider the ci rcui t of Fig . 2.7(c). The Boolean func­
lion for the ci rcuit must hewritte n as

F = IIA BC)' (DF.)']' = ABC + DF.

60 Chapter 2 Boolean Alg ebra and logic Gate s

, _J"~_

,--L:::Y--,
, ---,/"!,>)o-- (xJ. y) ! z ,. [r + y)z'

--------fi0~Jt~>· p..--xJ.(y! z) - x'(y + z]

FIGURE 2.6
Demonstrat ing the nonassociativity of the NORoperato r: (x ! y) ! z >F x ! (Y! z}

; ~ (x + y +z)'z .:".,.,

(a) 3-input ~OR gale

D-==
E --\:L=

; I ::~i:~;i~ (x,") 'z :!f!.:?:?F'

(b) 3-input :-;"Al\""O gate

F '" « A BC)' . (D£ IT - ABC + DE

(c) Cascaded :"olA~D gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gat es

The second expression is obtained from one of OeMorgan's theorems. It also shows that an ex­
pression in sum-of-products form can be impleme nted with NAN D gates. (NAND and NOR
gates are discussed further in Section 3.7.)

The exclusive-O R and equivalence gates arc both commutative and associative and can be
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon
from the hardware standpoint. In fact, even a two-input function is usually constructed with oilier
types of gales. Moreover, the definition of the function must bemodified when extended to more
than two variables. Exclusi ve-OR is an odd function (Le .• it is equal to I if the input variables
have an odd number of I 's). The construct ion of a three-inp ut exclu sive-OR function is shown
in Fig. 2.8. Thi s funct ion is normally implemented by cascadi ng two-inpu t gates, as shown in
(a). Graphically, it can be represented with a single three-input gate, as shown in (b). The truth
table in (c) clearly indicates that the outpu t F is equal to I if only one input is equal to I or if

Section 2.8 Digital l og ic Gates 6 1

:=D-----1
:~F-X$y e:

(al U~ing 2.inpul ga lC:~

{~F. "t $ Y E9 :
(b) y-ln pur gate

, n-o 0 0
0 0 1
0 I 0 I
0 I I 0
I 0 0 I
I 0 I 0
I I 0 0
I I I I

(el Truthtable

FIGURE 2.8
Three -Input exciusive·O Rgate

all three inputs are equal to I (i.e., when the total numbe r of I 's in the input variables is odd).
(Exclusive-O g gales are discu ssed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inpu ts and OUlpUISof an)"gate bas one of two values. except durin g
transition . One signal value repre sent s logic 1 and the other logic O. Since (WO signal values
are assigned to two logic values. there exist two different ass ignments of signallevel to logic
value. as shown in Fig. 2.9. The higher signal level is designated by H and the lower signal
level by L. Choo sing the high-level H to represent logic I defines a positive logic sys tem.
Choosing the low-level L to represent logic I defines a negative log ic sys tem. The terms posi­
tin ' and negative are somewhat misleadin g. since both signals rna)"be pos itive or both may
be negative.h is not the actual values of the signals that determine the t)"PC of logic, bUI rather
the ass ignment of logic values 10 the relative amplitudes of the two signal levels.

Hardware digital gates are defined in term s of sig nal ..-a lues such as H and L. It is up to
the user to decide on a positive or negative logic polarity. Consider. for example, the elcc ­
tronic gale shown in Fig. 2.1Ofb). The truth table for this gate is liMed in Fig. 2. IO(a). It
specifies the physical behavior of the gate when H is J volts and L is 0 vol ts. The truth table
of Fig. 2.I O(c) assumes a positive logic assignment. with H ;: I and L = O. Thi s truth table
is the same as the one for the AND opera tion. The graphic symbol for a positive logic Af\D
gate is shown in Fig. 2.lO(d) .

Logic Signal
value value

~
H

0 L

Logic
value

Signal
value

(a) Posinv e logic

fiGURE 2.9
Signal assignment and logic po larity

(bJSc:pli\ 'c: logic

62 Chapter 2 Boolean Algebra and Logic Gates

x y z

L L L
L H L
H L L
H H H

(a) Truth table
with Hand L

(b) Galt: block diagram

x y z

0 0 0
0 1 0

~
1 0 0 x
1 1 1 y

. ,
(c) Truth table for (d) Positive logic AND gate

positive logic

x y z

I I
I 0
o 1
o 0

1
I
1
o

(e) Truth table for
negative logic

(f) Negative logic OR gate

FIGURE 2.10
Demo nstration of positive and negative log ic

Now consider the negative logic assignment for the same physical gate with L = 1 and H = O.
The result is the truth table of Fig. 2. IO(e). This table represents the OR operation, even though
the entries are reversed. The graphic symbol for the negative-logic OR gate is shown in Fig.
2.10(f). The small triangles in the inputs and output designate a polarity indicator, the presence
of which along a terminal signifies that negative logic is assumed for the signal. Thus, the same
physical gate can opera te either as a positive-logic AND gale or as a negative-logic OR gale.

The conversion from positive logic to negative logic and vice versa is essentially an oper­
ation that changes J's to O's and O's to t's in both the inputs and the output ofa gale. Since this
operat ion produces the dual of a function. the change of all terminals from one polarity to the
other results in laking the dual of the function. The upshot is that all A~1) operations are con­
verted to OR opera tions (or graphic symbols) and vice versa. In addition, one must not forget
10 include the polarity-indicator triangle in the graphic symbols when negative log ic is as­
sumed. In this book, we will not usc negat ive logic gates and will assume thai all gates oper­
ate with a positive logic assignment.

Section 2.9 Integrated Circuits 63

2 .9 INTEGRATED CIRCUITS

An integrated c ircuit (abbreviated Ie) is a silico n semiconductor crystal. call ed a chip. containing
the electron ic component s for con..tructing digital gate... The variou s gates are interconnected
inside the chip to form the requ ired circuit. The chip is mounted in 3. cer amic or plastic co n­
tainer, and co nnections are welded to external pi ns to fo rm the integrated circuit. The number
of pins may range from Jol on a ..mall IC package to seve ral thou sand on a larger package.
Each Ie has a numeric designation prin ted on the surface of the package for identificati on .
Vendors provi de data books , catalogs. and Intern et wcbsue s that co ntain description.. and in­
formation abou t the IC", that the)' manu fac ture .

Levels of Integration

Dig hal K s arc often categ orized acco rding to the complexity of (heir circ uits. a.. mea..urcd by
the numbe r of logic gates in a single package . The di fferen tiation betwee n those chips which
have a few internal ga les and those having hundr eds of thousands of gates is made by cus­
tern ary re ference to a package as being ei ther a small- . mediurn -, large-, o r very large-scale in­
tegration device.

Small -scale integra /ion ISS I) devices co nta in several inde pende nt gates in a s ingle pac k­
age . The input s and outputs of the gates are co nnec ted directly 10 the pin s in the pac kage . Tbc
number of gates is usuall y fewe r than 10 and h limited by the num ber of pin s avail able in
Ihe Ie.

Medium -scale integrano« (~1S I) devices have a co mplexity of approx imately 10 to 1.000
gates in a single packa ge. They usually perform specific elementary dig ital operations. MSI dig­
ital function... are introdu ced in Chapter -sas decoders. adders. and multipl exe rs and in Ch apter
6 a.. registers and counters.

Large-scale integration ILSII devi ce .. contain thousands of gat es in a single pack age. They
include digital systems such a.. proce ssors. memory chips . and programmab le logic devices.
Some LSIcomponents are presented in Chapter 7.

\ 'fol)" large-scale integration lVLSI) device.. contain hundred of thousands of gates within
a single package . Examples arc large memory arrays and complex microcomputer chips. Be­
ca use of their small size and low co ...1. VLSI devices have revolutionized the co mputer system
design technology, g iving the designer the capability to create struc tures that were previou sly
uneconomical to build .

Digital logIc Families

Digi tal integ rated circuits arc claified not only by thei r co mplex ity or log ical ope rati on. hut
also by the spec ific cire uittechnology 10 which they belo ng. 111e ci rcuit tech nology i..referred
to a.. a digital logic fa mi!.\" Each logic family ha.. its uwn ba...ic elec tro nic circuit upon which
more complex digital circuits and component!'> are developed. The basic circuit in each tec h­
nology is a NA :'ol J). KOR . or inverter gate. The e lectron ic co mponents em ployed in the co n­
struction of the basic circuit are usuall y used to name the technology. ~1an)' different logic

64 Chapter 2 Boolean Algebra and logic Gates

families of digital integrated circuits have been introduced commercially. The follo wing are the
most pop ular:

TIL
ECL
MOS

CMOS

transi stor-transistor logic;

emitter-co upled logic;

metal-oxide semiconductor;

complementary metal-oxide semiconductor.

TIL is a logic family that has been in use for a long time and is considered to be standard.
ECl has an advantage in systems requiring high-speed operation. MOS is suitable for circuits
that need high component density, and CMOS is preferable in systems requiring low power con­
sumption, such as digital came ras and other handheld portab le devices. Low power consump­
tion is essential for VLS I design; therefore, CMOS has become the dominant logic family,
while TIL and ECL are declining in use. The basic electronic digital gale circ uit in each logic
family is analyzed in Chapter to. The most important parameters that are evaluated and com­
pared are discussed in Section 10.2 and are listed here for reference:

Fan-out specifies the number of standard loads that the output of a typical gate can drive
without impairing its normal operation. A standard load is usually defi ned as the amount of cur­
rent needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.
Power dissipation is the power consumed by the gate that must be available from the power

supply.
Propagation delay is the average transition delay time for a signal to propagate from input

to output. For example , if the input of an inverter switches from 0 to I , the output will switch
from I to 0, but after a time determi ned by the propagation delay of the device. The ope rating
speed is inversely proportional to the propagation delay.

Noise margin is the maximu m external noise voltage added to an input signal that does not
cause an unde sirable change in the circui t output.

Computer-Aided Design

Integrated circui ts having submicron geometric features are manufactured by optically pro-­
jecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coaled with a
pho toresistlve material that either hardens or softens when exposed to light. Removing extra­
neous photoresist leaves patterns of exposed silicon. The exposed regions are then implanted with
dopant atom s to create a semiconductor material hav ing the electrical properties of transistors
and the logical prope rties of gates. The design process translates a functional specification or
description of the circuit (Le., what it must do) into a physical specification or description (how
it must be impleme nted in silicon).

The design of digital systems with VLSI circuits co ntaining mill ions of transistors and
gates is an enormous and formida ble task. Systems of this co mplex ity are usually impossi­
ble to develop and verify without the assista nce of com puter-ai ded design (CAD) tools,

Section 2.9 Integrated Clrcutts 6S

.....hich con sist of ...oftware pro grams that su pport computer-based re present at ion s of circuits
and a id in the dev el opment of d igit a l hard ware by automat ing the design proc ess. Elec ­
troni c design autom at ion (EOA) coven all phases of the de sign of integrated circu its. A
typic al design flow for crea ting VLSI circu it s co nsis ts of a !iequence of step" beginning
with design entry (e.g.•e ntering a scbematic! and culminating with the generation of the data ­
base tha t co nta ins the pho tomask used 10 fab ricate the IC. There are a variety of o ptio ns
available for crea ting the physical realizat ion of a digital ci rcuit in silicon . The designer can
choo ...e be tween an a pplica tion-specific integ rat ed circu it (ASIC). a field -prog rammable
gate a rray (FPG Al. a pro grammable logic de vice (PLO). and a full-custom IC. With eac h
of these devices comes a sel o f CA D tool s thai pro vide the necessary software to facilitate
the hardware fabrication of the unit . Eac h of these technol ogies has a mar ket niche deter­
min ed by the size of Ihe market and the unit COSI of the de vices thai are requ ired 10 imple­
ment a de sign.

Some CAD syste ms include an edi ting program for creating and mod ifying schematic dia­
grams on a computer screen. Th is process is called schematic capture or schematic entry. with
the aid of menu s. keybo ard co mmands. and a mou se. a schematic edito r can draw circuit dia­
gram s of d igital circuitson the computer scree n. Components can be placed on the screen from
a list in an inte rnal libr ary and can the n be connected wi th lines thai represent wires. The
schematic entry software creates and manages a database contain ing the info rma tion produced
with the schematic. Primitive gate..and funct ional bloch have associated models tha t allow the
functionality ti .e.. logical behavior) and timing of the circu it to be veri fied . Veri fication i" per­
formed by applying input .. to the ci rc uit and using a logic simulator 10 determine and di..play
the outputs in text or waveform fonnal.

An important development in the design of digital systern.. i.. the u..e of a hardware de­
scription languag e (HDL). Such a languag e resembles a co mputer programming language.
but is specifically oriented to describing digital hardw are . It represents log ic diagram s and other
digu al informati on in textual form to describe the funct ionality and structure of a circu it .
Moreo ver, the HDL description of a ci rcuit' s funct ionality can be abstract. withou t refere nce
to specific hardw are.thereby freeing a designer to de vote attention to higher level functional
detail te .g.• under certain co nditions the ci rcuit must detect a pa rticular pa ttern of I 's and D's
in a serial bit "ITeam of data) rather than transisror-level detail. HDL-based model s of a cir­
cuit o r system are ..imula ted 10 chec k and verify its functionality before it is submitted 10 fab­
ricauon. there by red ucing the risk and waste of manufacturi ng a circ uit tha i fa ils to ope rate
correctly. In tandem with the emergence of HDL-hased de sign language s. 1001" have been
developed to automati cally and op timally synthesize the logic described by an HD L mod el of
a ci rcuit. These two adv anc es in technology have led to an almo..t total reliance by industry
on HDL-based synthesis too ls and methodologies for the design of the circuits of co mplex de­
gttal sys tems. Two hardware descriptio n languages- Veri log and VHDL-have been ap­
proved as sta ndards by the Institute of Electronics and Electric al Eng ineers (IEEE) and arc in
use by de sign team",wor ldwid e . The Ver ilog HOL i" introduced in Section 3. 10. and beca use
of its importance . we include several exerc ises and desi gn prob lems based on Veri log through­
out the book .

(b) F = x '..: ' + yz

66 Chapter 2 Boolean Algebra and Logic Gates

PROBLEMS

Answers 10 prob lems marked with • appear at Ihe end of the book.

2.1 Demonstrate the validity of Ihe following identities by means of truth tables :
(a) DeMorgan's theoremfor three variables: (x + y + z)' '= x'y'z' and (xyz)' '= .r" + y' + ;:'
(b) The distributive law: x + yz '= (x + y)(x + e)
(c) The distributive law : x (y + z) = xy + .cz
(d) The associative law: x + (y + z) = (x +)") + Z

(e) The associative law and x(yz) = (xy).::

2.2 Simp lify the following Boolean expressions to a minimum number of literals:
(a)* xy + x)" (b)" (x + y)(x + y ')
(c)* x)'.:: + x')" + xy..:' (d)" (A + B)' (A' + B')'
(e) xYZ' + x'YZ + xyz + x'YZ' (f) (x + y + z')(x' + y' + e)

2.3 Simplify the fo llowing Boolean expressi ons to a minimum number of literals:
(a)* ABC + A 'B + ABC' (b)" x'si + xz
(c)'" (x + y)'(x' + y') (d) " xy + X(WI + WI')

(e)"(BC' + A' D)(AB' + CD') (f) (x + y' + z')(x ' + I ')

2.4 Reduce the following Boolean expressi ons to the indicated number of literals:
(a)" A'C' + ABC + AC' to three literals
(b)" (x 'y' + I)' + Z + xy + w z to three literals
(e)" A'B (D ' + C'D) + B(A + A'C D) toone literal
(d)" (A' + C)(A' + C')(A + B + C'D) to four literals
(e) ABCD + A'BD + ABC' D to two literals

2 .5 Draw logic dia grams of the circuits that implement the original and simp lified expressions in
Problem 2.2.

2.6 Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.3.

2.7 Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.4.

2.8 Find the complement of F = wr + yz: then show that FF' = 0 and F + F ' = I.

2.9 Find the comp lement of the following expressions:
(a)" xy ' + x'y (b) (A 'B + CD)£' + £
(c) (x' + Y + z')(x + y')(x + e)

2. 10 Given the Boolean functions F1and F2. show that
(a) The Boolean function E = f 1 + F2 contains the sum of the mintenns of F I and F 2.
(b) Th e Boolean fun ction G = F 1F 2 conta ins on ly the minterm s that are common to F t

and F2.

2.11 List the truth table of the function:
(a)* F = xy + .ry ' + y'Z

2.12 We can perform logical operations on strings of bits by considering eac h pair of corresponding
bits separately (called bit wise oper ation). Given two eight-bit strings A = 10110001 and
B = 10101100, evaluate the eigh t-bit result after the following logical operations: (a)* AND .
(b) OR. (C) '" XOR . (d)'" NOT A, (el ~OT 8 .

Problems 67

2.13 Draw logic diagrams to implement the follo-ing Boolean expressions:
(a) Y = A + H + H' (A + C)
(h) Y = A(B ffi D) + C '

(c) r '" A + CD + ABC
(d) Y '" (A Ell C)' + B
(e) y "" (A' + B') (C + tr;
(f) Y = l eA + B') (C' + D J]

2 .14 Implement the Boolean function

F '" xy + , \ + y' .::

fa) with AND. OR, and inverter gates.
(h)*with OR and inverter gates,
(c) with AND and inverter gates.
fd) with NAND and inverter gales, and
rej with NOR and inverter gates,

2 .15· Simplify the following Boolean functio ns T I and T2 to a minimum number of literals:

A B C T, Tz

0 0 0 I 0
0 0 1 1 0
0 I 0 I 0
0 I 1 0 I
1 0 0 0 1
1 0 1 0 1
1 I 0 0 1
1 I 1 0 1

2 .16 The logical sum of all n nnrerms of a Boolean function of /I variables i ~ I .
(a) Prove the previous statement for 11 = 3.
cb) Suggest a procedure for a general proof.

2 .17 Obtain the truth table ofthe following functions. and express each function in sum-of-nnnterms
and product-of-maxterms form :

(a)* ClY + :)(Y + x.::) Ib i (x + ."')(y ' + ;:)
(c) x' ;: + II'X' y + 11'.\';:' + lI" y ' Id) (.l ." + vc' ol ' ;:)(X + .::)

2 .18 For the Boolean function

F = xy'.:: + x'y ' .:: ... 1I" .l ." + lI"X'Y + II'X."

fa) Obtain the truth table of F.
(b) Draw the logic diagram. using the original Boolean expression.
(c!* Use Boo lean algeb ra to simplify the function to a minimum number of literals,
(dj Obtain the truth table of the functio n from the simplified expression and show that it is the

same us the one in pan (a),
Ie) Draw the logic diagram from the slmplifled expression. and compare the total number of

gates wnh the diagram of part (b),

68 Chapter 2 Boolean Algebra and Logic Gates

2.1~ Express the following function as a sum of minterms and as a product of maxrerms:

F(A ,B.C. D) "" B'D + A'D + BD

2 .20 Express the complement of the following functio ns in sum-of-minterrns form:
<a} F(A, B, C, D) "" I (3, 5, 9. 11 . 15) (b) F(x, y, z] "" IT(2. 4, 5. 7)

2,21 Convert each of the following to the other canonical form:
<a) F(x.)'. z) "" I (2,5 .6) (b) F(A.B.C,D) "" IT(O.I.2,4, 7, 9,12)

2.zr Convert each of the follow ing expressions iOlo sum of prod ucts and prod uct of sums:
(a) (AB + C)(B + C D) <b) s' + x(x +)")()' + z')

2 .23 Draw the logic d iagram corresponding to the following Boolean expre ssions without simplifying
them:
(a) BC + AB + ACD (b) (A + B)(C + D)(A ' + B + D)
(c) (AB + A' B')(C D' + C'D) (d) A + CD + (A + D')(C' + D)

2.24 Show that the dual of the exclu sive-OR is equal to its complement.

2.25 By substituting the Boolean expre ssion equivalent of the binary operations as defined in Table 2.8,
show the following:
(a) The inhibition operation is neither co mmutative nor associative.
(b) The exclu sive-OR operation is commutative and associative .

2.26 Show that a positive logic NAN D gate is a negative logic r-;OR gate and vice versa .

2 .27 Write the Boolean equations and draw the logic diagram of the circuit who se outputs are defined
by the following truth table:

" " • b ,
I 0 0 0 0
0 0 0 0 I
0 I 0 I 0
I I 0 I I
0 I I 0 0
0 I I 0 I
I I I I 0
I 0 I I I

2 ,28 Write Boolean expressions and construc t the truth tables descri bing the outputs of the circuits
described by the following logic diagrams:

a

a
b

b ,
c y

d
d ,,

f
(a (b '

Re fere n ce s 69

REFERENCES

1. BOOL F-. a. 1 11 5~, All Im·f'.Higaliml "jlhl' UIII 'S rif 71IO/igll/ . New York: Dover.

2 . D1En lE\"F. R. D. 1.. 19XX. Logic Design ofDigil tll Svstems. Jd ed . Boston: Allyn and Bacon.

J . HlJ STl~GTO~ . E. V.Sets of independent postulates forthe algebra of logic . Trans. Am. A!(/fh.Soc ..

5 (1 90~ I: 2811-309 .

4 . IEEE Standard iiurdware Desc ription Lllnglla f(r 8m'ed 01/ Ihl<' V".rilug Hard ware Descript ion

u mg/il/gfO. La nguage Reference Manual (LRM). IEEE Std. I364 -1995. 1996. 200 1. 2005. The

tnsunnc of Electri ca l and Elect ronics Engineer s. Piscataway, NJ.

S . IEEE Standa rd Vl ID!. LmlgllOgt Reference M/IIwIlI (L RM). IEEE Std. 1076- 19117. 1988. The

tnvnure of Electrical and Elc..x ronlcs Engineer s. Piscataway. NJ.

6 . M ...so. M. M.. and C. R. KI\.lE. 2000. Logic (1fI(1 COIII/lllter D r sign Fundamentals, 2d ed. Upper

Saddl e River. NJ: Prentice Hall.

7 . SH "'S"O~ , C. E. A sy mbolic a nalysis of rel ay and switching circuits, Trans . AlEE 57 (1938):

7 13-723.

Chapter 3

Gate-Level Minimization

3 .1 INTRODUCTION

Gate-level minimization refer s 10 the design ta..k of finding an optimal gate-level imple­
mentation of the Boolean function s describing a digital ci rcuit. Th is task is well under­
stood. but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortun ately. computer-based logic synthesis tools can minimize a large ~I of Boolean
equations efficiently and quicklyNeverthele ss. it is import ant thai a designer understand
the underlyin g mathematical descrip tion and solution of the problem. Thi s chapter serves
as a foundation for your understanding of that important topic and will enable) 'O U to exe­
cut e a manu al design of simple circuits. preparing you for skilled use of modem des ign
tools. The chapter will also introd uce a hardware desc riptio n language that is used by mod­
em desig n tools.

3 .2 THE MAP METHOD

The comple xity of the digital logic gates that implement a Boolean function is directly related
to the comp lexity of the algebraic expression from which the function is implemented . Al­
though the truth table representation of a function is unique. when it is expressed algebraically
it can appear in many different. but equivalent. forms. Boolean expressions may be simplified
by algebraic means as discus sed in Section 2.4. However. this procedure of minimization is awk­
ward because it lacks specific rules 10 predict each succeeding step in the manipulat ive process.
The map method presented here provide", a simple. straightforward procedure for minimizing
Boolean functions. This method may be regarded as a pictorial form of a truth table. Tbe map
method is also known as the Kam augh map or K-map.

70

Sectio n 3.2 The Map Method 71

A x -rnup is a dia gram made up of squares, with each square rep resenting one mintenn of
the function thai is to he minimized . Since any Bool ean function can he expressed as a sum of
miruerrns. it follows that a Boolean function is recognized grap hica lly in the map from the
area enclose d by those square:;, whose mlnterms are included in the function. In fact. the lIlap
present s a visual d iagram of all possible ways a function may he ex pressed in standard form .
By recognizing vario us patterns. the user can derive alterna tive algebraic express ions for the
same funct ion. from which the simplest can he selected.

Th e simplifie d exp ress ion>; produ ced by the m<lp are alw ays in one of the two standard
fo rms: sum of products or produc t of sums. It will be assumed that the simples t a lgebraic ex ­
pression is an algeb raic expression with a minimum number of term s and with the smalles t
possible number of literals in each term. Th is expression produ ces a circuit diagram with a
minimum number of gales and the minimum number of inputs to each gate. We will see sub­
sequently that the simplest expre ssion is not unique: II is sometimes possible to find two or more
expre ssions thut satisfy the minimization criteria. In that case . either solution is satisfac tory,

Two-Variable Map

The two-variable map is shown in Fig, 3, I(a). The re are four m lruerms for two variables; hence,
the map consists of four squares. one lo r each minterm . The map is redrawn in (bJ 10 show the
relationship betwe en the squares and the two variables .r and y, The 0 and 1 marked in eac h row
and co lumn designa te the values of variables. Variable x appears primed in row 0 and unprim ed
in row I . Similarly. .v appears primed in column 0 and unprimed in column I.

! ~• 0 I-, -
0 .t 'y ' x)

,1 "" " ,
I xv .rv

(a) (I;l J

flctURE 3.1
Two-variable map

If we mark the squares whose minterms belong 10 a given function. the two -variab le map
becomes another usefu l way to represent any one of the 16 Boolean funct ions of two variables.
As an example. the function xy is shown in Fig. 3.2(a). Since xy is equal to "'3. a) is placed
inside (he square that belongs to t1l 3 ' Similarly. the function .r + y is represented in the map
of Fig. 3,2(bJ by three squares marked with t ' s. Th ese squares are found from the rrnmerms of
the function :

1711 + "' 2 + 111 3 :::: .t'y + xy' + xy = .r +)'
The three squares co uld also have been determ ined from the intersection of variable .r in the
second row and variable .\' in the second column. which enclo ses the area be longing to .r or j-,

In each example, the minterms at which the function is asserted are ma rked with a I.

72 Chapter 3 Gate-Level Minimization

y
, y ~

0 1
~ -,

0

.r 11 "" -,,
(a) xy

y
y ~, 0

y
0

,I',
(b) x + y

FIGURE 3.2
Representation of functions in the map

y

"• 00 01 11 10-, -, -, -,
0 x'y' z' x'y'z x'}'z x'yz '

,I,-, -,
_. -,

xy 'z' .ry'z '" x)'::'

mo m, m, m,

m, m, m, m,

('I
z

(bl

FIGURE 3 .3
Three-variable map

Three -Variable Map

A three-variable map is shown in Fig. 3.3. There are eight minterms forthree binary variables;
therefore, the map consists of eight squares. Note that the rninterms are arranged. not in a bi­
nary sequence. but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbe rs in each row and each column to show the relation­
ship between the squares and the three variables. For example. the square assigned to I1lscor­
responds to row I and column 01. When these two numbers are concatenated, they give the
binary number lOt , whose decimal equiv alent is 5. Each cell of the map corresponds to a
unique minterm, so another way of looking at square ms = xy'Z is to consider it to be in the
row marked x and the column belonging to y' z (column 01). Note that there are four squares
in which each variable is equal to I and four in which each is equal to O. The variable appears
unprimed in the former four squares and primed in the latter. For convenience. we write the vari­
able with its letter symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must recog­
nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif­
fer by only one variable, which is primed in one square and unprimed in the other. For example,
I1ls and m7 lie in two adjacent squares. Variable J is primed in 1115 and unprimed in 11l7' where­
as the other two variables are the same in both squares. From the postulates of Boolean algebra.
it follows that the sum of two mintenn s in adjacent squares can be simplified to a single AND

Section 3.2 The Map Method 73

term co nsisting of only IwO literals. To clari fy th is co ncept con..ide r the sum of two adjacent
squares such as m~ and "'7;

"'~ + "'7 = .(y ' : + xy: "" x: (y' + y) EO .oc:

Here. the two squares d iffer by the variable y. which can be removed when the sum of the two
rninterrns is formed. Th us. any two minterms in adjacent squares (vertically or hori zontally. bul
not diagonally. adjacent) that are ORed together willcause a removal of me dissi milar varia ble.
The next four examples explain the procedure for min imizing a Boo lean funct ion with a map.

-tt·MIQ"··
Simpli fy the Boo lea n funct ion

F (x.y. :) ~ ~(2.). ... 5)

First. a I is marked in each rninterm that represents the function. Thi s is shown in Fig , 3.4. in
which the squares for rnimerrns 0 10. 011 . 100. and 101 are marked with ts. The next step is
10 find possib le adjace nt squares , These are ind icated in the map by two rectangles, each en ­
closi ng two l 's. The upper right recta ngle represents the area enclos ed by x'y, Th is area is de ­
term ined by o bserving that the two-square area is in row 0, corresponding [0 .r", and the last
two co lumns. co rres pondi ng 10 y. Similarly. the lower lef t rectan gle represent s. the produ c t
term .rv'. (The seco nd row represe nts .r a nd the two left col umns represe nt y ' .) The logical
sum of these two prod uct terms gives the simplified expression

F : .ty + .t y'

:,,: x',,
OJ 01 " 10, -,

0

-.
..

FIGURE 3.4
MapforExample3.1,F(x., y, z) = ~ (2, 3, 4. 5) = x · y ~ xy'

•
In certa in cases. I WO squa res in the map are coust de red 10 be adjacent even thou gh they do

not touc h each othe r. In Fig , .'. 3, "'u is adjace nt to 11I 2 and 11I4 is adjacen t to"'6 beca use the
minte rms differ by one variable . Th is difference ca n be readily verifi ed alge braica lly;

"'0 -+ "'2 '" ,f 'y ':;' + x'y :' '" .,':'(y ' + y) '" x': '

"'4 + m~ = X:" ' : ' -+ .f:." :' "" .ec' + C", + :,.) "" .t: '

Consequently, we must ITltld ify the de finition of adjacent sq uare.\ to include this and other sim­
ilar cases . We do so by considering the map as be ing d rawn on a surface in which the righ t and
left edges tou ch each ot her to form adjacent square ...

74 Chapter 3 Gate-Level Minimization

Simplify the Boolean function

F(•• y, ,) - ~ (J . 4. 6. 7)

The map for this function is shown in Fig. 3.5. There are four squares marked with l 's, one
for each minterm of the function . Two adjacent squares are combined in the third column to
give a two-lit eral term yz. The remaining two squares with J's are also adjacent by the new
definition. These two squares. when combined, give the two-literal term xz'. The simplified
function then beco mes

F = yz + xt. '

XYI '

) .

" .,
00 01 11 10... -, -0 I -

jI
.. ..

1 I 1 I .
~ .

.,
,

.VQle: xy ' t ' + XYI' - u '

FIe'URE J .S
Map for Example 3.2. F(x, y, z) = I (3, 4, 6,7) - yz + xz'

•
Con...ider now any combination of four adjacent squares in the three-variable map. Any such

combination represents the logical sum of (our minrermsand results in an express ion with only
one literal. As an example. the logical sum of the four adjacent mintcrms 0, 2, -I, and6 reduces
to the single literal term z':

rnO + "'2 + m.. + rn6 = x 'y';:' + x 'y;:' + xy ' ;:' + x.v:. '

= x':.' (J ' + y) + x::: ' (y ' + y)

= x' :::' + xz' = ::: ' (x' + x) = z'

The number of adjace nt squares that may be combined must always represent a number
that is a power of two, such as 1, 2,4, and 8. As more adjacent squares are combined, we ob­
tain a productterm with fewer literals.

One square represents om: minterm. giving a term with three literals.

Two adjacent ~uares represent a term with two literals.

Four adjacent squares represent a term with one literal.

Eight adjacent square.. encompass the entire map and produce a funct ion that is always
equal 10 I.

Sectio n 3,2 The Map Method 75

Simplify the Boo lean function

F(x. y.:) = ~ (O . 2. •. 5. 6)

Th e map for F ihewn in Fig. 3.6. First. we com bine the four adjac ent o;quares.in the first and
last columns 10 give:the ..ingle literal term z'.The remaining single square. represennng rrnnterm
S. i.. co mbi ned with an adjacent !>quare that has.alrea dy bee n used o nce . Th is. is not o nly per ­
mis..ible . 001 rather desirable. because the two adiacenr squares give the two-li teral term -lJ '
and the single square represen ts the three -lite ral mi nrcrm xy 'z. Th e simplified functio n is

F = :' + .\').'

\ 'Z

.I" z , ·t (Xl OJ

---,.,, ~, ,~. m ,

O ',~

x { I , ~1~:~, "':>" 1
I

n

"
I I 10

yz '

f1C;URE 3 .6
Map for Example 3.3, F(JI, y, z l = ~ (O, 2, 4, 5,6) = z : + xy'

•
If a func tio n is not e xpressed in ...um-of-rninterms form . it is possible 10 use the map 10 ob­

tain the mintenns of rbe function and then simpli fy the function to an expression with a mini­
mum num ber of term s. II h nece..."ary. howe ver. to make sure tha t the algebraic expres sion is
in sum-of-prod ucts fo rm. Eac h prod uct term can tIC pla ne d in the map in o ne, IWO. or mort'
squares . Th e min term s of the functio n are then read d irec tly from the map .

11111E13'P"C·
Let the Bool ean funct ion

F = A'C + A' B + AB'C + BC

(a) Express this funct ion as a sum of min rerm s.

(b) Find the minimal o;um·of·producIH Xpres.l<l io n,

Three prod uct terms in the expre ssion have two literal s and are represent ed in a three-..-ariable
map b y two squares eac h. The IWO squares co rres pond ing to the firs t term. A'C. are found in
Fig. 3 .7 from the coi ncidence of A' (f r-,t row) and C uwomidd le columns) 10 gi..·e squares 001

76 Chapter 3 Gate-Level Minimizatio n

A 'B

C

B
BC

A 00 01 11 10
"0

·':' i~~ ""f?,0 I 1\';\ ''~ ~k. :,:;~,.~~

+•• .,...
I

, -,C

FIGURE 3.7
Map for Example 3.4, A'C + A' B + AB'C + BC = C + A'B

and Oi l . Note that, in marking I 's in the squares, it is poss ible to find a 1 already placed there
from a preceding term . This happens with the second term, A'B. which has I's in squares Oi l
and 010. Square 011 is common with the first term. A 'C , though. so only one I is marked in
it. Continuing in this fashion, we determine that the term AB'C belongs in square 101. corre­
sponding to minterm 5, and the term BC has two I 's in squares 0 II and Ill . The function has
a total of five minterms, as indicated by the five I 's in the map of Fig. 3.7. The mintenns are
read directly from the map to be 1,2. 3, 5, and 7. The function can be expressed in sum-of­
minterms form as

F (A , B, C) = ~ (l . 2, 3, 5, 7)

The sum-of-products expression. as originally given. has too many terms. It can be simplified.
as shown in the map, to an expression with only two terms:

F =C + A'B

•
3 .3 FOUR -VARIABLE MAP

The map for Boolean functions of four binary variables is shown in Fig. 3.8. In (a) are listed
the 16 minterms and the squares assigned to each. In (b). the map is redrawn to show the reo
lationship between the squares and the four variables. The rows and columns are numbered in
a Gray code sequence, with only one digit changing value between two adjace nt rows or
columns. The minrerm corresponding to each square can be obtained from the concatenation
of the row number with the column number. For example. the number s of the third row (I I)
and the second column (0 1), when concatenated, give the binary number 1101, the binary
equiva lent of decimal 13. Thus, the square in the third row and seco nd column represe nts
mintenn m 13.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges , as
well as the right and left edges, touching each other to form adjacent squares. For example,

Section 3.3 Four-Variab le Map 77

'"0 m, '"' 11/]

fil l m> "'7 II/~

m Il Inn ml ~ ml~

"'8 m~ 1111\ Ill lU

(,)

FIGURE 3.8
Four-variable map

yo:
wx 00 01 11 10

m, m m, "
00 W' ,l 'y ' ::' ...' x'.~ · :: \I" x '.\':: 14".\" ' .1';:'

' . m . m . ~

O(W' ,lY ' ;:' ...·xy·;: ..··xr:: ",'xyz '

m" ' " rn" moo

11 It',\.\'·'" "',(.1";: K"Xy .:': wx)'z '

», ' . m" m oo

10 ",x 'y "t 'y ·: W.t 'y::t'>"Z·

.
(h)

,

/n o and m 2 fonn adjacent squares. as do 111) and "tn- The combination of adjacent squares that
is useful durin g the simplification process is easily determined from inspec tion of the four­
variable map:

One square represents one minrerm. giving a term with four literals.

Two adjacent squares represent a term with three literal s.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that i.. nlways equal tc I.

No other combination of squares can simplify the function. The next two example" show
the procedure used to simplify four-variable Boolean function...

MUiMRIII&
Simplify the Boolean function

F(u-,x.y, ,) : ~(O.1.2.4.5 .6. 8.9 . 12.13. 14)

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by I's in the map of Fig. 3.9. Eight adjacent squares marked with Fs
can be combined 10 fonn the one literal term v'. The remaining three I's on the right cannot
be combined to give a simplified leon ; they must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller is the number of literals in the term.
In this example. the top two ls on the right are combined with the top two I's on the left to
give the term 11" ;:' . Note that it is permissible to use the same square more than once, We are

78 Chapter 3 Gate-level Min imization

y'
z

N ote: W'Y ' l ' + W'Y l' = w'a'
XY'l' + XYl' = Xl '

FIGURE 3.9
Map for Exampl e 3.5, F(w, x, y, z) ,., L (O, 1, 2,4, 5, 6, 8, 9, 12, 13, 14) ='

y' + w'z' + lCZ'

now left with a square marked by I in the third row and fourth column (square 111 0). Instead
of taking this square alone (which will give a term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middle rows and the two end columns. giving the term xs', The simplified function is

F =' y' + w'z' + Xl '

•

Simplify the Boolean function

F =' A'B'C' + B'CD ' + A'BCD' + AB'C'

The area in the map covered by this function consists of the squares marked with I's in Fig. 3.10,
The function has four variables and, as expressed. consists of three terms with three literals each
and one term with four literals. Each term with three literals is represented in the map by two
squares. For example, A' B'C ' is represented in squares ()(X)J and 0001. The function can besim­
plified in the map by taking the l 's in the four comers to give the term B'D' . This is possible
because these four squares are adjacent when the map is drawn in a surface with top and bot­
tom edges, as well as left and right edges, touching one another.The two left-hand I 's in the top
row are combined with the two I's in the bottom row to give the term B'C' . The remaining 1
may becomb ined in a two-square area to give the term A'eD' . The simplified function is

F = B'D ' + B'C' + A'CD'

•

Section 3.3 Four-Variable Map 79

A 'WC

A8'CD'

A 'S 'C D'

en
A8 UO

A

Ol

D

11

c
10

B

A 'S TD '

A 'CD '

A HTD '

ART'

NOII': A 'R'CD' + A'8'eD ' = A'R'n '
AR 'CD' - AS 'CD ' . A R' D'
A 'B 'D' ~ AS 'V ' = H'l)'
A '/lT' - AH 'C = R'C'

FIGURE 3.10
Ma p fo r Example 3.6, A'B 'C ' + 8'CD ' + A'BCD' + AB'C = B'D' + B' C + A'C D'

Prime Impllcants

In choo sing adjacent squares in a map, we must en sure that (I) all the minterms of the func­
tion are covered when we combine the squares, (2) the number of ter ms in the ex pression is
min imized , and (3) there are no redundant terms (i.e .. minrermsalrea dy cove red by other terms).
Sometimes there may he two or more e xpress io ns thai satisfy the simplification criteria. Th e
proc ed ure for co mbining squares in the map may be made more syste matic if we understand
the meaning of IWO spec ial type s of terms. A prime implicant is a product term obtained by com­
bining the maximu m possible number of adjacent squares in the map . If a minrerm in a sq uare
is cove red by o nly one prime implicant. thai prime imp lica nt is said to he essential.

Th e pri me implica nts o f a functi on ca n be ob tained fro m the map by combining all poss i­
b le maximum number s of squares. Thi s mean s that a sing le I on a map re presents a prime im­
plica nt if it is not adj ace nt to any ot her l's. Two adjace nt Fs form a prime implica nt. provided
tha t they arc not within a gro up of four adjacent sq uares . Four adjace nt I 's form a prime im­
plica nt if the y are not withi n a g roup of eight adjacent squares. and so on. The esse ntia l prime
implicants are fo und by looking at each square marked with a I a nd checki ng the number of
prime implicanrs that cov e r it. The prime implican t is esse ntial if it is the only prime implicant
that co ver s the mintenn .

Consider the followin g four -variable Boolea n function:

F(A. B. C. D) ~ ~(O. 2. 3. 5. 7. 8. 9. 10. II . 13. 15)

The minterms or the function are marked with Fs in the maps of Fig. 3.11. The partial map (pan
(a) o r the figure) shows two essential prime implicants. each formedby co llapsing fo ur ce lls into
a term having only two litera ls. One term is esse ntial beca use there is only one way to include

S 'C

C
A BeD 00 01 n 10.. -, 1tr,'1 ."J00 1

- .",'::-.",'f.

-. -,
31i -.

~
D~

H:;,!'! . rZlli ."{I
' ~', ""l. ...~ "

10 ".t.<I:i1f"!iii >!J,:, f 'l. ..-_~
D

CD
A

80 Chapter 3 Gate-Level Minimization

C

AB CD 00 01 II 10
~ A 'B 'CD '

00

A 'H'C D' -, ""' '/% 1~
~

Is
BD 01 Wil\<' I

-" "/J"'I/ '&,' -"'1/ i-W~;l,:~!1/I;171i;
~

AS'CD'
AB'C'D ' D

Nor..:A 'B' C'D' ''' A 'B 'eD' '"' A'B'D '
AB'C' D' + AS 'CD' - AS'D'
A 'B'D' + AS 'D' - B'D '

(a) Essential prime implican ts
BD and B 'D '

FIGURE 3.11
Simplificat ion using prime implicants

AS'

(b) Prime implicants CD, B'C,
A D , and AB'

minterm mowithin four adjacent squares. These four squares define the term B' D' . Similarly.
there is only one way that mintenn m~ can becombined with four adjacent squares, and this gives
the second termBD. The two essential prime implicantscovereight minterms. The three minrerms
that were omitted from the partial map (m3. me. and mil) must beconsidered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with prime
implicants. Minterm ffl3 can be covered with either prime implicant CD or prime implicant
B'C. Minterm 111 9 can be covered with either AD or AB' ,Minterm III II is covered with anyone
of the four prime implicants. The simplified expression is obtained from the logical sum of the
two essential prime implicants and any two prime implicants that cover minterms m3. m9. and
mll ' There are four possible ways that the function can be expressed with four product terms
of two literals each:

F = BD + B'D' + CD + AD

= BD + B'D ' + CD + AB'

= BD + B'D ' + B'C + AD

::: BD + B'D ' + H'C + AB'

The previous example has demonstrated that the identification of the prime implicants in the map
helps in determining the alternatives that are available for obtaining a simplifiedexpression.

The procedure for finding the simplified expression from the map requires that we first de­
termine all the essential prime implicants. The simplified expression is obtained from the log­
ical sum of all the essential prime implicanrs, plus oilier prime implicants that may be needed
to cover any remaining mintenn s not covered by the essential prime implicants. Occasionally.
there may be more than one way of combining squares, and each combination may produce an
equally simplified expression.

Section 3.4 Hve-varlabte Map 81

3.4 FIVE -VARIABLE MAP

Maps for more than fou r varia ble" are not as simple 10 use a" maps for (our or fewer variable s.
A five-variable map need ..32 square.. and a ..is-variable map need s tH squares . When the num ­
ber of variable s become s large, the num ber of ~uares becomes c..xcesslve and the geometry for
com bining adjacent squares becomes more involved.

The five-variable map is shown in Fig. 3.12. It consi..t.. of 2 four-variable map s \\,ilh vari ­
abies A. B. C. D. and E. Variab le A di..tingui shes betw een the two maps. as indica ted at the top
of the dia gram. The le ft-hand four-vari able map repre sen ts lhe 16 ~uares in which A = O.
and the other fou r-vari ab le map rcpre ..ents the square .. in which A = I . Minterm s n through
15 belong with A = 0 and mim erm .. Ie throu gf 3 1 with A "" I. Eac h four-variable map re­
tain.. the previou sly defined adjacency when taken separately. In addition. each square in the
A "" 0 map is adjace nt to the corre sponding squa re in the A = I map . For example. mimcnn
.. is adjacent 10 min tenn 20 and minrerm 15 to 3 1. The best way to visualize this new rule for
adja cent squares is to co nsider the two half maps 3!> bein g one on top of the o ther. Any two
squares Ihat fall one ove r the other are co nsidered adjac ent .

By followi ng the proced ure used for the five-variable map. it is possible to co nstruct a six­
variable map with 4 four-variable ma~ 10 ob tain the required 64 square s. Maps with six or more
variables need (00 man y squares and are Impracrical to use . The alternative b 10 employ com.
pute r programs specifica lly written to facili tate the simplifica tion of Boolean functions with a
large number of variables .

By inspection. and lak ing Into account the new defini tion of adjacent s-quares. it is po....ible
10 show that an) ' 21 adjacent squ ares, for k "" (0. 1. 2. . . . • n) in an e-van able map . will rep ­
resent an area that give s a term of n - k literal s. For this statement 10 have any meanin g. how­
ever, n must be larger tha n L When n = k , the entire are a of Ihe map is co mbined 10 give the

A = J

c

c
1' £

C 00 01 11 10-. "'" " , -"~) I' 17 I" 18

-. -" -" ""01 20 21 23 22

- , - , "" -.
11 28 29 3\ 30

-" -, - -,
\0 24 " 27 26

R

R

c

DD£
C 00 01 11 10

~ " , " , ..,
00 0 I 3 2

-, -, -, -,
01 , , 7 6

"'" -" -" -"jII 12 13 15 "-, ~ - " ".10 8 " 11 10

B

B

£ £

FIGURf 1.12
Five-variable map

82 Chap ter 3 Gate-Level Minimization

Table 3.1
1M Rdationship~ tM Numbn 01 AdIOCtl1t Squorts and tM
Numbn at UttrOli In tht Tmn

Number of
Ad jacen t Number of literals
Squares In a Tenn In an n-varlable Map

« 2' 0 = 2 0 = J n =4 0 = J

0 1 2 3 4 s
I 2 I 2 3 4

2 4 0 1 2 3
3 8 0 I 2
4 I. 0 I, 32 0

identity function. Table 3. 1 shows the relationship between the number of adjacent squares
and the numbe r of literals in the term. For example. eight adjacent squares combine an area in
the five-variable map to give a term of two literals.

Simplify the Boolean function

F(A.B.C.D.£) ~ I (O.2. 4.6. 9.13.21 .23.25.29.31)

The five-variable map for this function is shown in Fig. 3.13. There are six minterms from
oto 15 that belong to the pan of the map with A "" O. The othe r five minterms belong with
A "" I. Four adjacen t squares in the A "" 0 map are combined to give the three-literal term
A' B' E' . Note that it is necessary to include A' with the term beca use all the squares are as ­
sociated with A = O. The two foquares in co lum n 0 I and the last two rows are common to
bot h part s of the map. Therefore. they constitute four adjacent squares and give the three­
literal term BD ' E. Variable A is not included here because the adjacent squares belong to
both A = 0 and A = I. The term ACE is obtained from the four adjac ent squares that arc
enti re ly with in the A = I map . The simplifie d func tion is the logical sum of the three
terms:

F = A'B 'E ' + BD ' E + ACE

•

Section 3.S Product-of-Sums Simplification 83

A ' BV '£

Br:::···· ·. J ,.••••

m

D

,
f

r

10

D

01 II00

DE

i
;01

:

ABD'£ !
i

{ :: / ~;;. j.=-:-..~~~~ .

FIGURE J,n
Map for Exam ple 3.7, F · A'BT + BD'f ... ACE

3 .5 PRODUCT-Of -SUMS SIMPLIfiCATION

The minimized Boolean Iunctions derived from the map in all previous examples were ell­
pressed in sum-of-prod ucts form . With a minor modifi cation.the produc t-or-sums form can be
obtained .

The procedu re for obta ining a minimized function in product-or-sums form fo llow s from
the basic properties of Boole an function !'> . The 1'5 placed in the squares of the map represent
the rnimerm s of the function. The mintcnn s not included in the srandard sum-of-prodocts form
of a fun ct ion denote the complement of the function . From this obse rvation. we see thai the
co mp leme nt of a funct ion is represe nted in the map by the squares not marked by I's . If we
mar k the em pt)' squares by Irs and combine them into valid adjace nt MJuarcs, we obtain a
simplified ex pressio n of the com plement of the function {i.e.• of F'). The complement of
F' gi ves us back the function F. Bec ause of the ge neralized DeMorgan '.. theorem . the func­
lion so obtained is autom atically in produc t-of-su ms for m. The bestay to sbo th is is by
example.

84 Chapter 3 Gate-Level Minimization

C
AS CD 00 01 II.. o, CO

00 I I 0 BCD '

BC D' o,

01 0 1 0

-. .. 0 . B

II 0 0 0 o ~

A o, o, ..,
10 I 1 0 1 AB

o
NOlt : BCD' + BCD' - RD'

FIGURE 1.14
Map for Example 3.8, F(A, B, C, D) = ~ (O, r, 2, 5, 8, 9, JO) = B' D' + B'C' + A'CD ­
(A' + B')(e' + D')(8' + D)

Simplify the: following Boolean function into (a) sum-of-products form and (b) product-of­
sums fonn:

F(A, B, C, D) = ~ (O, 1.2, 5, 8,9,10)

The ls marked in the map of Fig. 3.14 represent all the minterms of the function. The
squares marked with O' s represent the min terms not included in F and therefore denote the
complement of F. Combining the squares with I 's gives the simplified function in sum-of­
products Conn:

(a) F = S'D' + B'C' + A'C'D
If the squares marked with O's are combined, as shown in the diagram, we obtain the
simplified complemented function:

F ' = AS + CD + 80 '

Applying DeMorgan 's theorem (by taking the dual and complementing each literal as de­
scribed in Section 2.4), we obtai n the simplified function in product-of-sums form:

(b) F ~ (A' + B')(e' + D')(B ' + D)

•
The implementation of the simplified expre ssions ob tained in Example 3.8 is shown in

Fig. 3.15. The sum-of-products expression is implemented in (a) with a group of AND gates.
one for each AND term . The ou tputs of the AND gales are connected to the inputs of a sin­
gle OR gale . The same function is implemented in (b) in its produ ct-of-sums form with a
gro up of OR gates. one for each OR term. The outputs of the OR gales are connected to the
inputs of a single Al\'D gale. In each case. it is assumed that the input variables are directly

Section 3.S Product-of-Sums Simplification 85

··Tfl----,
0 ·...,.-t,_ ./

,

A'i>_-,
•,.-c,....-

C' --'-':---..'}-_ --==fi0·.,...._ _

o-LJ----'

r

(a) F - B'D' ... 8 'C + A T 'V

fl (, URE J.15
Gate implementati ons of the function of Example 3.8

,1'01F '"' f A ' .. B')(e' ... D')(H' ... 01

Table 3.2
Truth Tobie of Function f

K

II
II
II
II
I
I
I
I

y

II
II
1
I
II
II
I
I

z

II
I
II
I
II
I
II
I

,
II
1
II
1
I
II
I
II

available in their co mplement. ..0 inverte rs are noe needed. The configuration pat tern estab­
livhed in Fig. 3.15 is the general form by whichan)' Boolean function is implemented when
expressed in one of the standard form s. A~D gates are co nnected 10a single OR gale when
in sum-of-prod ucts form : OR gates are connected to a single AND gale when in product-of­
"urn" fonn . Either configuration forms two level... of gales. Thus. the implementatio n of a
funct ion in a standard form is said 10be a two-level implementatio n.

Example 3.8 showed the procedure for obtaining the produ ct-of-sums simplification when
the function is originally expres sed in the sum-of-mime nu s ca nonica l fOnTI. The procedure is
also val id when the function is originally expressed in the product-of-maxrerrns canonica l
form. Consider , for exa mple, the truth table rhat defi nes the funct ion F in Table 3.2. In sum­
of-r ninrerms fOnTI. this function is expressed as

F(x. X.c) = ~ (I . 3. 4. 6)

In product-of-maxrerms form. it is exp res..ed as

' (x. x. ') ~ n (O.2.5. 7)

In other words. the ls of the function represent the mintcrm .. and the D's represent the max­
terms. Tbe map for this function is shown in Fig. 3.16. One can start simp lifying the function
by fin.1marking:the I' " for each minterm thai the function is a I . The remaining squares arc

86 Chapter 3 Gate-Leve' Minimization

00..
o

01

u '

II

,
10..

FIGURE 3.16
Map for the function of Table 3.2

marked by D's. H, instead, the product of maxterm s is initial ly given, one can SIal1 marking D's
in those square s listed in Ihe function; the remaining squares an: then marked by J's . Once the
1'5 and n's are marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the J's to obtain

F = .t ' , + x, '

For the product of sums, w e com bine the D's to obta in the simplified co mplemented funct ion

F' = .rz + x' , '

which shows that the exclusive-OR functi on is the complement of the equi valence function
(Section 2.6). Taking the complement of F' , we obtain the simplified function in product -of­
sums fonn:

F = (x' + z')(x + z)

To enter a function expressed in product -of-sums form into the map, use thecompleme nt of the
function to find thesquares that are to be marked by n's. For example, the functi on

F = (A' + B' + C')(B + D)

can be entered into the map by first taking its complement, namely,

F' = ABC + B'D'

and then marki ng D's in the squares represe nting the minterms of F' , The remain ing squares
are marked with t 's.

3 ,6 DON 'T-CARE CONDITIONS

The logica l sum of the mmrerm s assoc iated with a Boolean function specifies the conditions
under which the function is eq ual to I. The funct ion is equal to 0 for the rest o f the minte nns.
This pair o f conditions assumes that all the combinations of the values for thevariables of the
function are valid. In pract ice, in some applications the functio n is not speci fied for certain
combinations of the variables. As an exam ple, the four-bit binary code for the decimal digits
has six combinations that are not used and conseq uently are considered to be unspecified .

Section 3.6 Don 't-Care Conditions 87

Functions that have unspecified outputs for some input combinations are called incompieteiy
specified fun ctions, In most applications. we simply don't care what value is assumed by the
function for the unspecified minrerms. For this reason, it is customary to call the unspecified
minterms of a function don 't-care conditions. These don't -care conditions can be used on a
map to provide funh er simplification of the Boo lean expression.

A don 't-care minterm is a combination of variables whose logical value is not specified. Such
a miruerm cannot be marked with a I in the map. because it would require that the function al­
ways be a I for such a combination. Likewise. putting a 0 on the square requires the function
to be O. To distinguish the don ' r-cere condition from l 's and a 's. an X is used. Thus. an X in­
side a square in the map indicates thai we don 't care whether the value of a or I is assigned 10

F for the particular mintcrm.
In choos ing adjacent squares to simplify the function in a map. the don' t-care minrerms

may be assumed to be either 0 or I. When simplifying the function. we can choose 10 include
each don 't -care minterm with either the Fs or the O's. depending on which combination gives
the simplest expression.

• "3'&''-
Simplify the Boolean function

F(II ·, x. y, Z) :::: ! (J. 3. 7, 11. 15)

which has the don' t-care conditions

d(w.x,y,,:):::: ~ (O,2,5)

The minterms of F are the variable co mbinations that make the function equal 10 I. The
minterms of d are the don ' t-care minterms that may be assigned either 0 or I. The map sim­
plif icarion is shown in Fig. 3. 17. The minterms of F are marked by I 's. those of d are marked

y
VZ

wr IXl 01 II 10

00
W'.l '

m,

OJ II X

m" In"
X

II 0 U

m, In,
10 0 0

la) F '" y:: + w'x '

!
.1'::

" 'X
~J OJ IJ JO

m,
IXl X X

""'.: m ,

01 0 0

m'l
X

IJ 0 0

"' m,
10 0 0

yz
(b) F .)"z "T" w'.:

f iGURE:) .17
Example with don't -care cond it ions

88 Chapter 3 Gate-level Minimization

by X's. arxI the remaining squares are filled with a's. To get the simplified express ion in sum­
of-prod ucts foen, we must include all five I's in the map , but we may or may nOI include any
of the X's, depending on the way the function is simplified. The termJZcove rs the four minterms
in the third col umn. The remaining mintenn, m l , can be combi ned with minterm m 3 10 give
the three-literal term _ .•..1'.:. However, by including One! or two adjacent X's we can combine
four adjacent squares to give a two- literal term. In part (a) of the diagram, don't -care numerms
oand 2 are included with the t 's, resulting in the simplified funct ion

F =)·: +M... ..r'

10 pan (b). don' t-caremmrerm 5 is included with the t's. and the simplified funct ion is no w

F = JZ + w':

Either one of the precedin g two expressions satisfies the conditions stated for this example.

•
The previou s example hass shown that the don' t-care minterrns in the map are initially marked

with X's and are considered as being either Dor I. The choice betwe en 0 and I is made de­
pending o n the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obta ined will consist of a sum of minrerms thai includ es those mintenns
which were initially unspecified and have been chosen to be included with the ls. Consider
the two simplified expression s obtained in Example 3.9:

F(",. ..r,y,:) = y: + ",'x ' = ~ (O,I , 2 , 3 , 7, 11. 15)

F("" .r, J,:) = j'z + _.': - "!(I , 3, 5, 7, I I, 15)

Both expressio ns include mintenns 1, 3, 7, I I , and 15 lhat make the function F eq ual to I . The
don' t-care mintenns 0,2, and 5 are trea ted differently in each expression. The firs t expression
includes min terms 0 and 2 with the t 's and leaves minterm 5 with the n's. The second expres­
sion includes minterm 5 with the I 's and leaves minterms 0 and 2 with the D's. The IWO ex­
pressio ns repre sen t t.....o functions that are not algebraically eq ual. Both cover the specified
minterm s of the function. but each covers different don't-care minterms. As far ax the inco m­
pletely specified function is concerned, either expression is acceptable because the o nly d if­
ference is in the value of F for the don ' t-care mlnrerms.

If is also possible (0 obtain a simplified prod uct-o f-sums express ion for the functio n of
Fig. 3. 17. In thi s case. the only way to combine the D's is to include don 't-care minrerms 0
and 2 with the D's to give a simplified complemented funct ion :

F' = z' + wj-'

Taking the complement of F' gives the simplified expression in produ ct-of- sums form :

F(w. x. y. ,) = , (w' + r) = ! (1.3. 5. 7. 11. 15)

10 this case, we include minterms 0 and 2 with the D's and mimcnn 5 with the t ' s.

Section 3.7 NAND and NO R tmp tementetlcn 89

3 . 7 N A N D A ND N O R I M PL EME NTATIO N

Digital circuits art frequ ently con structed with NAND or NOR gales rather than with AND and
OR gal es. :-JAND and NOR gale~ arc ear...ier to fabricate with electronic components and are
the bask gales used in all Te digitallogic families. Because of the prominence of ~A!':D and
NOR gales in the design o f d igital circui ts. rule s and procedures haw been developed for the
co nversion from Boolean fun ctions g ive n in term s o f ASD. OR. and f'OT into equivalent
NASD and NOR logic diagram

NAND (Inuit.

The NASD gate is.said 10 be a universal gate beca use an) ' digi tal system can be implemented
with it. To sho w thai any Boolean funct ion can be implemented with NAND gates. we need
only show thatthe logical operations ofA~D. OR. and complement can beobtained with NAND
ga le~ alo ne. Th is is indeed shown in Fig. 3.18.The- complement operation is obtained from a ore­
input NAN D gate that behave s exactly like an inve rter, The AN D operation req uires t.....o NAND
gales. The first prod uces the NAND ope ration and the second inverts the logica l sense of the sig­
nal. The OR operation is achieved through a NAN D gale with additional inverters in eac h input.

A convenient way to implement a Boo lean function wit h NAND gat es is to obtain the sim­
plified Boolean function in term s of Boolean ope rators and then co nve rt the function to NAN D
log ic . The convers ion of an algebraic expression from AN D. OR. and complement to NAN D
ca n be done by stmplc circuit munipularion techn iques thai ch ange AND-OR d iag rams to
NAND diagrams.

To facilita te the co nversion to NA~D logic . it is con ven ient to define an alternative graphic
5)'01001for the: gate. Two equivalent graphic symbols for the NASD gate art shown in Fig , 3.19 .

A~O

OR '=:J=o-(.I"·.v')' '' .r + y

!

FIGURE 1. 18
logic ope rat ions with NAND gates

~ =t::=)-- (x,·=r

(a) A SD·in \"('n

~v--- x'1' · ... =' . (.'."=) '

(b) (n\ 'en ·O R

FIGURE 1.19
Two gr aphic sym bols for th e NAND gat e

90 Chap ter 3 Gate-Leve l Minimization

The AND-mvertsymbol has beendefined previously andconsists of an ANDgraphic symbol fol­
lowed by a small circle ne~ation indicator referred to as a bubble. Alternatively, it is possible to
repeesem a NAND gate by an OR graphic symbol that is preceded by a bubble in each inpuL The
inverl.QR symbol for the NAND gale follows DeMcq:an's theorem andthe con vention that the
negation indicator oenoees com plementation. The 1\1.<0 graphic symbols' represen tations an: use­
ful in !he anal ysis and design of NAND circuits. When both symbols are mixed in tbe same
diagram, the circuit is said to be in mixed notation .

Two-Level Implementation

The imp lementa tion of Boolean functions with NAND gates requires that the functions be in
sum-of-products form. To see the relationship between a sum-of-product expre ssion and its
equiv alent NAND implementation, co nsider the log ic diagrams dra wn in Fig. 3.20. Alllhree
diagrams are equ ivalent and implement the function

F = AB + CD

The funct ion is implemented in (a) with AND and OR gates. In (b), the AND gates are re­
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graph ic
symbol. Remember thai a bubb le denotes complementation and two bubble s along the same
line represent double complementation, so both can be removed . Removing the bubbles on the
gales of (b) produces the circuit of (a). The refore. the two diagrams implement the same func­
tion and are equivalent.

In Fig. 3.20(c) . the OUlpUI NAND gale is redrawn with the A.."lD-in \'ert graphic symbol.
In drawing NA ND logic d iagram s. the circuit shown in ei ther (b) or (c) is acce ptable. The

A--r=
B - -L.cJ

c - f:>.i;;;,\

D--==
(.)

F

A--r- ,

B - -L-/
F

A _-r=,

B- ==
F

(b)

RGURE 3.20
Three ways to Implement F = AB + CD

(0)

Section 3.7 NAND and NOR Implementation 91

one in (b) is in mixed no tation and represents a more direct relat ionship 10 the Boole an
ex press ion it implements. The NAND implementat ion in Fig. 3.20(c) can be verified alge­
braically. The function it implements can easi ly be converted to sum-of-products form by
Delvtorgan's rheorem:

F ~ « AB)'(CD)') ' ~ AB + CD

IIW3iAIu.
lmplememthe following Boolean function with NAND gates:

F(x. r. r) ~ (1.2. J. 4. 5. 7)

The first step is to simplify the function into sum-of-products form. This is done by means of
the map of Fig. 3.21(a). from which the simplified function is obtained :

F = xy' + x 'y + ::

The two-level NAND implementation is shown in Fig. 3.2 1Ib) in mixed notation. Note thai input
:: must have a one-input NAND gate (an invenen to compensate for the bubble in the second­
level gate. An alternative way of drawing the logic diagram is given in Fig. 3.2)(c) . Here, all
the NAND gates are drawn with the same graphic symbol. The inverter,ith input z has been
removed. but the input variable is. complemented and denoted by z'.

•

F = xy' x'y +;:

x.\"

[a

(b)

FIGURE 1.21
Solution to bample] ,10

x

"x'
F

! '

t:

(0)

F

92 Chapter 3 Gate-level Minimiza tion

The procedure desc ribed in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic d iagram
from a Boolean funct ion is as follows:

I . Simplify the function and express it in sum-of-prod ucts form.

2. Draw a NAND gale for each product tenn of the expression that has atleast two literals.
The inputs 10 each NAN D gate are the litera ls of the term. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-inver1 or the Invert-Ok graphic symbol in the second
level, with inputs coming from outputs of first-level gales .

4. A term with a single literal requires an inverter in the first level. However, if the single literal
is complemented, it can beconnected directly to an input of the second-level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two- level imple mentat ion.
There are occasions. however, when the desig n of digital systems results in gati ng structures
with three or more levels. The most common procedure in the design of multilevel circu its is
10express the Boolean function in terms of AND, OR , and complement ope rations. The func­
tion can then be imp lemented with AN D and OR gates. After that, if necessary. it can be con­
vened into an all-NAND circuit. Consider. for example. the Boolean function

F = A(CD + B) + BC'

Although it is possible to remove the parentheses and reduce the expression into a standard sum­
of-products form. we choose to implement it as a multilevel circu it for illustr ation . The
AND-OR impleme ntation is shown in Fig. 3.22(a). There are four levels of gating in the cir­
cuit. The first level has two AN D gates . The secon d leve l has an OR gate followed by anAND
gate in the third level and an OR gale in the fourth level. A logic diagram with a pattern of a1­
ternating levels of AND and OR gales can easily be convened into a NAN D circuit with the
use of mixed notation. shown in Fig. 3.22(b) . The procedure is to change every AND gale to
anAND-invert graphic symbol and every OR gate 10 an inven-OR graphic symbol.The NAND
circuit performs the same logic as the AND- OR diagram as long as there are two bubbles along
the same line. The bubb le associated with input B causes an exira com pleme ntation. which
must be compensated for by chan ging the input literal to B' .

The genera l procedure for conve rting a multileve lAND-QR diag ram into an all-NAND di-
agram using mixed notation is as follows:

l. Convert all AN D gates 10NAN D gates with AND-inver1 graphic symbols.

2. Convert all OR gates to NAND gates with invert-Ox graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is nOI compensated by an­
other small circle along the same line, insert an inverte r (a one-input NAND gate) or
complement the input literal.

As another example. consider the multilevel Boo lean function

F = (AB' + A'B)(C + D')

Section 3.7 NAND and NOR Implementat ion 93

C

D - - ---,L--"

8 - - - --- - --L.--"
A

8

c - - -L-J

{e} A NU -OR gates

c ---r-----.,
D - --1..-_ /

8'-- - - - - - - 1-/
A

8 - ---r-" -.l---<L~

c __-L.-JP'

(b) NA:'IlD gates

FIGURE 3.22
Implementing F ~ A(CD + 8) + 8('

F

F

The AND-OR implementation of this function i.. shown in Fig. 3.23(a) with three levels of gat­
ing. The conversion to NAND with mixed notation is presented in part <b) of the diagra m. The
two additional bubbles a..sociated with inputs C and 0 ' cau..e these two literals to be comple­
mented to C' and D. The bubble in the output NAND gate compleme nts the output value. so
we need to insert an inverter gate at the output in order to complemcnt thc signal again and get
the original value back.

NOR Implementation

The NOR operatio n is the dual of the l'\AND operation. Therefore. all procedures and rules for
NOR logic are the duals of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gale that can be used (0 implement any Boolean function.
The imp lementation of the complement. OR. and AND operations with NOR gates is shown
in Fig. 3.24. The com plement operation is obtained from a one -input NOR gate that behaves
exactly like an inverter. The OR operation requires two NOR gates. and the AND operation is
obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.25. The OR-invert
symbol defines the NOR operation as an OR follo wed by a complement. The invert ·AND
symbol complements eac h input and then performs an AND operation. The two symbols
desig nate the same NOR operati on and are logicall y identical because of DeMorgan 's
theore m.

94 Chapter 3 Gate-Level Minimization

F

(a) AND-OR gales

A .~

~.
8 ' ,-""~.-

A '
:t~~:

8

C'
:§;"

D
' .';..

(b) NA ND gates

FIGURE 3.2 3
Implementing F = (AS' + A'sHe + D')

Inverter x~>----------"

y
'-~~--I>o-- <+ yOR

AND

,--j>~-

FIGURE 3.24
Logic operations with NOR gates

~~(x+J + Z)'
,~

(aj O g-invert

~3:~ x'y'z' = (x + y + Z)'
Z ".~....

(b) Invert-AND

FIGURE 3.25
Two graphic symbols for the NOR gate

Section 3.7 NAND and NOR Implementati on 95

A two-le vel implementatio n with NOR gates req uires that the funct ion be simplified into
product-of-sums fonn . Remem ber that the simplified produc t-of- sums ex pression is obtai ned
fro m the map by combining the D's and compleme nting. A prod uct-of- sums express ion is im­
plemented with a first level o f OR gates that produce the sum terms foll owed by a seco nd­
leve l AND gate to prod uce the product. The transformation from the OR-AND diagram to a
NOR diagram is achieved by changing the O R gates to NO R gates with Ok-invert graphic
symbols and the AND gate to a NOR gate with an inven -AND graphic symbol. A single litera l
te rm going into the second-level gate must be complemented. Fig . 3.26 shows the NO R im­
plem entation of a functio n ex pressed as a product of sums:

F = (A + BHC + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the same line.
Variab le E is co mpleme nted to co mpe nsat e for the third bub ble at the input of the second-leve l
gate.

The procedure for convert ing a multilevel AND-OR dia gra m to an aU-NO R dia gram is
similar to the one prese nted for NAN D gale s. For the NOR cascowe must co nvert each OR gate
to an OR- inven symbo l and eac h AND gale to an invert-AND symbol. Any bubble that is not
compensated by another bub ble alon g the same line needs an inverter. or the co mplementation
of the inp ut literal.

The transformation of the AND-OR diagram of Fig. 3 .2 .~ (a) into a NO R diag ram is shown
in Fig . 3.27. The Boo lean funct ion for this circu it is

F = (AB' + A'BHC + D')

.~
B .

<~ > ,D ' . .

E'

FIGURf 3.26
Implementing F == (A + SHe + DlE

A

B' --""""'"

~, ==~E:?r-----"
FIGURf 3.27
Implementing F == (AS' + A'sHe+ D') with NORgales

96 Chapter 3 Gate-Level Minimization

Tbe equivalent AND--OR diagram can be recog nized fro m the NOR diagram by removing all
the bubbles. To compensate for the bubbl es in four inputs. it is necessary to complement the
corresponding input literal s.

3. 8 OTH ER TWO -LEVEl IMPLEMENTATION S

Tbe types of gates most often found in integrated circuits are NAND and NOR gates. For this
reason. NA.\,'lJ and NOR logic implementations ace themost Important from a practi cal point
o f view. Some (but not all) NM'D or l'OR gates al low thepossibi lity of a wire connection be­
tween the outputs of two gates to provide a specific logic function . Thi s type of logic is cal led
wired logic. For exam ple. ope n-collectocTIL NAND gates. when tied together. perform wired­
AND logic. (The open-co llector TTL gale is shown in Chapter 10. Fig. 10.11 .) Th e wired­
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the lines going through the center of the gate to d istinguish it from a conventional
gate. Th e wired-AND gate is not a physical gate. but only a symbol to designa te the function
obtained from the indicated wired connection . The logic function imp lemented by the circuit
of Fig. 3.28(a) is

F = (AB)'· ·· (CD)' = (AB + CD)' = (A' + B')(C' + 0 ')

and is called an AND--OR-INVERT function .
Similar ly. the NORou tputs of EeL gates (see Figure 10.1 7) can betied toge ther to perfonn

a wired-Ole function. The logic function imple mented by the circuit of Fig. 3.28(b) is

F - (A + B)' + (C + 0)' - I(A + B)(C + D)]'

and is cal led an OR- AND-INVERTfunction.
A wired-logic gale does not produ ce a phys ical second-level gate . since it isjust a wire con­

nect ion . Nevertheless, for discussion purposes, we will con sider the circuits of Fig . 3.28 as
two-level implementations. The first level con sists o f NAND (or NOR) gates and the second
level has a sing le AND (or OR) gate . Theired connection in the graphic symbol will be omit­
ted in subsequent discussions.

t-t-- F- (A B + CD)'

c ---r))~:::J
D

(a) Wired-AND in open-collecto r
"tTL NAND gales.

(A l'D-OR- LNVERT)

A

B

+7-- F = [(A + B)(e + D) J'

(b) w ired-Og in EeL gales

(OR-ASD-INVERT)

FIGUR£ 3 .28
Wired logic
(a) Wired-AND logic with two NAND gate s
(b) Wired·OR In emitter-co upled logic (ECL) gates

Secttcn 3.8 Other Two-level Implement at io ns 97

Nondegenerate Forms

It will be instruc tive from a theoretica l po int of view to find out how many two-level co mbi­
nations of gates are possibl e . We consider four types of gales: AND. OR.1"lAND. am) NOR.
If we assign one type of gate for the first level and one type for the second level . We find that
there are 16 possib le co mbinations of two- level forms. (The same type of gate ca n be in the first
and seco nd leve ls. as in a NAND-NAND implementation.) Eight of these combinations are said
to be degenera te forms because they degenera te to a single operation. Th is can be seen from
a circuit with AND gates in the first level and an AND gate in the seco nd level. The output of
the circuit is merely the AND function of all input variables. The remaining eight nandegenerate
form s produce an implementation in sum-of-prod ucts form or producr-of-surns form . The eight
nondegcncrate forms arc as fo llows:

AN D-OR
NAN[}-NAND
NOR-Q R
OR-NAND

OR- AND
NOR-NOR
NAN[}-AND
AN [}-NOR

The first gate listed in eac h of the forms constitutes a firstleve l in the implemen tation. The sec­
ond gate listed is a singte gate placed in lhe l'C'.':oOO tevet. Note thal any two (orms listed on the
same line are duals of each other.

The AND-OR and OR-A ND form s are the basic two-level form s discussed in Sec tion 3.4.
The NAND-NAND and NOR- NOR forms were presented in Section .3.6. The remaining four
forms are investigated in this section.

AND-OR-INVERT Implementation

The tWO fonn s NAN D-AND and AND-NOR are equivalent and ca n be trea ted toge ther. Both
perform (he AND-OR- INV ERT function. as she.....n in Fig. 3.29. The AND-NOR form re­
sembles the AND-OR form. but with an invers ion done by the bubble in the output of the
NO R gate . It implement s the function

F ~ (AB + CD + E)'

A A

8 8

CC
F F F

[) D

>: >:

(b) AN D- NO R (c) NAND- AND

A - -r--.,
8 - -L--/

>: ------'

laJA ND-NOR

FIGURE 3.29
AND-OR-INVERT circuits, F '" (AB + CD + f)'

98 Chapter 3 Gate-level Minimization

By using the alternative graphic symbol for the NOR gate. we obtain the diagram of
Fig. 3.29(b). Note that the single variable E is not complemented, beca use the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter­
minal of tile second-level gate to the output terminals of the first-level gates. An inverter is need­
ed for the single variable in order to compensate for the bubble. Alternatively, the inverter can
be removed. provided that input E is complemented. The circ uit of Fig. 3.29(c) is a
NAND-AND fonn and was shown in Fig. 3.28 to implement the AND-OR- INVERT function.

An AND-OR impleme ntation requ ires an expression in sum-of-products form. The
AND-OR- INVERT implementation is similar, except for the inversion. Therefore, if tile comp­
lement ofthe function is simplified into sum-of-products fonn (by combining the D's in the map).
it will be possible to implement F' with the AND-OR part of the function. When F' passes
through the always present output inversion (the LNVERT pan), it will generate the output F
of the function. An example for the AND-OR- INV ERT implementation will be show n
subsequently.

OR-AND-INVERT Implementation

The OR- NAND and NOR..Q R formsperformthe OR- AND-INVERT functio n, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, exce pt for the inversion done
by the bubble in the NAN D gate. It implements the function

F = [(A + S)(e + D)E]'

By using the alternative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c) is obtained by moving the small circ les from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig. 3.30(c) is a NOR-QR
fonn and was shown in Fig. 3.28 to implement the OR-AND-INVERT function.

The OR- AND-INVERT implementation requires an express ion in product-of-sums fonn.
If the compleme nt of the function is simplified into that form, we can implement F' with the
OR- AND part of the function. When F' passes through the INVERT part . we obtain the com­
plement of F', or F, in the output.

E--C>o-JE - - - -'E - - - -'

A A A

8 8 8

C CC
~ FF F

D D '" D

(a) OR- NAND (b) OR-NAND (c) NOR--OR

Flc;URE) .30
OR-AND-INVERT circuits, F ", [(A + S)(e + D)E)'

Section 3.8 Other Two-level lmp leme nta tlo ns 99

Table 3.3
Implementorionwith Other Two-Level Forms

Equiv al ent
Nondegenerat e

Fonn

(e)

AND-N OR

(b) '

NAND-AND

NOR...D R

Implements
t he

Funct ion

AN~R-INVERT

OR-A~D-I /,;VERT

Sim pli fy
F'

Into

Sum-of-products
form by combining
O's in the map.
Product-of-sums
form by combmmg
I 's in the map and
then complementing.

To Get
a n Output

of

F

F

"Form etl) requires an inverter fur a ~ing le literal term

Tabular Summary and Example

Table 3.3 summarizes the procedures for implementing.a Boolean function in any one of the
four 2-1e\"e1 forms. Because of the INVERT pan in each case. it is convenient to usc the sim­
plification of F' n he complement) of the function. When F' is implem ented in one uf these
forms. we obtain the complement of the function in the AND-OR or OR- AND form. The four
z-leve l forms invert this function. giving an output that is the complement of F' . This is the
normal output F.

Implement the function of Fig. 3..'.] la) with the four z-leve l forms listed in Table 3.3.
The complement of the function is simplifi ed into sum-of-products form by combining the n's
in the map:

}-" ' = x 'y + x,\" + z

The normal output for this function can be expressed as

F = (x'y + xy' + z}'

which is in the AND-OR- INVE RT form , TIle AND-NOR and NAND-AND implementations
are shown in Fig. 3.3 1(b). Note that a one-input NAN D. or inverter, gate is needed in the
NAND-AND implementation. but not in the AND-~OR case. The inverter can be removed
if we apply the input variable z' instead of 0;.

The OR- AND-INVE RT forms requ ire a simplified expression of the complement of the
function in product-of-sums form. To obrain this expression. we first combine the l 's in the map:

F = x' ,v',:' + xy::'

100 Chapter 3 Gate-l eve l Minimization

F : x'y'z ' +xyz'
F .. x 'y +xy'+z

xyz'

y
Y<• 00 01 11 10... ., ., .,
0 - ' 0 0 0

:l '
., ., ., ..

~0 0 0 1 -

x'y'z'

,
(a> Map simplifICation in sum of products

, '--"=~

Y--wo=
.'- -,",,= "
y-==

F F

, ---..J ,--j>>-J

A ND-NO R NA ND- AND

(b) F - (.l 'y + xy' + Z)'

FF

y
, -J---L_/

" '-'~'y'
z -J---L_;

OR- NAND NO R-DR

(c)F - [(x + y+ z)(x' + y' + Z)]'

.', -,,,",,
y'
, -J---L= ;

FIGURE 3.3 1
Other two-level impleme ntat ions

Then we take the complement of the function:

F' :; (x + y + z)(x' + y' + a)

The normal output F can now be expre ssed in the form

F : [(x + y + z)(x ' + y' + z)l "

which is the OR-AND-INVERT fonn . From this expression, we can implement the function
in the OR- NAND and NOR- OR forms, as shown in Fig. 3.31(c).

•

Section 3.9 Exclusive -OR Function 101

3 .9 EXCLUSIVE -OR FUNCTION

The exclu sive-Og (XOR). denot ed by the symbol fB . i'i a logical operation that performs the
following Boolean ope ration:

x $ y = .ty' + x 'y

The exclu sive-Og i!o eq ual to I if only .r is equal 10 I or if only.' is equal to I (i .e.. .t and J dif­
fer in value], bUI nOI when both arc equ al to I o r when hOlh are equal to O. The exclusive­
SOR. also known as equivalence. performs the following Boolea n operation:

(.t e r) ' = x.\' + x'y '

The exclusive-NOR is equa l 10 I if bot h .r and y are equa l 10 I or if both are equal 10 O. The ex­
clusive-NOR can be shown 10 be the complement of the excl usive -Og by means of a trut h
table or by algebraic manipulatio n:

(.t fB y)' "" (xy' + x' y)' = (x ' + yH .\ + y') "" xy + x 'y '

The follow ing ide ntities apply to the exclusive-OR operation:

x ffiO = .t

.t e I "" .e'

.re x = 0

xEl x' "" I

x 8y' "" x ' my '" (x m y)'

Any of these identities can be proven with a lrulh table or by repla cing the iII operation by its
equivale nt Boolean expression . Also . il can be ..hewn that the exclusive-OR ope ration i.. bot h
co mmuranve and associative: thai i, .

A EIl B = 8 E1lA

and

(A Ell B) Ell C = A Ell (B EIl C) = A Ell 8 E1l C

Thi s mean s tha i the two input s 10 an exclusive-O R gate ca n he interchanged without affecting
the operation. II also means thai we can evaluate a three-variable exclusive-OR operation in any
orde r. and for this reaso n. three or more variables can be expressed without parentheses. Thi s
would imply the poss ibility of using exclusive-O R gates with three or more inputs. However,
multip le-input excluslve-Ok gates are difficull to fabricate with hardware . In fact. even a IW()­
input function is usually con structed with other types of gates . A two-Input excl usive-O k func­
lion is constructed with co nventiona l gates using two inverte rs.lWoANO gates . and an OR gate.
a.. shown in Fig. 3.3 2(a). Figure 3.32(b) shows the implementation of the exclu sive-OR with
four NAS O gates . The first :'JAr\O gate perform.. lhe operation (x.")' "" (x' -I- y').The other
two-le ve l NA~D circuit produces the sum of product s of its inputs :

(.t' + y')x -I- (.t' + y') .\' = .t y' + _t'y = .r e .'"

102 Chapter 3 Gate -Level Minimization

,-T"--------r;~;;.,

,-4-.------i.~/

(a) With A:'Io"D-OR-NOT gat"

, - 4-.- - - - - 4:::.-/
(b) With NAND gates

FI(,URE 3.32
fxdusiv~OR implementations

Onl y a limited number of Boolean functions can be expressed in terms of exclu sive-OR
operations. Nevertheless, this function emerges quite often during the design of digilal sys­
tems . It is particularly usefu l in arithmetic operations anderror detection and correction circuits .

Odd Function

The exclusive-OR ope ration with three or more variables can be converted into an ordinary
Boolean function by replacing the 6:) symbol with its equivalent Boolean expression. In par­
ticular. the three-variable case can be converted to a Boolean expression as follows:

A EIl B EIlC ~ (AB' + A' B)C' + (AB + A'B')C

AB'C' + A' BC' + ABC + A' B'C

~ ~ (l , 2, 4, 7)

The Boolean express ion clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary 10the two­
variable case , in which only one variab le must beequal to 1, in the case of three or more vari­
ables the requ irement is that an odd number of variables beequal to 1. As a consequence. the
multiple-variable exclusive-OR ope ration is defined as an oddfun ction.

The Boolean funct ion derived from the three- variab le exclu sive-OR operation is expressed
as the logical sum of four minterms whose binary numerical values are 001. 010. 100. and
II I . Each of these binary numbers has an odd number of I 's. The remain ing four minterms

Section 3.9 exclusive-OR Funct ion 103

not incl ude d in the function are 000. Oi l , 101 , and 110. a nd they have an ev en num ber of I' s
in their b inary numer ical va lues , In ge ne ral, an e-var iable ex clus ive- OR fu nction is an odd
func tio n de fined as the logical sum of the 2"(2 mi nte rms who se binary num erica l va lues
have an odd number of I 's ,

The de finition of an odd function can be clarified by plornng it in a map , Figure3.33(a) shows
the map for the three -variable exclusive -Ox function , The four minterm s of the functio n are a
un it di stance apa rt from each othe r. The odd function is ide nti fied fro m the fou r minterms
whose binary values have an odd number of Fs . Th e complement of an odd function is an
e ven function. A... sho wn in Fig. _' .33(b). the three -variable eve n functi on i ... eq ual to I when
an even number of its variables is equal to I (incl uding the co ndi tion tha t none of the variables
is equal to I).

The thre e-inpu t odd function is implemented b)' means of two- input cxclu... ive-Ox gates, a..
shown in Fig. 3 . 3~{al . The co mplement of an odd function is o bta ined by replacing the output
gate with an exctu sive-N tjk gale. as shown in Fig. 3 ,341b),

Con sider now the four -variable exclu sive-O R o peration. By algebraic man ipulation, we can
o btain (he sum of ml nrcrms for mis function :

A $B $ C $ D = (AB' + A' B) $ (CD ' + C D)

= (AB' + A' B)(CD + C D') + (AB + N B')(CD ' + C' D)

: ~ (1. 2 , • . 7, 8. 11. 13. 1.)

There are 16 minterms for a four-variab le Boole an function. Half o f lhe rninrerm s have binary
numerical values with an oddnumber of l 's: the othe r half of the nu nrerrns have binary nume rical

BC
A

"0 01 II 10.. -, " -,
o 1 1

-r -. _. -,
1 1

BC
A 00 01 11 10

~ -, "
0 , I

I," -, •. ~

I ,A

C

(a) (kid function F . A e H e c
C

(h) Eve n func1ion F '" (A Gl B E£l C)'

FIGURE 3.)3
Map for a three-variable exclu sive-OR function

fa) J. inpul odd function lb) 3-input e\'C' Dfunct ion

FIGURE 3.34
l ogi(diagram of odd and even functions

104 Chapter 3 Gate-Level Minimization

C C

•

. CD
00 01 Il 10.. m, m, .,

00 1 I

» , m, m, ..
01 1 1

m" m" m" m"
Il 1 1

m, m, m" m"
10 1 I

A

A

•

CD• 00 01 Il 10.. m, m, .,
00 1 1

m, m, ., ..
01 1 I

m" m" m" m"
Il 1 I

m, m, m" m"
10 1 I

A

A

D

(a) Odd function F = A EEl B E!l e mD

FIGURE 3,35
Map for a four-variable exclustve-OR function

D

(b) EII!:n [unction F - (A EEl 8 E!l C mO J'

values with an even number of 1'5. In ploni ng lhe function in the map, the binary numerical value
for a minterm is determined from the row and column numbers of the square thai represents the
mintenn. The map of Fig. 3.35(a) is a plot of !he four-variable excluslve-Og function. This is
an odd function because the binary values of all the minrerms have an odd number of I's. The
complement of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to I when an even number of its variables is equal to I.

Parity Generation and Checking

Excluslve-Og functions are very useful in systems req uiring error detection and correc tion
codes . As discussed in Section 1.7, a parity bit is used for the purpose of detecting errors dur­
ing the transmission of binary information. A parity bit is an extra bit included with a binary
message 10 make the number of l 's either odd or eve n. The message, including Ihe parit y bit,
is transmitted and then checked at the receiving end for errors. An error is de tected if the
checked parity does not correspond with the one transmitted. The circuit thai generales the par·
ity bit in the transmitter is called a parity generator. The circ uit that checks the parity in the
receiver is called e parity checker.

As an example, consider a three-bit message to be transmitted together with an even parity
bit . Table 3.4 shows the truth tab le for the parit y generator. The three bits-c-r . y, and z­
constitute the message and are the inputs to the circuit. The parity bit P is the output. For even
parity. the bit P must be generated to make the total number of I' s (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to I for those
minterms whose numerica l values have an odd numbe r of I's. Therefore, P can be ex.pressed
as a three-variable exclus ive-Ok function:

P = xEB yEB z

The logic diagram for the parity generator is shown in Fig. 3.36(a) .

Section 3.9 Exclusive-OR Function 105

Table 3.4
Everl.Parity,Gerlerator Trurh Table

Th ree -Bit Message Parlt)' Bit

• Y z P

0 0 0 0
0 () I I
0 I 0 I
u I I 0
I 0 0 I
I 0 I 0
I I II 0
I I I I

.~

:~ r

(al 3-hit even par ity genera tor tb) ~·h it eve n parity checker

c

FIGUR E. J.J6
logic diag ram of a parity generator and checker

The three bits in the message. toge ther with the parity bit. arc transmitted to their destina­
tion. where they are applied 10a parity-checker circuit to check fo r possible errors in the trans­
mission. Since the information was transmitted with even parity. the four bits rece ived must have
an even number of ls. An error occurs durin g the transmission if the four bits rece ived have
an odd number of ls, indicating that one hit has changed in value during transmission. TIle out­
put of the parity checker, denoted by C.will be equal 10 I if an erro r oc curs-ctbar is, if the fou r
bits received have an odd number of ls. Table 3.5 is the truth table for the even-pari ty checker,
From it. we sec that the function C con..ists of the eight mintcrms with binary numerical val­
ues having an odd number of Fs. The table corre sponds to the map of Fig. 3.35(a), wh ich
represents an odd function . Th e parity checker can be implemented with exclusive-OR gales:

C = x$yEB::EB P

The logic diagram of the p:lrity checker ill shown in Fig. 3.36(b).
It is worth noting that the parity generator can be implemented with the circuit of Fig. 3.36(b)

if the input P is connected to logic 0 and the output is marked with P. This is because z e 0 = c.
causing the value of :.10 pass through the gate unchanged. The adva ntage of this strategy is that
the sa me circuit can be used for both parity generation and checking.

106 Chapter 3 Cete-Level Minimization

Table 3.S
£v~n.Parfty.Checlcer Truth Tobie

Four Bits Parity Error
Received Check

x y z P C

0 0 0 0 0
0 0 0 I J
0 0 1 0 1
0 0 1 1 0
0 1 0 0 I
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 I
I 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minterms whose numerical values have either
an odd or even number of 1'5. As a consequence, they can be implemented with exclusive-OR
gales. A function with an even num ber of f' s is the complement of an odd function. II is im­
plemented with exclusive-OR gales, except that the gate associated with the output must be an
exclusive-NOR to prov ide the required co mplementation.

3 .10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circu it is small. For any­
thing else [i.e.• a practical circui t), designers use com puter-based design tools. Coupled with
a correct-by-construct ion methodo logy, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design . Prototype integrated
ci rcuits are too expensive and time consuming to build, so all modem design tool s rely on a
hard ware descripti on language to describe , design, and test a circu it in software before it is
ever manufactured .

A hardware description language (HDL) is a com puter-based language that describes the
hardware of digital systems in a textual fonn. It resembles an ord inary computer programming
language, such as C, but is spec ifically oriented to describing hardware struc tures and the
behavior of logic circuits. It ca n be used to represent logic diagrams, truth tab les. Boolean

Section 3.10 Hardware Description language 107

expre ssio ns. and comple x abstrac tions of the behavior of a digital system. One way to view an
HDL is to observe that it describes a relat ionshi p betwe en signa ls that are the inputs to a ci r­
cuit and the signals that are outputs of the c ircuit. For exa mple. an HD L descript ion of an AND
gate describes how the log ic va lue of the gate 's output is determi ned by the log ic va lues of its
inp uts.

As a documentation langu age. an HD L is used to repre sent and doc ume nt d igita l sys tems
in a form that can be read by both hum ans and compute rs and is suitable as an exc hange lan­
guage be tween design ers. The languag e content can be stored . retrieved . edi ted . and tran smit­
ted ea sily and processed by computer software in an effici ent manner.

HDL s are used in seve ral majo r steps in the de sign n ow of an integrated ci rcu it: de sign
entry, fu nct ional simulation o r ver ific ation. log ic synthes is. tim ing ve rifica tion. and fault
simulation.

Design e/!try crea tes an HDL· based descrip tion of the functionalit y that is (0 be imple­
me nted in hardware. Depend ing on the HDL . the descri ption can be in a variety of forms:
Boolean logic equ ations. truth tables. a netlist o f interconnected gates. or an abstract behav ioral
mod el. The HDL mod el may also represent a part ition of a larger ci rc uit into smaller inter­
co nnected and interact ing functional unit s.

Logic simulation displays the be havior of a digi tal sys tem thro ugh the use of a computer, A
simulator interprets the HDL de script ion and eith er produ ces readab le output. suc h as a time­
ordered seq ue nce of input and output signal values. or dis plays wavefo rms of the signa ls. The
simulation of a c ircuit pred icts how the hardware will beh ave before it is actua lly fabrica ted.
Simu latio n allows the de tec tion of function al errors in a de sign without having to ph ysica lly
create and ope rate the circuit. Erro rs that are detected du ring a simu lation can be correc ted by
modi fying the appropriate HDL stateme nts. The stimulus (i.e.. the logic values of the inputs to
a circ uit) that tests the functiona lity of the design is ca lled a fest bench. Th us. to simulate a dig­
ital system. the de sign is first described in an HDL and then verified by simulating the de sign
and checking it wit h a test ben ch-hlch is also wr itte n in the HDl. An alte rnative and more
complex approach reli es on fo rmal mathem atical method s to prove that a c irc uit is function­
ally correc t. We will foc us e xclusive ly on simulation.

Logic synthesis is the process of der ivi ng a list o f physic al compone nts and the ir intercc n­
nections (called a nettistvfrom the model o f a d igi tal system des cribe d in an HD L. The netl ist
ca n he used to fabricate an integrated ci rcuit or 10 layout a printed ci rcuit hoa rd with the hard­
ware co unterpart s of the gates in the list. Logic synthesis is simi lar to co mpiling a prog ram in
a co nve ntional high-level langu age . The d ifference is that. instead of producin g an object code.
logic synthes is produce s a datab ase descri bing the e lemen ts and structure of a ci rcu it. The data ­
base specifies how to fabrica te a phys ica l integrated circuit that implements in silicon the func ­
tionality de scribed by statements made in an HDL. Logic synthes is is based on form al exact
procedures.that imp leme nt dig ital ci rcuits and add resses that part of a dig ital design whi ch ca n
be automated with computer software. The design of tod ay's large. co mplex c ircuits is made
possible by log ic synthes is so ftware.

TIming verification confirm s that the fabricated integ rated ci rcu it will ope rate at a speci ­
fied speed. Because eac h log ic gate in a ci rcuit has a propagatio n de lay. a signal transition at
the inp ut o f a circ uit ca nnot immedia tely cause a change in the log ic va lue of the out put o f a
c ircu it. Prop agat ion del ays ultima tely limit the speed at wh ich a ci rcuit can o perate. Tim ing

108 Chapter 3 Gate·Level Minimization

verification chec ks each signal path to verify that it is not com promised by propagation delay.
This step is done after logic synthesis spec ifies the actua l device" thai will compose a circui t
and before the circuit is released for production.

In VLSI circui t dcsign,jaull sitmlwrion compares the behavior of an ideal circuit with the
behavior of a circuit that contains a process-ind uced flaw. Dust and other part iculates in the
etmospbere of the clean room can cause a circuit to be fabric ated with a fault. A circuit with
a fault will not exhibit the same fuoctiooa.Iity as a fault -free circuit. Fau lt simulation is used
to identify input stimuli thai can be used 10 reveal the difference between the faully circuit and
the fault -free circuit . These test patterns will be used to test fabricated devices to ensure that
only good devices are shipped to thecustomer. Test generation and fault simulation may occur
al different steps in the design process. but they are always done before prod uction in order
to avoid the disaster of producing a circu it whose internallogic cann ot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the public
domain. [here are two standard HDLs that are suppo rted by the IEEE : VHDL and Verilog .
VHDL is a Dep artment of Defense-mandated language . (The V in VHDL stands for the first
letter in VHSIC. an acronym for very high spee d integrated circui t.) Verilog began as a
proprietary HDL of Cadence Design Systems . but Cadence transferred co ntrol of Verilog to
a consortium of comp anies and universities known as Open Verilog International {OVO as a
step leading to its adopt ion as an IEEE standard. VHDL is more diffi cult to learn than Verilog.
Becau se verilog is an easier language than VHDL to describe. learn. and use. we have cho­
sen it for this book . However. the Verilog HDLdescriptions listed throu ghout the book are nOI
ju st about Verilog. but also serve to introd uce a design methodology based on the co ncept of
co mputer-aided mode ling of digi tal systems by means of a typical hardware descri ption
language. Our emphasis will be on the modeling. verification. and synthesis (both manual
and automated) of Veri log models of circuits having specified behavior. The verilogHDL
was initially approved as a standard HDL in 1995: revised and enhanced versions of the lan­
guage were approved in 2001 and 200 5. We will address only thos e feature" of veri log.
including the latest standard. tha t support our discussion of HDL·based design meth odology
for integrated circuits .

Module Declaration

The language refe rence manual for the verilog HDL presents a syntax that describe s precisely
the co nstruc ts tha t ca n be used in the language . In particular. a Veri log model is composed
of text using keywords. of which there are abo ut 100 . Keyw ords are predefined lowe rcase
ident ifiers that define the language co nstructs. Examples of keywords are module. end ­
module. Input. output. wire. a nd. o r . and no t. For clarity. keywords will be displayed in
boldface in the text in all exa mples of code and whe rever it is appropriate 10 call attention
to their use . Any text between two forward slashes (/1) and the end of the line is interpreted
as a co mment and will have no effect on a simulat ion using the mod el. Mu ltiline comments
begi n with , .. and terminate with ..t, Blank spaces are ignored . but they may not appear with­
in the text of a keyword. a user-specified identifier. an opera tor. or the represe ntation of a num­
ber. Veri log is case sensi tive. which means that uppercase and lowe rcase letters are
distinguishable (e.g .• not is not the same as SOT). The term module refers to the text enclosed

Section 3.10 Hardware Descripti on Languag e 109

E

:~__Wl_tB D
FIGURE 1.17
Circuit to d em onstrate an HDl

by the keyword pair modul e ... end module. A module is the fundamental descriptive unit
in the Verilog language. h is declared b)' the keyword module and must always beterminated
by the keyword endmod ule.

Combinational logic can bedescribed by a schematic connection of gates. by a set of Boolean
equations. or by a truth table. Each type of description can be developed in Verilog. We will
demonstrate each style. beginning with a simple example of a Vcrilog gate-level description to
illustrate some aspects of the language.

The HDLdescription of the circuit of Fig. 3.37 is shown in HDLExample 3.1. The first line of
text is a comment (optional) providing useful informcrion 10 the reader. The second line begins with
the keyword module and starts the declaration (description)of the module: the last line completes
the declaration with the keyword endmudulc. The keyword module is followed by a name and a
list of pons. The name (Simple_CirrI/it in this example) is an identifier. Identifier.' are names given
to modules. variables (e.g.. a signal). and other elements of the language so that they can be ref­
erenced in the design. In general. we choose meaningful names for modules. Identifiers arecorn­
posed of alphanumeric characters and the underscore LJ. and are case sen...itive . Identifiers must
sian with an alphabetic character or an underscore. but they cannot stan with a number,

HOI. Exam ple 3.1 (Combinational logic modeled with pr imitives)

1/Verilog model of circuit of Figure 3.37. IEEE 1364- 1995 Synlax

modu le
output
input
wire

Simple_Circuit (A, B. C, D. E);
D, O:
A.~, C:
w'\;

and
not
0'

endmod ule

G1 (w1, A, B); /I Optional gate instance name

G2 10 , C):
G3 (0, w1, E);

The pon \iMof a module is the interface between the module and its environment. In this
example. the ports are the inputs and outputs of the circuit. The logic values of the inputs to
a circuit are determined by the env ironment: the logic values of the outputs are determined
within the circuit and result from the action of the inputs on the circuit. The port list is en­
closed in parentheses. and commas are used 10separate elements of the list. The statement

110 Chapter 3 Gate-level Minimization

is terminated with a semicolon (;) . In our examples , all keywords (which must be in lower­
case) are printed in bold for clarit y. but that is not a requirement of the language . Next. the
ke ywords input and output specify whic h of the ports are inputs and which are outputs. In­
tern al connections are declared as wire s. The circuit in this exa mple has one internal con­
nection. at terminal wi , and is dec lared with the keyword wire . The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descri ptive key­
word (a nd , not, or). The elements of the list are refe rred to as instant iations of a gate, each
of which is re ferred to as a gate instance. Eac h gate instant iat ion consists of an optional
name (such as OJ, 02. etc.) followed by the gate output and inputs separated by commas and
enclos ed in parentheses. The outpu t of a primitive gate is always listed first. followed by
the inputs. For example. the OR gate of the schematic is represented by the or primitive. is
named 0 3, and has output D and inputs wl and E. (Note; The output of a primitiv e must be
listed first. but the inputs and outputs of a modu le may be listed in any orde r.) The mod ule
description ends with the keyword end module. Each state ment must be terminated with a
semico lon. but there is no semico lon afte r endmod ule.

It is important to understand the distinc tion betwee n the tenus declaration and instantiation.
A Verilog module is declared. Its declaration specifics the input-output behavior of the hard­
ware that it represents. Predefi ned primitives are not declared, because their definition is spec­
ified by the languag e and is not subject to change by the user. Primit ives are used (i .e.,
instantiared j. just as gates are used to populate a printed circuit board. We' ll see that once a mod­
ule has been declared. it may be used (instant iated) within a design . Note that Simple_Cirellit
is not a computational model like those developed in an ord inary programm ing language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A verilog model is a descriptive model. SimpleCircuit describes what primi tives form a cir­
cuit and how they are connected. The input-output behavior of the circuit is implicitly speci­
fied by the descr iption beca use the behavior of each logic gale is defined. Thus. an HDL-based
model can be used to simulate the circuit that it represen ts.

Gate Delay s

All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an outp ut. When an HDL mode l of a circuit is simulated. it is sometimes neces­
sary to specify the amou nt of delay from the input to the output of its gates. In Verilog. the prop­
agation delay of a gate is specified in terms of time units and is specified by the symbol N.The
numbers assoc iated with time delays in Verilog are dimens ionless. The associa tion of a time
unit with physica l time is made with the ' timesca le compiler direct ive . (Compiler direct ives
start with the (') back quote. or grave accent, symbol.) Such a direct ive is specified before the
declaration of a modu le and applies to all numerical values of time in the code that follows. An
example of a timesca le direc tive is

t imescale 1ns /100ps

The first number specifies the unit of measureme nt for time delays. The second number spec­
ifies the precision for which the delays are rounded off in this case to 0.1 ns. If no timescale
is specified. a simulator may display d imensionless values or default to a certain time unit.
usually I ns (= 10- 9 sec). Our examples will use only the default time unit.

Section 3.10 Hardware Description Language 111

Table 3 .6
Output of Catn otter CH1o'l

Tlme Units
In pu t Out pu t

(ns) ABC Ewl D

Initial 0 00 I 0 1
(lunge 111 I 0 1

10 11 1 0 0 1
' 0 1 11 0 0 1
30 1 1 1 0 I 0

'" 1 1 1 0 I 0
'0 111 0 I 1

HO L Exa mp le 3.2 repeats the descri pt ion of the simple circ uit of Example 3. 1. bu t with
propag ation de lays specified fo r eac h gate. The and . or. and not gules have a time de lay of30.
20. and 10 ns. respect ively . If the c ircu it is simulated and the inputs c hange from A. H. C = 0
to A. B. C = I. the outputs cha nge ax show n in Tab le 3.b (calculated by hand o r gene rated by a
simu lator). The output o f the inverter at E changes from I to 0 a fter a 1000s delay. The output of
the AND gate at w] changes from 0 to I after a]()..ns delay. The ou tput of the OR gate at D
chan ges from 1 to 0 at , = 30 n,; and then changes bacl.: to I at , = 50 ns. In bo th cases. the
change in the output of theOR ga le resultsfrom a change in ib inputs 20 ns earl ier. It is clear from
this result tha t although output D e\'emually returns to a final value of I after the inpul changes.
thega te del ays produce a negative spike thatlasts 20 ns before the final value is reecbed

HOL Exam ple 3.2 (Gale. le\'el model with prop !dJ:,3Iion dela) sl

II Verilog model of simple circuit with propagation delay

modu le Simple_Circuityrop_delay IA. B. C. D. E);
output D. E;
inpu t A, S, C;
wire wt :

and
not
0 '
endmod ule

#(30) Gl (w1, A, BI:
#(' 0) G2 (E, CI:
#(20) G3 (D, w1 , E):

In o rder to simulate a circ uit with an HDL. it is nece ssary to ap ply inpu ts 10 the circ uit so
that the simulator wi ll generate a n ou tput response. An HDL description tha t pro vides the stim­
ulu s to a design is ca lled a test bench. 111e writing of test benc hes is ex plai ned in more de tai l
at the end of Section ~ . 12 . Here. we demonstrate the procedure with a simple example wi th­
out dwelling on 100 man y detail s . l lD L Example 3.3 shows a test bench for simulating the ci r­
c uit with del ay. (Note the di stin gu ishi ng name Simpft'_Cirn lit-prop_Jelay.) In its sim plest

112 Chapter 3 Gate-level Minlmlz.ation

form. a test bench is a modu le containing a signal genera tor and an instantiation of the model
that is to be verified. Note that the test bench (cSimple_Ci rcuit..]Jrop_deJay) has no input or
output ports. because it does not interact with its enviro nment. In general , we prefe r to name
the test bench with the prefix C concatena ted with the name of the module that is to be tested
by the test bench, but that choice is left to the designe r. Within the test bench. the inputs to the
circuit are dec lared with keyword reg and the outputs are declared with the keyword wire. The
module Simple_Ci rcuit..]Jrop_delay is instantiated with the instance name M I. Every instan­
tiation of a module must include a unique instance name. Note that using a test bench is sim­
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probe s (wires) to the outputs of the circuit. (The interaction between the signal gen­
erators of the stimulus module and the instantiated circuit mod ule is illustrated in Fig. 4.33.)

HDL Exa m ple 3.3

1/ Test bench for Simple_Circu it...prop_delay

module t_Simple_Circuit""prop_de lay;
wire D, E;
reg A, B, C;

Simple_Circuit""prop_de lay M1 (A, B, C, D, E); II Instance name required

Initial
beg in

A = 1'bO; B = 1'bO; C = 1'bO;
#100 A = 1'b 1; B = 1'b1; C = 1'b1;

end

Initial #200 $f1nlsh;
endmodule

Hardware signal generators are not used to verify an HDL model : The entire simulation ex­
ercise is done with software models executing on a digital computer. Thewaveforms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initial keyword is used with a set of statements that begin executing when
the simulation is initialized; initial terminates execution when the last statement has finished
executing. initial statements are commonly used to describe waveforms in a test bench. The
set of statements to be executed is called a block statement and consists of several statements
enclosed by the keywords begin and end . The action specified by the statements begins when
the simulation is launched, and the statements are executed in sequence , from top to bottom.
by a simulator in orde r to provide the input to the circuit. Initial ly, A. B, C = O. (A, S , and C
are each set to I 'bO, which signifies one binary digit with a value of 0.) After 100 ns, the in­
puts change to A. B. C = 1. After another 100 ns, the simulation termi nates at time 200 ns. A
second initial statement uses the Sfinlsh system task to specify termination of the simulation.
If a statement is preceded by a delay value (e.g., # 100). the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms that result

Sectio n 3.10 Hardware Description Lan gua ge 113

O.O n~ 5S.0 ns usn n~ 174.0 n~
, ame ,

A

B

C

D

E ---J

FIGURE 3.38
Simulation output of HDl Example 3.3

from the simulation is shown in Figure 3.38. The total simulation takes 200 ns. The inputs A,
B. and C change from 0 10 I after lOO ns. Output J:: is unknown for the first IOns (denoted by
shading).and output D is unknown for the first 30 ns. Output E goe s from J to 0 at 110 ns. Our­
put D goes from I to 0 at 130 ns and back 10 1 at 150 ns. just as we predicted in Table 3.6.

Boolean Expressions

Boolean equations desc ribing combina tionallogic are spec ified in Verilog with a continuous
a.ssignment statement consisling of the keyword 1Is..'i I~n followed by a Boolean expression. To
distinguish arithmetic operators from logical operators. veruog u-.e 'i. the symbols (&), (I), and
(-) for AND. OR. and NOT (complement). respectively. Thus. 10 describe the simple circuit
of Fig. 3.37 with a Boolean expre....ion. we U~ the ..tatemenr

ass ign D ~ (A & B jl-c:
HDL Example 3Adesc ribes a circuit that is specified with the following two Boolean expres..ions :

E = A + BC + B 'D

F=B ' C+ BC' D '

The equations specify how the logic values £ and F are determined by the values of A. B. C.
and D.

IIDL Exampl~ 3.4 (Cllmbinational logil' mod"h.'d wilh Buolean equations)

1/Verilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E. F, A, B, C, 0);
output E, F;
Input A, B, C, 0 ;

. sslgn E =AI (B & C) I (- B & D);
ass ign F =(- B & c) I (B & -C & -0);

endmod ule

114 Chapter 3 Gate-Level Minimization

The circuit has two outputs E and F and four inputs A, B, C, and D. The two assign state­
ments describe the Boolean equations. Tbe values of E and F duri ng simulation are determined
dynamically by the valuesof A. B. C. and D. The simulator detect s when the test bench changes
a value of one or more of the inputs, When this happen s. the simulator updates the valuesof E
and F. 1be continuous assignme nt mechanism is so named beca use the relationship between
the assigned value and the variables is permanent. The mechanism acts just like combination­
al logic. has a gate-leve l equivalent circuit. and is referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL state ments. just as it can
bedrawn in a circuit diagram or specified with a Boo lean expressio n. A third alte rna tive is to
describe combina tional logic with a truth tab le.

User-Defined Primitives

The logic gale s used in Verilog descri ptions with keywords a nd. or . etc., are defined by the sys­
tem and are referred to as system primitives. (Caution: Other languages may use these words
differently,) The user can create additional primitives by defining them in tabular form. Th ese
types of circuits are referre d to as user-defined primitives (UDPs). One way of spec ifying a dig­
ital ci rcuit in tabular form is by means of a truth table. UDP desc riptio ns do not use the key­
word pair module . . . endmodule. Instead , they are declared with the keyword pair primitive
. . . endprlmluve. Th e best way to demonstrate a UDP declarat ion is by means of an e xample.

HDL Exampl e 3.5 defines a UDP with a truth table . It proceeds according to the following
gene ral rules:

• It is declared with the keyword primitiv e. followed by a name and port list.

• There can beonly one output. and it must be listed first in the port list and dec lared with
keyword output.

• There can be any number of inputs. Tbe order in which they are listed in the Inpul
declaration must conform to the order in which they are gin n values in the table that
follows.

• The truth table is enclosed within the keywords table and endtable .

• The values of the inputs are listed in order. ending with a co lon (:). The output is always
the last entry in a row and Is followed by a semicolon (:).

• The declaration of a UDP end s with the keywo rd endprfmttive.

Note that the variables listed on top of the table are part of a comment and are shown only
for clari ty. The sys tem recognizes the variables by the order in whic h they are listed in the
input declaration. A user-defi ned primitive can be instantiated in the cons truct io n of other mod ­
ule!'> (dig ital circuits), just as the system primitiyes are used. For example. the declaration

Circuit_with_UDP_02467 (E. F, A, B, C, D);

will prod uce a circuit that impleme nts the hardware show n in Figure 3.39.
Although Verilog lI DL uses thi s kind of de scrip tion for UDPs only, o ther HD Ls and

computer-aided design (CAD) systems use other procedures to specify digital circ uits in tab­
ular form . The table s can be processed by CAD software to derive an efficient gate suuc­
lure of the design . None of Veri log 's predefined primitives describes seq uential logic. The

Section 3.10 Hardware Description Language l1S

flDL Example 3.5

II Verilog model : User-defined Primitive

primit ive UOP_02467 (0 , A. B. C);
output 0 ;
Input A, B, C;

11 Truth table for 0 :: t (A, B. C):: ! (0. 2, 4, 6, 7);
table

II ABC 0 11 Column header comment
a 0 0 1;
o 0 1 0;
o 1 0 1;
o 1 1 0 ;

1 0 0 1;
1 0 1 0;

1 1 ° t :
1 1 1 1;

endtable
endprlmruve

11 Instantiate primitive

1/Verilog model: Circuit instantiation of CircuiCUDP_02467

mod ule Circuit_wlth_UDP_02467 (e, I, a. b, c. d l:
output e. t:
input a, b, c. d:

UDP_02467
and

endmod ule

(e. e. b ,C):
(t . e. dl; 1/Option gate instance name ormrted

FIGURE) ,)9
Schematk fo r Cirtu lt with _UDP_D1461

116 Chapter 3 Gate-Level Minimization

model o f a sequential UOP requires tha t its output be decl ared as a reg data type. and that
a column be adde d 10 the truth tab le to descri be the next state. So the co lumns are organ­
izes as inputs : state : next state.

In this section. we introduced the Verilog HOL and presented simple examples 10 illustrate
alterna tives for mode ling combinational logic. A more detai led presentation of Verilog HOL
can befound in the next chapter,The reader familiar with combinational circu its can go directly
to Section 4.12 to continue with this subject.

PROBLEMS

Answers to problems marked with '" appear al the end of the book.

3 .1 '" Simplify the following Boolean functions. using three-variable maps:
(a) F(x , y, :) - ~ (O,2,6. 7) (b) F(x, y, :) - ~ (O.2. 3,4,6)

(e) r t «. y.:) - :E(O, 1. 2. 3. 7) (d) F(x. y. :) .. :E (3, 5. 6, 7)

3 .2 Simplify the following Boolean functions, using three-variable maps:
(3)'" F(x,)'• c) IS I (O, I. S. 7) (br F(x, y, .::) "" :E (I. 2. 3, 6, 7)
(e) r i«. ,',.::) - I(O. 1, 6. 7) (d) F(x, y,:) ~ I (O, 1. 3,4,05)
(e) F(x, ,'. c) - I (I .3,S, 7) (0 F(x, y. :) ~ I(I,4,S,6, 7)

3.3'" Simplify the following Boolean expressions, using three-variable maps:
(ar F(x,y,l) - X) ' + x'y' : ' + x'y: ' (b)'" F(x.)'.:) "" .f'y' + yz + x'y: '
(c)'" F(x, y,:) "" x'y + r a' + y'.::' (d) F(x, y.:) '"' xyz + x'y'.:: + xy' .::'

3.4 Simplify the following Boolean functions, using Kamaugb maps:
(a)'" F(x, y, .z:) - I (2, 3. 6, 7) (b)'" F(A . B, C. D) :; I(4. 6, 7, 15)
(c)'" F(A. B, C, D) ". I (3, 7. I I. 13. 14, 15) (d)'"F(w, x, y• .::) :; :E (2, 3, 12, 13, \4, 15)
(e) F(w• .t , ,". l) "" ~ (1. 4.5,6. 7. 13) (0 F (w, x. y• .::) - I (0. I.S.8.9)

3 .5 Simplify the following Boolean functions. using four-variable maps:
(a)· F(w. x, y. .::) '" :E (I, 4. 05 , 6, 12. \4 , 15)
(b) F(A ,B. C. D) :; :E (1.5, 9. 10. 11. 14. IS)
(e) F(w.x, y• .::) "* I (O, 1. 4. 5, 6. 7. 8. 9)
(d)'" F(A. . B, C, D) :; I (O. 2. 4. S. 6. 7. 8. 10. 13. IS)

3.6 Simplify the following Boolean expressions, using four-variable maps:
(arA'B'C'D' + AC' D' + B'CD' + A' BCD + BC'D
(b)'" x'e + w'xy' + w(x'y + xy')
(e) A'B 'C'D' + A'CD' + AB'D ' + ABeD + A'BD
(d) A'B 'C'D' + AB'C + B'CD' + ABCD' + BC'D

3.7 Simplify the following Boolean expressions, using four-variable maps:
(a)'" w' ::: + xz + X')' + WX' l
(b) C' D + A' B'C + ABC' + AB'C
(e)'"AB'C + B'C' O' + BCD + ACD' + A'B 'C + A'HC' D
(d) x)"t. + Ill)' + wxy' + x')'

3.8 Find the minterms of the following Boolean expressions by first plouing each function in a map:
(ar X)' + rz + XY'l (b)'" C 'V + ABC' + ABD' + A'B 'D
~ ~ + ~x' +~.:: ' MA'B +A~ + 8'CD +~D'

Problems 117

1.9 Find all the prime implicants for the follow ing Boo lean functions. and determine which are es­
sential:
(a)· F(w• .r. y.~) '" ! (O. 2. 4. 5. 6, 7. 8. 10. 13. 15)
lb,· F(A. B. C. D) = l t~. 2. 3. 5. 7. 8. 10. I I. I• . 15)
(e) F(A .8.C,0) '" ~(I . 3 . 4.5 . IO. II . 1 2 . 1 3 . 1 4, 15)
(d) F(w. .r. y.~) '" ~ (I . 3. 6. 7. 8, 9. 12.13 . 14. 1.5)
(e) F(A. B. C,D) '" ~ (O. 2 . 3.5 . 7.8. 10. 11, 13. 15)
(0 F(w. ,t. y.;:) '" ! (D.2. 7.8.9, 10. 12, 13. 14, 15)

1.10 Simplif)"the following Boolean functions by first finding the essential prime implicams:
(a) F(w. .r, y.::) '" I (D. 2, 4. 5. 6, 7. 8. 10. 13.1 5)
(b) F(A. 8 . C. D) "" sro,2. 3. 5. 7. 8. 10. I I. 14. 15)
(CI* F(A . B. C. D) :: ! (1. 3.4. 5. 10. II . 12. 13. 14, 15)
(d) F(w. "t.)". ~) "" ! (1. 3. 6. 7. 8, 9. 12. 13. 14. 15)
(e) F(A . B. C. D) '" ! (O. 2. 3. 5. 7. 8.1 0. I I. 13. 1.5)
(fJ F(" '. .r. y. ;:) '" ! (O. 2. 7. 8. 9.10. 12. 13.14. IS)

1.11 Simplify the following Boolean functions. using five-variab le maps:
(a)" F(A . B. C. D. E) '" ! (o. 1.4. 5.1 6. 11. 21. 25. 29)
(b) F(A.B.C.D) = A'B 'Ct: ' + B'C' D' E' + A' B'O' + B'CD ' + A'CD + A' BD

1 .12 Simplify the following Boolean functions to product-of-sums form:
(a) F(w• .r , y.::) .. ~ (o. I. 2. 5. 8. 10. 13)
lb,· F(A. B. e. D) = n (I . 3. 5. 7. 13. 15)
le i F(A.B.C.D) = n (1.3. 6. 9. 11.12. 1.)

1.13 Simplify the following expressions to (I) sum-of-products and (2) products-or-sums:
(a)* x ';:' + y'.::' + y:' + xy

(b) ACD' + C' D + AB' + ABeD
(cl (A + C' + O')(A ' + B' + O')(A ' + B + D')(A' + B + C')
(d) ABC' + AB'O + BCD

3 .14 Give three possible ways (Q express the following Boolean function with eig ht or fewer literals:

F R HT ' D' + AB'CD ' + BC'D + A'RCD

3 ,1 S Simplify the follcwlng Boolean function F. together with the do n't -care co ndit ions d, and then
expre ss the simplified function in sum-of-mime nns form :
(a) F(.t . y. ~) ::::: ~ (2 . 3. 4. 6. 7) (b)* F(A. B. c' D) := ~ (O. 6. 8. 13. 14)

dlx, " . ,) ~ ~(O. 1. 5) d(A. fl . e. D) e l (U . 10)
(e) F(A .B.C.D) = ! (4.5 . 7. 12. 13. 14) (d) F (A.B. e , D) "" };(1.3,8. 10, 15)

d(A.B. e.D) e l (1,9.1 1.l5) d(A. B. e. D) = l (0.2.9)

3 .16 Simplify the following functions. and implement them with two-level NAND gate circuits:
(a) F(A. B. c'D) "" A' B'C + AC' .. Ae D + AeD ' + A' B' D'
(b) F(A . B.C. D) = AB + A'Be + A' RT 'D
(e) F(A . B,C) = (A' + B' + C'H A' + B')(A' + C')
(dJ F(A , B.C. D) '" A'B + A + C' + 0 '

3 .1 7* Draw a NAND logic diag ram that implements the complement of the following function:

F(A . B. C, D) "" };(O, I. 2. 3, 4. 8. 9. 12)

118 Chapter 3 Gate-Level Minimization

3.18 Draw a logic diagram using only two- input NOR gates to implement the following function;

F(A. B. C.D) c (A <!l B)" (C<!l D)

3.19 Simplify the following functions , and implement them with two-level NOR gate circuits:
(a)+ F zo wx ' + y' ~' + w' yz '
(b) F(w. x, y, z) "" ~ (I , 2, 13, 14)
(c) F (x ,)'o t) - [(x +)')(x' + t))'

3.20 Draw the multi-level !'\OR and multi-leve l NAND circ uits for the following expression:

(AB' + CD')E + BC(A + B)

3.21 Draw the multi-level NAN D circuit for the follow ing expression:

w(x + y + z) + xyz

3 _22 Convert the logic d iagram of the circuit shown in Fig. 4 .4 into a multiple-level NAND circ uit.

3.23 Implement the follow ing Boolean function F, together with the don't-care conditions d, using no
more than two NOR gate s:

F(A , B. C. D) = I (2. 4, 6. 10, 12)

d(A. B. C. D) • I(O. 8, 9. 13)

Assume that both the normal and complement inputs are available.

3.24 Implement the following Boo lean function F, using the two-le vel forms of logic (a) NAND­
AND, (b) AND-NOR, (c) O R-NAr\D, and (d) NOR-OR:

F(A, B, C, D } = I (O,4.8.9, 10, 11, 12, 14)

3.25 List the eight dege nerate two-level form s and show that they reduce to a single opera tion. Explain
how the degenerate two-level fonns can be used to extend the number of inputs to a gate.

3.26 With the use of maps, find the simplest sum-of-products fonn of the function F "" Is ,where

I "" abc' + cd + a'cd' + b'cd'

g = (a + b + c' + d ')(b ' + c' + d)(a' + c + d')

3.27 Show that the dual of the excl usive-OR is also its complement.

3 ,28 Derive the circuits for a thre e-bit parity generator and four -bit parity checke r using an odd
parity bit.

3.29 Implement the following four Boolean expressions with three half adders

D ". Ae BffiC

E '" A' BC + AB 'C

F = ABC' + (A' + B')C

G = ABC

3.30'l' Implement the following Boo lean expression with exclusive-O R and AND gates:

F = AB'CD' + A' BCD' + AB'C'D + A'BC 'D

Problem s 119

1.11 Write a Venlo~ gure-tevet deccripnon of the circuit shown in
la) Fig. 3.111al tn l Fi~ . 3.1 2(bl (' I Fig. 3.23(a)
(d l Fig. ~.1~l n) Ie) Fig. 3.16 (f l ri g. 3.27

1.12 Using conun uouv uxsignmer nstatements. write a Verill1g dcscnprio n of the circ un shown in
(a) Fig. 3.22(al Ib) Fig. 3.21(bl lei Fig. 3.2313)
(dJ h g. 3.23(hl ret Fig. 3.26 10 Fig. 3.27

1.11 The exclusive-OR circuit of Fig. 3.32(3) has gate, with a delay of ~ ns for an inverter. a ~ ns
dela y for an AND gale. and a HI ns dela y for an OR gate. The input of the circ uit goes from
l ,\' '" 00 10 .t .\' '" 0 1.
(a) Determine lhe signals ,It the OUIPUI of each g.llc from 1 "" 0 to t = 50 ns.
Ih) Write a vcnl og gate -level description uf the ci rcuit. including the dela ys.
te l Write a stim ulus module (i.e .• a IcMbench similar to Hm.Example 3.]). and simulate the cir­

cuu to verify the answer in pan (a).

1 .M Using continuous a ss ignmcnt ~ , write a Verilog desc npno n of the circuit specified by the follow.
ing Boolean functions:

Oll/_l "" (C + 8)(A ' + I>}8 '

0 11 /_2 =' (C R' + ABC + C' B)(A + lJ ')

0 11I_3 "" C(AD + R) + SA '

Write a test bench and simulate the circuit'sbeha vior.

l ,lS· Find the synta x errors in rhc follu..... ing declarat ions (note that names for prim itive gates are
oprionalj:

module Exmpl·3(A, B, C. D. F)
inputs A. B. C . Ou tpu t 0 , F,

output B
a nd g l (A. B. 0);

not (0 , A, C),
OR (F, B; CI;

e ndofmod u le ;

1/Line 1
1/Line 2

1/Line 3
1/Line 4

1/Line 5
I/ line 6
1/Line 7

1.16 Draw the logic diagram of (he digi tal ci rcuit specified by the follow ing Ven log descri pnon :

la l m odule CircuiCA (A, B, C . 0 , F);

Input A, B. C, D;
output F;
wire w, x. y. z. a , d;
and (x. B. C , d) ;

and (y, a ,C);
a nd (w , Z ,8);

or (z . y, A);

o r (F, x. w);
not (a , A);

not (d, D);

endmodule

120 Chapter 3 Gate-level Minimization

(b) module Circull_B (A-fjtB, AJtB, A_eqB, AD,A1, BO, Bl);
output A-fjIB , AJ IB, A_eqB;
Input AD, Al , BO, B1;
nor (A_gIB, A_ ItS, A_eQB);
or (AJ tB, w1, w2, w3);
and (A_eq B, w4 , w5);
and (wt. w6, B1);
and (w2, '0'.'6, w7, BO);
and (w3, w7, 80, Bl);
not (w6, A1);
not (w7, AD);
xnor (w4,A1, B1);
xnor (w5, AD, 80);

endmedule

(c) modu le CircuiCC (output y1, Input a, b, output y2);
assi gn y1 :: a & b:
or (y2, a, b);

endmodule

3 .37 A majority logic function is a Boolean functioo thai is equal to 1 if the majority of the variables
are equal 10 I , equal 10 0 otherwise. Write a Verilog user-defined primitive for a four-bit majori­
ty function.

3 .38 Simulate the behavior of CircuiU,>'ith_UDP_02467, using the stimulus waveforms shown in
Fig. P3.38.

AI
i I I I I I I t , ns

10 20 30 40 30 60 70 80

·1
I I I t. ns

10 20 30 ., 30 60 70 80

cl
I t, ns

10 20 30 40 50 60 7. 80

FIGURE P3 .38
Stimulus waveforms fo r Probl em 3.38

Refer ences 121

REFERENCES

1 _ BHASK.ER. J. 1997. A \{Orilog HDL Primer: Allent own. PA: Star Galaxy PIT' s.

2 . Cll.ETT1. ~tD. 1999. .\f (I(it'/itlg. Sytl rht'sis an d Rap id Protoryp ing with ' hI' \{Orilog HDL Upper

Sadd le River. NJ: Prentice H.tII.
J . H~ F.1. and G. R. Pere asos . 1981./nmlC!ucricltI to Switching Tht'ol')' an d Logical Drsigtl. 3d

N . New York : John Wiley.

4 . IEEE Standard HUnfM'Urt' Description umguagt' Bau d on tht' \ {on'log Hardwa re Dt'scripli otl

Languogt' (IEEE Sid 1364-19951. 1995 . New York : The lnsntute of Elect rical and Elect ronics

Engineers .
S. KAR........lIGH. M. A Map Method for Synthe~i s of Combin ationa l Logic Ctrcuns. TrQ/uoc,iatl.~ of

AlEE, Communicat ion and Electronics. 72. pan I (Nov, 1953): 593-99 .

6 . KOHA\'l. Z. 1978. S,,'irchitlg and A' llOmota Theory, 2d ed . New York : Mcflr aw-Hill.
7. MA.'Ilo. M. M.. and C. R. KIME. 2004. Logic and Computer Dt',figtl Fundamenta ls. Jrd ec. Upper

Saddle River, NJ: Prentice Hall.
8 . McCW SKEY. E. J. 1986. Logic Design Princip les. Englewood Cliffs. Nl : Prentice-Ha ll.

9 . PA~tTKAR . S. 1996 . verilog HDL: A Guide to Digital Design and S.\"nthesis. Mountain View.
CA : SunSofl Press (a Prentice Hall title).

Chapter 4

Combinational Logic

4 .1 INTRODUCTION

Logic circ uits for digi tal sys tems may becombinational or sequential. A combinational circui t
consists of logic ga tes whose outputs at any time are determined from only the presen t cornbi­
nation of inputs. A combinational ci rcuit performs an operation that can be spec ified logically
by a set of Boolean functions. In contrast, sequential circuits employ storage elements in addi ­
tion 10 logic gates. Their outputs are a function of the inputs and the stale of the storage elements.
Because the state of the storage elements is a function of pre vious inputs. the outputs of a se ­
quential circuit depend not only on present values of inputs. bUI also on past inputs. and the cir­
cuit beh avior must be specified by a time seq uence of inputs and interna l slates , Sequ ential
circuits are the building blocks of digital systems and are d iscussed in Chapters 5, 8. and 9.

4 .2 COMB INATIONAL CIRCU ITS

A combinational ci rcuit consists of input variables , logic gales, and output variables. Combina­
tionallogic gates react to the values of the signals at their inputs and produ ce the value of the out­
put signal, transfonning binary inform ation from the given input da ta to a requ ired output data.
A block diag ram of a combinational circuit is shown in Fig. 4.1. The 11 input binary variables
come from an ex ternal so urce; the III output variables are produced by the internal combinational
logic circuit and go to an external destination. Each input and OUiPUI variable exists physically
as an analog signal whose values are interpreted to be a binary signal that represents logic I and
logic O. (Note: Logic simulators show only D's and l 's, not the ac tual analog signals.) In many
app lications. the source and destination are storage registers. If the regis ters are included with the
co mbinational gates, then the total circu it must be conside red to bea sequential circuit.

122

" i npul~

Section 4.3 Ana lysis Procedure 123

Combinalional
circuit

FI(;URE 4.1
Bloc:k diagram of combinational circuit

For n input variables. there are r poss ible binary input co mbinations. Por each possible input
co mbina tion . the re is one possible output value. Th us, a co mbinationa l c ircuit can be pectfled
with a truth tab le that Ii ...t" the o utput va lues for each com bination of input va riabl e A com-
bina tion al ci rcuit a lso can be described by m Boolean functi on s. one for each output ..-ariable .
Eac h o utput functi on is ex presse d in terms of the " inpul varia ble

In Ch apter I. we learned a bout binary num be rs and binary cod es thai represe nt discrete
q uantities of informa tion. The binary ..-ariables are rep resented ph ysicall y by elect ric ..-oh ages
or so me othe r type of signal. The slgnals can be ma nipula ted in d igital logic gates 10 perform
req uired funcnon s. In Ch apter 2, we introd uced Boo lean a lgebra a" a way 10 ex pre s... logic
funct ion s algebraica lly. In Chapter 3. we learned how to simplify Boo lean functions to ach ie ..-e
econo mica l (s impler) ga te Imple ment an on s. The purpo~ of the c urrent chapter is to use the
know ledge acqui red in previou s cha pters 10 formulate sys tematic analysis and de sig n proce ­
du res for combinational c ircuits. The so lutio n of so me typi ca l exa mples ..viii pro vide a usefu l
ca talog of ele mentary funct ions tha t are import ant for the understand ing of d ig ital syste ms.
We' ll addre ss three tasks: (1) Ana lyze the behav ior of a g iven logic ci rcuit. (2) synthesize a ci r­
cui t that wi ll have a g iven beha vior. and (3) write II DL model.. fo r some co mmon ci rcuit s.

There are several co mbinat iona l c ircuits that arc e mployed ex tensive ly in the de sign of dig­
ital systems. These circ uits are a..-ailable in integra ted circ uits and are classified a.. standard com­
ponents. They pe rfo rm specific di gital functi on s commonly needed in the design of d igita l
sys tems . In thi .. chapter. we introduce the mos t important ..tandard co mbin ational ci rcu its. suc h
as adde rs. subtrectors. comparators. decoders. encoders. and multip lexers. These co mponents are
ava ilable in integrat ed ci rcu its a.. mediu m-scale integrat ion (~ISI) ci rcu itv. Tbey arc also used
as standard cells in co mplex wry 13J1!e -<;Cale integrated IVLS I) circuits such a" application­
speci fic integrated c ircuits (AS IC,,). The standard ce ll funct ion s are interconnected wi thin the
VLS I c ircuit in the same way that the)' are used in mul tip le-Ie .\151desig n.

4 . 3 ANALYSIS PROCEDUR E

The ana lysis of a co mbinationa l ci rcuit requires that we dete rmine the fu ncti on that the circ uit
imp lement s. Th is task starts with a given logic diagram 0100 culmi nates with a set o f Boo lean
func tions a truth table . o r, poss ibly. an explanatio n of the ci rcu it ope ration. l f the logic d iagram
10 be analyzed is accompan ied by a function name or an ex planatio n of what it h.assu med to
accompli sh. then the a naly st.. prob lem red uces to a veri fic ation of the sta ted functi on . The
analys is can he performed man ually by findi ng the Boolean funct ions or truth table o r by using
a computer simulation program .

124 Cha pte r 4 Combinational l ogic

The first step in the analy sis is to make sure that the given circuit is combinational and not
sequential. The diagram of a combinational circuit bas logic gates with no feedback paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms pan of the input to the first gate. Feedback paths in a digital circ uit de­
fine a sequential ci rcuit and must be analyzed according to procedures outlined in Ch apter 9.

Once the logic diagra m is verified co be that of a co mbinational circuit. o ne can proceed to
obtain the output Boolean functions or the truth tab le. If the funct ion of the circui t is under in­
vestigation. then it is necessary to interpre t the ope ration of the circuit from lhe derived Boolean
functions or truth table. Th e success of such an investigation is enhanced if one has previous
experience and familiarity with a wide varie ty of digital ci rcuits.

To obtain the output Boolean funct ions from a logic diagram. we proceed as follows:

1. Label all gate outputs that area function of inpu t variables with arbitrary symbols-but
with meaningful names. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates with
other arb itrary symbo ls. Find the Boolean funct ions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circ uit areobtained .

4. By repe aled substitution of previously defined functions. obtain the output Boolean func­
tions in term s of inp ut variables.

The analysis of the combinational circuit of Fig. 4.2 illu strates the proposed procedure. We
note tha t the circuit has three binary inputs- A. B. and C-and two binary outpUls-F\ and F2.

~ =:l]~~2_----------------h:;')-__F,

T,

T,A----'-,.-
B f-'-'-- - - - - - --,
c - -<::,-""

A - -[;;;;,

B--=.../

A - -r- ,
c --1~')-;::::::;!i!!>~---------- F,

B -r;;;<;\
C -;'"

FIGURE 4 .2
l o g ic diagram for ana lysis example

Section 4.3 Analysis Procedure 125

The outputs of various ga tes are labeled with interm edi ate symbols . The o utputs of ga tes that
are a function only of input varia bles are T1 and T'!. Output F,!ca n easily be de rived from the
input variables . The Boo lean funct ion s for these three outputs are

F,! = AB + AC + BC

TJ =A +B + C

T,! = A BC

Next . we co nside r ou tputs of ga tes that are a function of al ready defined symbo ls:

T~ = FiT,
Fj =T3 + T'!

To obtain FI as a function of A. B. and C. we form a series of sub..titutions as follow ..:

F 1 = T J, + 7 ,! "" FiT l + ABC = (A R + AC + HC)' (A + B + C) + AHC

~ (A' + 8 ')(,1' + C')(8 ' + C')(A + 8 + C) + ABC

= (A' + B'C')(AB' + AC' + BC' + B'C) + ABC

= A'R e ' + A'B'C + AB'C' + ABC

If we want to pur sue the investigation and determ ine the info rmation transfo rmation task
achieved by th is circ uit. we can draw the circ uit fro m the derived Boolean ex press ions and try
to recognize a fam iliar operation. The: Boo lean funct ions for Fl and F] implement a circuit d is­
cussed in Sec tion ~.5 . Merel y find ing a Boolean representat ion of a circuit doe sn' t prov ide in­
sight into its be havior, but in this example we "ill observe that the Bool ean equ ations and tru th
tab le for F1 and F,! matc h those describing the functi onalit y of " hat we call a full adder .

The derivation of the truth table fo r a circuit is a straightforward process once the ou tpu t
Boolean func tio ns are known . To obtain the truth table d irectly from the logic d iagram with ­
o ut goin g through the derivations of the Boo lean func tions. we proceed as follows :

1. De termine the number of input "m abies in the c ircu it. For " inpu ts. form the 2" possible
input co mbinations and list the binary numbers from 0 to 2" - I in a table .

2. Labe l the o utputs of selected gale!' with arbitrary symbols.

3. Obtai n the truth table for the ou tputs of those ga'e~ which are a function of the inpu t
varia bles only.

4 . Proceed to obtain the truth table for the outputs of those gates whic h are a func tion of pre­
vio usly defined values unt il the co lumns for all outputs are de term ined ,

Th is process is illustrated with the ci rcu it o f Fig. 4 .2. In Tab le 4,1. we fonn the eight posst­
ble co mbinatio ns for the three inpu t variables. The tru th table for F2is determin ed directl y from
the values of A. B. and C. with F2equal to I for any co mbination tha t has two or three inpu ts
equa l to I . The truth table for f' ~ is the compleme nt of that o f f 2.The tru th tables for T1and 72
are the O R and AND funct ion .. o f the input variables. respectively,The values for T}are deri ved
from 71 and F i : 7.1 is eq ual to I when both T1and F i arc eq ual to I. and T3 is equ al to 0 oIh...'T ·

wise . Finally. F, is equ al 10 I for those combination.. in which either T2o r T3or both are eq ual

126 Chapter 4 Combinational Logic

Table 4.1
Truth Table for the l.ogic Diagram of Fig. 4.1

A • c I F, F, T, T, T, F,

0 0 0 0 I 0 0 0 0

0 0 I 0 I I 0 I I

0 I 0 0 I I 0 I I

0 I I I 0 I 0 0 0

I 0 0 0 I I 0 I I

I 0 I I 0 I 0 0 0

I I 0 I 0 I 0 0 0

I I I I 0 I I 0 I

to I . Inspection of the truth table combinations for A. B, C. Fl. and F2shows that it is identical
10 the truth table of the full adder given in Section 4.5 for .r, y. z, S. and C. respectively.

Another way of analyzing a combinat ional circuit is by means of logic simulation. This is
not practical, however, because the number of input patterns that might be needed to generate
meaningful outputs could bevery large. But simulation has a very practica l application in ver­
ifying thai the functionality of a circuit actually matches its specification. In Section 4.12. we
demonstrate the logic simulation and verification of the circuit of Fig. 4.2, using Verilog HDL.

4 .4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective and
culminates in a logic circuit diagram or a set of Boolean functions from which the logic dia­
gram can be obtained. The procedure involves the following steps:

I. From the specifications of the circuit. determine the required number of inputs and outputs
and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and outputs.

3. Obtain the simplified Boolean functions foreach output as a function of the input variables.

.s. Draw the logicdiagramand verifythe correctness of the design (manually or by simulation).

A truth table for a combinational circui t consists of input columns and output co lumns. The
input columns are obtained from the 2" binary numbers for the n input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec­
ified in the truth table give the exact definition of the combinational circuit It is important that
the verbal specification s be interpreted correctly in the truth table. as they are often incom­
plete, and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method,
such as algebraic manipulation. the map method, or a computer-based simplification program.
Frequently, there is a variety of simplified expressions from which 10choose. In a particular

Section 4.4 Design Procedure 127

application. certain criteria will serve as a guide in rte process of c hoosi ng an irnple rnenration ,
A practical de sign must con sider such con straints a~ the number of gale ". number of inputs to
a gate. propagation time of the signal throug h the gales. number of interconnections. limitations
of the dri ving capability of each ga te {i.e .. the number of 1!ates 10 which the o utput of the cir­
cuit may be co nnected). and variousother criteria that must be taken into co nsiderat ion when
lksigning integrated circuits. Sirce~ importance of each eunstrailll h dicta ted by the particular
application. it is difficult to make a general state ment about "h.at constitutes an acceptable im­
plemenration. In most cases. the simplification beg ins by lo3tisfying an ele mental)"objective.
such as producing the simplified Boolean functions in a standard form . Then the simplification
proceeds with further steps 10 meet other performance criteria.

Code Conyerslon Example

The avai lability of a large varie ty of codes for the same discrete elements of informalion re­
sults in the use of differen t code s by different digital sys tems. II is sometimes necessary to usc
the output of one system as the input 10 another. A co nversio n ci rcuit must be inserted betwee n
the two syste ms if each uses d ifferent codes for the same infor mation . Thu s. a code converter
is a ci rcuit that makes the two systems com patible even though each uses a different binary code .

To convert from binary code A to binary code R. the input lines mUSIsupply the hit combi­
nat ion of elements as spec ified by code Aand the o utpurhne.. must generate the corre sponding
bit combination of code B. A combinationa l circu it performs thi.. transformat ion by mean s of
logic gales . The de sign procedure will be illustrated b)' an example tha t converts binary coded
decimal (BCD) 10 the exces s-J code for the dec imal Ji gi('\,.

The bit combinnrionv assigned to the BCD and excess-J codes are fisted in Table 1.5 (Section
1.7). Since each code uses four bits to repre sent a dec imal digit. there must be fou r input vari ­
ables and four output variable s. We designate the four input binary vari ables by tlk: symbol s
A. 8 . C. and D. and the fou r ou tput variab les by ~I' . X. .". and :. The truth table relating the input
and output variables i" sho wn in Table 4.2. The llil combination.. for the inpu t.. a nd their

Table 4 .2
Truth Tob~ for Codt -Convenion bomplt

Input BCD Output b ee n ·) Code

A • C D w K y z

II II o o II n 1 1
II o o 1 II 1 o o
o o 1 o 0 1 o 1
0 o 1 1 0 1 1 0
0 1 II 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 o 0 1
0 1 1 1 1 " 1 0
1 0 u o 1 o 1 1
1 o o 1 1 1 o 0

128 Chapter 4 Combination al Logi c

corresponding outputs are obtained d irectly from Section 1.7. Note tha t four binary variables
may have 16 bit combinations. but only 10 are listed in 1M truth tab le. The six bit combina­
tions not listed for the input variables are don 't-care combinations . These values have no mean­
ing in BCD and we assume that they will never occur. Therefore . we are at liberty to assign to
1M output variables either a , or a 0, whiche ver gives a simpler circuit.

The maps in Fig. 4.3 are plotted to obtai n simplified Boo lean functions for the outputs.
Each one of the four maps represents one of the four outputs o f 1M c ircuit as a function of
the fou r input vari ables . The t's marked inside the squaresare obtained from the minterms
that make the output equal to I . The J' s are ob tained from the truth table by goi ng over 1M
output columns one at a time. For example. the column under output z has five t's: therefore,
the map for z has five t's. eac h being in a square correspond ing to the mlnterm that makes
c equal to I . Th e six don 'Hare mintenns 10 through 15 are marked with an X. One possi ­
ble way to simpli fy the functions into sum-of-products fonn is listed under the map of each
variable. (See Chapter 3.)

C C
CO

H 00 01 II 10

~ , I- m,

I ~ ~
~

00 I

-, m,

1
1d m,

01 I.. "" Il'xI" ..
II X X X

~ m,

" Xl
..

10 I X

A

B

CD ,

H 00 01 II 10
~.~ m, m, »-00 I I ! I-, -, - ~

I01 I I
1 ;

" " "" - " -..
II X X X X

~ ~ ~, ..
10 I X X

A

A

o
: - D'

o
, - CO +CO'

C

o
.c " B"C + B"D + BCD'

FIGURE 4 .1
Map s for BCD-tere.cess-3 code con verter

c

D
... ., ,, + BC+ SO

CD
B 00 01 II 10

~ " , m, m,

00

m. Ifj I""i"1":: 'I01

'~ -..
I =~~

m"
II X X I"';:'

, ~ -., ..
10 I I X .X

A

A

B

CD 00
,

B 01 _P. 10

~ -, -, m,

00 1'1
I..' '''I...!...1. -.... m, -, ~

I01 ' 1 I

m.. -.. m.. -..
II X X X X,

-, ~ ... " _ 1, -..
10 I X X

,

A

A

Section 4.4 De sign Proced ure 129

A two-le vellogic diagram may be obtained d irectly from me Boo lean expre ssions derived from
the maps. There are various other possibillues for a log ic diagram that impleme nts this ci rcuit.
The e xpressions obtained in Fig. 4.3 may be manipulated alge braically for the purpose of using
co mmo n gates for two or more outputs. Th is manipulatlon . shown ne xt. iltusumc s the fle xibility
obtained with multi ple-output systems when impleme nted with three or more levels of gates:

:. = D'

Y =CD + C D' = CD + (C + D)'

.r = H'C + H' D + He'n' = B' (C + V) + BC'V '

= B' (C + D) + B(C + D)'

I" = A + Be + 8 0 = A + H(C + D)

The logic d iagram that implements these ex pressio ns is shown in Fig . 4.4 . Note thai the OR
gate who se o utput ls C + D has been used to implemen t part ia lly each or three o utputs.

No t counting input inverters . the implementa tio n in su m-of-prod uc ts 1'01'111 requires seven
AN D gates and three O R gates, The impleme ntation of Fig . 4 .4 req uire!'. four AND gates. four
O R gates. and one inverte r. If only the normal inputs are available. the first implementation will
require invert ers for variab les B. C. and D. an d the seco nd imple me ntatio n will requ ire in­
ve rters for variab le!'. B and D. Th us. the three-lev el logic circuit requ ires fewer gales. all o f
which in tum req uire no more tha n two inputs.

D'

CD~ =:;:::t:::f-)E'--------l-")----- Y

'>-- ..---41>0--; Ie +OJ'
~--L_/

C +lJ

B -,-- - - - 1---- - -1
)-- - ,

fiGURE 4 .4
logic diagram for BCD-to-excess-3 code co nvert er

130 Chapter 4 Combinational l ogic

4 .5 BINARY ADDER-5UBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the functions en ­
countered are the various ari thmetic ope ratio ns. The most basic arithmetic operation is the ad­
dition of two binary digits. This simple addition consists of four possible e lementary operations:
o + 0 = 0, 0 + 1 = I. 1 + 0 = I, and I + I = 10. The first three operat ions produce a
sum of one digit, but when both augend and addend bits are eq ual 10 I . the binary sum con­
sists of two dig its. The higher significant bit of this result is called a carry, When the augend
and addend numbers contain more significant digits.the carry obtained from the addition of two
bits is added to the next higher order pair of significant bits . A combinational circuit thai per­
forms the addition of two bits is called a halfadder, One that performs the add ition of three
bits (two significant bits and a previous carry) is al llll adder. The names of the circuits stern

from the fact that two half adders can be employed to implement a full adder.
A binary adder- subtracter is a combinat ional ci rcuit that performs the arithmetic operations

of addition and subtraction with binary numbers. We will develop this circuit by means of a hi­
erarc hical design. The half adder design is carried OUI first, from which we develop the full
adder. Con necting n full adders in cascade prod uces a binary adder for two c-bit numbers. The
subtraction circuit is included in a complementing circuit.

Half Adder

From the vernal explanation of a half adder. we find that this circuit needs IWO binary inputs
and two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. We assign symbols .r and y to the two inputs and S (for
sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 4.3.
The C output is I only when both inputs are 1. The S output represe nts the least significant bit
of the sum.

The simplified Boolean functions for the IWO outputs can beobtained direct ly from the truth
table . The simplified sum-of-products expressions are

S = x 'y + xy'

C = x)'

The logic diagram of the half adder implemented in sum of products is shown in Fig. 4.5 (a),
It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 45(b).
This form is used to show that IWO half adders can be used to construct a full adder.

Table 4 .3
Half Adder

x y C S

0 0 0 0
0 I 0 I
I 0 0 I
I I I 0

Section 4.5 Binary Adder-Subtraetor 131

Full Adder

~-s

;=:::C:))---- - --- c

fa l S = .\,,\.,t ' .1

c = ,\',\

F1C;URE 4 .5
ImplementatIon of half adder

"'~" " " . ' . S
I"'.

/.{;<.: c

(b) S · .f e \·
C " .t .\· .

A full adder is a combinationalcircuit that forms the arithmetic sum of three bits. Itconsists of three
inputs and two outputs. Two of the input variables, denoted byr and y, represent the two signifi­
cant b il.~ to be added. The third input. :. represents the cany from the previous lower significant
position.Two outputs are necessary because thearithmetic sum of three binary digits ranges in value
from 0 to 3. and binary 2 or 3 needs two digit...The two outputs are designated by the symbols S
for sum and C for cany. Thebinary variable S gives the value of the least significant bit of the sum.
The binary variable C gives the output cany.The truth table of the full adder is listed in Table 4.4.
The eight rows under the input variables designate all possible combinations of the three vari­
ables. The output variables arc determined from the arithmetic sum of the input bits. When :111
input bits are 0, the output i..O.The S output is equal to I when only one input is equal to I or when
all three inputs are equal 10 I. The C OUiPUI has a carry of I if two or three inputs are equal to I.

The input and output bits of the combinational circuit have different interpretations at vur­
iou..stages of the prohlem. On the one hand. physically. the binary ..ignals ofthe inputs are con­
sidered binary digits to be added arithmetically to form a two-digit sum at the output. On the
other hand. the same binary values are considered as variables of Boolean functions when ex­
pressed ill the truth table or when the circuit is implemented with logic gales. The map~ for the
ourput-,of the full adder are shown in Fig. 4.6. The simplified expressions arc

Tabl e 4.4
Full Adder

x r , c s

0 0 0 0 0
0 0 I 0 I
0 I 0 0 I
0 I I I 0
1 0 0 0 I
1 0 I I 0
I 1 0 I 0
I 1 1 1 1

132 Chapter 4 Comb inationa l l ogic

y
Y',

00 01 11 10.. " m,
a 1

+m, "i ",I 1

y
y~,

00 01 11 10.. . , . , . ,
0 1 1

, 1 1

., ., . , .,
1 1

FIGURE 4 .6
Maps fo r full adder

s = x 'y 'Z + x'YZ' + xy'Z' + .ryz

C = xy + xz + }'Z

The logic diagram for the full adder implemented in sum-of-products form is shown in Fig. 4.7.
It can also beimplemented with two half adders and one OR gate. as shown in Fig.4.8.TheS outpUt
from the second half adder is the exclusive-OR of z and the output of the first half adde r.
giving

S - zEll (x EIly)
= z'(xy' + x'y) + z(xy' + x'y}'

= z'(xy' + x 'y) + z(xy + x'y')

= xy' z' + x 'yZ' + xyz + x 'y ' Z

The carry output is

c = z(x)" + x 'y) + xy = xy'z + x'vz + xy

' :::f-L~y
' ---t_ -'
FIGURE 4 .7
Implementation of full adder in sum-of- products form

Secti on 4.5 Binary Adder-Subtractor 133

x 8 y

FIGURE 4.8
Implementation of full adder wi th two half add ers and an OR gate

Bin a ry Adde r

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can
beconstructed with full adders connected in cascade. with the output carry from each full adder
connected to the input carry of the next full adder in thechain. Figure 4.9 shows the interconnection
of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder. The augend bits of
A and the addend bits of B aredesignated by subscript numbers from right to left with subscript
odenoting the least signif icant bit. The carries are connected in a chain through the full adders.
The input carry to the adder is Co. and it ripples through the full adders to the output carry C4 ­

The S outputs generate the required sum bits .An II-bit adder requires n full adders. with each out­
put carry connectedto the input carryof the next higher order full adder.

To demonstrate with a speci fic example. consider the two binary numbers A = 101 1 and
8 = 00 11. Their sum S = 1110 is formed with the fou r-bit adder as follows:

Subscript I: 3 2 0

Input carry 0 1 0 c;
Augend 1 0 1 A;
Addend 0 0 1 B;

Sum 1 1 0 s,
Output carry 0 0 1 Ct+l

The bits are added with full adders . starti ng from the least significant position (subscript 0). 10

fonn the sum bit and carry bit. The input carry Co in the least significant posi tion must be O.
The value of C;-+l in a given significant position is the output cart)' of the full adder. Th is value
is transferred into the input carry of the full adde r that adds the bits one higher significant p0­

sition to the left. The sum bits are thus generated start ing from the rightmost position and are
available as soo n as the corresponding previous carry bit is generated. All the carries must be
generated for the correc t sum bits to appear at the outputs.

The four-bit adder is a typical example of a standard component. It can be used in many ap­
plications involving arithm etic operations. Observe that the design of this circuit by the clas­
sical method would require a truth table with 29 = 5 12 entries. since there are nine inputs to

134 Chapter 4 Comb inational Logic

8 ,

I

FA

•r , 5J

FIG.URE 4.9
Four-bit adder

A,

I
c,

FA

I•s,

c,
FA

s,

c,
FA Co

the ci rcuit. By using an iterative method of cascading a standard function, it is possibl e to ob­
tain a simple and straightforward implementation.

Carry Propagation

The addition of two binary numbers in parallel implie s that all the bits of the augend and addend
are available for computation at the same time. As in any combinat ional circuit, the signal must
propagate through the gates before the correct out put sum is avai lable in the output terminal s. The
total propagation time is equal to the propag ation delay of a typical gate. times the number of gate
levels in the circuit. The longes t propagation delay time in an adder is the time it takes the carry
to propagate throu gh the full adders. Since each bit of the sum output depends on the value of the
inpu t carry. the value of Sj at any given stage in the adder will be in its steady-state final value
only afte r the input carry to that stage has been propagated . In this regard . consider ou tput S3in
Fig. 4.9. Inputs A 3 and BJ are available as soonas input signals are applied to the adder. How­
ever, inpu t carry C3 does no(settle to its final value until C2 is available from the previous stage.
Similarly, C2has to wait for C1and so on down 10 Co- Thus, only after the carry propa gates and
ripples through all stages will the last output 5J and carry Col settle to thei r final correct value .

The num ber of gate levels for the carry propagation can be found from the circuit of the full
adde r. The circuit is redraw n with different labe ls in Fig. 4.10 for convenience . The input and

A,

8 ,
II

P, ,~ r.e c,
./

l) G ,
l

~
P,Cr+ G,

s,

c,
f lG.Un 4.1 0
Full adder with P and G shown

Sect ion 4.5 Bina ry Adder-Subtraetor 135

o utput variables use the ~uhscript i to denote a typical stage o f the adder . The signals at P; and
G, settle to their steady -state values after they propagate through their res pec tive gales, T hese
two signets are co mmo n to all full adde r.-. and depend only onthe input augend and addend hils.
The signal from the input carry Cj 10 the out put carry C;- I pro pagat es through an AND gate
and an OR gate. which co n..tirutc two gale levels. If there are fou r full adders in the adde r. the
o utpu t carry C4 wou ld ha ve 2 x 4 =- 8 gale levels from Co to C-4' For an u-bi r adde r. there are
211 gate levels for the carry to propagate from input to output.

The ca rry propagation lime is an import ant attri bute of the adde r because it limits the speed
with wh ich two numbers are added . Although the adde r-c-o r. for thaI matt er . any combine­
tio na! circuit-s-will always have some value at its ourpot rerm inals. the outputs will not be cor­
rec t un less the signals arc give n e nough time to propagate through the gate s connec ted from
the inp uts 10 the ou tputs. Since all other ari thmet ic o pera tions are imple men ted by succes si ve
addi tion s. the time co nsumed durin g the addi tion proce ss is critica l. An obv ious so lution for
reducing the carry propagat ion delay time is to employ fas ter gate s with reduced delays. How­
ever, phy sical c ircu its have u lim it to thei r capabi lity. Another solution is to increase the co m­
plex ity o f the equipment in suc h a way that the carry delay time is reduced. Th ere arc severa l
techniques for reducin g the carry prop agation time in a paral lel adde r. Th e most widely used
technique employs the principle o f carry tookaheaa IORie.

Consider the circui t of the full adder shown in Fig. 4.10. If we define 1'01.'0 new binary variables

P; = A, @8,

Gj = A;8;

the o utput sum and carry ca n respecuvety be e xpresse d a~

S j =P; EB C;

Cj + 1 = G; + P,C ,

G, i.. ca lled a carry 1:t.'tlerare. and it produ ces a carry of I when bot h A, and 8, are J. regard­
Ie~s o f the input carT)' C,. ~ is ca lled a wrl)' proP<'1:l11<,. because it determines whether a carry
into ..rage i will propagat e into stage i I (i.e .. whether an a....e rt ion of Ci will propagate to

an assertion of Ci-tl.
We no w write the Boolea n functio ns for the carr)' outputs o f each stage and substitu te the

valu e of eac h C; from the pre viou .. eq uatio ns:

cu = input carry

C] = Gn + PoCu

C~ = GI + P tC] = (il + PI(Go + PoCo) = G I + P IGO+ PtPoCo

C~ = G~ + P~C~ =- G~ + P2G] + p~p]Go =- P~P1Prt:O

Since the Boolean function for each out put carry is expressed in sum-of-prodocts form. eac h func­
tion can be implemented with one level of AN D gates followed by an OR gate (or by a two- level
NAND).1lle three Boolean functions for C t. C2• and C) are implemented in the carry loo kahead
gene ra tor shown in Fig. 4 .11. Nule that thi.. circuit can add in less time because CJ doe s not have
to wail for C2 and C. to propagate: in fac t. C" is propagated at tbc same time as C t and C2.Thi s
ga in in speed o f operation is achieved at tbe expense of add itional comple xity (hardware).

136 Chapter 4 Combinational Log ic

c,

c,

c,

-
~

-
~

:j

-
~ I -

I -L/

:-i ~

r-
G.

C.
FIGURE 4.11
Logic diagram of carry looka head generator

P,

G,

G,

P,

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gales . The output of the first exclusive-OR gale
generales the 11 variable, and the AND gate generates the G1variable. The carries are propa­
gated through the carry lookahead generator (similar 10 thai in Fig. 4. 11) and applied as inputs
to the second exclusive-OR gate. All output carrie s are generated after a delay through two
levels of gates. Thus, outputs 5 1through 53 have equal propagation delay times. The two-level
circuit for the output carry C4 is not shown. This circuit can easily be derived by the equation­
substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can bedone most conveniently by means of com­
plements, as discussed in Section 1.5. Remember that the subtraction A - B can be done by
taking the 2's complement of B and adding it to A. The 2's complement can be obtained by tak­
ing the I 's complement and adding 1 to the least significant pair of bits. The I 's complement
can be implemented with inverters. and a I can beadded to the sum through the input carry.

R,
A, P,

C,
S,

G,

R,
p.

A. p.

G.
I I

c, eo

FIGURE 4 .12
rcur-bit adder wit h ca rry lookahead

The c ircuit for subtracting A - R co nsists of an adde r with inverte rs placed be tween eac h
data input B and the corresponding input of the ful l adde r. The input carry Co must be equ al to
I when subtraction is pe rfo rmed . The operat ion thus performed becom es A. plus the) 's co m­
plement of 8 . plus 1. This is equal to A plus the 2's complement of B. For unsigned numbers.
that g ives A - B i f A ~ 8 or the 2' s complement of (8 - A) if A -c B. For signed numbers .
the resul t is A - 8 , prov ided thai there is no ove rflow, (See Section 1.6.)

The addition and subtraction operations can becombined into one circuit with one common
binary adder by including an exclusive-Olegate with each full adder.A four-bit adder-s ubuaetor
c ircuit is shown in Fig. ~ . 13 . The mode input /If controls the operation. When M = O. the ci r­
cuit is an adder. and \\ hen .\f = I. the circuit becomes a subtracter. Each exclusive-OR gate
receives inputM and one of lhe inputs of B. When M = O. we have B Ell O = B. The full adders
receive the value of B. (he inptn carry is O. and Ihe circu it perform s A plus B. When M = I.

138 Chapter 4 Combinational Logic

8, B, B,

I8:

y
r-+---+~--+----+-r-+----+-.--+--r-- M

y
c,

FA
c,

FA
c,

FA
c,

FA

~,

<, II

FIGURE 4 .13
Four-bit adder-subtractor

we have B EB 1 = B ' and Co = 1. The B inputs are all complemented and a 1 is added through
the input carry. The circuit performs the operation A plus the 2' s complement of B. (The ex­
clusive-OR with output V is for detecting an overflow)

It is worth noting that binary numbers in the signed-complement system are added and sub­
tracted by the same basic addition and subtraction rules as are unsigned numbers. Therefore.
computers need only one common hardware circuit to handle both types of arithmetic. The
user or programmer must interpret the results of such addit ion or subtraction differently. de­
pending on whether it is assumed that the numbers are signed or unsigned.

Overflow

When two numbers with n digits each are added and the sum is a number occupying n + I dig­
its. we say that an overflow occurred. This is true for binary or decimal numbers. signed or un­
signed. When the addition is performed with paper and pencil. an overflow is not a problem.
since there is no limit by the width of the page to write down the sum. Overflow is a problem
in digital computers because the number of bits that hold the number is finite and a result that
contains n + I bits cannot be accommodated by an a-bit word. For this reason. many computers
detect the occurrence of an overflow. and when it occurs, a corresponding flip-flop is set that
can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether the
numbers are considered to be signed or unsigned. When two unsigned numbers are added. an
overflow is detected from the end carry out of the most significant position. In the case of signed
numbers. two details are important: the leftmost bit always represents the sign. and negative

Sect ion 4.6 Decimal Adder 139

numbe rs are in Z's-complement form. When two signed numbe rs are added. the sign bit is
treated as part of the number and the end carry does nOI indicate an overflow.

An overflow cannot occur after an addition if one number i!'o positive and the other is neg­
ative. since adding a positive number to a negative number produces a result whose magnitude
is smaller than the larger of the two original numbers. An overflow may occur if the two num­
bers added are both positive or both negative. To see how this can happen. consider the following
example : Two signed binary numbers, + 70 and + 80. are stored in two eight-bit registe rs. The
range of numbers that each register can acco mmodate is from binary + 127 to binary - 128.
Since the sum of the two numbers is +150. it exceed!'. the capacity of an eight-bit register. This
is also true for - 70 and - 80. The two additions in binary arc shown next, together with the
last two carries:

carries: 0 1 carries: 0
+70 0 1000110 - 70 1 0 111010

+ 80 o ior oooo - 80 1 ouoooo
+ 150 1 00 10 110 - 150 a 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.c.• the
8-th bit) and the eight-bit result that should have been negative has a positive sign bit. If, how­
eve r, the carry out of the sign bit position is taken as the sign hit of the result. then me nine-bit
answer so obtained will be correct. But since the answer cannot be accom modated within eight
bits. we say thai an overflow has occ urred.

An ove rflow condition can bedetected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries arc not equal. an overflow has flCCUITCt1.

This is indicated in the examples in which the two carries are explicitly shown. If the two car­
ries are applied to an exclusive-OR gate. an overflow is detected when the output of the gate
is equal to I. For this method to work correctly. the 2's complement of a negative number must
be computed by taking the I 's comp lement and adding 1. This takes care of the condition when
the maximum negative number is complemented.

The binary adder-subtracter circuit with outputs C and V is shown in Fig. 4. 13. If the two
binary numbers are considered to be unsigned. then the C bit de tects a carry after addition or
a borrow after subtraction. If the numbers are considered to be signed, men the V bit de tects
an overflow. If V :::: 0 after an add ition or subtraction. then no overflow occurred and the n­
bit result is correct. If V :::: I. men the result of the operation conta ins 1/ + I bits, but only the
rightmost n bits of the number fit in the space available. so an ove rflow has occurred. The
(n + 1jth bit is the actual sign and has been shifted out of posi tion.

4 .6 DECIMAL ADD ER

Computers or calculators that perform arithmetic ope rations directly in the decimal number sys­
tem represent decimal numbers in binary coded form An adder for such a com puter must em­
ploy arithmetic circuits that accept ceded decima l numbers and present results in the same code.
For binary addition. it is sufficient 10 consider a pair of significant bits together with a previous
carry. A decimal adder requires a minimum (If nine inputs and five outputs. since four bits are
required to code each deci mal digit and the circuit must have an input and output carry. There

140 Chapter 4 Combina tional Logic

is a wide variety of possible decimal adder circuits, depending upon the code used to represent
the decimal digits. Here we examine a decimal adder for the BCD code. (See Section 1.7.)

BCD Adder

Consider the arithm etic addition of two dec imal dig its in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9 + 9 + 1 = 19, the I in the sum bein g an input carry. Suppose we apply two BCD digits to
a four-bit binary adder. The adder will form the sum in binary and produce a resu lt tha t range s
fro m 0 th rou gh 19. Th ese binary number s are lis ted in Table 4.5 and are labeled by symbols
K, 2 8, 2 4, 2 2, and 2]. K is the carry, and the subscrip ts under the letter 2 rep resent the weights
8, 4 , 2, and I that can be assig ned to the four bits in the BCD code. The columns under the bi­
nary sum list the binary value that appears in the output s of the four-bit bin ary adder. The out­
put sum of two deci mal digits must be represented in BCD and should appe ar in the fonn listed
in the columns under "BC D Sum." The problem is to find a rule by which the binary sum is
converted to the correct BCD dig it rep rese ntatio n of the number in the BCD sum.

In examining the co ntents of the ta ble, it becomes apparent that when the binary sum is
equal to or less than 1001. the corresponding BCD number is identical. and therefore no conversion
is needed . When the binary sum is greater than 1001, we obtain an inva lid BCD represe ntation.

Table 4 .5
Deriva tion of BCDAdder

Binary Sum BCD Sum Dec imal

• Z. Z. Z, Z, C So S, S, S,

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 I I
0 0 0 I 0 0 0 0 I 0 2
0 0 0 I I 0 0 0 I I 3
0 0 I 0 0 0 0 I 0 0 4

0 0 I 0 I 0 0 I 0 I 5
0 0 I I 0 0 0 I I 0 e
0 0 I I I 0 0 I I I 7
0 I 0 0 0 0 I 0 0 0 8
0 I 0 0 I 0 I 0 0 I 9

0 I 0 I 0 0 0 0 0 10
0 I 0 I I 0 0 0 I II
0 I I 0 0 0 0 I 0 12
0 I I 0 I 0 0 I I 13
0 I I I 0 0 I 0 0 14
0 I I I I 0 I 0 I 15
I 0 0 0 0 0 I I 0 I.
I 0 0 0 I 0 I I I 17
1 0 0 I 0 I 0 0 0 18
1 0 0 I 1 I 0 0 I 19

Section 4.6 Decimal Adder 141

The addition of hinary b lO\ \0) to the binary sc m converts it 10 the correct BCD represema­
lion and also produces an output carry as required.

The logic circ uit that detects the:necessary correction can bede rived from the:entries in the
tab le. II is ob vious that a correct ion i..needed when the hinary ..urn ha.. an output carry K = I .
The other ~i :\ combinations from 1010 thro ugh 11' 1 thai need a correction have a 1 in pos ition
ZlI. To distinguish them from binary 1000 300 100 1. which also have a I in position ZlI.we spec­
ify furth er that ei ther Z4 Of Z2 mu ..t have a I. The co ndi tion for a co rrec tion a nd an ou tput
carry can he ex pressed by the Boolean function

C = K + Z8Z-4 + ZllZ2

When C :: 1. it is necessary 10 add 0 110 10 the binary sum and prov ide an output carry for the
ne xt stage .

A BCD adder\h~ add...two BCD digits and prOO~ a scm digit in BCD is shown in n g. 4..14.
The IWO dec ima l digits.togetha" with the input carry. are first added in !he lop four-bit adde r 10

produce the binary sum. when the outpUI carry is equa t ro O. no thing is add ed to the binary sum.

A ddend Au~cnd

O UIP UI r
un)

Carry
0"' K 4-bi1binary adder

Z. 7..~ Z~ Z,

Carry
in

o - - --r+-1!o

FIGURE 4 .14
81a<kdiagram of a BCD adder

142 Chapter 4 Combinational Logic

When it is equal to I. binary 01 10 is added 10 the binary sum through the bot tom four-bit adder.
Theoutput carry ge nerated from the bottom adder can be ignored. since it supp lies information
already avai lable at the ou tput carry terminal. A deci mal parallel adder thai adds n dec imal dig­
its needs n BCD adder stages . The output carry from one stage must be connected 10 the input
carry of the next higher order stage.

4 .7 BI N A RY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of decimal num ­
bers . The multiplicand is multiplied by each bit of themultiplier. starting from the lea..t sign ifi­
cant bit . Each such multiplication fonns a partial product. Successive parti al products are shifted
one position to the left . The final prod uct is obta ined from the sum of the partial prod ucts.

To see how a binary mul tiplier ca n be impleme nted with a combinational ci rcuit. cons ider
the multiplicat ion of two 2·bit numbers as show n in Fig. 4.15. The mul tiplicand bits are BI and
Bo, the mu ltiplier bits are A I and Ao, and the prod uct is C3C2CICo. The fir st part ial produ ct is
formed by multiplying Billa by Ao. The mul tiplication of two bits such as Ao and Bo produces
a I if both bits are I: otherwise. it produces a O. This is identical to an AND operat ion. There­
fore , the partial product ca n be implemented with AND gates as shown in the diagram . The sec­
ond part ial prod uct is fonned by m ult iplying B1Boby A1 and shifting one posit ion 10 the left.
The two parti al prod uct s are added wi th two half-adder (HA) circuits. Usually, there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the parti al

B, B. A.
B, ..

A, A.
AoB, A,B.

A IB I A 1Bo

C, C, C, C. A,
B, B.

FIGURE 4 .15
Two-bit by two-bit bin ary mu ltiplier

Section 4.7 Binary Multiplier 143

produ cts. Note that the least sig nific ant bit of the product doe s not have to go through an adde r.
since it is formed by the output o f the first AN D gate.

A co mb inationa l c ircuit bin ary mu ltiplie r with more bits can be co nstruc ted in a similar
fashion . A bit o f the multiplier is ANDed wi th each bit o f the mult iplicand in as man y level s
as the re are bits in the mult ip lier. The binary output in eac h level of AN D gates is added with
the part ia l prod uct o f the pre viou s le vel to form a new part ial produ ct. The las t leve l produces
the prod uct . For J multiplier bits and K multiplican d bits. we need (J X K) AN D gates and
(J - 1) K-bit adders to prod uce a produ ct of J + K bits.

As a second example. consider a multiplier circuit that multiplies a binary number repre sented
by four bits by a number represented by three bits . Let the multiplicand be represen ted by B3B1Bl Eo
and the multiplier by A2A]AQ• Since K = 4 and J = 3. we need 12 AND gales and 2 fou r-bit
adders 10 produce a productof seven bits.The logic diagramof the mult iplier is shown in Fig. 4.16.

Ao------ - - - - - - - - - - r -=-; -,,---·..--=---.

s,

f1GUR14 .16
rcur-bn by three-bit binary multiplier

s"

C"

144 Chapter 4 Combinational logic

4 .8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operat ion that determines whether one number is greater
than. less man. or equal to me other number. A magnitude compa rator is a combinational cir­
cuit that compares two numbers A and B and determines their relative magnitudes.The outcome
of the comparison is specified by three binary variables mat indicate whether A > B. A = B.
or A < B.

On the one hand. the circuit for comparing two n-bit numbers has 22n entries in the truth
tab le and becomes too cumbersome. eve n with n = 3. On the other hand. as one may sus­
peer. a comparator circuit possesses a certain amount of regularity. Digital functions that
possess an inherent well-defined regulari ty can usually be des igned by means of an algo­
rithm-a procedure which specifies a finite set of steps that. if followed. give the solution
to a prob lem. We illustrate this method here by deriving an algo rithm for the design of a
four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relauve
magnitudes of two numbers. Consider two numbers. A and B. with four digits each. Write the
coefficients of the numbers in descending order of significance:

A = A3A2AI Ao

B = B)B2B1Bo

Each subscripted leiter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A) = B3. A2 = B2. Al = BI• and Ao = Bo. When
the numbe rs are binary. the digits are either I or O. and the equality of each pair of bits can be
expressed logically with an exclusive-NOR function as

XI = A;B; + AiB; for i = 0.1 . 2. 3

where x; = I only if the pair of bits in position i are equal (i.e .• if both are I or both are 0).
The equality of the two numbers A and B is displayed in a combinational circuit by an

out put binary variable that we designate by the symbol (A = B). This binary variable is
equal to I if the input numbers. A and B. are equal. and is equal to 0 otherwi se. For equal­
ity to exist. all Xi variables must be equal to I. a condi tion that dictates an AND operatio n
of all var iables:

(A = B) = X3X2X 1XO

Thebinary' variable (A = B) is equal to I only if all pairs of digits oflhe two numbers are equal.
To determine whether A is greater or less than B. we inspect the relative magnitudes of pairs

of significant digits. starting from the most significant position. If the two digits of a pair are
equal. we compare the next lower significant pair of digits. The comparison continues until a
pair of unequal digits is reached. If the corresponding digit of A is I and that of B is O. we con­
clude that A > B. If the corresponding digit of A is 0 and that of B is I . we have A < B. The
sequential comparison can beexpressed logically by the two Boolean functions

(A > B) = A)B) + x)A2B2 + X)X2AIBi + X)X2X IAoBo

(A < B) = A)B) + X)A2B2 + X)X2AiBj + X3X2X ,AOBo

Sect ion 4.8 Magnitude Comparator 145

The symbols (A > 8) and (A < B) are binary OUlpUI variables that are equal 10 I when
A > B and A < B. respectively.

The gate implementation of the three output variables j ust derived is simpler than it seems
because it involves a certain amount of repetition. The unequal outputs can use the same
gates that are needed 10 generate the equal output. The logic diagram of the four-bit magni­
tude comparator is shown in Fig. 4.17. The four x outputs are generated with exciusive·NO R
circuits and are applied to an AND gale to give the output binary variable (A = B). The
other two outputs use the .r variables to generate the Boolean functions listed previously.
This is a multilevel imple mentation and has a regular pattern. The procedu re for obtaining
magnitude comparator ci rcuits for binary numbers with more than four bits is obvious from
this exa mple.

A , ~--f»--r,

8 , -.e.--[»--L~

(A < 8)

(A > 8)

L!~=lEG}--------- (A ~ B)

FIGURE 4 .11
Four -bit mag nitude compa rator

146 Chapter 4 Combinati onal logic

4 . 9 DECODERS

Discrete quanti ties of informa tion are repre sented in digital systems by binary codes. A binary
code of n bits is capable of representing up to 2" distinct elements of coded information. Aduo
oder is a co mbinational circuit tha t converts binary information from" input Hne.. to a maxi ­
mum of 2" unique outpu t linec. If th e ,,-bit coded information ha.. unused co mbi nation... the
decoder ma y ha ve te wer than 2" ou tputs.

The decoders presented here arecal led n-to-m-line decoders , where m :s: 2". Their purpose
i ~ to generate me 2" (or fe.....er) mi nterms of n input variables. The name decoder is abo used
in conj unction with other code converters. such as a BCD-lo-seven-segment decoder.

As an example. consider the three-to-eight-line decoder circuit of Fig. 4.18. The three inputs

are decoded into eight {)(JtPUl~. each represe nting one of the minterms of the three input variables.
The three inverters provide the complement of the inputs, and each one of the e ight AND gates
generates one of the minterms. A part icular applicat ion of this decoder is binary-to-octal

,

"
I

\
r-, J

I
--y

.r-....
'\
J

'\

Do - .t')":'

D J - x) :

FIGURE 4 .18
'rbree-tc-e lq ht-une decoder

Section 4.9 Decod ers 147

Tabl e 4 .6
Truth Table of a Three·to-flght·Lfne Decoder

Inputs Outputs
x y z D. D, D, D, D. D, D. D,

0 0 0 I 0 0 0 0 0 0 0
0 0 I 0 I 0 0 0 0 0 0
0 I 0 0 0 I 0 0 0 0 0
0 I I 0 0 0 I 0 0 0 0
I 0 0 0 0 0 0 I 0 0 0
I 0 I 0 0 0 0 0 I 0 0
I I 0 0 0 0 0 0 0 I 0
I I I 0 0 0 0 0 0 0 I

conversion. The input variables represent a binary number. and the outputs represent the eight
dig its of a number in the octal numbe r system. However, a three-to-eight-line decoder can he
used for decoding al/Ythree-bit code to provide eight outputs, one for each element of the code.

The operation of the decoder may be clan lied by the truth table listed in Table 4.6. For each
possible input combinatio n, there are seve n outputs that are equal 10 0 and only one thai is
equal (0 I. The output whose value is equal 10 I represent s the mintenn equ ivalent of the bi­
nary number curre ntly avai lable in the input lines.

Some decoders arc constructed with NAND gates. Since a NAND gate produces the AND op­
erat ion with an inverted output. it becomes more economical to generate the decoder mintcrm s
in their com plemented form. Furthermore. decod ers include one or more enable inputs to con­
trol the circuit operation. A two-to-four-line decoder with an enable input constructed with NAND
gates is shown in Fig. 4.19. The circuit opera tes with complemented outputs and a com plement

D,

E_~')~ -..J

(a) Logic diagram

FIGURE 4.19
'rwc -tc -Ic ur-une decoder with enable inp ut

£ A B D, D, D, D,

I .Y .Y I I I I
0 0 0 0 I I I
0 0 I I 0 I I
U I 0 I I U I
0 I I I I I 0

Ib) TrUlh table

148 Chapter 4 Combinational logic

enabl e input. The decode r is enabled when E is equ al to 0 (i.e.. active-low enable). As indicated
by the truth table. only one output can be equal to 0 at any given time; all other outputs are equal
10 I .The OUlpUI whose value is equal to 0 represents themintenn selec ted by inputs A and B.The
circuit is disabled when E is equal 10 I. regardless of the values of the other two inputs. When
the circuit is disabled . none of the outputs are equ al 10 0 and none of the rnintcrms are selected .
In general . a decoder may operate with complemented or uncornple mented outputs. The enable
input may be activated with a 0 or with a 1 signal. Some decoders have two or more enab le in­
puts that must satisfy a given logic condition in onle r to enable the circuit.

A decode r with enable input can function as a demultiplexer- acircuit that receives infor­
mation from a single line and directs nrc one of 2" possible outputlines. The selection of a spe­
cifi c output is controlled by the bit combina tion of n selection lines. Th e decoder of Fig. 4 .19
can function as a o ne-to-four-line demultiplexer when E is taken as a data inpu t line and A and
B are taken as the selection input s. The single input variable E has a pat h 10 all four outputs.
but the input information is directed 10 only one of the output lines. as specified by Ihe binary
combinatio n of the two selection lines A and B. Th is feature can be verified from the tru th
tab le of the circuit. For example , if the se-lection lines AB = 10, Oll1pUI llz will be the same as
the input value E. while all other outputs are maintained at I. Because decoder and de multi ­
plexer operations are obtained from the same circu it. a decod er with an enable input is refe rred
to as a decoder-demultiplexer.

Decoders with enable inputs can be connec ted toge ther to form a larger dec oder ci rcu it.
Figure 4.20 shows two j -ro-g-line decoders with enable inputs connected to form a 4-10-16­
line decoder. When w = O. the top decoder is enabled and the other is disabled . The bottom
decoder outputs are all O's. and the top eight outpu ts ge nerate min terms 0000 to 011 1. When
w = I , the en able conditions are reversed : The bottom decoder outputs generate mtnterms
1000 to 1111, while the outputs of the top decoder are all D's. Thi s example de monstrates the
usefulness of enable inputs in decoders and other combinationallogic components. In genera l.
e nable inputs are a co nvenient feature for interconnecting two or mo re standard compo nents
for the purpose of combining them into a similar function with more inputs and outputs.

,. ' X8 I--decoder

E

r-, I

-
3)(8 I---decoder _

f;

I

Do 10 [J,

FIGURE 4 .20
4 x 16 decoder const ructed with two 3 x 8 decoders

Section 4.9 Decoders 149

Combinational logic Implementation

A decoder provides the 2" rrur uerms of II input variables . Each asserted output of the decoder
is assoc iated with a uniq ue pattern of input b its. Since any Boolean function can be ex prcs...ed
in sum-of-rninterms form . a decoder that ge nerates the- rninterms of the function. together with
an external OR gate that fo rms their logical sum. provide .. a hardware implementation of the
function. In thi s way. any combinatio nal ci rcuit with I I inputs and m outputs ca n be imple­
me nted with an II-l<l-2"-line decoder and m OR gates .

The procedu re for implementing a combinational ci rcuit by means of a decoder and O R
gates requires that the Boolean functio n for the ci rc uit be- expressed a.. a sum of mint erms. A
decode- r is then chosen that genera tes all the mi nrerms of the input variable". The inputs to eac h
OR gate are selec ted fro m the de coder ou tputs acco rding to the list o f mint erms of eac h func­
tion. Th is procedu re will be illustrated by an example that implements a full-adder ci rcuit.

Fro m the truth tab le of the full adder (see Table 4.4). we o btain the functions for the com­
binational ci rcuit in sum-o f-minter ms form :

Sex. y. a) = ~ (\, 2. 4. 7)

C(x. y. :) = ~ () . 5. 6. 7)

S ince there are three input s and a total of eight minterm.... we need a three-to-eight-line de­
coder. The implementat ion is shown in Fig. 4.2 1. Th e- decod er generates the eight n untcrms for
x. y. and z. The OR gate for output S forms the log ical sum of minterms I. 2. 4. and 7. The OR
gate for output C forms the logical sum of mime rms 3. 5. 6. and 7.

A function with a long list of mintcrm s requ ires an O R gate- with a large num ber of inpu ts.
A funct ion having a list of k. mintc rms can be expressed in it" compleme nted fonn F' with
2" - k. minterm s. If the number of min terms in the function is greater than 2"/2. then F' can
be expresse d wi th fewer min rerms. In such a case. it is adva ntageous to use a :"lO R gate to
sum the min rcrms of F' . The output of the l'\OR ga te complements this sum and genera tes the
normal output F. l f NAN D gates are used for the decode- r. as in Fig. 4.19. then the external gales
must be NAND gates instead of OR gates. Th is is beca use a two-level :'Il'AN D ga te ci rcuit im­
plement s a sum-of-mi nrcrrns functio n .lOJ i.. equivalent to a two-le vel AN D-OR circ uit.

y

FIGURE 4 .21
Implementation of a fu ll adder wi th a decoder

1SO Chapt er 4 Combinational Logic

4 . 10 ENCODERS

An encoder is a digital circuit that performs the inverse opera tion of a decoder. An encoder has
2" (or fewer) input lines and" outpu t lines. The output lines. as an aggregate. generate the bi­
nary code corresponding 10 the input value. An example of an encoder is the octal-to-binary
encoder whose truth table is given in Table 4.7. It has eight inputs (one for each of the octa l
digits) and three outputs that generate the corresponding binary number. It is assumed that only
one input has a value of I at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Ourput c is equal to I when the input octal digit is I. 3. 5. or 7. Output)" is I for
octal digits 2. 3. 6. or 7. and output x is I for digits 4. 5. 6. or 7. These conditions can be ex­
pressed by the following Boolean output functions:

z = D j + D3 + D5 + D7

y = D1 + D3+ D6+ D7

.r = D4 + D5 + Do + D7

The encoder can be implememed with three OR gates.
The encoder defined in Table 4.7 has the limitation that only one input can beactive at any

given time. If two inputs are active simultaneously. the output produces an undefined combi­
nation. For example. if DJ and Db are I simultaneously. the output of the encoder will be 111
because all three outputs are equal 10 I. The output II I does not represent eithe r binary 3 or
binary 6. To resolve this ambigui ty, encoder circuits must establish an input priority to ensure
that only one input is encoded. If we establish a higher priority for inputs with higher subscript
numbers, and if both lJ) and Do are 1 at the same time, the output will be 110 because D6 has
higher priority than D.l.

Another amb iguity in the oc tal-to-binary encode r is that an output with all O's is generated
when all the inputs arc 0; but this output is the same as when Do is equal to I. The discrep­
ancy can be resolved by providing one more output to indicate whether at least one input is
equa l 10 I .

Table 4 .7
Truth Table ofan Oda/-to -Binory Encoder

Inputs Outputs

D. D, D, D, D. D, D. D, x y z

I 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 I
0 0 I 0 0 0 0 0 0 I 0
0 0 0 I 0 0 0 0 0 I I
0 0 0 0 I 0 0 0 I 0 0
0 0 0 0 0 1 0 0 I 0 I
0 0 0 0 0 0 I 0 1 I 0
0 0 0 0 0 0 0 I 1 I I

Sectio n 4.10 Encoders 151

Table 4.8
Truth Tobie of a Priority Encoder

Inpu ts Out puts

O. 0 , 0 , OJ , Y V

0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

Priority Encoder

A priority encoder is an encode r circuit that includes the priori ty func tion. The opera tion of the
priority encod er is such that if two or more inputs are equa l to I at the same time. the input hav­
ing the highest priority will take precede nce . The truth tab le of a four-input priority encoder is
given in Table 4.8. In add ition to the two outputs .r and y. the circuit has a third output desig­
nated by V: lh i ~ is a valid bit ind icator that is set to I when one or more inputs are equal to I.
If a ll input s are 0, there is no val id input and V is equal to O. The othe r two outpu ts are not in­
spected when v eq uals 0 and are specified as don 't -care co nditions. Note thut whereas X's in
ou tput co lumns repre...cnt don ' t-care co nditions , the X 's in the input columns are usefu l for
representing a trut h table in condensed fonn. Instead of listing all 16 rninterms of four variables,
the tru th tab le uses an X 10 represent either I or O. Fur example , XIOO rep resents the two
mi nterm s 0 100 and 1100.

Acco rding to Table 4.8, the higher the subscript num ber, the higher the priori ty of the input.
Input D.~ has the hig hest prio rity. so , regardless of the val ues of the othe r inputs. when this

D,

I I 10

D,

f "' D~ + D 1D'~

FIGURE4 .22
Map s for a p riority encode r

152 Chapter 4 Combinational l ogic

0 ,

0 ,

0 ,

-{» r

I'"
~

'--\ "<,

~

..

4 . 1 1

FIGURE 4 .23
Pour-inp ut priorit y encoder

input is 1, the output for .ej- is I I (binary 3).~ has the next priority level. The output is 10 if
l.J..z = 1, provided that ~ = 0, regardless of the values of the other two lower priority inputs.
The output for 0 1 is generated only if higher priority inputs are 0, and so on down the priority
levels.

The maps for simplifying outputs .r and)' are shown in Fig. 4.22. The minterms for the
two functions are der ived from Table 4.8. Although the table has only five rows. when each
X in a row is replaced first by Oand then by I , we obtain all 16 possible input combinations.
For example. the fourth row in the table, with inputs XX 10. represents the four minterms
0010 ,01 10. 10 10. and 11 10. The simplified Boolean express ions for the priori ty encoder
are obtained from the maps. The condition for output V is an OR function of all the input veri­
abies. The priority encoder is implemented in Fig. 4.23 acco rding to the following Boolean
functions:

x = D2 + lh

y = 0) + D IDi

V = Do + D 1 + D2 + D.l

MULTIPLEXER S

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled
by a set of selection lines. Normally. there are 2n input lines and II selection lines whose bit com­
binations determine which input is selected.

A two-to-one-line multiplexer connects one of two l -bit sources to a common destination,
as shown in Fig. 4.24. The circuit has two data input lines. one output line. and one selection
line S. When 5 = O. the upper AND gate is enabled and 10 has a path to the output. When
S = I, the lower AND gate is enabled and 11has a path to the output. The multiplexer acts like

5
(b l Block dIagram(allo@:icdiapam

FIGURE 4.24
Two-to -o ne-line muttlplexer

t, -----t--r- ,

Sectio n 4.11 Multiplexers 153

I"

I" 0

Y' M UX Y

t,

an electronic swi tch tha t sch-ctx nne of two sou rces . The block dia gram of a mult iplexer is
sometimes depicte d by a wedge-shaped symbo l. as shown in Fig. 4.24(b). It sugges ts visually
how a selec ted one of multiple data sources is directed into a single destination. The multiplexer
illoften labeled "M UX" in blOl: \I. diagrams.

A fou r-to-one-li ne mult iplexer h. shown in Fig. 4.25. Each of the four Inputs. /n through
1.\. is applied 10 one input or an AK D gate. Selection lines S, and Soare dccol.k-d 10 selec t a

5,

5., - - - '-'

} '

5, 5" y

0 0 I,
0 I t ,
I 0 t,
1 I I ,

Ib) Functton 1al:>l 0:

FIGURE 4 .25
pour -to-one-line multipleller

154 Chapter 4 Combinational l ogic

particula r AND gate . The outputs of the A~D gate" arc applied to a single OR gale that pro­
vides the one -line output The function table lists the input that is passed to the output for
each com binalion of the binary selection values . To demonstrate the operation of the circuit.
co nsider the case when 5 150 = 10. The AXD gate associated with input h has 1\.\ 0 of its in­
puts eq ual to I and the third inpu t co nnected to 12. The other three AKD gates have at lea..t
one input eq ual to O. which makes their outputs equal to O. The output of the OR gate is now
eq ual to the value of h. providin g a path from the selected input to the output. A mult iplexer
is also called a delta selector, since it selects one of many inputs and steers the binary infor­
mat ion to the output line.

The AKD gates and inverters in the multiplexer resemble a decoder circuit. and indeed.
they decode the selection inputlines. In general. a 2"-lo- l-line multiplexe r is constructed from
an ,1-10-2"decode r by adding 2"input lines to it. one to each AKD gate. Tbeoutputs of the AKD
gates are applied to il ..inglc OR gate. The size of a multiplexer is specified by the number 2"
of its data input line.. and the single output line. The II selection tines arc implied from the 2"
data lines. As in decod ers . mult iplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive suuc. the outputs are disabled. and when it is
in the active "tate. the circu it funct ions as a normal multi plexer.

Multiple xer circu its can he combined with com mon selection inputs to provide multiple-bit
selection logic. As an illu-arntic n. a quadrup le z-to-l-line multiple xer is shown in Fig. ~ .26 . The
circuit has four multiplexers . each capable of selecting one of two input lines. Output Yo can be
selected to co me from either input Ao or input Bu. Similarly. output Y, may haw the value of
A 1or 8,. and won. Input selection line S selec ts one of the lines in each of the four multi ­
plexers .The enable input E must be acuve (i.e .• asse rted) for normal operat ion. Although the cir­
cuit contains foor z-to-t -line multiplexers. we are more likely to view it a-s 3 circuit that selects
one of two -l-bit setv of data lines. As shown in the function table. the unit is enabled when
E = O. Then. if S = O.the four A input.. have a path to the four outputs . If. by contrast. 5 ""' I .
the four B inputs are applied to the outpu ts. 1be outputs have 311 O's when E "" I. regard lclOs of
the value of 5.

Boolean Function Implementation

In Section 4.9. it was -bown that a decoder can beused to implement Boolean functions b)' em ­
ploying external OR gates. An examination of the logic diagram of a mult iplexer reveals that
it is esse ntially a decoder that includes the OR gale within the unit. The mintcrmv of a func­
tion are genera ted in ;. mul tiplexer by the circuit associated with thc selectio n inpu ts. The in­
dividual mint erm s can he selec ted by the data inputs. thereby providin g a method of
implementing a Boolean function of II variabl e" with a mult iplexer that has II selection inputs
and 2n data inputs. ()11 ~ for each rninrerm .

We will now show a more efficient method for implementing a Boolean function of II vari­
ables with a multiplexer that hits ,1 - 1 selection inputs. The first II - I variables of the func­
tion arc connec ted to the selection inputs of the multiplexer. Theremaining single variable of the
function is used for the data inputs. If the single variable is denoted by c, each data input of the
meltiplexer will bez. c', I. or O. To demonst rate this procedure. consider the Boolean function

r t». y. ,) = ~ (1.2 . 6. 7)

Section 4.11 Multiplexers 155

all o-,
select A
sdcci B

Output Y

Y,

Y,

l ion ta ble

l M~':;~ l "
C\

"l.22Y I: :;/

l !_",::,\ r-,) J: Y

;-.
l U'Ui)

r--:- i

£ S

f- :::J ':/ 1 X
0 0
0 1

f- :=J;;iJi; Func

f- :=J/ if'!',
r-, {>0-cu v

v

H,

S
(sefe

£
(enable)

A ,

A,

FIGURE 4 .26
Quadruple two-to -one -line multiple.er

This funct ion of three variable s can be impleme nted with a fou r-to-one-line mult iplexer as
shown in Fig. 4.27. The two variab les .r and)' are applied to the selection lines in that orde r; .r
is connected to the 51 input and y to the So input. The values for the data input lines are deter­
mined from the truth tab le of the function . When .rj- "" 00 . output F is equal 10 z because
F "" 0 wben c = 0 and F = I when z = I. This requires that variable z be applied to data
input O. The operation of the multiple xer is such that when .rj' = 00. data inpul 0 has a path to
the output. and that makes F equal 10 z. In a similar fashion. we can determine the required input
to data lines I. 2. and 3 from the value of F when xy = 01. 10. and II. respectively. This
particular example shows all four possibilities that can be obtained for the data inputs.

156 Chapter 4 Combinationa l logic

~ x I ML'X

II 2

, S,
.r y , r
0 0 u 0 P "' z
0 0 I I

0 I II I r - z'
0 , I 0

I 0 II II ' -II, 0 I II

, , II I ,.-,
I I I I

(a) Truth table

,
"

o

J

(b) ~lultip1e~e r implementation

r

F1GUR£ 4 .27
Implementing a Boolean function with a multiplexer

The general procedure for implementing any Boolean function of n variables with a multi­
plcxcr with n - I selec tion inputs and 2"- 1data Inputs follows from the previous example .
To begin with, Boolean function is listed in a truth table. Then first II - I variables in the table
are applied to the selection inputs ofthc multiplexer. For each combination of the selection vari­
ables. we evaluate the output as a function of the last variable. This function can be O. I. the
variable. or the com plement of the variable. These values are then applied to the data inputs in
the proper order.

As a second example. consider the implementation of the Boolean function

F(A. e. C. D) ~ ~ (1.3. 4. I I. 12. 13. 14. 15)

This function is impleme nted with a multipl exer with three selection inputs as shown in ­
Fig. 4.28. Note that the first variuble A must be connected to selection input S2 so that A. B.
and C corres pond to selection inputs S2. SI< and So. respect ively. The values for the data inputs
are determined from the truth table listed in the figure. The corres ponding data line number is
determined (rom the binary com hination of ARC. For example. the table shows that when
ABC = 101. F = D. so the input variable LJ is applied to data input 5. The binary constants
oand I correspond 10 two fixed signal values. When integrated circuits are used. logic 0 cor­
responds 10signal ground and logic I is equivalent to the power signal. depending on the tech­
nology (c.g .. 5 volts).

Three-St at e Gates

A multiplexer can heconstructed with three-slate gates-digital circuits that exhibit three stares.
Two of the slates are signals equivalent to logic I and logic 0 as in a conventional gale. The
third Mate is a llixh -impedtmce state in which (1) the logic behaves like an open circuit. which
means thai the output appears to be disconnected. (2) the circuit has no logic significance. and

Section 4.11 Mult iple xers 157

A B C D F

0 0 0 0 0 F = D
0 0 0 I I

0 0 I 0 0 F = D
0 0 I I I

0 I 0 0 I F e: D'
0 I 0 I 0

U I I u U F =O
0 I I I U

I U U o 0 F =O
I U U I 0

I 0 I U U F =D
I 0 I I I

I I 0 0 I 1' -'I I 0 I I

I I I 0 I F =lI I I I I

8 x l MU X

c------- s,
8 51

A 52'

D-~--_r-

F

o --1----:-.--13

FIGURE 4 .28
Implementing a four-input function w ith a multiplexer

(3) the circuit connected to the output of the three-state gate is not affec ted by the inputs 10 the
gate. Three-state gates may perform any converuicnallogic, such as AN D or NAN D. However.
the one most commonly used is (he buffer gate.

The graphic' symbol for a three-state buffer gate is shown in Fig. 4 .29. It is distinguished
from a normal buffer by an input co nt rolline enter ing (he bonom of the symbo l. The buffer
has a normal input. an output. and a control input that determines the state of the output.
When the control inp ut is equa l to I, (he output is enabled and the gate behaves like a con­
ventional buffer. with the outp ut equal to the normal input. When the control input is O. the
output is disabled and the gate goes to a high-impedance state. regardless of the value in
the normal input. The high-imped ance stale of a three-state gate provides a spec ial feature
not available in other gates. Because of this feature. a large number of three-state gate OUI­

puts ca n be connected with wires to form a com mon line with out enda ngering loadi ng
effec ts.

Normal input A ------t:?---: Output Y = A if C = 1
~ High-Impedance if C = 0

Control input C

fiGURE 4 .29
Graphic symbol for a three-state buffer

158 Chapter 4 Combinational logic

The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30. Part
(a) of the figure she s the con struction of a two- to-one-line multiplexe r w ith 2 three-state
buffers and an inverter; The two o utputs are connect ed together to fonn a single o utput line .
(Note that this type of connect ion cannot be made w ith gates that do nor have three-..tate o ut­
puts.) When the select input i..O. the upper buffer is enab led by its contro l input and the lo wer
buffer is disabled . Output Y is then equal to input A. Whe n the select input is 1. the lower buffer
is enabled and Y is eq ual to B.

The construction of a fou r-to-one-line multiplexer is shown in Fig. 4.3O<b). The outputs of
4 three-stare buffers are connected toget her 10 form a single output line. Thecontrol inputs to
the buffers determine which o ne of the four normal inputs 10 through 13 w ill be con nected to
the output line. No more than o ne buffer may be in the active state at any given time. The con­
nected buffers must becontrolled so that only I three-senebuffer has acce ss to the outputhile
all other buffers are maintained in a high-impedance state. One way 10 ensure that no more than
one control input is active at any given time is to use a decoder. as shown in the d iagram. When
the e nable input of the decoder is O. all of its four outputs are 0 and the bus line is in a high­
impedance state because all four buffers are disabled. When the enable input is active. one of
the three -state buffers will be act ive. depending on the binary value in the select inputs of the
decode r. Carefu l investigati on reveals tha t this circuit is another way of constru cting a fou r-to­
one- line multiplexer.

0 ­

I l----J

21-- ---'
3

2 X4
decoder

I, ---- - - - - - --- -I:>---r--- y

- Sl
Select

-51>

Enable - ENL-_..:r--

yr-,

'1
~

v

r-,

'1

A

B

Select

(a) z-io-t.ltne mux

FIGURE 4 .30
MUltipl ex ers wil h three-state gates

(bl 4-lo-l-line mua

4 .12

Section 4.12 HOt Models of Combinational Circuits 1S9

HDl MODElS OF COMBINATIONAL
CIRCUITS

The Veril og hard ware descrip tion language (HDL) wa s introd uced in Sec tio n 3.10. In the cu r­
rent sect ion . we present mo re elaborate e xample.. and com pare alternative descri ption.. of com­
binational circuits in Verilog . Seque ntial ci rcuits are presented in the next chapter. As mentioned
previou sly. the module is the basic b uild ing block for mod eling hardware with the Veri log
HDL The logic of a modu le can be described in any one (Of a co mbination] o f the following
mode ling styles:

Gale-level modeling using instantia tions o f predefin ed and use r-de fined primi tive gates.

Dataflow modeling using cont inuous assignment statementv with the keyword a _...<; i ~n .

Behavioral mode ling using proced ural assignmem ..ratcrne nts with the keyword alw a ys.

Ga te-level (structu ral] modeling describes a circu it by specifying its gales and how they arc con­
nected with each other. Dataflow modeling is used mostly fur describin g the Boolean equation..
o f combinational logic. We ']] also consider here behavi oralmodeling that is used to describe
com binational and sequential circuits at a higher level of abstraction. Th ere is one other mod­
d ing style. ca lled switch-le vel model ing It is some times used in the simulation of MOS tra n­
sistor circuit mod els. but not in logic synthesis. \ I,,'e consider ","witch-level modeling bricO)" in
Section 10.10.

Gate·Level Modeling

Gate- level model ing wa.. introd uced in Sectio n 3. 10 wit h a si mple e xam ple . In this type of
represe ntation. a circuit is specified by its logic gates and their interconnections. Gate-le vel mod ­
el ing provides a te xtual description of a scbemauc diagram. The ventogHDL includes 12 bas ic
gates as predefined primitive ... Four of lhese primitive gate.. are o f the three-state type . Theothe r
eight are the same as the one.. Ii..led in Sec tion 2.8. They are all decl ared with the towe n..ase
keyw ords and. na nd . or . no r . "or. xecr. not. and bur. Primitives such as a nd are »-i npur
pnrmuves. Th ey ca n have any number of scalar inpu t.. (e.g.• a three-in put a nd pn muive). The
buf and not primitives are u-oe tpu r primitives. A ..ingle input can d rive multi ple output lines
distinguished by their idcnnficrs.

The verifoglan gua ge includes a functio nal descript io n o f each type of gate. too . The logic
of each gate is based on a four-valued ..ystem, When the gates are simulated . the simula tor
assigns.one va lue to the o utput of e ach gate at any instant. In addition to the two logic val­
ue s of 0 and I. there arc two other value..: unknown and ";1<" impedance, An unkno wn val ue
is de noted by x and a high imped ance by 1.. An unknown va lue is assigned duri ng si mula­
tion when the logic value of a signal if. am biguo us- for instance. if it can no t be det ermin ed
wheth er its value is 0 o r I (e. g.• a flip-flop wit hou t a rese t co nd ition). A high-imped ance
co ndition occ urs at the o utput of three-..tate gate s that arc no t e nabled o r if a wire is inad ­
venently left unconn ected . The four-value d logic tru th table s for the a nd . o r . "or. and not
primitives are shown in Table 4 .9 . The truth tab le for the o the r fou r gates is the same. e xc..ept
that the o utputs are co mpleme nted . Note that for the a nd gate. the output is I only when
both inputs are I and the output is 0 if any input is O. Otherw ise . if one input is x or t , the

160 Chapter 4 Combinationa l l ogic

Table 4 .9
Truth Table tor Predefined Primitive Gates

and 0 1 , ,
'" 0 1 x ,

0 0 0 0 0 0 0 1 , ,
1 0 1 , , 1 1 1 1 1, 0 , , , x x 1 , ,
, 0 , , x , x 1 x ,

xur 0 x , not input output

0 0 I , x 0 I
1 I 0 , x I 0, , , , x , ,
, , , x , , ,

output is x. The output of the or gate is 0 if both inpu ts are O. is I if any input is I. and is x
otherwise.

When a primitive gate is listed in a module. we say that it is instantiated in the module. In
general. component instantiations are statements that reference lower level components in the
design. essentially creating unique copies (or instances) of those components in the higher
level module. Thus. a module that uses a gate in its description is said to instantiate the gate.
Think of instantiation as the HDL counterpart of placing and connecting parts on a circuit
board .

We now present two examples of gate-level modeling. Both examples use identifiers having
multiple bit widths. called I'eerors. The syntax specifying a vector includes within square brack­
ets two numbers separated with a colon. The following Veri log statements specify two vectors:

output [0: 3) 0 ;

wi re [7: 0) SUM;

The first statement declares an output vector D with four bits. 0 through 3. The second de­
clares a wire vector SUM with eight bits numbered 7 through O. (Note: The first (leftmost)
number (array index) listed is always the most significant bit of the vecror.) The individua l
bits are specified within square brackets. so D[21 specifies bit 2 of D. It is also possible 10ad­
dress parts (contiguous bits) of vectors. For example . SUM[2: 01 specifies the three least sig­
nificant bits of vector SUM.

HDL Examp le 4.1 shows the gate -level description of a two-to-four-line decoder. (See
Fig. 4. 19.) This decoder has two data inputs A and B and an enable input E. The four outputs
arc specified with the vector D. The wire declaration is for internal connections. Three not
gates produce the complement of the inputs. and four nand gates provide the outputs for D. Re­
member that the output is always listed fi rst in the port list ofa primitive , followed by the in­
puts. This example describes the decoder of Fig. 4. 19 and follows the procedures established
in Section 3.10. Note that the keywords not and nand are written only once and do not have
to be repeated for each gate. but commas must be inserted at the end of each of the gates in the
series. except for the last statement. which must be termin ated with a semicolon.

Section 4.12 HDl Models of Combinational Circuits 161

HDL Exa mple ~.I

1/Gate-level description of two-to-four-line decoder
/I Refer to Fig, 4.19 with symbol E replaced by enable . for clarity.

module decoder_2x4_gates (D, A. B, enable);
output (a; 3] 0 ;
Input A, 8 :
Input enable;
wire A_not. 8_not, enable_not;

not
G1 (A_not, A),
G2 (B_not, B).
G3 (enable_not. enable):

nand
G4 (010], A_not, B_not. enable_not),
G5 (DI1], A_not, 8 , enable_not),
G6 (D{2], A. 8_not. enable_not),
G7 (D[3], A. B, enable_not):

endmodule

Two or more modu les can be combined to build a hierarchical description of a design.
There are two basic types of design methodologies: top dow n and bottom up. In a lop-down
design. the top -level block is defined and then the subblcc ks necessary 10 build the IOp­
level block are identi fied . In a bottom-up design. the buildin g blocks are first ident ified and
then combi ned to build the lop-level block. Take. for example. the binary adder of Fig. 4 .9.
II ca n De conside red as a top-block component built with four full-adder blocks. while each
full adder is built with two half-adder blocks. In a top-down design. the four-bit adder is de­
fined first, and then the two adders arc described. In a bottom -up design. Ihe half adder is
defined. then each full adder is const ructed. and then the four-bit adder is built from the fu ll
adders.

A ha ltom-up hierarch ical description of a four-bit adder is shown in HDL Example 4.2 .
The half adder is defi ned by instantiating primitive gate s. The next module describes the
full adder by instantia ting two half adders. The third module desc ribes the four-bit adde r by
instantia ting four full adders. Note that the first character of an identifier ca nnot be a num­
ber, but can be an underscore . so the module name _ebi tadder is valid . An alternative name
that is mean ingful. but does not requ ire a leading underscore. is adder_4_bit . The lnstanti­
arion is done by using the name of the module thai is instantiated together with a new (or the
same) set of port names. For example. the half adder HA I inside the full adde r module is in­
stantiated with ports SI . CI . .r. and y. This prod uces a hal f adder with outputs 51 and eland
inputs x and v.

162 Chapter 4 Combinational logic

HUt Exampl e 4.2

1/Gate-level description of four-bit ripple carry adder
/I Description of half adder (Fig. 4.5b)

/I module half_adder (S, C, x. y); II Verilog 1995 syntax
1/ output S, C;
1/ Input x, v;
module half_adder (output S, C, input x, y): II Verilog 2001,2005 syntax
II Instantiate primitive gates
xor (S, x, y):
and (C, x, y);

endmodule

/I Description of full adder (Fig. 4.8) /I Verilog 1995 syntax
II module full_adder (S. C, x, y, z):
/I output S, C;
1/ input x, y, z;

module full_adder (output S, C, Input x. y, z); /I Verilog 2001, 2005 syntax
wire S1, C1, C2;

/I Instantiate half adders
half_adder HA1 (S1, C1, x, y):
half_adder HA2 (S, C2, S1, z]:
or G1 (C, C2, C1):

endmodule

/I Description of four-bit adder (Fig. 4.9) /I Verilog 1995 syntax
II module ripple_csrry_4_bicadder (Sum, C4, A, S, CO):
/I output 13: OJ Sum:
/I output C4;
/I input (3: OJ A, B;
/I Input CO;
II Alternative Verilog 2001, 2005 syntax:

module ripple_carry-4_bicadder (output (3: OJSum, output C4,
Input [3: 0] A, B, Input CO);
wire C1, C2, C3; II Intermediate carries

II Instantiate chain of full adders
full_adder FAO(Sum[O], C1, A[O], B[OJ, CO),

FAl (Sum[1], C2, A[l] , 8 [1), Cl),
FA2 (Sum[2], C3, A[2], 8[2], C2),
FA3 (Sum[3], C4, A[3], 8[3), C3):

endmodule

Sect ion 4.12 HDL Mod els of Combinat ional Circuits 163

HDL Examp le ·L! illustra tes Verilog 2001. 2005 synta x. which eliminate s extra typing of
identifiers dec lari ng ihe mode (e .g.. ou tpun. rype (!TRI. and declarauon of a vect or range te.g.•
(3: OJ I. The first version of the standard (1995) use, separate stateme nts for these declarations.

Note that modules can be instantiated rnested j with in other modules. but modu le dc-clara­
lio ns cannot be nes ted : that is. a module de fin itio n Idc'claranonj cannot be placed within an­
other mod ule dec laration. In other wonk a mod ule defi nitio n cannot be inse rted int o the text
betw een the module and endmodule keywords of another module. The ani) ' wa)' on e module
defi ni tion can be incorporated into another mod ule i" by ins tantiating it. In..tantiat ing modules
within o the r mod ules creat es a hierarchi ca l decomposition of a design. A description of a mod­
ule is said 10 be a structural description if it is co mposed of instantia tions of other modules.
Note a lso that i nstance lIt1mes must be specified hen defined modules are in..tuntiated (such
a.. FAO for the fi"'l full adde r in 1h1: third modu le). bUI using a name is o ptiona l whe n insranri­
aung primitive gates . Mod ule r ipplf'_ctlrl)'_4_biU uldu is composed of instantia ted and In­
terconnected full add ers. each of which is itself composed of half adders and ..orne glue "Wk.
The top level. or paren l modu le. of the design hierarchy h.the modu le rippfe_Cllr1)·_4jliUldder .
Four copies of fi, /C atlder arc its child mod ules, e tc. CO is an inpu t of the cel l form ing the least
significant bit of the chain. and C4 is the output of the cell formin g the most significant bit.

Three ·State Gates

As menti oned in Section "'.11. a three-state gate has a contro l inpu t tha i can place the gale into
a high-impedance ..tale. The high-impedance stale is symbolized by z in Verilog . There are fou r
type s of three-..tate gales. as sho wn in Fig. ..1.31. The bulifl gate behaves like a normal buff er
if cont rol ;; I. The o utput goes 10 a high-impeda nce ..tate 1hen control ;; 0 "The hu linl
gate behaves in a similar [achion, exce pt that the h igh-impedance ..tate occ urshen ("011/",1 "" I.
The two nol gates operme in a similar mann er. except that the o utput is the co mp le me nt of
the input when the ga le is nOI in a high -im pedance state. The gates arc instantiat ed with the
..tate ment

eate name toutput. i t/I III', clmlm /l:

i, --{>-o",

CU rl l rol~
hurifl

i'T °"'
comr ol

nolin

flGUAl '- .31
Three-state gates

" --{;;>----- 0 ",

CUrl ln'l~
hufifO

m --t»-- 0 ",

CtlrllfOI -.J
nohm

164 Chapter 4 Combinat iona l Log ic

The gate name can be that of any 1 of the a three-state gates. In simu lation. the ou tput can re­
sult in O. I. x. or z. Two examples of ga te instantiat ion are

bufif1 (OUT, A. control);
notifO (Y, B, e nable);

In the first example. input A is transferred to OUT when control = I. OUT goes to z whe n
control = O. In the second example. ou tput Y = z whe n enable = I and out put Y = B' when
enable = O.

The outputs of th ree-state gates can be connected together to form a common outp ut line.
To identify such a connec tion. verilog HDL uses the keyword lri (for tristate) to ind icate that
the output has mu ltiple drivers. As an example. cons ider the two-to-one-line multiplexer with
three-state gat es sho wn in Fig. 4.32.

The HDL description mu st usc a t ri data type for the output:

/I Mux with thre e-s tate output

module mux_tri (m_o ul, A. B, select);
outp ut m_out;
input A, B, se lec t;
trl - m_out:

b ufif1 (m_o ul, A, select) ;
bufifO(m_oul. B, select);

e ndmod ule

The 2 three- state buffers have the same output. In order to show that the y have a common con­
nection, it is necessary 10 declare m_ourwith the keyword t r io

Keywords wire and t r i are examples of a set of data types called 1/1;' /.1" . which represe nt co n­
nections between hard ware cle ments. In simulation. thei r value is detennined by a co ntinuous
ass ignment stateme nt or by the device whose ou tput they represe nt. T he word 1/1;'1 is not a key­
word. but represents a class of da ta types. such as wire. wor, wa nd . t r iosup ply l , and su pplj u.
T he wire decl aration is used most frequently. In fuct. if an identifier is used. but nOI declared.
the language spec ifics that it will be interpreted (by defaul t) as a wire . Th e net nor model s the
hardw are implementation of the wired-O R co nfiguration (emitter-coupled logic). The wand
mode ls the wired-AND co nfigura tio n (open-collector technology: see Fig. 3 .28). The nets
sup ply ! and suppbu represent power supply and grou nd. respectively. They are used to hard­
wire an input of a device to e ither I or O.

select_ _ ---.J

FIGURE 4 .32
Two-to-one -line mu ltiplexer with three-state buffers

Section 4 .12 HDl Models of Combinational Circuits 165

Dataflow Modeling

Dataflow modeling.o f combinational logic uses a number of operators that act on operands to
produce desired results. Verilog HDL provides aboUl30 different operators. Table 4.10lists some
of these operator s. their symbols. and the operation that they per form. (A complete list of op­
erators supported by Vcrilog 20D1. 2005 can be foun d in Table 8.1 in Sec tion 8.2.) II is neces­
!'oaf)' to d istinguish betw een arithmetic and log ic op erations. so different symbo ls are used fo r
each. The plus symbo l (+) indicat es the arithmetic operation of addition : the bitwise log ic
AND ope ration (conjunction) uses the symbo l & . There are special symbols for bitw ise logi­
ca l O R (d isjunctio n). ~OT. and XOR. The eq uality symbol uses two eq uals signs (w ithout
spaces between them) to distinguish it from the equa ls sign used with the assign statement. The
bitwise ope rators operate bit by bit on a pa ir of vector ope rands. The concatenation opera tor
prov ides a mechanism for appending multip le ope rands. For exa mple. two ope rands with two
bits each can be co ncatenated to form an o perand with four bits. The co nd itiona l operator acts
like a multiplexer and is ex plained later. in conjunct ion with HDL Exampl e 4.6.

Dataflow mode ling uses continuous assignment s and the keyword ass lgn. A cont inuou s as­
signment is a statement that assigns a value to a net. The data type famil y net is used in vcr­
ilog HDL to represe nt a physical connec tio n bet ween ci rcuit ele me nts. A ne t is decl ared
explic itly by a net keyword te.g.. " 'ire) or by declaring an identifier 10 be an output port. The
logic value assoc iated with a net is determin ed by what the net is connected to. If the net is co n­
nected 10 an OUIPUI of a gate. the net is said 10 be driven by the gate. and the log ic value of the
net is determin ed by the logic value , of the inputs 10 the gale and the truth table of the gate, If
the ident ifier o f a net is the left-hand side of a continuous ass ignment statement or a procedural
ass ignme nt sta teme nt. the va lue assigned to the net is specified by an expression tha i uses
operands and operator s. As an exa mple. assumi ng that the variables were declared . a tWO-IO­
one-lin e mult iplexer with data input s A and B. select input S. and o utput Y is desc ribed with
the co ntinuous assignment

a ssig n Y "" (A & 5)I(B & - 5) :

Table 4 .10
Some Veril og HDL Operaron

Sym bol

+

&
I

>
<

{ }
'! :

Operation

binary addition
binary subtracnun
bitwise AND
bitwise OR
bitwise XOR
bitwise NOT
equality
greeter than
lcss than
concatenati on
conditional

166 Chapter 4 Combinational logic

The relationship betwee n Y, A. B, and S is declared by the keyword a ssign. followed by the target
output Yand an equals sign. Following the equals sign is a Boolean expression. In hardware terms.
this assignment would beequivalent to connecti ng the output of the OR (I) gate (0 wire Y.

The next two exam ples show the datafl ow model s of the two previous gate-lev el examples .
The dataflow description of a two-to-four-line decoder is show n in HDL Example 4.3. The cir­
cuit is defined with four continuous assignment statements using Boolean expressions. one for
eachoutput. The dataflow description of the four-bit adder is shown in HDL Examp le 4.4. Tbe
addition logic is described by a single statement using the operators of addition and concatena­
tion. The plus symbol (+) speci fies the binary addition of the four bits ofA with the four bits of
B and the one bit of C_in. The targe t output is the concatenation of the output carry C_OIII and
the four bits of Sum. Concatenation of ope rands is expressed within braces and a comma sepa­
rat ing the operands. Thus, fe _out, Slim} repre sents the five-bit result of the addition operation.

HOI. E xa mple 4.3

/I Dataflow description of two-to-four-hne decoder

II See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (
output [0: 3) 0 ,
Input A,6,

enable
);

/I Verilog 2001 ,2005 syntax

Sum,
C_OUI,
A. B.
CJ n

assign

endmo dule

0[0] = - (- A & - 6 & -enabre).
0(1) = - (-A & 6 & -enabte).
0(2) = - (A & - 6 & - enebre).
0(3) = - (A & B & - eneble):

1I0L Exam ple 4.4

/I Dataflow description of four-bit adder

II Verilog 2001, 2005 module port syntax

module binary_adder (
output [3: 0)
output
input 13: OJ
Input

);

assign {C_out. Sum) =A + B + C_in:
endmodule

Sect ion 4.12 HDL Models of Combinational Circuits 167

Dataflow HDL models desc ribe co mbinational circuit s by their function rather than by the ir
gate structure. To show how dataflow descriptions faci litate d igital design. consider the a-bit mag­
nitude co mparator described in HDL Example 4.5. The mod ule spec ifies two 4-bit inputs A and
B and three outputs. One output (A_'eEl is logic I if A is less than R. a second output tA....ge BJ
is logic I if A is greater than B. and a third output (Ajq_B) is logic I if A is equal to B. Note
that equality (identity) i:-. symbolized wit h two equals signs (= =) to distin guish the operat ion
from that of the ass ignment operator (=). A Veri log HDL synthesis compiler can accept this
module description as input. execute synthes is algori thms. and provide an output netllst and a
schematic of ,I circuit equivalent to the one in Fig. 4. 17, all without manual interve ntion !

111>1. Exa mple ~ ,5

1/Dataflow description of a four-bit comparator

module mag_compare
(output AJ t_B, A_eq_B, A-9'-B,

input [3: OJ A, B
):
ass ign A_ICB =(A < B);
assi gn A_9t_B =(A > B);
assi gn A_elLB =(A == B);

endmodule

IN 200 1, 2005 syntax

The next exa mple uses the co nditional ope rator (? :). This operator lakes three ope rands :

cnndition ? true-expression .' [alse -expression:

The condition is eva luated. If the result is logic 1. the true expression is evaluated. If the result is
logic O. the false expression ls evaluated. The two co nditions together arceq uivalent to an if-else
condition. HDL Example 4.6 describes a two-to-one-li ne multiplexer using the conditional ope r­
ator. The continuous assignment

assi gn OUT = select ? A : B;

specifies the co ndition that OUT = A if select = I . el se OUT = 8 if .1'('/ ('(' 1 = O.

lilli , Example .a,6

1/Datanow description of two-to-one-lme multiplexer

module mux_2x1_df(m_out. A, B. select);
output rn_out;
input A, B;
Input select;

assi gn m_out =(select)? A : B;
endmodule

168 Chapter 4 Combina tional Logic

Behavio ra l Modeling

Oehavioral modding H'J""C'nl.. digi ta l circuits at a fu nctional and alaori thmic level. It is used
tnmtly to describe seq uential circuits, but can also be used to de scribe combinational circuits,
Here, we give two !oimple combinational ci rcuit examples to introduce the ubject. Behavioral
Il'lOlklina i..presented in more detail in Secti on 5.6. after the Mudy of -.coqucntial circuit...

Behavioral descrip tion..use the keywonJ al"I1)'!\. followedby an optionalevent con tro l ex ­
pres..ion and a li..t o f procedural a....ignmcnt ..rarcmems.The event control exprel'llioo ..peci fies
when lhc ..tatement .. will e xecute. The target ou tpul of procedural a....ignment stateme nts rnust
he of the ITa data type. Contrary 10 the "I~ data t)'1'1(' . whereby the target output o f an all­
sig nme m may he conunuoc..ly updated. a I"t"Rdata type rtta in!\' ih value until a new value i ..
assigned,

HDl Example " .7 ..bows the behavioral description of a two-to-one-tine multiplexer.
(Compare it whh 1101. Example " .6.l Si nce variable m_tlIII i.. a la'iet output. it mu..t be de­
clared a" I"t"J: da ta (in addition to the oulpul declaration). The procedura l a, ..ignment state­
ments inside the al" a) " bloc k. are executed every ti me there i..a change in any of the variable
Ii ..ted after the @ symbol. (Noee that the re: is no semicolon (:) at the end of the al"a)-1I stare­
me nt.) In th i'. case. these variables ure the input variable.. A. 8 . and select. 11lC statements
execute if A, 8. or select changes value . Note that the keyword or. in,lead of the bitwise
log k al OR operator -r, j., u"iCd between variables. The cond itio nal ..retemenr Ir-t"I"iC' pro­
vides a decisiun based uponthe value of the .f t'l t't "' input. The Irstatement can be written with­
Qui the equality symbo l:

If (select)OUT • A:

The statement implie s that St'It'C1 is checked for 10i!1c I,

IIUL Eumph' 4.7

II Behavioral doscription of two-tc>orlfMlne multlplellef

modul. mux_21l1_beh (m_OUl A, B, select):
o utp ut m_out:
Input A, B, seJect
~g m_out

. Iw.)', @(A or B or select)
If (select - - 1)rn_0U1 - A:
. 1,. m_out ::I B:

. ndmod ul.

HDl Example " .8 descr ibes the function of a four-to- one -line multiplexer. The lrlt'C'1 input
i, defined a, a two-bit \ ector, and outptJl)' isdeclared 10 have type rq:.1llc al,,-a) . !lIatcrnent. in
this example. ha.. a sequentia l blO(kenckN:tl betweenthe "cyword..(11 andrndcu"'4:.Tbeblock
i .. executa! whcnc ' ·er any or the inpu15 Ii!totcd after the @)'lIIbtli changes in value . Tbe ('a\C' slate­
ment j" a meluwayCtW'llliliuoal branch etln~Whenever in_O. in_I. in..1.inJ orwl«, dlan~.

the case exprt~'ton (~/f'Ct) is evaluated and it.. value compared. from lOp to bouorn. ith lhc
values in lhc Ii" of stall,'rnenl' that follow. theso-ce lled C1l"it" items. 1bC' Malcmtnt a'stll:iated with

Sect ion 4.12 HDt Models of Combinational Circuits 169

the first caw item that matches the case ex press ion is executed . In the absence of a match. no
statement is exec uted. Since select is a two-hit number, it can be equa l to 00. 0 1, 10, or I I . The
case items have an implied priori ty becau se the list is evalua ted from top to bottom.

The list is call ed a sensitivitylist (Verilng 1001.1005) and is eq uivalent 10 the 1!\'1'1It COil '

trol express ion rverilog 1995) formed by "Oking'' the signals.

HDL Example .a.S

/I Behavioral description of four-to-one line multiplexer

/I Verilog 2001, 2005 port syntax

m_out =In_O:
m_out =In_1:
m_oul =in_2:
m_out =in_3:

module mux_4x1_beh
(output reg m_out ,
Input in_O. in_1, i"_2, 1" _3,
Input [1: OJ select

);
always @ (in_O, iO_1 , in_2, in_3, select)

case (select)
2'bOO,
2'b01:
2'b10:
2'b11:

endcase
endmodu le

If Verilog 2001, 2005 syntax

Binary num bers in Ver ilog are speci fied and interpreted wi th the letter h preced ed by a
prime. The size of the numbe r isri nc n first and then its value . Th us. 2' hOI speci fies a two­
bit binary num ber whose value is 01. Numb ers are stored as a bit pa ttern in memory. but they
can be referenced in decim al. oc tal. or hexadecimal form ats with the lene rs ' d . ' 0 , and ' h . re ­
spec tively. If the base of the number is not specified. its interpretation defau lts to deci mal, If
the size of the number is not specified. the system assumes that the size of the number is at least
32 bits: if a ho...t simulator ha.... a target word tcngth-c-say, M bits- the language will use that
value 10 store unsized num bers. The integer da ta type (keyw ord Integer) i ... stored in a 32-bit
representation. The underscore (_1 may be inserted in a num ber to improve readabili ty of the
code (e.g .. 16 ' bOIOU 110_0 101_001 1). It has no other effect .

The cas e cons truct has two import ant variat ions: cuse x and ca sea. The first will treat as
don 't -cares any bits of the case ex pressio n or the case item that have logic va lue x or z. The
easez construct treat s as don't-cares only the logic value z. for the purpose of detecting a match
between the case ex press ion and a case item .

If the list of case items does not include a ll possible hit pat te rns of the cese expression. no
match can bedetected . Unlisted cas e item s. i.e .• bit patterns that are not ex plicit ly decoded
can be trea ted by using the defau lt keyword as the , last item in the list of cas e items. The as­
...ocia ted suuernem will execu te when no othe r match is fo und. This feature is use ful. for ex­
ampl e . when there are more possible stale codes in a sequential machine than are actua lly used .
Having a default case item lets the designe r map all of the unused sta tes 10 a desired next stale
without having to elaborate eac h individual state. rathe r tha n allowing the synthes is 1001 10 ar­
bitraril y as... ign the next slate.

170 Chapter 4 Combinational Log ic

The exernptes of bcbaviora l de~ription~ of combinational circuits shown bere are simple
ones. Behavioral modeling und procedural assignmenl ..retcmems require knowledge of se­
quential circuits and an: covered in more detail in Section 5.6,

Wri ti ng a SImple Test Bench

A tot bench i..an 110 1.program used(or describing and applying a stimulus to an IIDL model
of a circuit in order 10 h.~ it and observe its response during simulation.T~ benches can bequite:
complex and lengthy and may lake longrr 10 develop lhan the des ign that j, tested. The results
of a te..t are only a~ good as the: test bench thai is used to teMa circuit. Cart must be taken to
write stimuli lhat will te!Ol II circuit thoroughly, exercising all of the operating Ieatures thai are
specified. However. the te..t benches con~idemJ here an: relatively simple, since the: circuit\ we
want to re..1 implement only combinauonal logic. The examples are presented to dcmon\U'Ble
some ba...tc features of HDLstimulus modules. Chap(cr 8 considers tese bcnc~ in greater depth.

In eddiuon to empillying the 11I"a)" sraremem, te..t benches U\C' the Initial stete mcm ro pr0­

vide a stimulus to lhe circuit being l~lc:d . We use the term "al" a)', uetemem" 10o!loCly. Actu­
ally. aht a)"s is a Verllog language con..truct spccif)'ing now the as\OCi.ued statement is to
execute (subject to the event control expression). TIle al" 8)"s state ment executes repeatedly in
a loop. The Inllh.1 statement executes only once. starting from simulation time O. and may
connnue with any operations that are delayed by a gi\'C~n number of time units. ItS specifled by
the symbol'. For c..ample. consider the Initial block

Initia l
be gin

A - O; B - O;
' 10 "' - 1;
'20 A - 0;B - 1:

ond

The block ill enclosed between the: keywords begi n and end . At time O. A. and B are set to O.
Ten time units later. A is chanSed to l . jwenty lime unil\ after that (al , . 30) A. i..changed 10
oand B 10 I . Inpub sr....xified by a three-bit troth table can be generated with the Inlli..1block:

Initia l
tMtgln
O . 3"bOOO:
repea t (7)

11I 10 0 .0 + 3'bOO1;
ond

When the: simulator runs. the three-bit vector 0 ilro initialiled to 000 li t time - O. Thekeyword
repeat specifics a looping statement: 0 i5 Incremented by I seven limes. once every 10 lime
units. The re..ult is a M'qUCnce of binary numbers from 000 to III .

A stimulU1. module has the following form:

module test_module_name;

1/ Declare loca l reg and wire idenbfiert.

/I Instantiate !he des;gn module under teet.

II Specify 8 stopwatCh. uslng $finlSh to terminale lhe simulatIOn.

Section 4.12 HOl Models of Combinat ional Circuits 171

/I Generate stimulus, using Init ial and alw ays statements.

/I Display the output response (text or graphics (or both)).

endmodule

A test module is wr itten like any other module. but it typically has no inputs or outputs. The
signals that are applied as inputs to the design module for simulation are declared in thc stim­
ulus module as local reg data type. The outputs of the des ign module that are displayed for test­
ing are declared in the stimulus module as local wire data type . The module under test is then
instantiated. using the local identifiers in its port list. Figure 4.33 clarifies this relationship.
The stimulus module gene rates inputs for the design module by declaring local identifiers t...A
and C B as reg type and checks the output of the design unit with the wire identifier ,_c. The
local ide ntifiers are then used to instantiate the design module being tested. The simulator as­
sociates the (actual) local identifiers within the test bench.t...A , ,_B.and ,-COwith the formal
identifiers of the module (A, B, C). The association shown here is based on position in the port
list, which is adequate for the examples that we will consider. The reader should note, however,
that Veri log pro vides a more flexible name association mechanism for co nnecting ports in
larger circuits.

The response to the stimulus generated by the inilia l and a lways blocks will appear in text
formatas standard output and as waveform s (liming diagrams) in simulators having graphical
output capability. Numerical outputs are displayed by using Verilog system 'asks.These are built­
in system functions thai are recognized by keywords that begin with thc symbol S. Some of the
system tasks that are useful for display are

Sdlsplay-c-display a one-time value of variables or strings with an end -of-line return.

Swrile-same as Sdisplay. but without going to next line.

$monitor-display variables whenever a value changes during a simulation run,

$Iime-display the simulation time,

$finish-tcnni nate the simulation.

m:i~l:~'~:~.t::;~~~(~
..j~ (<;:;

panl~~i-t=~',

FIGURE 4 .33
Interaclion between stimulus and design modules

172 Chapter 4 Combinationa l loglc

The syn tax for $d islJlay , $write , and $mo nltor is ofthe fonn

Task -name (format specification, argumem list }:

T he formal specification uses the symbol % to spec ify the radi x of the numbers tha t are dis­
played and may have a string enclosed in quotes C).Th e base may be binary. deci mal. hexa ­
decim al. or octal. idcntjfled with the sym bols %b. Ckd. %h. and %'0. respectively (q. B. 'l' O. q.H.
and %0 are valid too). For exa mple, the statement

Sdispla y f'%d %b %b-, C, A, B):

speci fies the d isp lay of C in decimal and of A and B in binary. No te that there are no commas
in the former speci fication. that the format specific ation and argu ment list are separated by a
comma. and that the argume nt Jist has commas betw een the variables. An example that spec­
ifies a string enclo sed in quotes ma y look like the statement

$di splay ('"time = %OdA '" %b B = %b-, Stime, A, B);

and will produce the display

time =3 A = 10 B =1

where (time =). (A =), and (B =0) are part of the string to be displayed . The format spec tflers
/lOd. 'kb. and 'k b specify the base for Stlme . A. and B. respectively. In displaying time val­
ues. it is better to use the form at %Od instead of %d. Th is provide s a display of the significa nt
digits without the lead ing spaces that %d will include. (%d will display abou t 10 leading spaces
because time is calculated as a 32· bil num ber.)

An exa mple of a stimulus module is shown in HDl Example 4.9. The ci rcui t to be tested j.,

the two-to-one-line multiplexer described in Example 4.6 . The module Ullu:c_2.tl_df has no
ports. The inputs for the mux are declared with a reg keyword and the outpu ts ith 3 w ire
keyword . The mux is instantiated with the local variables. The initial block speci fies a se­
quence of binary values to be applied during the simu lation. The output respon se is checked
with the $mo nitor system task. Every time a variable in its argument changes value. the sim­
ulato r displays the inputs, output. and time. The result o f the simu lat ion is lis ted under the sim­
ulation log in the example. It shows that In_out = A when select = I and In_OW = B when
setect » O.vcnfying the operatio n of the multiplexer.

MDL Example 4.9

1/Test ben ch with stimulus for mux_2x1_df

module cmux_2x l _df;
wire l_mux_ou l:
reg I_A. t_8 :
reg I_select;
param eter stop_lime = 50;

mux_2x1_df M1 (l_mux_out. t_A, I_B. t_select); II Instantiation of Circuit to be tested

1/Stimulus generator

Section 4.12 HDL Models of Combinational Circuits 173

Initi al # stop_time Sfinish;

init ial begin
I_select = 1; I_A = 0; I_B = 1;

#10 t_A = 1; I_B = 0;
#10 I_select = 0;
#10 I_A'" 0; 1_8 " 1:

end

Initial beg in 1/Respon se monitor
II Sdlsplay r time Select A B m_out");
1/Smonlto r (Stlme.. - %b %b %b %b~, I_select, I_A, I_B. t_rn_out);
Smon itor ("time=~, Stime .. "select = %b A = %b B = %b OUT = %b~,

I_select, C A. C 8 . Cmu x_ouI);
end

endmodule

1/ Dataftow description of two-to-one-fine multiplexer

1/ from Example 4.6
module mux_2x1_df (m_out, A. B. select);
outp ut m_oul;
input A. B:
Input select;

ass ign rn_out = (select)? A : B;
endmod ule

Simulation log:
select = 1 A =O B = 1 OUT = otime = 0
seled= 1 A= 1 B = OOUr - 1 time ·10
seIed:=O A = 1 B =o o u r = Obme = 20
select = OA = 0 B = 1 our = 1 time =30

Logic simula tion is a fa'>t. accura te method of ana lyzing co mbinational circuits to veri fy
that they operate prope rly. There are two types of verification: functional and timing. lnfulIc­
tionaf verification. we study the circuit logical operat ion indepe nde ntly of timin g considera ­
tio ns. This can be done by deriving the trut h table of the combinational ci rcuit. In timing
verific ation. we study the ci rcuit's operation by including the effec t of de lays through the
gates . Thi s can be done by obse rving the waveforms at the outputs of the ga tes whe n they
respond to a given input. An examp le of a circuit with gate de lays was presen ted in Section
3.10 in HDL Examp le 3.3. We next show an HOI.. example that prod uces the tru th table of
a co mbinatio nal ci rcuit A $monito r system task d isplays the ou tput caused by the given
stim ulus. A co mmented atrerna rive sta tement having a Sdlsplay task woul d create a header
that co uld beused with a mo nitor statement to eliminate the repetition of names on each
line of output.

The analysis of com binational circ uits was covered in Section 4.3. A multilevel circuit of a
full addera.. analyzed . and its truth table was derived by inspection. Thegate-level description
of this circuit is shown in HDL Example 4.10. The ci rcuit has three inputs, two outputs. and

174 Chapter 4 Combinational logic

nin(' gate~. The tJc"crircion of the circui t follow~ lhe interconrections between the gate' ac­
cord ing 10 the scbemanc diagram of f ig, 4.2. The stimulus for the circuit is listed in the sec­
ond module , The i "pu l ~ for ~ imulat i ng the circuit are specified with a three-bit R1t vector D.
D/l / is eq uivalent 10 input A. V/ / Ito input B. and D/O/lo input C. The OIJtpulSof the circui t
F. and F;: art dec lared a~ " lIT. The complement of 1'2 i~ named f "2_b to illustrate a common
induMry precnce for designati ng lhe complement of a sjgnal (i n~tC'ad of appending _n QI) . This
procedure follows the -reps outlined in Fig. 4.33. 'The repea t loop pro·videsthe seven binary
numbers after £XX) for the truth table. Tbemull of lhe simulation [tencrat~ the OUlpol truth lable
dh.played with the example. The truth table 1i ~led shows that the circuit i, a full adde r.

II Dt f:ll.i1 mpl~ ,u o

II GaI&4evel deSCl'iptiOn of Circuit or Fig. 4.2

modul. CirCuit_otFig_4_2 (A.B. C. F1, F2);
Input A. e.C:
output F1, F2;
wi,.. T1, T2. T3, F2_b, E1, E2, E3;
or g l (n , A. e , C);
a nd g2 (12 . A. B. C);
a nd g3 (E1. A. B);.n.g4 (f2, A, C):
a nd g5 (E3. B. C);
or g6 (F2, f t . f2 , f3):
not g7 (F2_b. F2);
a nd g8 (T3. n ,F2_b);
... g9 (F1, T2. T3):

endmodul.

II Stimu lus to analyze thecircu it

modul . tes t_CirCuit;
.... 12'0) 0 :
wlr. F1. F2;
C'cuil_O'_F1IL'_2 "'] 4_32 (0[2),0(1).0(0). Fl , F2):
Initial

begin
0 - 3'bOOO:
r. peat (7) #10 0 - D. 1'b1:.n.

Initial
$monlto r r ABC - %b F1 - %b F2 - %b -, D, F1. F2):

e ndmodu"

SimulatiOn log: ABC - 000 F1 - 0 F2 - 0
ABC - 00 1 F1 - 1 F2 - 0 ABC - 0 10 F1 - 1 F2 - 0
ABC - 011 Fl - OF2 - 1 ABC - 100 F1 - 1 F2 "0
ABC - 101 F1 - 0 F2 - 1 ABC - 110 F1 - 0 F2 - 1
ABC - 111 F1 -1 F2 - 1

Problems 175

PROBLEMS

Answers to probl ems marked with · appear al lhc end o f the book. Where appro priate. a log ic design
and its related HDl mode ling problem are cross refere nced .

4 .1 Con sider the ccmbinauonal circui ts shown in Fig. N .I (IfDl- o;ee Probl em9).

A --r----------f--...,

8 -~+--1'>~1,
c --t-f--'---L

L-=L>--F'
AGURE P4.1

(a)· Derive the Boolean e xprr.l>sioOl' for T t throu gh T•. Evaluate the outputs F I and F211-\a func­
tion of the four inputs .

(b) Liil the tru th table with 16 bi.nary oombinat.ion!l.of the four input variab~. 1hen liMthe bi­
nary \·a.lues for T1throop' T. and OUTputs F 1and F2 in !he tab le.

(c) Plot the Boo lean outpul (unct ions obt ained in pan (b! on maps, and ~how thai the sim plified
Boolean eXpRssioo s are equi valent to the ones obtained in pan(al.

4 .2- Obtain the simplified Booleanexpresslcns for oorpets F and G in rerms o f the input variables in
the c ircu it of Fig. N .2.

G

F

"-
v J r J

- J , I ')-

1 1
D

FIGURE'4.2

8

C

4 .3 For the circuil sbown in Fig. 4.26 (Section 4.11).
(a) Write the Boo lean funcnoes (or lhe (ou r ou tputs in term s o f the inpu l variabl es .
(b ,· U the circuit is listed in II truth table . how many ro ws and columns wou ld lhe~ be in the

table?

176 Chapter 4 Combinational logic

4 .4 De~iin 4 ct.Jmbin.a ltooaJ circuit with tnree input~ and onc output.
Ca) Tbe output i~ I wben lhe binary valueof the input ~ i ~ Icn than .l lhc output i' OOlhefy,i'loC.
Cb) Tbe output i~ I when the binary Iue of the inpub i~ an odd number.

4 .5 l:Jnii n . rombin.alionaJ circuit with three input!.. A . y. and :. and tbree outpurs.A. 8 . and C. "'11m
the binary input i' O. 1. 2. or 3. the binary output i.. two , K. ler than the input. When the binary
input i..4 . S. 6. or 7. the binary output i~ uuee len lhan lhe input.

4 .6 Amajority circuit i,. romb in.tKJRlIcircuit wboseoutput i~ cqual to I if the Input variah~ have
II'IlJn: I '~ than 0',_The outpul h OOlhcrwi'IC.
Cal· Oni, n . tIft,: ·inpul majority circuit by findin, the circuiu truth table. BooleanC(jU&tiort.and

a lOiic di. Sram.
eM wrue and vcrify . VcrilOl daanow mudd of the circuit.

4 .7 Oni, n 11Io."tXllbinalional cin.'1Iit that COIn-crt, a four·bit Gray rode 4Table 1-6. to . rour·bil bina·
I'}' numtlt"r.
Ca)- Implemenl the circuil wilh exclu..ivc-oR ' lI IC".

cbl V~i nlt . Cll...:' ..catemcnt.'rite and ..-crify a Vcrilo, model of the circuit.

4 .• - De..i, n . ..'OoJc convener that C'Olwert,. dc<imal J iiit from the 8. 4. - 2. - 1rode to BCD (I«

Tablc I .~ J . (HDl - see ProblcmUO.)

4 .9 An ABCD.to-'IoC\ Cn-'IoCln)Cnt d«odcr i,. combinational circuit thaI convert, a dc<imal dilit in
BCD to an ilppror riatc rolk (or the 'Clcc1ion o(loCllmcnh in an indicalor uiON to ditoplay the cec­
imal digit in a fantiliar form. The K vcn outpul' of lhe tb.'OoJcr (a. b. c, J. ,.f, gl select the ClJI'.

K"pondin, 'o(',mc-ms in the di..pl. y. II~wn in FI, . P4.9(a). The numeric di, play cbosen to
KpKloCnt thed«irrud di,it is ,,"-,wn in Fi,. P4.9tb). U, in. a truth taMe and KunaUllh map". de­
"In the BCD- to-~vcn· !lC8mcnt~Jdcr. u~in, a minimum numbcrof l ate'. The s.i .. invalidcora­
biru.tion....hould r<'!>U1t in a blank di..play. (IIDt.-...cc Problem 4.51.'

•

(al SelUl'lCnl ~ltna t i " n

FIGURE ' 4 .9

4 .1 D-' Oni,n a four·bil ..·ombirulional circuil 2', romplemenlcr. (The outpullcncrate, the 2\ comple­
ment of the inpul binary number., Show that the circuit can be ron1oU\K1Cdhh el c!u\h'c-OR
1. lc, . Can you predict rn.t the output (unction.. are f(1I" a five-bu 2', romplcmcnlt'r?

4 .11 V,i nl four half-aJdcn (HDL- ICC Problem-'.521.
(a) De..i", . four-bit rombtn.:llional circuit irJl.:n:mcntcr (a circuit tb.1t Mkb 110 . four·bit bina·

I'}' numl:lcr).
(bl Or, i,n a four-bit rombinali(JRlI circuit dccKmcntcr 'a cirro il that wbtrac1~ I from a four­

bit binary numberl.

4 .12 (a) De..i,n . t1a lr· ~ubU1",:lor circuit'ith i npuh .~ lind y and OUlput~ Oil/ . nd 8_ . The circuit
\Ubtra~:b t~ bit, x -).and plill,."n the difference in DiIJ and the borrow in B_ .

Problems 177

(b)· Design a full-subuactor circuit with three inputs. x. y. B/~ . and two outputs Diffand BOlI/ . The
circuit subtracts x -). - B,~ , where Bm is the input borrow. 8 ",,/ is the output borrow. and
Diff is the difference.

4 .13" Tbe adder-subtracter circuit of Fig. " .13 has the following values for mode input M and data in­
puts A and B:

M A B
(0) 0 01 11 0 110
(b) 0 1000 100 1
(0) I 1100 1000
(d) 1 0 101 10 10
(0) I 0000 000 1

In each case. determine the values of the four SUMoutputs. the carry C. and overflow V. (HDL­
see Problems 4.37 and 4.40.)

4 .14" Assume thatl he ell.c1usive-ORgate bas a propagation delay of IOns and that the A.IIJDorO R gates
have a propagation delay of 5 ns. What is the total propagation delay time in the four-bit adder
of Fig. ...12?

4 .15 Derive the two-level Booleanexpression for the output carryCol shown in the Jookahead carrygen­
erator of Fig. 4.12.

4 .16 Deline the carry propagate and carry generate as

p; "'A/ + B/
0 / - A,B;

respectively. Show thai the output carry and output sum of a full adder becomes

C /+ I = (C/ O;' + P/)'
Sj =: (P,G;,) $ C/

The logic diagram of the first stage of a four-bit parallel adder as implemented in Ie type 74283
is shown in Fig. P-I.J6. ldemify the P/ and 0;' terminals and show that the circuit implements a
full adder.

c,----f)_--~--[>O_-...J

c,

FIGURE P4 .16
First stage of a parallel adder

178 Chapter 4 Combinational logic

4.17 Show thilt the output c;any in a fuJl ·ltddct c;irwilnn beu~ In the AND-OR·ISVERT form

C/. 1 • G; + P,C, • (G/P,' + e r'C/)'

IC Iype 701 182 JSIl loo.. , htlltJ c;AIT)' ' C'MrllIOf dn.-uil lhal BC'nC'f8IC'1 tht c;atrin wjthAro.'O·OR·IN·
VERT IAOI) '1I 1('~ 1'C'C' Section) ·8.1'tbc cin:uit ,\\U!TK'SIMlltIe inpul lmTIinal!o hau' tnt com­
pkmenh nf the (ts.lhe P:•. •nd of C•. Derive lhe: Book an functions fOf the loubhe:1lJcanin
Cz•C). and C~ in thi.IC. lHi",: Use the: tquatiun 'MI~t i fution rnetbod to cerive the ~arriel in
rerms of C,-)

4.1S· ~i,n 1I comt'lin;UKJnlI circuu that , ennal('llo the: 9 's compk!TK'nt of a BCD diSil. tIIOL - 'C'C'
Pruhk m 01 .501.)

4.19 ConslfUl:1 1 BCD .kkkr-lubtnM:tor cucuu. U~ tt'lC' aCI> Idder or Fis . 4.14 andthe II', compte­
menter of Problem 01 ,II'. UlIC blocLdiairams for the: compooenu . (HOL - !ICC Problem 4.55.1

4.20 A bilW)' multiph"r multipliC'$ 1","0 un\ii ned four-bit numben.
tl) Usin, Ar-;D ~ate\ and bil1lll)' Id&en (lICC Fia. 01 ,16/. de·dsn lhe cin:uil.
lb) Wrile and \('tlf)' II VcrilOJ dataflo..... mo,Jcl of the circuu,

4 .21 De\ i, n a cumbin;lt ional cin."Uil thai comparn twofoor·bil numbC'n IochccL if the)' areel.jual. 'The
cin:uil.I"lUlput i!o (" Iual to I if the: two nembers are C'qual and 0 otherwise.

".U· De\iin an ('1I\.'ns·3·tlJobif\MY d«OdCf u\ ;n, the unu'oCd L:ombinationl of the code a~ do,fl -('af('
condilions. (fUJl. - lICC Pnlhll.'m 4.4 2.)

4 .23 Dnllr lhe: ll.Jlllc dl.ll fI m of . t.....o-Io·four· line dI.'\:OOCl' U, inl'.) NOR ' III~ 0111)'. and(b) NASD
' lit" onl)'. hlL:llkIc an ('nable input.

4.2.4 Oni,n a BCD-to-&cimal de\."tJlkrU\inl the: unused ~'Offibinal iOll' of the: BCD CtJlka, do."IIl ·I-('af('
CtJlldilions. (HOt - see Problem ·1.60.)

4 .2.5 Ct"lll\ttul."1 a 5-lo-JI·line de\."twJer with foor J ·lo-8-line de\."tJlkn with enabk and . 2·hl-l-1i1l(' dr·
rodrr. Use bkd Jiapam, for lhe Ctlmponrnb.

4- 26 COII'>lruo.·t . 4·to- !(l.line de\."tJdcr with five 2..0-4·line <krodcn wilh enabk.

4 .27 AcOllIt>inatiollal d n:uil i\ ' pI."' ifiC'd by the folluwini three Boole;m fur",..ti("IIl' :

F,(,.4 .B. e) . ! (J .5.6)
F:(,.4 . H. C) . I {I.oI)
F)(,.4 .B. e) . ! (2. 3. 5.6. 7)

Impk mcnt the ('in:uil wilh I ~wJer consttuell.'d wilh NAND , ales (similar to Fi, . 01 .191and
NAND or AND ~ .lln ~'UflI'II.'\.'taI lu the drxudI.'f outplllJo. U!o(' '' t*xk diagram for the de\."tlder. Min­
imize the: numhel of inpub in the enerna t gaIn.

4 .28 U\ini a d«odt'1' ~nd C'llemaJ ,ale\. dc!.i ln the Ct'llI"lbihOlli{lnal cil'C\li l dl.'finN by the folk"","in. ueee
Boolean fun<;1KJ!l\ :

(a l f l • .I ') " : ' + .I t.

f : · .f)" t.' + .1' .\'

t: »y.t. .. .1,\'

Ib) r, » t l" of. t) t.

1": •) "t. 't) ·· + .,.t.'
f) . (.f' -+).)t.

Problems 179

4 .29'" Design a four-input prio rity encode r with inputs as in Table 4.8. but with input Do haying the
highe st priori ty and input D3 the lowest priority. (HDL-~e Problem 4.5 7.)

4 .30 Spec ify ihe truth tab le of an octa l-to-binary priorit y encoder, Provide an output V to indicate that
at least one of the inputs is present. The input with the highest subscript number has the highest
priority. What will be me value of the four outputs if inputs Dl and Dt> are I at the same time?

4.n Con struc t a 16 X I multiplexer with two 8 X I and one 2 X I multiplexers. Use block dia­
grams.

4 .32 Implement the following Boolean functio n with a mulnplexer (HDL-see Prob lem 4.46) :

(0) F(A . B. C. D) • ~ (O. 2. 5. 7. 11. 14)
(b) F(A. B. C. D) - n (3. 8. 12)

4 .33 Implement a full adder with two 4 x I muniplexers.

4 .J.4 An 8 X 1 mult iplexer has inputs A. B, and C con nected to the selection inputs 52. 51' and 50- re­
spectively. The data inputs 10 through 17 are as follows:

(a)· I I "" 11 '" / 7 '" 0; 13 "" /5 "" I; 10 '"" /J - 0 ; and 4. "" 0 ' ,
(b) / 1 - / 2 '" 0 ; 13 = 17 "" 1; 14 " Is - 0 : and 10 - It> "" D' .

Determi ne the Boolean funct ion thai the multiplexe r implemerus .

4 .35 Implement the following Boole an function with a 4 X 1 mult iplexer and exte rnal gates.

(a)· F(A. H, C, D) = ! (I . 3. 4, 11. 12.13. 14, 15)
(b) F(A , B, C. D) '" I (1.2, 4, 7, 8 , 9, 10. 11. 13, 15)

Co nnect Inputs A and B to lhe selection lines. The input requirements for the four data lines will
bea function of variab les C and D. The se values are obtained by expressing F as a function of C
and D for eac h of the four cases whe n AB = 00,01. 10 , and 11. The functio ns may have to be
implemented with external gales and with con nect ions to power and gro und.

" .36 Write the HDL gate-level de scription of the priority encoder circui t shown in Fig . 4.23 . (HDL ­
see Problem 4.45 .)

4 .37 Wrile the HDL gale-leve l hierarchical description of a fou r-bit adder-subtracte r for unsigned bi­
nary numbers. The ci rcuit is similar to Fig. 4 .13 bUI without output V. You can instantiat e the
four-bit full adde r described in HDL Example 4.2. (See Problems 4.13 and 4.40.)

4 .38 Write the HDL dataflow description of a quadruple two-to -one-tine multiplexer with enab le. (See
Fig. 4.26.)

4 ,39l' wnre an HDL behavioral description of a four-bit comparator with a six- bit output ytS:O). Bit S
of Y is for "equals:' bit 4 is for "not eq ual to," bit 3 is for "grea ter than," bit 2 is for "less than,"
bit I for "greater than or eq ual to: ' and bit 0 for "less than or equal to."

4 .40 Using the condi tional ope rator (1 .), write an HDL dataflow descri ption of a four-bit adder sub­
tractor of unsigned numbers . (See Problems 4.13 and 4.37.)

4 .41 Repeal Problem 4.40. using a cycl ic behavio r;

4 .42 (a) Write an HDL gate-level descri ption of the BCD -to-excess-3 co nve rter ci rcuit shown in
Fig. 4.4 (see Problem 4.22).

(b) Write a dataflow dcS(.'ription of the BCD-tQ-CXCCliS-3 converter. using the Boolean expres.~ ions

listed in Fig. 4.3.

....... end

....... '"
8ltWlM eJlClUaivoa Ol"

Add (AMume '" tlnd B ... unelgnedl.......
BdwlM~ 1(

(cf' Wnte an HOL behavkxal~pUon01. BCD-IO-C~...l COClwrlCT.

(dl Write . ~ ttcacb to wmulate and tnlthe BCD-~.ceu.J COClvntn cirnlil in onkr 10 vn­
if)' the uuth 1.&. 00.:... aU ueee circuiu.

4.4J EJ.plaln the f\l.lKCIOG ol lht circWt ipecifJCd by lhc fulkrtoin, HOI. dncrip6on:

module Prob4_43 (A. B, S , E, Q);

Input 11 : 0) A. B;
Input S. E.
outPut 1' :0) Q.
--'sJn Q - E 7 lS 7 ... : Bl : 'W;

endmodule

4 .44 Usin,. CI~ ..,Iemenl. wri te In HOL behavionl detaiptioa of I d ,ht·bit arithmetic.lot:ic
unit (ALU). The circuit ha\ . 1.hlTe·bit wI«! bus fSfoO. d ,hl.bit input dltapath, fA(7: 0/ and

8{ 70' 0/, In dJtIl ·bil OUlput dlllp"lh 1.]{7: Of). and perform the arillunettc and Iot:icll opera'
tion , li\IN bdo lO

~ Opem~

000 '1 - l ' bO
001 '1 - " & B
0 10 '1 -" 18
011 '1 -" ~ 8

100 '1 • " + 8
101 '1 • A - 8

110 '1 • " A

111 '1 . I 'bff

4A5 Write an HOI. behavioral dncrip600 01.. four ·input priorit)' encoder. Ute I four-bit \ 'K'IOl" fOt"
the 0 inpulJ and;al(... . ,. block with jf-ebe w.a&mwnu. Auume thai: inpd O[JI tau the hi~
nI priority bee PTobkm 4.36).

4 .46 Repeal ProNem .&J2. u\in, I d.atafiow dncription.

4A7 Repelt Prob&nn .&,37. u ina: a datafio,.. detcriptioo.

4.... De\-elopandmodify the ri,hl: -bit ALU IpC'rifJCd in Problem ...,u to dw it tw lhtft·.case output
Q)fIlJ'oBcd by aa mabIr inpvl. En_Write . In(bmdl andu mulale the cimlit.

4A9 For the circuit ""Nin in R, . P4.1.
fa)rile and vtnf) and verify a pce'~\'d HOL ItKllilI 01 the cirnlit
(b) compare your multi .. ith 1holle obtained in Proble m 4.1.

4 ,50· Uwn, ac...e Q!CmmL developand simulate . behavionl modd 01the 8-1-2-1 10BCD rode 001II'
\ ·etttr dN:ribed In Proble m 4.8.

4 ,51 Dr\'dop and Wnulale a behavioral tnOLkl of tht ABC().to-wven-te ,IDent d«odn dncrtbed in
Problem ".9.

4 ,52 U, in,. con linlltlUI .nip mmt. lkvdop and, imulalc. dataflow model of
,.) the four·bi t u'lcttmcntn delCribed in Probkm " .I I' a)
lb) the four-hil d«mncntn delcriMd ill Problem " .1lib).

4 .5) [)e,.f'1op and umu1alc. wuetunJ model ot the decimai Uln w..1l in M, . 4.1".

4 .54 ~f'kJp and Wnu" a bcNvicnJ modeloIacircuit thai aeneraan !he 9' , comp&ement oIa BCD
dip (I« Probkm " .18).

References 181

4 .55 Con~tahierarchical mode l of the BCD adder-subuactor describedin Prob lem 4.19.1lIc BCD
adder and the 9 '5 complerrenteran to be described as behavioralmode ls in separate mod ules. and
they arc to be imlanliated in a top-le vel mod ule.

4 .S6- Write . ccnueuous assig nme nt statemen t lhat compares IWO four-bu num bers toc beck if the ir bit
panems match . Tbe uriable to which the assignment i ' made i ~ to eq ual I if the numbers match
and 0 otberwise.

4 .57- Develop and veri fy a behavioral mod e l o f the fo ur-bit p riorit y e ncod er described in Pro b­
lem 4.29 .

4 .58 Write a Veril og model o f a circ uit whose J2·bit ou tput is fo rmed by shi ft ing its 32-bit input
three positions to the right and filli ng the vacated posi tions with the bit thai was in the MSB
before the shift occurred (sh ift arith metic right).

4 .59 Write . Verilog model of a ci rcuit whose 32 -mt out pu t is formed by shiftin g its 32 ·bi t inp ut
three positions to the left and fi lling the vac ated positions with Os(s hift lo!!ical lcftl.

4 .60 Writ e a Veri log mod el o f a BCD -to-d eci mal decoder usi ng the unused co mbinatio ns of the
BCD code as don ' t-ca re co nd itio ns (see Pro blem 4.24) .

4.61 Using the portsy ntax of rhe IEEE 1364 ·200 1 standa rd, writ e and verify a gat e-level mode l of
the 4-bit even parit y c hec ker shown in Fig . 3.36 .

4.62 Using co ntinuo us a.ssignme nt sraremems and the port syntax of the IEEE l3~-200 1 sta ndar d.
write and ve rify lin HDL model o f the 4-bit even pari ty checke r shown in Fig. 3 .36 .

REFERENCES

1. BItASKER. J. 199 7. A liorilog HDL Primu :. Allentown. PA: Star Galaxy Press.
2. BKASKER, 1. 1998. \ rrilog HDL S)"1/theJis. Allentown. PA: Star Galaxy fun .
J . cusrn. ~t. D. 1999 . MoJeling. S,.",hcsis. aNi Rapid ProlOf)ping Mo'j,h l rri fog HDL. Uppe r Sed -

dle River, SJ: Prennce Hall.
4 . DI£TMEYFJt. D. L. 1988. Lngie'Design ofDigitol Systems, 3d ed , Boston : AII}"11 Bacon.

5. GAJ5KJ. 0 , D. 199 7. Pn'nciples olDigilol eNsign. Uppe r Saddle River, NJ: Pre ntice HaU.
6. HAYES. J. P. 1993. lnlroJucrion to Digital Logic Design. Readin g. MA; Addison -Wed ey.

7. KATZ. R. H. 2(Xl5 . Contemporary Logic Design. Upper Sadd le River. NJ: Pea rso n Pre ntic e

Hall .

8. M","lo. M. M.. and C. R. KJME. 2000 . Logic and CompU/er Desifln Fundamemals, 2ded. Upper

Sadd le River. NJ: Prenuce Hal l.

9 . NELSON. V. P.. H. T. NAGI.E.. 1. D. IRWIN. and B. D. CARROL1.. 1995. Digital Logic Cirruil Analy .

sis and Design. Englew ood Ctiffs, NJ: Pre ntice Hall.
10. PALNtTKAR,S. 1996. Veri/og HDI.: A Guide 10 Digital Design wid Synrhesis. Mou ntain View,

CA: SunSoft fuss (a Prentice Hall title).

11 . ROTH. C. H. 1992 . FundamentuLJ olLogic Design. 4th cd. SI. Paul. MN: West.

12. THOMAS. D. E.. and P. R. Moo RBY. 1998. The \+rilog HarrJworPDescription UurgllQRe. 4th ed.
Bost on: Kluwer Academic Publ if>hcrs.

1 J . WAKERLY. J. F. 2000. Digital eNsign: Pri/fCip/e3 cutdProcrices. 3d cd. Uppe r Sadd le River. S J:

Prenuce Hall.

Chapter 5

Synchro nous Sequent ial Logic

5 . 1 INTRODUC TION

'The digital ci rcuits COll,idertd ihus far have been combination al: thaI i... the OOlpub an= enurely
tkpcndcfII on the current lnpcrs. Ahhou gh every digital ")' ~cm i'\ likely to have \011lC combi­
nationa l circuit... fllO!r-l ,)'"Ic m .. encou ntered in practice al..o include Menge clcmcnh. which
require that the '\Y!iolcm bedescribed in term..of stqllC'miol loR;C. Fi~I. we reed 10 undc.....and
what dislingui\ hc:'\~ucnlial 1ogk from combinationallogic.

5 . 2 S EQU ENTI AL C IRC U IT S

A block diagram of a ,..:quentinl cirruit i..sbow n in FiB. 5.1. It cons!..t of. cornbinauonal cir­
cuuro whkh M{KlI~C clement.. are COflna:1a.1 (0 fonnll feedback pam.1llC !>wrag e elements art

device s capable of !>Ioo ng binary information. The binary information stOf't'lJ in Ihe"oC elerrems
al any given time: de fine.. the state of thC' sequential cireuit al tha t time. The sequential circuit
receives binary informa tion (rom external inpu t!> Ihut. logethcr with the present \lale of the

Inpun
(·umt!\IUlI""".1

r-r-
OfCUl1

M CID... '" -clemeni.

Ou/pun

182

fiGURE. 5.1
Blo<k diagram of '~quentlal dttult

Section 5.2 Sequential Circuits 183

storage elements. determine the binary value of the outputs. These external inputs also deter­
mine the condition for changing the state in the storage elements. The block diagram demon­
strares that the outputs in a sequential circuit are a function not only of the inputs, but also of
the present state of the storage elements. The next state of the storage elements is also a func­
tion of exte rnal inputs and the present state. Thus, a sequential circuit is specified by a time
sequence of inputs, outputs, and internal states. In contrast. the outputs of combinational logic
depend only on the present values of the inputs.

There are t....-c main types of sequential circuits, and their classification is a function of the
timing of their signals. A synchronous sequential circuit is a system whose behavior can be
defined from the knowledge of its signals at discrete instants of time. The behavior of an (lS)" I­

chronous sequential circuit depends upon the input signets at any instant of time and the order
in which the inputs change, The storage element s commonly used in asynchronous sequential
circuits are time-delay devices. The storage capa bility of a time-delay device varies with the
time it takes for the signal to propagate through the device. In practice, the internal propaga­
tion delay of logic gates is of sufficient duration to produce the needed delay, so that actual delay
units may not be necessary. In gate-type asynchronous systems, the storage clements consist
of logic gales whose propagation delay provides the required storage. Thus, an asynchronous
sequential circuit may be regarded as a combinational circuit with feedback. Because of the feed­
back among logic gates, an asynchronous sequential circuit may become unstable at times.
The instability problem imposes many difficulties on the designer.Asynchronous sequential cir­
cuits are presented in Chapter 9.

A synchronous sequential circuit employs signals that affect the storage elements at only dis­
crete instants of time. Synchronization is achieved by a timing device called a dock Rt' Ilt'ru­
tor, which provides a clock signal having the form of a periodic train of cloc k pulses . The clock
signal is commonly denoted by the identifiers clock and elk. The clock pulses are distributed
throughout the system in such a way that storage elements are affected only with the arrival of
eac h pulse. In prac tice. the clock pulses determine when comp utational activity will occur
within the circuit, and other signals (external inputs and otherwise) determine what changes will
take place affecting the storage elements and the outputs. For example, a circuit that is to add
and store two binary numbers would compute their sum from the values of the number s and
store the sum at the occurrence of a clock pulse. Synchronous sequential circuits that use clock
pulses to control storage elements are called clocked sequential circuits and are the type most
frequently encountered in practice. They are called synchronous circuits because the activity
within the circuit and the resulting updating of stored values is synchronized to the occurrence
of clock pulses. The design of'synchronous circuits is feasible because they seldom manifest
instability problems and their timing is easily broken down into independent discrete steps,
each of which can be considered separately.

The storage clements (memory) used in clocked sequential circuits are called fl ip-flops. A
flip-flop is a binary storage device capable of storing one bit of inform ation. In a stable state,
the output of a nip -flop is eithe r 0 or I. A sequential circuit may use many flip-flops to store
as many bits as necessary. The block diagram of a synchronous clocked sequential circuit is
shown in Fig. 5.2. The outputs are formed by a combinational logic function of the inputs 10
the circuit or the values stored in the flip-flops (or both) . The value that is stored in a flip-flop
when the clock pulse occurs is also determined by the inputs to the circuit or the values presently

184 Chap ter 5 Synchron ou s SequenUalloglc

Inpull
Comtoinalio......1... tl'CUIl

FlIP.fIor' I-

Clock pultn
I

Outpull

IN TImillJ dilarlm of clock pubn

FIGURE. 5.2
Synchronous dod.ed SflIuen Ual circuit

stored in the flip-flop lor both). The new value is stored (i.e .• the flip-flop is updated) when a
pulse of the clock si, n.tl occurs. Prior10 the occurrenceof the clock pulse. the combinational
logic forming the next value of the flop-flop must have reached a 5.tIbie value. Consequently,
the speed at which the combinational logic circuits operate is critical. If the clock (syochro­
nizing) pulses arrive at a regular interval, a, shown in the timing diagram in Fig. S.2. the com­
binational logic must respo nd 10 a change in the stale of the flip-flop in time to be updated
before the next pulse J.IT'ives. Propagation delays play an important role in determining the
minimum interval between clock pulses that will allow the circuit to operate correctly. The
state of the flip-flop!' can change only during a dock ru be lran, ition- fOf example. whenthe
value of the dock signalschanges from 0 to I. When a clock pulse is not ective. the feedback
loop between the value sroredin the flip-flop and the value formedat the inpul to the flip-flop
is effectlvely broken teceuse the flip-flop outputs cannot change even if the outputs of the
combinational circuit driving their inpulschange in value. Thus. the transition from one stale
to the next occurs onl) at predetermined intervals dictated by the clock pul5.Ct.

5 . 3 ST O RAGE ElEM ENTS : LATCHES

A storageelemers in a digital circuit can maintaina binary sUICindefinitely (as long as power
is delivered to the circuit). until directed by an input signal to switch states. The major differ­
ences among various types of storage clements are in the number of inputs they~\loCsS and
in the manner in which the inpuls affect the binary stale. $ro'Og(' ('/('m('nU tM I operate " ';,h
s/gllfll 1('1'('/s (rolhu lhan signal lronsitionJ) arr rrfrrnd to as lalchu : those controlled bJ a
clock transitionorrfl ip-flops. Latches arc said to be level sensitive de\'ka : flip- llop5. arc edge­
sensitive dc\'ilXS., lbc two I)'PCSof storage elements are related because latchc. are the be ic
circuits from which all Ilip-flops areconstructed. Although latches arc useful (or storingbinary
Information and roe the de ign of asynchronou sequential circuits (!ICC Section 9.3). they arc

SR Latch

Sect ion 5.3 Storage Elem en ts: l at ches 18S

not practical for use in synchronous sequential circuits. Because they are the building blocks
of flip-flops. however. we will consider the fundamental storage mechanism used in latches be­
fore considering flip-flops in the next section.

The SR latch is a circuit with two cross-coupled NOR gales or two cross-coupled NAND gates.
and two inputs labeled S for set and R for reset. The SR latch constructed with two cross ­
coupled NOR gates is shown in Fig. 5.3. The latch has two useful states. When output Q "" I
and Q' "" O. the latch is said to be in the set state. When Q "" 0 and Q' "" 1. it is in the reset
state. Output s Q and Q' are normally the complement of each other. However. when both in­
puts are equal to I at the same time, a condition in which both outputs are equa l to 0 (rather
than be mutually complementary) occurs. If both inputs are then switched to 0 simultaneous­
ly, the device will enter an unpredictab le or undefined state or a metastable state. Consequently,
in practical applications. setting both inputs to 1 is forbidden .

Under normal conditions. both inputs of the latch remain at 0 unless the state has to be
changed. The application of a momentary I to the S input causes the latch to go to the set state.
The 5 input must go back to 0 before any other changes take place , in order to avoid the oc­
currence of an undefined next state that results from the forbidden input condition. As shown
in the function table of Fig. 5.3(b), two input conditions cause the circuit to be in the set state.
The first condition (S "" 1. R "" 0) is the action that must be taken by input S to bring the cir­
cuit 10 the set stale. Removing the active input from S leaves the circuit in the same state. After
both inputs return to O. it is then possible to shift to the reset state by momentary applying a 1
to the R input. The 1 can then be removed from R, whereupon the circuit remains in the reset
state. Thus. when both inputs S and R are equal to 0, the latch can be in either the set or the reset
state. depending on which input was most recent ly a 1.

If a 1 is applied to both the Sand R inputs of the latch. both outputs go to O. This action pro­
duces an undefined next state. because the state that results from the input transitions depends
on the order in which they return to O. It also violates the requirement that outputs be the com­
plement of each other. In normal operation. this condition is avoided by making sure that 1' s
are not applied to both inputs simultaneously.

The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4. It operates with
both inputs normall y at 1. unless the state of the latch has to be changed. The application of 0

:JL R (reset) --ff:Y4--

S (set) - - L../

(a) Logic diagram

S R Q Q'

Q
1 0 1 0
0 0 1 0 (afterS =l, R -O)
0 1 0 1
0 0 0 1 (aIterS -O. R -I)

Q' 1 1 0 o (forbidden)

(b) Function table

FIGUR£ S.3
SR latch with NOR gate s

S R 00>

I 0 0 I
I I 0 I (. hn S. I. R . OI
0 I I 0
I I I o (. f'ln S -O. R . n
0 0 I IC'~)

(b) Full(t ioa table

fIGURl5.4
S.a.tm with NAND ,.Iel

10 the S input causes output Qto ' 0 10 I . putt in, the latch in the~Male. When the 5 input , oe'l
hack to I. the circuit remains in the set state. After both i nput~ 10 back to I. we art' allowed to
change the Mate of tbe lalch by r lucing a 0 in the R input. Thls ecuon causes lhe circun to go
to the reset state aoo May there even after bolh input' return to I . Thecondition that i' fOfbid­
den for the NAND latch i~ both inputs being equal to Oat the ~1l\C' time . an input combination
that "hOuld beavoided .

In comparing the l'ASD with lhc NOR latch. note that the inpul signal\ for the NANDre­
quire lhcromrkmmt t.f too..e valuew. used for the NORlatch . 8cao\C lhc NA,.'O latch requil't\
a 0 lii, naI to change' it, stale. it i ~ somenmes referred 10 a, an S' R' lalch . 11M: prirtlC'l (or. §OO1C'.

li~ ban over thc k llcn) dcr.ignate lhc faC1 that the inputs mu~ be in thC'ir com pkmcnl form
10.ronle the circuit.

11M: opnation of the ba\k SR latch can be modi fied by pC'Ovidins: an additiofu] input ~.­

nalthat dc1cnninn (c' ,"lrob) t4'h nl the!iWe of the latch can becb3n~. An SR lalch ""'ilh a
control input i" !ohown in Fi• . .5.5. It ron\i\lS oh hc ba.,k SR lalch and IWO addittonal NAND
i alC\.1bt: control inpul En aC1Sa" an mabI, s1[1:nal for theocher two inputs. 1bc ou tputs of the
NAND , ale, -.lay at the loBic· 1 leve l as Ion' .'li theenable 'ignal f'C'TtWns at O. Th i, i lhc qui ­
C'\«II I condil ion for the SR tarcb . wben lhc enable' input ion 10 I. information from lhc S or
R inpul i~ allowed to alT«t the latch. The !IoC1. stare i\ ru chn.! with S - I. R - O.and En • I
tecnve-high ena bled t. To change to the' reset state. the i nput~ mU:\1 be: S - O. R • I. and

s

Fn

R

0
Ffl S R Nut ... re of (J

0 X X Sl)dl.n,e
I 0 0 NI), h.nle
I 0 I Q .O:.~I"'.Ie

I I 0 O · I:wl '....e
0 > I I I Indetenn in8le

H'I f..mctiollt.No:

"GUll 5.5
Sla.tch wtIh controf input

Section 5.3 Storage Elements: latches 187

D

En D Next slate of Q

E, ---+------+ o X
1 0
1 1

No change
Q '" 0; reset state
Q = 1; set state

FIGURE5.6
Dlatch

(a) Logic diagram (b) Function table

En == I. In either case. when En returns to 0, the circuit remains in its current state. The con­
trol input disables the circuit by applying 0 to En. so that the state of the output does not change
regardless of the values of Sand R. Moreover. when En == I and both the Sand R inputs are
equal to O. the state of the circuit does not change. These conditions are listed in the function
table accompanying the diagram.

An indeterminate condition occurs when all three inputs are equal to I . This condition places
O's on both inputs of the basic SR latch, which puts it in the undefined state. When the enable
input goes back to O. one cannot conclusively determine the next state. because it depends on
whether the S or R input goes to 0 first. This indeterminate condition makes this circuit diffi ­
cult to manage. and it is seldom used in practice. Nevertheless. it is an important circuit because
other useful latches and flip-flops are constructed from it.

o Latc.h (Transparent Latch)

One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to
ensure that inputs S and R are never equal to I at the same time. This is done in the D latch,
shown in Fig. 5.6. This latch has only two inputs: D (data) and En (enable). The D input goes
directly to the S input. and its complement is applied to the R input. As long as the enable input
is at 0, the cross-coupled SR latch has both inputs at the I level and the circuit cannot change
state regard less of the value of D. The D input is sampled when En == I . If D == I, the Qout­
put goes to I. placing the circuit in the set state. If D = O. output Q goes to O. placing the cir­
cuit in the reset state.

The D latch receives that designation from its ability to hold da ta in its internal storage. It
is suited for use as a temporary storage for binary information between a unit and its environ­
ment The binary information present at the data input of the D latch is transferred to the Qout­
put when the enable input is asserted. The output follows changes in the data input as long as
the enable input is asserted . This situation provides a path from input D 10 the outp ut. and for
this reason. the circuit is often called a transparent latch. When the enable input signal is de­
asserted. the binary information that was present at the data input at the time the transition oc­
curred is retained (i.e.. stored) at the Q output until the enable input is assened again. Note that

188 Chapter S Synchronous Sequential Logic

--j s -~ ., --j v

- --l R
,.

fiGURE 5.7
Graphic symbols for latc hes

-~R

rR o

an inverrercoctd be pta..redat the enable Inpcr. Then. dependingon the physical clrcvit. the ex­
temal enabling ~igna l will be a value of 0 (active low) or I (active high).

The graphic symhol ~ for the verioes latches are shown in Fig. 5.7. A latch is designated by
a rectangular block with inputs on the Icftand OUlpub on the right. One octpet designales the
oormal output. and t~ other (with the bubbledcsiBnation) desiBnalC's thc complement OUlput.
The graphic symbol for the SR latch has inputs S andR indicated inside the block. In the CMe

of a NAND gDtC latch. bobbles are added to the inputs 10 indicate thai setting and relloCuin,
occur with a logic-o signal.The graphic symbol for the 0 latch has input D andEn indicated
inside the block.

5. 4 5TORAGE ElEM ENT5 : Fl IP ·FlOP5

'The stare of a latch or nip-flopis swilched by "change in the control input This momentary
change is called a 'ri8 ~('r. and the transition it causes h said to trip cr the flip- flop. The 0
latch wilh pulses in its control input is n.'Cntially a fli p-flop that is tri"~ everytime the pulse
goes 10 the logic-I level. As long a the pulse input remains at this level. any changes in the
data input will change lhe output and the state of the latch.

As seen from the bhlCk diagram of Fig. 5.2.a sequential circuit has a fm!bock path from the
output\ of the fli p-flop~ 10 the inputof thecombinational circuit. Consequently. the inputs of the
flip-flops are derived in pan from theoutpub of the same andothtt flip-l1op5. when latches arc
used for the ~torage elements, a ser ioc difficulty arisc!'>. TIlestare lnUl!iitiom o(the lalches st3l1
1'1 soon a.'l the d ock pulse changes to the logic-I level. The new state of a latch appears at the
output while the pulse is stillactive. This output is connected to the inputs of the larcbes through
thecombinationalcircuu. Hthe inputs applied 10 the latcbes change while theclock pulse i 5IilI
at the logic-I level. the latches will respond10 new val~s anda newoutput slale may occur. TI1C'
m ult is an unpredictable situation. since the state of the latches may keep chanJing for as long
as the d ock pulse slay!'> at the active level. Because of this unrehable operation. the output of a
latch cannot beapplied directly or through combinalional logic to the input of the sameor an­
other latch when all th~ latches lU'l:' triggered by a common d ock MJUI'CC'.

fl ip-flopcircuits are con5UUC1C'd in such a waya\ to make themoperate properly when they
are pan of a 5C'q~ntial circuit that employs a common dock. Tbe problem with the latch is thai
it responds to a change in the In '('1 of a clock pulse. As shown in Fig. j .8(a). a posiuve level
response in theenable inpul allows changC' in Ihc output when the D inpul ChaniC5 while lhe

Sectio n 5.4 Storage Elements : Fli p-Flop s 189

(a) Response to positive level

(b) Positive-edge response

(e) Negative-edge response

FIGURE 5 .8
Clock response In latch and flip-flop

clock pulse stays at logic I. The key to the proper operation of a flip-flop is to trigger it only
during a signal transition. This can be accomplished by eliminating the feedback path that is
inherent in the operat ion of the sequential circ uit using latche s. A clock pulse goes through
tWO transitions: from 0 to I and the return from 1 to O. As shown in Fig. 5.8. the positive Iran­
sition is defined as the positive edge and the negative transition as the negative edge . There are
two ways that a latch can bemodified to form a flip-flop . One way is to employ two latches in
a special configuration that isolates the output of the flip-flop and prevents it from being af­
fected while the input to the flip-flo p is changing. Another way is to produce a flip-flop that
triggers only during a signal transition (from 0 to I or from 1 100) of the synchronizing signal
(clock) and is disabled during the rest of the clock pulse. We will now proceed to show the im­
plementation of both type s of flip-flops.

Edge-Triggered 0 Flip-Flop

The construction of a D flip-flop with two D latches and an inverter is shown in Fig. 5.9. The
first latch is called the master and the second the slave. The circuit samples the D input and changes
its output Qonly at the negative edge of the synchronizing or controlling clock (designated as

Q
y

D- --I

elk----J~__-D~_ _ ---1

fiGURE 5.9
Master- slave D fltp-tlop

190 Chapter's 'synchronous Sequential Logic

C/~) . When lhe cluck i' O. the output of the innnc r ill I. The slave latch h enabled. and it!'> out­
rut Q i~ cquullO the m;l,l er output r.The master latch i, L1i :<.ablcd because CU • O. When lhe
inpul pulse changes III the logic-! level.tbe data from the external D input arc transferred 10

the ma..ter. The slave. however. i..disableda." long a.-. the clock. remain, at the I level. because
ih ,naM~ inpul j, equal to O. Any change in the inpul changelllhc master output 011 r. bUI can­
IKJI affect tbc ...101\'(' output. When the clod pube rerum- to O. thc master illL1i~blcd and i!'> iso­
lated from the /) input. At the :<.arne lime. the ..lave i.. enabled and the value of r is rran..ferrcd
10(he output of the Oip·Oop at Q. lllU!l. a change in the output of the nip -Oop can be triggered
unly by aoo during the rran..ition of the clod from) 10 O.

The behavior of the master- ..lave Ilip-Ilop jU!'>1described dic tates thai (lI the output may
change only on\,·c.121,. Ch,IO!!Cin the OOlput is lrin elT'd I'ly the ncBa t i H~ edge of the dud .. and
1.'1 the change may occur only during the clock's ncgauve level. The value that illprodoccd 011

the output of the I li p-ftop b. the value that w a!'> stored in the macer ..rage iml1ll.-diaICI)· before
the negauve edge occurred. II i..also pOlisible to design lhe circuit MJ thatlhc fllp-Ilop octpcr
changes on the positive edge of the clock. This happen.. in a nip-Oop that ha!'> an a&Jitinna! in­
verier between lhe CII. terminal and the jurcuon between the other inverter and input £11 of tbe
ma..tcr latch. Such a Ihp-Ilop i.. triggered with a negative pol"", 1iOth.dlhe: IlCgath'c edge of lhe
d ock affC'C1" the master and the positive edge affC('h the slave and the output terminal.

Anothcr consrrucuon of an edge-m ggered 0 Oip·nup U"'li three SR latchc!> av shown in
Fig. 5. 10. Two lalChc" respond 10 lhe: external 0 (daral and CIA (doc k) inpuh. The third lalch
provides the: UUlPUh flit the: Ittp-Ilop. The: S and R inpul ~ of the octpetlatch are maintained 011

the logic-I level when Clk - O. Thts causes the output 10 remain in its pre1iCnt state. (npuc0

• ,

n----if---1._ ./

FtGURf S,10
D-type poslltve-edge-trigger~ flip-flop

- --j ll

Section SA Storage Elements : Flip-Flops 191

II

FIGURE 5.11
Graphk symbol f~ edge-trlggered D nip-flop

ma y be equal to 0 or I. If D "" 0 when C/k becomes I. R changes to O. Thi s causes the ni p­
flop to go to the reset state. mak ing Q "" O. If there is a change in the D input whi le Clk = I,
termin al R remains at 0 because Q is 0, Th us. the flip -flop is locked out and is unresponsive to
further changes in the inpu t. When the cloc k returns to O. R goes to I, placing the o utput hitch
in the quiescent cond ition witho ut changing the output. Sim ilarly, if D = I when Clk goes
from 0 10 I. S changes to 0 , Thi s causes the circuit to go to the set state, makin g Q "" I. Any
change in D while Clk ... I doe s not affect the outp ut.

In sum. when the input clock in the posidve-edge-mg gered flip-flo p males a pos itive Iran­
siuon. the value of D is tran sferred to Q. A negative transition of the clock (i.e.• from I to 0)
does not affect the output. nor is the output affec ted by changes in D when Clk is in the steady
l08ic-1 level or the logfc-n level. Hence. this type of flip-flop responds to the transition from
0 10 I and nothi ng else .

The timing of the res ponse o f a flip-flop to input data and 10 the clock must be taken into
consideration when one is u..ing edge-triggered flip-fl ops . The re is a minimu m lime called the
setuo time duri ng which the D input must be maintained at a constant value prior to the oc­
currenc e of the cloc k transit ion . Similarly. there is a minimum time called the hold time dur­
ing which the D input must DOl change,ifter the application of the positive transition of the clod...
The propagatio n de lay lime o f the ni p-flop is de fined as the interval between the trigger edge
and the stabi lization of the output 10 a new state. These and other parameters are spec ified in
manufac ture rs ' data books for speci fic logic famili es.

The graphic symbo l for the edge-triggered D flip-flop is show n in Fig . 5.11. It is similar to
the symbol used for the [) latch, exce pt for the arrow headlike symbol in front o f the letter Clk,
designating a dynamic input. The dynamic indicator de notes the fact that the flip-flop respo nds
to the edge transition of the clock . A bubble outside the block adjacent to the dynam ic indic a­
tor designates a negati ve edge for triggerin g the circuit. The absence of a bubble designates a
positive-edge response.

Other Flip-Flop.

Very large-scale integration ci rcuits contain thousands of gates within one pack age. Circuit.. are
constructed by intercon necting the various gates to provide a digital system, Each flip-flop is con­
structed from an interco nnection o f ga les. The most economica l and efficie nt flip-flop con­
structed in this manner is the edge-triggered D flip-flop. because it req uires the smallest number

192 Chapter S Synchronous Sequential logic

/ - - - ---;- /

K- -D- --f"--'"

flC.URI 5,U
IK nip-flop

I-t-+-Q

~I'I

- --1 /
----1t> m

- l.:..•.J-

of gates. Other types01'nip-flop!'can be ron~r\ldC'd by u~ing the D nip-flop IlOd external logic.
Two nip-flop-. lee..widely used in the design of digital systems are the JK IlOd Tnip-flops.

There are three operations that can be: performedwith a nip-flop: Sc:1 it to I. reset it to O. Of

complement i l ~ output. Wilh only a single input. the 0 nip-nop can set or reset the: output. de­
pending on the value (11"the: 0 input immediately before the: clock transition. Synchronizedby
a clock. signal, lhe: JK nip-flop ha'l two inputs and performs all three operation". The circuit di­
agramof a JK nip-flop constructed with a 0 nip-flop and gates is shown in Fig. S,12(a). The
J inpul sets the: Ilip-Ilop 10 I, the: K input resets it to O. and when both inputs an: enabled. the
OUlpul j" complerremed. This can be: verified by invC'stigating the circuit applied to the: D input:

D - IQ' + K'Q

When J • I and K - O. 0 • Q' + Q • I . so the 11C 1I. t clock edge sets the: output 10 I. When
J - 0 uOO K • I, 0 "" O. so the: nextclock. edge relocts the output to O. When bod1 J • K • I
and D • Q', the ne1l.1dock edge rompkmen~ theoutput. When both J • K • 0 aoo 0 • Q.
the: clock edge leaves the output unchanged. The graphic symbol for the JK flip-flop is shown
in Fig. S.12(b), It is sirnilar to the graphic symbol of the: D flip-flop. except that now the: in­
puts are marked J andK.

The: T (toggle) flip·l1op is a complemenung flip-flop andcan be obta ined frum a JK flip­
flop when inputs J and K are tied rcgerber. This is shown in Fig. S,13(a), When
T • 0 (J • K - 0). a clock edge does noc change the output. When T - I (J • K - I).
a clock edge complements the OUlput. The complementing flip-flop is useful for lk"i Bning bi­
nary counters

The Tflip-nop can heconstructed with a D Ilip-Ilop and an exclustve-Og gate a.\ sbown in
Fig. 5.13Ib). The expression fOf the D input iv .

D -T eQ -TQ' +T'Q

When T - O. D - Q and there i ~ nochanBc in theoutput. When T - I. D • Q' and the out­
put complements, The graphic symbol for this flip-flop has a T iymbol in the: input

Section 5.4 Storage Elements: Flip-Flops 193

T-'--1J

elk

K

{a) FromJK flip-flop

fiGURE. 5.1 J
Tflip-flop

Characteristic Tables

T
11 "

"(b) From D flip-fl op

T

- -jl>Clk

(c) Graphic symbol

A characteristic table defines the logical properties of a flip-flop by describing its operation in
tabular form. The characteristic tables of three types of flip-flops are presented in Table 5.1.
They define the next state (i.e.. the state that results from a clock transition) as a function of
the inputs and the present state. Q<r) refers to the present state (i.e.• the state present prior to
the application of a clock edge). Q(t + I) is the next state one clock period later. Note that the
clock edge input is not included in the characteristic table. but is implied 10 occur between
times t and I + I. Thus. Q(t) denotes the state ofthe flip-flop immediately before the clock edge.
and Q(t + J) denotes the state that results from the clock transition.

The characteristic table for the l K flip-flop shows that the next state is equal to the present
state when inputs 1 and K are both equal to O. This condition can be expre ssed as
Q(t + I) = Q(t). indicating that the clock produces no change of state. When K = I and

Tab le 5.1
Flip -Flop Characteris tic Tables

JKFlip -Flop

J K Q(t + 1)

0 0 e» No change
0 I 0 Reset
I 0 I So<
I I Q'(') Complement

D Flip-Flop T Flip-Flop

0 Q(t + 1) T Q(t + 1)

0 0 Reset 0 Q(t) No change
I I So< I Q'«) Complement

194 Chapter S Synchronou$ Sequential logic

J - O. the dock reM'I!l lhe ni p-nul' and Q(I + I) - u. wnh J - I and K - O. the niP-tlOf
~I~ and Q(1 ... I) "" I. When hot h J and K are equal to I. the next ~tate ,"h.m~e!l to the: rom
plemenr of'the peesem state, a rran siuon HUll can be ex pressed as Q(t ... t) - Q' (I).

The f)C kt ~t3te o f a 0 nip-flop is depende nt o nly on the 0 inpu t and is independent o f lhc
prt~nt state. This can beell.~!\Cd a'iQ(t + I) • D. II meansthallhe nCII.l-!.late value is equa
to the value of D. Note that the:0 ni p-fl op doe s not have a "no-c hange" condition . Such a con ­
diti on can be accomplbbed either by d isabl ing the dod or by operating the clock by havini
the ou tput of the fli p-flop connected into lhe () inpu t. Either method effectively circulates ttl<
OUlput o f lhc fh p-Ilop when the:S1ale of the flip-flup mu..t remain unchanged .

ThechardC1cri~ic tableof the Ttlip-l1op has only two (,'{n1i tion..: When T • O. the clock edge
does not cbengc the st.ue: whe n T - I, the d od edge complemenL'i the !'>la te of the Ilip- Ilop.

Charact eris ti c Equations

The logical pn"en ic- of 3 Ilip-Ilop, a'i c.k"MTibcd in the charoK.'1cri ..tic table. can be: e ll.prn.ied al·
gcbreically with a charal,.1cri~ic equation. fQr the0 Oip-lK'P. we bave the char.tctcri'-lic eqoatton

Q(/ + I) -/)

which slates that thc= next !ltate of thc: ou tput will be equ al to the value of input 0 in the prC'~'

ent Male. The characteristic equat ion (Of' the JK Ilip-Itop can be deri ved from the charecteris­
tic tab le or from the ci rcuit o f Fig. S.12. We obtain

Q(/ + 1) - JQ' + K 'Q

where Q i ~ the value (If the ni p-nop output prior to the app liCi tinn of a d ock edge. The char ­
ecrer isnceq uation for the T flip-flop i~ ohcaincd from the circuit o f Fig. 5.13:

Q(/ + 1) - T (II Q - TQ' + T'Q

Direct Inputs

Some Ihp-flops have iL\Ynchronou... inptlts mat art' used 10 force the n ip-nop to a panicul ar
state independently o f the c lock. The inpol thal !ICt~ the ni p-flop 10 t h ca lled pm t'l or Ji lt''' l
set. The inpu t that clean the Iltp-nop to Ois ca lled clear or di rect It'st". When pow er is turned
00 in a di~ital system. the state of the ni p-nops is unknown. The direct input~ are u~ful for
bringing all ni p-flu!", m Ihc= syste m 10 II known Maning ..late prior to the clocked opera tion.

A po...itive -etl¥C'"t ri~~rtd D nip-llop with ecu ve- jow a..ynchnKkllJ"m.et is~1l in Fig. S.14.
The circuit diagram is lhe sa me as the one in R g. .5.10. except for the add itional reset inpul con­
recuons to three NAr-;D gales. When the reset inpul i~ (). it forces ou tput Q' to Slay 011 I. which.
in tum. clean output (! 10 O. lhu~ re~uing the Ilip-flop. Two other connections from the m<1

input ensure thai the .\ inpu t o f the third SR latch stay~ at logic I while lhe reset input is at O.
reganl le!>\ of the vallk."s of 0 and Clk.

The graphic symbol for the 0 nip-flop with a di rttl reset ha... IllIlkkIitional inpu l maned with
R. Tbe bubble aloog the inpu t indicates that the fC!>C1 is ecu ve at the 1000ic.Q le vel . Hip- Flops
with II direct .-.el U\C the symbo l S for rbe asynchnmou s SCi inpu t.

The functi on table specif iesthe operalion of the circun. When R • O. the OIJlput i.. reset 10 O.
Th is ~tate is Independent of the values o f 0 Of' C/~ . Normal clock operation can proceed on ly

Sect ion 5.5 Analysis of Clocked Seq uential Circuits 195

Clock

R t''; f l---' --'

fa) Circuit diagram

Dura [)

Clock elk
R

Reset
I

1--0

1>-- 0'
R CfkD Q Q'

o X X 0 I
o t oo I
o t I I 0

(h) Graphic symbol

FIGURE 5 .14
D flip-flop with asynchrono us reset

(b) Function table

after the reset input goes to logic I. The clock at elk is shown with an upward arrow to indi­
cate that the flip-flop triggers on the positive edge of the clock. The value in D is transferred
to Q with every positive-edge clock signal. provided that R = I.

5 ,5 ANALY51 5 OF CLOCKED
SEQUENTIAL CIRCUIT5

Analysis describes whnt a given circuit will do under certa in operating conditions. The be­
havior of a clocked sequential circuit is determined from the inputs. the outputs. and the state
of its flip-flops. The outputs and the next state are both a function of the inputs and the present

196 Chapter 5 Synchronous S~uentlalloglc

stale. The analysis of Usequennat circuit comim of oblaining a table or a diagram for the time
sequenceof inpuI~. outputs. and internal lIalell. It ill ,'11M) possible 10 write Boolean expre sion~

that describe lhe behavior of the sequential circuit, Tbese expressionsmust indudc the neces­
sary time sequence. enber direcny or indirmly,

A logic diagram i!o recognized all a d ocked sequential circuit if it includes nip-flops with
clock i nput~. The flip-tlop!i may be of any type. and the logic diagram may or may not include
combinational circuit gates. In this section. we introduce an algebraic representation for spec­
ifyinJ the next-state condition in terms of the prtsc:m slate and inputs. A state table and slate
diapam arethen peesenecd to describe thebehaviorof lhe r.tquentiaJ circuit AnlXhr:r algdnic rep­
reKnlation is meodcccd for spccifyini the logic diagram of ~nlial circuits. Examples are
used to illustrate the various procedure ,

State Equations

The behavior of a clocked sequentialcircuit can be described algebraically by means of state
equations. A JW" ' qUe/lion (also called a transition , q.klt;Otf) specifies the IlC' llt stale as a func­
lionof thc pre\Cnt stall' andinpns. Considn thcsequential circuit r.bown in Fig.5.15, 11 consists

.. I

:::L <,
0./

J r- [>n l.

1 0

f- t> CIA

C1/1d:

I' ~

J
e, I
v

A

A '

8

8 '

..

neUR! S.lS
Example of ~uentlal circuit

Section S.S Analysis of Clocked Seq uential Circuits 197

of two D flip-flops A and B, an input x and an output y. Since the D input of a flip-flop deter­
mines the value of the next state (i.e., the state reached after the clock transition), it is possible
to write a set of sta te equations for the circuit:

A(I + 1) = A(t)x(t) + B(I)x (l)

B(I + 1) = A' (t)x(t)

A stale equation is an algebraic exp ression that specifies the condition for a flip -flop state tran­
sition. The left side of the equation, with {r + 1). denotes the next state of the flip-flop one
clock edge later. The right side of the equation is a Boolean expression that specifies the pres­
ent sta te and input conditions that make the next state equal to I. Since all the variables in the
Boolean expressions are a function of the present state. we can omit the designation (t) afte r
each variable for convenience and can express the state equations in the more compact fonn

A(t + 1) = Ax + Bx

B(r + I) = A' x

The Boo lean expressions for the state equations ca n be deriv ed directly from the gates that
form the combinational circu it part of the sequential circu it. since the D values of the combi­
national circuit determine the next state. Similarly, the prese nt-s tate value of the output can be
expressed algebraically as

)'(1) = [A(I) + B(t)Jx' (t)

By removing the symbol (t) for the present sta te. we obta in the output Boolean equatio n:

y = (A + B)x'

Stale Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (some­
times called a transition table). The state table for the circu it of Fig. 5.15 is shown in Table 5.2.

Table 5.2
State Table for the Circuit of Fig. 5.75

Present Next
State Input State Output

A 8 x A 8 Y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 I 1 0 0

198 Chapter S Synchronous Sequential logic

The table con..i ~l ~ of lour section.. labeled presem jlrl1~, inpul, n,,;1 jfjU~, and IIut/ml . The
present-stare !oeCtiofl shows tbc ",Ialel of nip-nop" A and H III any gweo lime t. The inpul sec­
lion giv~ a value of .r for ecch possible pn:!lCnt state. The nnl-litllte section !>ho,," ~ lhe Malell
of the nip-fl()p~ onc clpck cycle later, at lime I + I. The OUlput section gives the value of)' al
lime 1 for each present ..talc and inpul coedinon.

The dcrivlIIiun of 11 , laiClable requires liMinBall p'-M ible binary combinalion" of present
rolalellaoo inputs. In th l ~ ca1OC. \\" e have ei, hl binary combinaliom (rom 000 10 III . The RCli '
state values are tben "klcmlincd from the logic diagram t.from lhC' !loIIlIC equatioevTbc RCIII
stare of nip-nop A mu-i 5a l i~fy the liilate equation

A(r + I) - A.t + Bs

The r\C1I1·s lale section in the ..laic table under column A ha... three 1' :10 where the present state
of A aoo input ,t arc hillh equal 10 I or the presem ..laic of H aod input .r are both equal to I .
Similarly.the r\C1I1..I.lIIl.." of Itip-Ilop H illderived from Iht.' "laic equeuon

H(/ + I) -A'.t

and i\ equal ~o I when lhe present \t alc of A i ~ 0 and inpul x j" equal 10 I. TheOllipul column
illderived from the ourput equation

y - Ax' + R.t ·

11lcMale tahlc o(a ~"qucn lial d rcuil wilh [J.IYPC nip-noV" ill obtnincd by the same procedure
ollilined in the previou-, example. In general. a sequential circuit with m nip-nos» and n inpuh
need.. 2....11 rows in the state table . The binary numbers from 0 through 2.... 11

- I arc: listed
under the presem-aac and inpsn columns. Tbc next-state section ha~ m columns one foreach
nip-flop. The binary \'alut'll (or the next slate are derived direclly from the state equations. T1lC'
output section has as many colu mns a\ tbete arc output variables. liS binary value is de rived
from rbe circuit or from tbe Boolean function in the ~me manner as in a truth table.

It i\ sometimes coo ver nenr ro cxpre:\.\ the ..talc table in a slightly different form having only
three sections:present -tate, next state. andoutput. 'The inpul conditionsarc enumerated under
the nnl ·slale and out put sections. The state table of Table S.2 is repealed in Table S.J in this
!i«OOl.I Iorm.I,.each IlfC\C'lIMale. there arc two po!-..i~le nut slalCll andocipcrs, depending 00
lhe value of 1M- input. (me form may be preferable 10 the cebcr. dcpcfk1ini on the application.

T.ble S.3
S«ond Fann of fM Stofl Tobk

Presenl
NaxlSlale Outpul

SI.le • • 0 • • I • • 0 • • I

A • A • A • r r
0 0 0 0 0 I 0 0
0 I 0 0 I I I 0
I 0 0 0 I 0 I 0
I I 0 0 I 0 I 0

Section 5.5 Analysis of Clocked Sequential Circuits 199

00

,
.0

' ,0 0/1 ',0

1,0
,
@ - - -"-'-- -(11

FIGUA£ 5 .16
State diagram of the circuit of Fig. 5.15

State Diagram

The information available in a state table can be represented graphically in the form of a suue
diagram. In this type of diagram. a state is represen ted by a circle . lind the (clock- triggered)
transitions betwee n states arc ind icated by directed lines connecting the circles. The slate dia­
gram of the sequentia l ci rcuit of Fig. 5. 15 is shown in Fig. 5. 16. The state diagram provides the
....me infonnation as the stare table and is obtained directly from Table 5.2 or Table 5.3. The bi­
nary number in..ide each circ le identifies the state of the flip-flops. The directed line.. are la­
beled with two binary numbers separated by a slash. The input value during the present stale is
labeled first. and the nurnbe...after the slash gives the output during the present stale with the given
input. (It is important to remember that the bit value listed for the output along the directed line
occu rs during the present stale and with the indicated input. and has nothing to do with the tran ­
sition 10 the next state .) For example. the directed line from slate 00 10 01 is labeled liU. mean­
ing that when the sequential ci rcuit is in the present stale 00 and the input is I. the output i.. O.
After the next cloc k cycle. the circuit goes 10 the next state. 0 1. If the input changes to O. then
the output becomes I. bur if the input remain.. at I. the output "lays at O. This information i'> ob­
tained from the stare diagram along the IWO directed line.. emanating from the circle with stale
0 1. A directed line co nnecting a circle with itself indica tes tbar no change of state occurs.

There is no difference between a state table and a state diagram. except in the manner of rep"
re..entation. The state table is easier 10 derive from a given logic diagram and the stale equa­
tion. The state d iagram follows directly from the: state table . The slate diagram gives a pictorial
view of state transitions and is Ihe form more suitable for human interpretation of the circuit' s
ope ration. For example, the state diagram of Fig. 5.16 clearly shows that, start ing from state
00 . the output is 0 ali long as the inpu t stays at I . The first 0 inpu t after a string of I ' ~ gives an
output of I and transfers the circuit back to the initial slate. 00. The machine repre sented by
the state diagram acts 10 detect a zero in the bit strea m ofdata.

Flip-Flop Input Equations

The logic diagram of a sequential circui t consists of ni p-flops and gates. The interconnections
among the gates (ann a combinational circuit and may be specified algebraically with Boolean

200 Chapter 5 Synchro no us Seque nt ial l ogic

expression s. The knowledge of the type of flip-flops and a list of the Boolean expressions of
the combinational circuit provide the information neede d to dra w the logic diagram of the se­
quentia l circuit. The part of the combinational circuit that gene rates external o utputs is de­
scribed algebraically by a set of Boolean function s called output equations. The part of the
circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean func­
tions called flip-flop input equations (or, sometimes. excitation equations). We will adopt the
convention of using the flip-flop input symbol to denote the input equat ion variable and a sub­
script to designate the name of the flip -flop output. For example. the following input equation
specifies an OR gate with inputs x and }' connected to the D input of a flip-flop whose output
is labeled with the symbol Q:

DQ = x + }'

The sequential circuit of Fig. 5.15 cons ists of two D flip-flops A and B. an input .r. and an
output j-, The logic diagram of the circ uit can be expressed algebraically with two flip-flop
input equati ons and an output eq uation:

D" = Ax + Bx

DB = A'x

Y = (A + B)x'

The three eq uations provide the necessary informat ion for drawing the logic diagram of the
sequential circ uit. The symbol D" specifies a D flip-fl op labeled A. DB speci fies a seco nd D
flip-fl op labe led B. The Boo lean expressions assoc iated with these two variables and the ex­
pression for output}' specify the combinational circui t part of the sequential circuit.

The flip-flop input equa tions constitute a convenient algebraic form for specifying the logic
diagram of a sequential circuit. They imply the type of ni p-flop from the letter symbol. and they
fully speci fy the combinational circuit that drives the flip-flops. Note that the expression for
the input equat ion for a D flip-flop is identical to the expression for the correspondin g state equa­
tion. This is because of the characteristic equat ion that equates the next slate to the value of the
D input: Q(t + I) = DQ•

Ana lysis with D Flip-Flops

We will summarize the procedure for analyzing a clocked sequential circuit with D flip-flops by
mean s of a simple example. The circuit we want to analyze is described by the input equation

The DA, symbol implies a D flip-flop with ourput A. The .r and y vari ables are the inputs to the
circuit. No output equations are given, which implies that the output comes from the o utput of
the flip-flop. The logic diagram is obtained from the input equa tion and is dra.....n in Fig. 5.17(a).

The state tab le has one column for the present state of flip-flop A. two columns for the two in­
puts, and one column for the next state of A. The binary numbers under At)' are listed from 000
through I II as shown in Fig. 5.17(b). The next-state values are obtained from the state equation

A(l + I) = A$xEl:ly

Section 5.5 Ana lysis of Clocked Sequential Circuits 201

Present Next
state Inputs state

A , y A

0 o 0 0
0 o 1 1

.r D_:._, A 0 1 0 1
y 0 1 1 0

1 o 0 1
1 o 1 0
1 1 0 0

Clock
1 1 1 1

(a) Circuit diagram (b) State table

01.10

01,10

(c) State diagram

00. 11

FIGURE S.17
Sequential circuit with D flip-flop

The expression specifies an odd function and is equal to 1 when only one variable is I or when
all three variables are 1. This is indicated in the column for the next state of A.

The circuit has one flip-flop and two states. The state diagram consists of two circles, one
for each state as shown in Fig. 5.17(cl . The present state and the output can be either 0 or I, as
indicated by the number inside the circles. A slash on the directed lines is not needed, because
there is no output from a combinational circuit. The two inputs can have four possible combi­
nations for each state. Two input combinations during each state transition are separated by a
comma to simplify the notation.

Ana lysis with JK Flip-Flops

A state table consis ts of four sect ions: present state, input s. next state, and outputs. The
first two are obtained by listing all binary combinations. The output sectio n is determined
from the output equations. The next-state values are evaluated from the state equations. For
a D-type flip-flop, the state equation is the same as the input equation. When a flip-flop other
than the D type is used, such as lK or T, it is necess ary to refer to the corresponding char­
acteristic table or characteristic equation 10obtain the next-state values. We will illustrate
the procedure first by using the characteristic table and again by using the characteristic
equation.

202 Chapter S Synchronous Sequential logic

TIlenext-stale values of a sequentia l circuirtbat usesJK- or T-ty~ flip-f lops can bederived
as follows:

I . Determine the flip-l1op input equations in terms of the present state and input variables.

2. Li..t the binary values of each input equalion.

J. Use the corresponding flip-flop characteristic table to determine the next- state values in
the slate table .

As an example. consider the sequential circuit with two JK flip-flops A and B and one input
x, as shown in Fig. 5 .18. The circuit has no outputs; therefore . the state table doe s not need an
output co lumn. (The outputs of the flip-flops may he co nsidered as the outpu ts in this case.)
The circ uit can be spec ified by the nip-flop input eq uations

JA = B KA = Bx'

JB = x ' KB = A'x + Ax ' = A $ x

The state table of the sequential circui t is shown in Table 5.4. The present -state and input
co lumns list the eight binary co mbinations . The binary values listed under thecolumns labeled
flip-flop inputs are nor part of the slate table, but they are needed for the purpo-.e of evaluating
the next sla te as spec ified in step 2 of the procedu re . These binary: values are obtain ed di­
rect ly from the four input eq uations in a manner similar 10 that for obtaining a U11th tab le
from a Boolean express ion. The next slate of each Ilip-flop is evaluated from the co rrespon­
ding J and K inputs and the charac teris tic table of the JK llip- l1op listed in Table 5.1. There
are fou r cases to co nside r, Wh en J = I and K = O. the next state is I. When J = 0 and

,

J

C/4

J K

•
J

Clk

K
.~

B

Clock

FIGURE 5.18
. S~uentla l circuit with JK flip- flop

Section 5.5 Ana lysis of Clocked Sequential Circuits 203

Table S.4
State Table for Sequential Circuit with JK Fllp.Flops

Presen t Next Flip-Flop
State Inpu t Stat e Inputs

A • x A B t, K, /, K,

0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1
0 1 0 1 1 1 1 1 0
0 1 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1 1
1 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0

K = I. the next slate is O. When 1 = K = O. there is no change of state and the next-slate
value is the same as that of the present state. When 1 = K = I, the next-state bit is the com­
plement of the present-state bit. Examples of the last two cases occur in the table when the
present state AB is 10 and input .r is O. lA and KA are both equal to 0 and the present state of
A is I. Therefore , the next state of A remains the same and is equal 10 1. In the same row of
the table, lB and KB are both equal 10 I. Since the present state of B is O. the next state of B
is complemented and changes to I.

The next-state values can also be obtained by evaluating the state equations from the char­
acteristic equation. This is done by using the following procedure :

I. Determine the flip-flop input equations in terms of the present state and input variables.

2. Substitute the input equations into the flip-flop characteristic equation 10obtain the state
equat ions.

3. Use the corresponding state equations to determine the next-state values in the slate table.

The input equations for the two lK flip-flops of Fig. 5.18 were listed a couple of paragraphs
ago. The characteristic equations for the flip-flops are obtained by substituting A or B for the
name of the flip-flop. instead of Q :

A (t + I) = l A ' + K ' A

B(I + 1) = JB ' + K 'B

Substituting the values of l Aand KA frum the input equations. we obtain the state equation for A:

A (t + I) = BA ' + (Bx ')' A = A'B + AB' + Ax

The state equa tion provides the bit values for the column headed "Next Stale" for A in the state
table. Similarly. the stare equation for flip-flop B can be derived from the characteristic equa­
tion by substituting the values of Je and K B :

B(t + I) = x ' B' + (A EIl x)' B = B'x ' + ABx + A 'B x '

204 Chapter 5 Synchronous Sequent ial Log ic

so i;ii

o

fiGURE 5.19
State diagram of the circuit of Fig . 5.18

o

o

11 S3

o

10 S2

The state equation provides the bit values for the column headed "Next State" for B in the state
table. Note that the co lumns in Table 5.4 headed "Flip-Flop Inputs" are not needed hen state
equ ations are used .

The state diagram of the seq uential circu it is show n in Fig. 5. 19. Note that since the circuit
has no outputs, the directed lines out of the circles are marked with one binary number on ly.
to designate the value of input.r.

Analysis With T Flip-Flops

The analysis of a sequential circuit with T flip- na ps follows the same procedure outlined for
JK ni p-flops. The next-state values in the state table can beobtained by using either the char­
acteristic table listed in Table 5.1 or the characteri stic equation

Qr, + I) ~ T EIlQ = T'Q + TQ'

Now consider the sequential circuit shown in Fig. 5.20. It has two ni p-flops A and B. one input
.r, and one output y and can be described algebraically by two input equations and an output
equation:

TA :::: Bx

To :::: x

r> A8

The state table for the circuit is listed in Table 5.5. The values for y are obtained from the out­
put equ ation. The values for the next state can be de rived from the state eq uations by substi­
tuting TA and TB in the characteristic equat ions. yielding

A(t + I) :::: (B.t)' A + (Bx)A' :::: AB' + Ax ' + A' Bx

B(, + I) = x Ell B

Sect ion 5.5 Analysis of Clocked Sequential Circuits 205

o

o

o

y

}-- ---;- - --{lO/O

}-- --'--- - «Ol l!!

J
A

)
T

I

elk
R

I

A
H

T
B OOI!!

CIk 1
R

T

Il l!
H
V

Clock reset

(a) Circuit diagram

FIGURE 5.20
Sequential circuit with Tflip -f1ops

(b) State diagram

The next-state values for A and B in the state table are obtained from the expressions of the two
state equa tions.

The state diagram of the circuit is shown in Fig. 5.20(b). As long as input x is equal 10 I,
the circuit behaves as a binary counter with a sequence of states 00, 0 1, 10, I I , and back to 00.

Tabl e 5.5
State Table for Sequential Circuit with TFlip-Flops

Present Next
State Input State Output

A B x A B Y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 I 0 0
I 0 I I I 0
I I 0 I I I
I I I 0 0 I

206 Chapt er S Synchronous Sequential Logic

When .r ;: O. the circuit remains in the same state . Output y is equal 10 I when the prese nt
state is I I. Here. the output depends on the present Mate only and is independent of the input.
The two values inside each c ircle and separa ted by a ..lash are for the present state andoutput.

Mea ly and Moore Models of Finite State Machines

The most general model of a seque ntial circuit has inputs. outputs. and intemal states . It is cus­
te rnary 10 distinguish between (WO models of seque ntial circuits: the Mealy model and the
Moore model. Both are shown in Figure 5.21. The y differ only in !he way the output is gener­
ated . In the Mealy model . the output is a funct ion ef both the present stare and the input . In the
Moore model. the output i", a function of only the present state. A circuit may have both t)pe'
of outputs. The two models of a sequential circuit are co mmonly referred 10 as. a finite state ma­
chine. abb reviated FS~t. The Mealy model of a sequential c ircuit is referred 10 as a Mealy
FSM or Mealy machine. The Moure mode l is referred 10as a Moore FSM or Moore machine.

An example of a Mealy model is given in Fig, 5.15. Output)' is a function of both inputr
and the present slate of A and 8 . The corres ponding state d iagram in Fig. 5.16 shows both the
input and outpu t values. separated by a slash along the directed lines between the states.

An exa mple of a Moo re model is given in Fig. 5.18. Here. the output is a function of the pres­
ent state only, The corresponding state diagram in Fig. 5. 19 has only inputs marked along the

L• p~ pm

,Vr s;tSIatc'
.., Output

U?mbi~~ - s_
Cumbitl'lli"rnrl I-HfKif,frF- [~-";i:~

A Lotti.

Clod. I

(.)

Jl uof'<' ,UQdl/lI~

• , J\'ul SIUII' Ollll'ltl
Comhilf(l l imwl - St"t.. Combi""f;rl/l a/ t--- Logic

RegiIfa
Logic

Clock
I

OUlp llU
(M oo rN:OfHl

(b '

fiGURE 5.21
Block dia grams of Mealy and Moore state machines

Sect ion 5.6 Synt hesizable HDl Models of Sequen tial Circuits 207

directed lines. The outputs are the flip-flop states marked inside the circles. Another example
of a Moore model is the sequential circuit of Fig. 5.20. The output depends only on flip-flop
values, and that makes it a function of the present state only. The input value in the state dia­
gram is labeled along the directed line, but the output value is indicated inside the circle together
with the present slate.

In a Moore model. the outputs of the sequential circuit are synchronized with the clock, be­
cause they depend only on fl ip-flop outputs that are synchro nized with the clock. In a Mealy
model, the outputs may change if the inputs change during the clock cycle. Moreover, the out­
puts may have momentary false values because of the delay encountered from the time that the
inputs change and the time that the flip-flop outputs change. In order to synchronize a Mealy­
type circuit , the inputs of the sequential circuit must be synchronized with the clock and the
outputs musl be sampled immediately before the clock edge. The inputs are changed ar the in­
active edge of the clock to ensure that the inputs to the flip-flops stabilize before the active edge
of the clock occurs. Thus, the output of the Mealy machine is the value that is present imme­
diately before the active edge of the clock.

5 . 6 SYNTHESIZABLE HDL MODELS
OF SEQUENTIAL CIRCUITS

The Verilog hardware description language lHDL) was introduced in Section 3.10. Combina­
tional circuits were described in Section 4. 12, and behavioral modeling with Verilog was in­
troduced in that section as well. Behavioral mode ls are abstract represe ntat ions of the
functionality of digital hardware. Designers write behavioral models to quickly describe how
a circuit is to operate, without having 10 first specify its hardware. In this section, we continue
the discussion of behavioral modeling and present description and examples of fl ip-flops and
sequential circuits in preparatio n for modeling more comp lex circuits.

Behavioral Modeling
There are IWo kinds of abstract behaviors in the Verilog HDL. Behavior declared by the key­
word initia l is called single-pass behavior and specifies a single statement or a block statement
(i.e.. a list of statements enclosed by either a begin ... end or a fork .. . join keyword pair).
A single-pass behavior expires after the associated statement executes . In practice, designers
use single-pass behavior primarily 10 prescribe stimulus signals in a test bench-never to model
the behavior of a circuit-because synthesis tools do not accept descriptions that use the initia l
statement. The always keyword declares a cyclic behavior. Both types of behaviors begin ex­
ecuting-hen the simulator launches at time 1 ;;: O. The initial behavior expires after its state­
ment executes; the a lways behavior executes and reexecutes indefinitely, until the simulation
is stopped . A module may contain an arbitrary number of initi al or a lways behavioral state­
ments. They exec ute concurrently with respect to each other starting urtime 0 and may inter­
act through com mon variables. Here 's a word description of how an always statement works
for a simple model of a D fli p-flop: Whenever the rising edge of the clock occurs. if the reset
input is asserted. the output q gels 0; otherwise the output Q gets the value of the input D. The
execution of statements triggered by the clock is repeated until the simulation ends. We'll see
shortly how 10 write this description in Verilog.

208 Chapter 5 Synchronous Sequential Logic

An initial behavioral statement exec utes only once. II begins its execution at the start of sim­
ulation and expires after all of its statements have completed execution . As mentioned at the
end of Section 4.12, the initi al statement is useful for generating input signals to simulate a de­
sign. In simulating a sequential circ uit, it is necessary to generate a clock source for trigge ring
the flip-flops. The following are two possible ways to provide a free-running clock that oper­
ates for a specified number of cycles :

Initial
beg in
clock = l 'bO;

end

Initia l
begin
clock = 1'bO;
repeat (3D)

#10 clock = - ctccs:
end Initial 300 $finls h;

always #10 clock = -clock;

In the first version, the initi al block contains two statements enclosed within the begin and end
keywords. The first statement sets dock to 0 at time = O. The second statement specifies a loop
that reexecutes 30 times to wait 10 time units and then complemem the value of clock. This pro­
duces 15clock cycles, each with a cycle time of 20 lime units. In the second version. the first init­
lal behavior has a single statement that sets clod to 0 at time = 0, and it then expires (causes
no further simulation activity). The second single-pass behavior declares a stopwatch for the sim­
ulation. The system task fini sh causes the simulation to terminate unconditionally after 300
time units have elapsed. Because this behavior has only one statement associated with it, there
is no need to write the begin . . . end keyword pair. After 10 time units, the a lways statement
repeatedly complements dock, providing a clock generator having a cycle time of :!Olime units.
The three behavioral statements in the second example can bewritten in an)' order.

Here is another way to describe a free-running clock :

initial begin clock = 0; forever #10 clock = - ciock; end

This version. with lW O statements on one line. initializes the clock and then executes an in­
definite loop (fore ver) in which the clock is complemented afte r a delay of 10 time steps. Note
thai the single-pass behav ior never finishes exec uting and so does nOI expire. Another behav­
ior would have to terminate the simulation.

The activity associated with either type of behavioral statement can be controlled by a delay
operator thai waits for a certain time or by an event control operator that waits for certain con­
ditions to become true or for specified eve nrs (changes in signals) 10 occur. Time delays spec­
ified with the # de lay control operator are commonly used in single-pass behaviors. The delay
control operat or suspends execution of statements until a specified time has elapsed. We ' ve al­
ready seen examples of its use to specify signals in a test bench. Another operator. @. is called
the event cont rol opera lOr and is used 10 suspend activity until an event occurs . An event can
be an unconditional change in a signal value (e.g.• @A) ora specified transition ofa signal value
(e.g.• @ (posedge clock» , The general form of this type of statement is

always @ (event control expresston) begin
/I Procedural assignment s ta tements that execute when the cond ition is met

end

Section S.6 Synthesizable HDL Models of Sequential Circuits 209

The event control expression specifies the condition thai must occur to launch execution of the
procedura l assignment stateme nts. The variables in the left-hand side of the procedural state­
ments must be of the reg data type and must be declared as such. The right-hand side can be
any express ion that produces a value using Verilog-defined opera tors.

The event co ntrol express ion (also called the sensitivity list) specifies the events that must
occur [0 initiate execution of the procedural statements assoc iated with the alway s block. State­
ments within the block execute sequentially from top to bottom. Afte r the last stateme nt exe­
cutes. the behavio r waits for the event control expression to be satisfied. Then the statements
are executed again. The sensitivity list can specify level-sensitive events, edge-sensitive events,
or a com bination of the two . In practice, designers do not make use of the third opt ion. because
this third form is not one that synthesis tools are able to translate into physical hardware. Level­
sensitive events occur in comb inationa l circ uits and in latches. For example, the stateme nt

always @ (A or B or C)

will initiate execution of the procedural statements in the assoc iated a lways block if a change
occurs in A, B, or C. In synchrono us sequent ial circu its, changes in flip-flops occur only in re­
sponse to a transition of a cloc k pulse. The transi tion may be either a positive edge or a nega­
tive edge of the cloc k. but not both . Verilog HDL takes care of these conditions by prov iding
two keywords: posed ge and neg edgc. For example, the expression

always@(posedge clock or negedge reset) 1/Verilog 1995

will initiate execution of the assoc iated procedural stateme nts only if the clock goes through a
positive transition or if reset goes thro ugh a negative transition. The 200 1 and 2005 revisio ns
10 the Verilog language allow a comma -separated list for the event control express ion (or sen­
sitivity list):

always @(posedge clock, negedge reset) 1/Verilog 2001, 2005

A procedural assign ment is an assignment of a logic value to a variable within an initial or
81",8)'s stateme nt. Thi s is in contrast 10 a cont inuous assignment discussed in Section 4.1 2
with dataflow modeli ng. A contin uous assignment has an implicit level-sensitive sensit ivity list
consisting of all of the variables on the right-hand side of its assignment statement. The updating
of a continuous ass ignment is triggered whenever an event occ urs in a variable listed on the
right-hand side of its expression. In contrast, a procedural assign ment is made only when an
assig nment statement is execu ted within a behavio ral stateme nt. For example, the clock sig­
nal in the preceding example was complemented only when the statement clock = -rctock
exec uted; the statement did not exec ute until 10 time units after the simulation began . It is im­
porta nt to remember that a variable having type reg remains unchanged until a procedural as­
sign ment is made to give it a new value.

There are two kinds of procedural assignmen ts: blocking and nonblocking, The two are
d isting uishe d by the symbols that they use. Blocking assignments use the symbol (=) as
the assignme nt operator, and nonblockin g assignm ents use « =) as the operato r. Blockin g
ass ignment sta tements are exec uted seq ue ntially in the order they are listed in a block of
state ments. No nblocking assig nments are execu ted co ncurrently by evaluating the set of
ex pressions on the right-ha nd side of the Jist of statements; they do not mak e ass ignments
to thei r left -han d sides until all of the expressio ns are evaluated. Th e two types of

210 Chap ter S Synchronous Sequential logic

ass ignments ma y be better unders tood by means of an illustra tion . Co nsider the se IWO pro­
cedural blocking assign me nts:

8 = A
C = B +1

The firs! stateme nt transfers A into B. The seco nd statement increments the value o f 8 and
transfers the new value to C. At the completion of the assignme nts. C contains the value of
A +1.

Now consider the IWO statements as nonblock ing assignments :

B <= A
C <= B + 1

When the state ments are e xecuted, the express ions on the right-hand side are evaluat ed and
stored in a temporary location. The value of A is kept in one storage location and the val ue of
B + I in another. After aU the express ions in the block are evaluated and stored. the ass ign­
ment to the targets on the left-ha nd side is made. In this case, C will contain the orig inal value
of B. plus 1.A general rule is to use block ing ass ignments when sequential ordering is imper­
ative and in cycl ic beha vior that is level sensitive (i.e., in combinational logic). U!iC nonblockin g
ass ignments when mod eling concurre nt execution (e.g.. edge-sensitive behavior such as syn­
chronous. co ncurrent reg ister transfers) and when mod eling latched behavior. Nonblocking as­
signments are imperative in dealing with register transfer level design . as shown in Chapter 8.
They model the concurrent ope ratio ns of physical hardware synchronized by a comm on clock .
Tcd ay's designers are expected to know what features o f an HDL are useful in a practical way
and how to avoid feat ures that are not. Following these rules will pre vent condi tion s that lead
synthes is too ls astray and create mismatches between the behavior o f a model and the behav­
ior of physical hardw are that is produced by a synthes is tool.

Flip-Flops and Latches

HOL Examples 5. 1 through 5.4 show descrip tions o f vario us flip-flops and a D latch. The D
latch is transparent and responds to a change in data input wit h a change in out put . as long as
the enable input is asserted. The mod ule description of a D latch is shown in HDL Examp le 5. 1.
It has two inputs . [) and enable , and one output Q. Since Q is evaluated in a procedu ral stale­
rnenr. it must be declared as reg type . Latches respond to input signallevels . so the two inp uts
are listed without edge q ualifiers in the event enable expression following the @ symbol in the
alw ays statement. There is only one block ing procedu ral assig nment statement . and it speci fies
the transfer of input D to output Q if enable is true (log ic I). Note that this statement is exe­
cuted every time there is a change in D if enable is I.

A V-type flip-flop is the simplest example o f a sequential machine . HOL Exampl e 5.2 de­
scribes two pos itive-edge D flip-flops in two modules. The first responds only to the cloc k: the
second includes an asynchronous reset input. Output Q must be dec lared as a reg data type in
addition to being listed as an output. Th is is because it is a target output in a procedural assign­
ment statement. The keyword posedge ensures that the transfer of input D into Q is synchro nized
by the positive-edge transition of e lk. A change in D at any othe r time does not change Q.

Section 5.6 Synthesizable HOl Models of Sequential Circuits 211

HDL Example 5. 1

/I Description of 0 latch (See Fig. 5.6)
module DJ atch (a, 0 , enable);
outputa;
Input 0 , enable;
reg a;
always @ (enable or D)

If (enable) a <= 0; /I Same as: If (enable == 1)
endmodule

/I Alternative syntax (Verilog 2001, 2005)
module DJ atch (output reg a, input enable, D):
always @ (enable, D)

If (enable) a <= 0 : /I No action if enable not asserted
endmodule

HOI. Examp le 5.2

/I 0 flip-flop without reset
module DJ F (a, 0 , Clk);
output Q;
input 0 , Clk;
reg Q;
always @(posedge Clk)

Q <= 0 :
endmodule

/I 0 flip-flop with asynchronous reset (V2001, V2005)
module OFF (output reg a, inp ut 0 , Clk, rst) :
alway s @ (posedge Clk, negedge rst)
If (-r5t) a <= 1'bO; /I Same as: If (ret == 0)

else a <= 0 ;
endmodule

The second module includes an asynchronous reset input in addi tion to the synchronous
clock. A specific form of an if statement is used to describe such a flip-flop so that the model
can be synthesized by a software tool. The event expression after the @ symbol in the alway s
statement may have any number of edge events. either posed ge or negedge. For modeling hard­
ware, one of the events must be a clock event. The remaining events specify conditions under
which asynchronous logic is to be executed. The designer knows which signal is the clock, but
clock is nOI an identifier that software tools automa tically recognize as the synchronizing sig­
nal of a circuit. The 1001must beable to infer which signal is the clock , so you need to write the
description in a way that enables the tool to infer the clock correctly. The rules are simple to fol­
low: (I) Each if or else If statement in the procedural assignment statements is to correspond to

212 Chapter 5 Synchronou s Seq ue ntial Log ic

an asynchron ous event. (2) the last else statement corresponds 10 the clock event. and (3) the
asynch ro nou s events arc tested first. There are two edge events in the second module of HDL
Example 5.2. The negedge rsr (reset) event is asy nchronou s. s ince it ma tche s the If (..... rst}
sraremenz. As long as rst is 0, Q is cleared to O. If elk has a posi tive transition. its effect is
blocked . Only if rs t = I can the posedge clock event synchronously transfer D into Q.

Hard ware always has a reset signa l. II is strongly reco mmended that all model s of edge­
se nsitive behavior include a reset (o r preset) input sig nal; otherwi se, the initial Slate o f the ni p­
flops of the seq uential circuit cannot be determin ed. A seq uential circuit cannot be rested with
HDL simulation unless an initial stale can be assigned with an input signal.

HDL Example 5.3 describe s the construction of a T or lK flip-fl op from a D flip -flop and
gates. The ci rcuit is descri bed wi th the characteristic equa tion s of the flip-fl ops:

Q(I + I) = Q$T

Q(I + I) = JQ' + K 'Q

for a T ni p-flop

for a 1K flip-flop

The first module. TFF, desc ribes a T flip-flop by instantiati ng DFF. (Instantiation is ex plained
in Sect ion 4.12.) The declared wtre, DT, is assigned the exclusive-O R of Q and T, as is required
for building a T flip-flop with a D flip-flop. The instanti ation with the value of DT replacing D
in module DFF produccs the required Tflip-flop. The lK flip-flop is spec ified in a similar man­
ner by using its charac teristic equation to define a replacement for D in the instantiated DFF.

HDL Example 5.3

II T flip-flop from D flip-flop and gates
module TFF (0 , T, Clk, rsl);
output 0 :
input T, Clk, rst;
wire DT;
assign DT= 0 '"T ; 1/Continuous assignment

II Instantiate the 0 flip-flop
OFF TF1 (a, DT, en, rst):

endmodule

/I JK flip-flop from D flip-flop and gates (V2oo1. 2005)
mod ule JKFF (output reg 0 , Input J, K. Clk, rst);
wIre JK:
as sIg n JK = (J & -0) I (- K & 0):

/I Instantiate D flip-flop
DFF JK1 (a . J, K, Clk. rst);

endmodule

/I D flip-flop (V2001. V2OO5)

module DFF (output reg 0 , input D, Clk, rsl);
alwa ys @ (posedge Clk, negedge rst)

if (- rst) 0 <= 1'bo ;
else 0 <= D;

endmceute

Section 5.6 Syn th esizabl e HDl Models of Seq uentia l Circuit s 213

HO L Example 5.4 shows another way to describe a JK flip-flop. Here, we choose to describe
the flip-flop by using the characteris tic table rather than the characteristic equation. The case
mult iway branch condition checks the two-bit number obtained by concatenating the bits ofJ
and K. The case expression ({J, K }) is evaluated and co mpared with the values in the list of
statements that follows. The first value that mat ches the true condition is executed . Since the
conca tenation of J and K produces a two-bi t number, it can be equal to 00. 0 1. 10 , or 11. The
first bit gives the value o f J and the second the value of K. T he four possible con dit ions spec ­
ify the value of the next state of Qafte r the applica tion of a po sitive-edge dock.

1101. Exa mple 5.4

/I Functional description of JK flip-flop (V2001, 2005)
module JKJF (input J, K, Clk, output reg Q, output Q_b);

assign O_b=- 0 ;
always @ (posedge Clk)

case ({J,K})
2'bOO: Q <= Q;
2'b0 1: Q <= 1'bO;
2'b10:Q <= 1'b1:
2'b11: Q <= - Q;

••«nooo
endmodule

State Diagram

An HOL mod el of the operation of a sequential circuit can be based o n the formal of the c ir­
cu it' s stale diagram . A Mealy HO L model is. presen ted in HO L Exa mple 5.5 for the state ma­
chine described by the state diagram shown in Figure 5.16. The input, output, clock . and reset
are declared in the usual manner. T he sta te of the Ilip-flops is declared with identi fier s state and
neXCSlafe. T hese variable s hold the val ues of the present stale and the next value of the se­
que ntial circuit. The state's binary ass ignment is done with a parameter statement. (Verilog
allows constan ts to be defined in a module by the keyword pera meter .) The four states SO
through 53 are ass igned binary au through 11. The notation S2 = 2'blO is preferable to the al­
ternati ve 52 = 2. The former uses only two bits to store the constant. whereas the latter results
in a binary num ber with 32 (or 64) bits.

HDL Exa mple 5.5

state, next state:
SO = 2'bOO, S1 = 2'b01, S2 =2'b10, $3 =2'b11;

" Mealy FSM zero detector (See Fig. 5.16)
modul e MealLZero_Detector (
output reg y_out,
input x_in, clock, reset

);
reg [1: 01
parameter

Verilog 2001, 2005 syn tax

II Form the output

214 Chapter 5 Synchronous Sequential Logic

always @ (pos&dge d ock, negedge reset) Verilog 2001, 2005 syntax
if (reset == 0) state <= $0 ;
else state <= next_state;

always @ (state. x_in) 1/Form the next state
case (state)
$ 0: if (x_in) next_Slate = $1 ; else next_slate = SO;
51 : if (xjn) next_slate = $3 ; else next_state = SO;
52 : if (- xJ n) nexCstate = 50 ; else next_state = 5 2;
$3 : if (xJ n) next_state = $2 ; else next_state = SO;

end easa

always @ (state. x_in)
case (state)

SO: Loul =0;
51 , $2 . $3 : L Out = - x_in;

end ease
endmodule

module t_MeaIL Zero_DetectOf;
wi re t_Lout;
reg c x_in, I_clock, C raset;

MealLZero_Detector MO (Cy_out, t_xj n, I_clock, t_reset);
Ini tia l #200 $fi nish;
Ini t ia l begin I_clock = 0; forever #5 t_clock = - c clock; end

Init ial fork
Cresel = 0;

#2 U eset = 1;
#87 C reset = 0;
#89 t_reset = 1;
#10 t_x_in = 1;
#30 t_x_in = 0;
#40 t_x_in = 1;
#50 t_x_in = 0;
#52 t_x_in = 1;
#54 t_x_in = 0;
#70 t_x_in = 1;
#80tx in= 1"- - '
#70 t_x_in = 0;
#90 t_x_in = 1;
#100 I_x_in = 0;
#120 I_x_in = 1;
#160 t_x_in = 0;
#170 t_x_in = 1;
jo in

endmodu le

Section 5.6 Syntheslzeble HOt Models of Sequential Circuits 215

The Verilog mood in HDL Example 5.5 uses threea lways blocks that execute concurrently and
interact through common variables. The first always statement resets the circuit to the initial state
SO = 00 and specifies the synchronous clocked operation. The statement slate <= nexr.stat e
is executed only in response to a positive-edge transition of the d ock. This means that any change
in me value of nexCstate in the second a lways block can affect the value of state only as a result
of a posed ge event of clock. The second a lways block determines the value of the next state tran­
sition a." a function of the present state and input. The value assigned to state by the nonblockin g
assignment is the value o f nexC.I"tale immediately before the rising edge of clock. Notice how the
multiway branch condition implements the state transitions spedlied by the annotated edges in me
state diagram of Fig. 5.16. The third always block specifies the output as a function of the pres­
ent state and the input. Allhough this block is listed as a separate behavior for clarity, it could be
combined with the second block. Note that the value of output >,_oul may change if the value of
input x_in changes while the circuit is in any given state.

So lei' s summarize how the model describes the behavior of the machine: At every rising
edge of clock. if reset is not asserted, the state of the machine is updated by the first a lways
block ; when state is updated by the first a lways block. the change in state is detected by the
sensitivity list mechanism of the second a lways block; then the second al ways block upda tes
the value of next_state 01will be used by the first always block at the next tick of the clock);
the third al ways block also detects the change in state and updates the value of the output. In
addition. the second and third always blocks detect changes in x_ill and update nextstate and
Y_OUl accordingly. The test bench provided with Meal.v_u ro_DeleclOr provides some wave­
forms to stimulate the model, producing the results shown in Fig. 5.22. Notice how t~'_f)lIt

voltd Mealy output

FIC'URE 5.22
Simulation output of Mealy_Zero_Detector

Mealy glilch

216 Chapter 5 Synchronou s Sequential logic

responds to changes in both the state and the input and has a glitc h (a tran sient logic value).
The waveform descrip tion uses the fork ... join co nstruct. Sta tement.s within the fo rk ... joln
block exec ute in parallel, so the tim e del ays are re lative to a common reference of ' "" O. It is
usually more convenient 10 use the fork ... join block instead of the begin . .. end bloc k in
describing waveforms. The wa veform of reJet is triggered "on the fly" ro demonstrate that the
machine recovers from an unexpected reset conditio n during any state.

How doc s our Verilog mo del Mealy_Zero_Detector corre spond to hard ware ? The first
a lway s block corres ponds to a 0 flip -flop impleme ntation of the state register in Fig. 5 .11 : the
second ulu 'u."1l' block is the comblnanonul lcg jc block descri bing the next state: lilt" third alw ays
block describes the ou tput co mbinational logic of the zero-detecting Mealy machine. The reg­
ister operation of the state transition uses the nonblocking assignmen t ope rator « "") because
the (edge-se ns itive) flip -flops of a sequential machine are updated concurrently by a common
clock. T he second and third a lways block s de scribe combinational logic. which is level se nsi­
tive, so they usc the blocking ("") assignment operator. Their sensitivity lists include both the
state and the input because thei r logic must respond to a change in either or bot h of them.

Note: the model ing style illu strated by Meafy_Zero_Detector is co mmonly used by de­
signers. Notice that the reset signal is associated with the firs t a lways block. It is modeled here
as an ac tive-low reset. By including the rese t in the mode l of the stare transition. there is no need
to include it in the combinational logic (hat specifies the nex t state and the o utput. producing
a simpler and more readable description.

The behavior of the Moore FSM having the state diagram shown in Fig. 5.19 can be modeled
by the Verilog desc ription in HDL Example 5.6. Thi s exam ple sho ws that it is poss ible to describe
the state transitions of a cloc ked sequential mac hine with only one 8 1" '8)'S block. The present state
of the circu it is identified by the variable state. The state transitions are triggered b)' the rising
edge of the clock according 10 the conditions listed in the case statements. The combinational
logic that implicit ly determines the next slate is included in the nonblocking assignmcnt to state .
In this examp le. the output of the circuit is indepe ndent of the input and is taken directly from the
outputs of the flip-flops. The two-bit output y_out is specified with a continuous (a,,<;i~nl statement
and is equal to the value of the prese nt state vector. Figure 5.23 shows some simulation results for
Moorej.todeC Fig_S-'9. Notice that the output of the Moore machine does not have gli tches.

HUL Example 5.6

stale ;
SO:: ZbOO, 5 1 :: 2'b01, S2 :: 2'b10 , S3 :: 2'b 11;

1/Moore mode l FSM (see Fig. 5.19)
module Moore_Mode L Fig_5_ 19 (

o utput (1: OJ L out ,
input xJn, clock , reset

):
reg (1: OJ
param eter

always @ (po s e dge clock, negedge reset)
if (reset e e 0) sla te <= SO;
else case (state)

Ve rilog 2001 ,2005 syntax

II Initialize 10 state SO

Sectio n 5.6 Sy nt h e sizable HDl Mo d el s o f Sequential Circuits 217

so: it l - xJ n) state <: 51: etee state <: sO',
5 1: it (x_in) stale <: 52; else s tate <: 53 ;
52: if (- xJn) stale <: 83 ; else stale <: 82;
83 : if (- x_in) stale <: SO; else stale <: 83:

endcase

I$sign Lout : stale ; 1/Output of flip-flops

e ndmod ule

0 .,

I_d oc k.

IJr....r

IJjll

Jrorr! I:O! 0 2 3 0 0 3

'_,'_oll/! I :O/ 0 2 3 0 0 ,

FIGUR£ 5 ,2)
Simulation out put of HDl Example 5.6

Structural Description of Clocked Sequential Circuits

Combinational logic ci rcuits can be described in Verilog by a connection of gates (primitives
and UDPs). by dataflow statements (cont inuous as..ignmems). or by level-sensitive cyclic be­
haviors (alw ays blocks), Sequential circuits are composed of co mbinational logic and flip­
flops, and their HDL mode ls use sequential UDPs and behavioral statement.. (edge-sensitive
cycl ic behaviors) 10describe the operation of flip-flops. One way 10 describe a sequentia l cir­
cuit uses a combination of dataflow and behavioral statements. The flip-flops are described
with an always statement. The combi nat ional part can be described with assign stateme nts
and Boo lean equations, The separate modu les ca n be combined to fonn a structural mode l by
instant iation within a module.

The structural de script ion of a seq uential circuit is shown in HDL Example 5.7. We want
to encourage the reader to co nside r a lternative ways to mode l a circuit. so as a point of
co mpariso n. we first pre sent Moore_MudeC Fig_5_20. a Veri log be havioral description of
the machine hav ing the stale diagram show n in Fig . 5,20, Thi .. style of modeling is di rect.

218 Chapter S Synchronou s Sequential Logle

An alternative style . used in Moore_ModeC STR_Fig_5_20. is to represe nt the struc ture
shown in Fig. 5.20<a). This style uses two modules. The first describes the circu it of Fig. 5.20l a).
The second describes the T flip-nop that will be used by the circui t. We also sho w two ways
to model the T flip-flop. The first asserts tha r. ar every clock rick . the value of the ourput
o f the flip· flop togg les if the togg le inp ut is asserted. Th e second model describes the be­
ha vior o f the toggle ffip-Ilop in tenus of its c harac teristic equ ation. Th e tim style is at ­
tractive because it does not req uire the reader to re member the c haracte rist ic eq uatio n.
No nethele ss. the models are interchangea ble and will synthes ize to the same hard ware cir­
cui t. A test bench module provides a stimulus for verifyi ng the functionalit y of the cir cuit.
Th e seq uent ia l circ uit is a two- bit bi nary co unte r co ntrolled by inp ut x_i ll. The output,
y_out, is enabled whe n the co unt reach es binary II . Fli p-flop s A and 8 are included as out­
pu ts in order to c heck their ope ration. Th e flip-flop input equ ation s and the o utput equation
are evaluated with co ntinuous assignment (a ssip;n) sta tements having the co rrespond ing
Boo lean express ions. The insta ntiated T flip-flop s usc TA and TB as defined by the inpu t
equations .

The second mod ule describes the T flip-flop . The reset inpu t reset s the flip-flop to 0 wi th
an active-low signal. The operation of the flip-nap is ..pccified by its character istic equatio n.
Q(I + I) - QIIi T.

The test bench includes both models of the machine. The stimulus mod ule provide .. com ­
mon inputs to the circuits to simultaneously display their OUtput responses. Th e first in itia l
block provid es eig ht clock cycle .. with a period of IOns. Th e seco nd ini tia l block specifies a
toggling of input x_ill that occurs at the negative edge tran sition of the clock . The result of the
simulation is shown in Fig. 5.24. The pair (A. B) goe s through the binary sequence 00. 0 1. 10.
I I, and back 1000 . The change in the count is triggered by a posit ive edge of the clock. pro­
vided that x_i ll :: I. If xjll :: O. the count does not change. y_oll1 is equal to I when both A
and B are equa l to I. This verifie s the main functionality of the c ircuit. but not a reco very from
an unexpected reset event.

HIlI. Example5.7

/I State-diagram-based model (V2001, 2005)
module Moore_ModelJig_5_20 (
output L out,
Input x_in. clock, reset

):
reg [1: OJ state;
parameter 80 = 2'bOO. 81 = 2'b01.82 =2·b10. 83 = 2'b11;

always @ (posedge clock. negedge resell
If (reset == 0)state <= 80; II Initializetostate80
else case (state)
80: jf (x_in) stale <= 81; elsastale <= 80;
81: If (x_in) state <= 82; else state <= 81;

Section S.6 Syntheslzable HDl Models of Sequential Circuits 219

52: if (xJ n) state <=S3: else stale <= 52:
53: if (x_in) slate<=SO; else state <=53;

endcase

assign L out= (stale == 53);
endmodule

If structural model

module Moore_Model_5TRJ iIL5_20(
output LOUt, A, B.
Input x_in. dock. reset

):
wIre TA, TB ;

II OlJlpUt of flip-flops

II Flip-flop input equations
assign TA = xJ n & B:
assign TB = xJn:

1/ Output equation
assign Lout = A &B;

1/ Instantiate Toggle flip-Ilops
Toggle_llip-'loP_3 M_A (A. TA. clock. resell :
Toggle)lip-"op_3 M_B (B.re.clock. reset):

endmodule

module Toggle_lIip) lop (0. T. ClK, R5T_bl;
output Q:

Input T, ClK. R5T_b:
reg 0 :

always@(posedge CLK. negedge RST_b)
if (RST_b ==0)a <= 1bO:
else if (T)a <= -o:

endmodule

/I Alternativemodel using Characteristic equation
1/ module Toggle_flip_flop (Q, T, CLK.RST_b):
1/ output Q:
If input T, CLK, RST_b;
1/ reg 0 ;

If always@(posedge CLK, negedgeRST)
If If (RST_b == 0) a <= 1'bO;
1/ else Q<= QA T;
If endmodule

220 Chapter 5 Syn chronous Sequential logic

module tMoore_Fig_5_20;
wire 1""y_out_2,1....Y_out_l ;
reg tx-,n, tclock. U eset;

Moore_Model]i9-5_20
Moore_Modet STR_Fig_5_20

M1(1""y_OUU , I_x_in, U:tock. tJeset);
M2 (t y_out_2.A.B, '-)!,_in, U::lock. Uesel):

Initial #200 Sfinish;

initi al begin

U eset =0;
U:lock =0;
#5 Ueset =1;

repeat (16)
#5t_clock=~U:lock;

",
init ial begin

t_xjn =0;
#1 51_x_in = 1;
repeat (8)
#10 t x in = ~t x in'- - - - '

en'
endmodule

".'00ov, ~. ,

'_cloclt. ~

'-rtH I --'

I~j..

I..) '~<II"-'

(->,_olll..1

A

8

FIGURE 5.24
Simulation output of HDl Example 5.7

Sedion 5.7 State Reduct ion and Assignment 221

5 .7 5TATE REDUCTION AND ASSIGNMENT

1be ana lysis of seq uential circuits starts fro m a circuit diagram and culminate s in a state table
or diagram . Thedesign (synthesis) of a seq uential circu it starts from a set of speci fica tions and
culminates in a logic diagram. Design procedures are presented in Section 5.8. Two sequen­
tial ci rcu its may exhibi t the same input-output behavior. but have a different number of inte r­
nal states in the ir state diagram . The curre nt sec tion discu..ses certain propertie s of sequential
circuits that may simplify a design by reducing the number o f gates and flip- flops it use... In
general . reducing the num ber of flip-flops reduces the co..t of a circuit.

State Reduction

T he red uct ion in the number of flip-fl op s in a seq uential ci rcuit is referred to as the stcre­
reduction problem. State-redu ction algorit hms are concerned with proce dure s for reducin g the
number of states in a state table. while keeping the external input-output requi rements un­
changed. Since III Flip-flops produ ce 2'" states. a red uction in the number of states may (or may
not) res ult in a redu ction in the number of flip-flops. An unpr edictable effect in reducing the
number of flip-flops is that sometimes the equivalent circ uit (with fewer flip-flops) may require
more combinational gates.

We will illustrate the state-reduction procedure with an example. We start with a sequential
circuit whose speci fication is given in the state diagram of Fig . 5.25 . In our example. only the
input-output sequences are important: the internal stares are used mere ly to provide the re­
quired seq uences. For that reason. the states marked inside the circ les are denoted by Jetter
symbols instead of the ir binary values . This is in contras t to a binary co unter. wherein the bi­
nary val ue sequence of the sta res themselves is taken as the o utputs.

1/1

Flc;URE 5.25
State diagram

222 Chapter S Synchronous SequentlallogJc

There are an infinite numbe r of input sequences thai may beapplied to the ci rcuit: each re­
sults in a unique output seq uence, As an example . co nsider the input sequence 01010110100
starting from the initial state a. Each input of 0 or I produces an output of 0 or I andcau ses
the circui t to go 10 the next stale. From the stare diagram. we obtain the ccrpn and..tate seqcence
for the given input sequence as follows: With the circuit in initial state a. an input o f 0 produces
an output of0 and the circuit remains in stal e a. with present sta te a and an input of I. the ocr­
put is 0 and the next state is b. With present state b and an input of O. the ou tput h. 0 and the
next stare is c. Co ntinuing this process. we find the co mplete sequeoce to be as follows:

state
inpul
output

a
o
o

a
I
o

b
o
o

c
I
o

d
o
o

f
I
I

f
o
o

g
I
I

f
o
o

g
o
o

a

In eac h co lumn. we have the present state. input value. and output value. The next stale is wri t­
len on la p of the next column. It is importa nt to real ize thai in this circuit the states themsel ves
are of secon dary importance. bec ause we are interested only in out put sequences caused by input
sequences.

Now let us assume that ..lie have found a sequential circu it whose stat e d iagram has fewe r
than seve n states. and ..uppose we wish 10 compare this circ uit with the circuit whose state di­
agram is give n b)' Fig. 5.25. If identical input sequences are applied to the two circuits and iden­
tical output s occ ur for all input sequences. then the two circui ts are said 10 be equ ivalent (as
far as the input-output is concerned) andone may be replaced by the otber.Tbe problem of stale
reduction is to find ways of reducing the number of slates in a sequential circuit without alteri ng
the input -output rela tio nships .

We now proceed 10 reduce the number of states for thi s example. Firs t. we need the state
table: it is more con..cnicnt to apply procedures for state reduction with the use of a table rathe r
than a diagram. The ..tate table of thecircuit is listed in Table 5.6 andis obtained directly from
the slate d iagram.

The following algorithm for the state reduction of a completel y speci fied state table is given
here withou t proof: "Two states are said to beequivalen t if. for each member of the set of in­
put s. they gi ..-c exactly the same ou tput and send the circuit either to the same state or 10 an

Table 5.6
Statt Tablt

Next State Output

Present State x = 0 x = 1 x = 0 x= 1

a a b 0 0
b c d 0 0
c a d 0 0
d , f 0 I, a f 0 I

f s f 0 I

s a f 0 I

Section S.7 State Reduction and Assignment 223

Table 5 .7
Rfiiudng the Stare Tobie

Nexl Sla t e Out put

Present St a t e x = 0 x = 1 K = 0 X = 1

, , b 0 0
b c d 0 0
r rr d 0 0
d e f 0 I, , f 0 I

f e f 0 I

equivalent state." When two states are equivalent. one of them can be removed without alter­
ing the input-output relationships.

Now apply this algorithm to Table 5.6. Going through the state table. we look for two pres­
ent states that go to the same next state and have the same output for both input combinations.
States g and e are two such stares: They both go to states a andf and have outputs of 0 and I
for .l = 0 and .r = I, respectively. Therefore. states g and e are equi valen t. and one of these
states can be removed. The procedure of removing a state and replacing it by its equivalent is
demonstrated in Table 5.7. The row with present state g is removed. and state g is replaced by
state e each time it occurs in the columns headed "Next State,"

Present statefnow has next states e andf and outputs 0 and I for .r = 0 and x = I , re­
spectively. The same next states and outputs appear in the row with present state d. Therefore,
statesfand d are equivalent, and state j'can be removed and replaced by i/. The final reduced
table is shown in Table 5.8. The state diagram for the reduced table consists of only five states
and is shown in Fig. 5.26. This state diagram satisfies the original input-output specifications
and will produce the required output sequence for any given input sequence. The following list
derived from the state diagram of Fig. 5.26 is for the input sequence used previously (note that
the same output sequence results. although the state sequence is different):

sla te a a b c d e d d e d e a
input 0 I 0 I 0 I 0 0 0
output 0 0 0 0 0 1 0 0 0

Ta bl e 5.8
Reduced Stote Tobie

Next State Out p ut

Present State x =0 x = 1 x =0 x = 1

a a b 0 0
b c d 0 0
c a d 0 0
d , d 0 I
e a d 0 I

224 Chapter S Synchronous Sequential logic

0,0

•

0.0

I "t)

FIGURE 5.26
Reduced state diagram

In fact.this sequence is exactly the same as that obtained for Fig . 5.25 if we replace g by f' and
f by d.

Checking each pair of stares for equivalency can bedone systematically b)' mean s of a pro­
cedure thai employs an implication tab le. which consists of squares. one for every suspected
pair of possible equivalent states. By jud icious use of the table. it is possible to determi ne all
pairs of equivalen t Slates in a state table.The use of the implicatio n table for reducing: the num­
ber of stales in a state table is demonstrated in Sect ion 9.5.

The sequential circuit of this example was red uced from seven to five stat es . In general. re­
ducing the number of Mates in a stale table ma y result in a circuit with less equiprrem, HQ\\"­
ever. the fact that a state table has been reduced to fewe r slates does not guarantee a saving in
the number of flip- flops or the number o f gates.

State Assignment

In order 10 design a -eq uenual ci rcuit with physical compone nts. it is necessary 10 assign unique
coded binary \'aIUl•.~ 10 the slates. For a circ uit with m slates. the codes must con tain n bits.here
2" <:! m. For example......ith three bits, it is possible to a..sign codes 10 e ight states. denoted by
binary numbers 000 through Ill . If the state table of Tab le 5.6 is used . we must assign binary
values to seven states : the remaining state is unused . If the state table of Table 5,8 is used . only
five stares need binary assignment, and we are left with three unused states. Unused slates are
treated as don't -care condiuons during the design . Since don't-care conditions u..ually help in
obtaining a simpler circuit, it is more likely that the circ uit with five Slates will req uire fewer
combinationa l gates than the one with seven states.

The simplest way to code five states is to use the first five integers in binary counting order,
as shown in the fiN assignme nt of Table 5.9. An other similar assignmen t is the Gray code
shown in assignrreru2. Here. onl y one bit in the code group changes when going from one num­
ber to the next. This code makes it eas ier for the Boolean functions 10 be placed in the map for
simplifica tion . Another possible assignment o ften used in the design of Slate machines to con­
trol data-path units is the one-hot assignment. Th is configuration uses as many bits as there are

Sect ion 5.8 Design Procedure 225

Table 5 .9
Three Possible Binory 5tate Assignments

Assignment 1, Assignment 2, Assignment 3,
State Bina ry Gray Code One-Hot

" non (Xl(J ()()()() I

b 001 001 00010
c 010 011 00100
d 011 010 01000
e 100 11 0 I()()(()()

Table 5.10
Reduced 5ta te Table with Binary AJSignment J

Next State Output

Present State x = 0 x = 1 x = 0 x = 1

000 lXllJ 001 0 0
001 010 011 0 0
010 000 011 0 0
Oil 100 011 0 I
100 000 011 0 I

states in the circuit. At any given time. only one bit is equal to I while all others are kept at O.
This type of assignment uses one flip-flop per state. which is not an issue for register-rich field­
programmable gale arrays. (See Chapter 7,) One-hot encod ing usually leads to simpler de­
coding logic for the next state and output. One-hot machines can he faster than machines with
sequential binary encoding. and the silicon area required by the extra flip-flops can be offset
by the area saved by using simpler decoding logic. This trade-off is not guaranteed. so it must
beeval uated for a given design.

Table 5.10 is the reduced state table with binary assignment 1substituted for the leiter sym­
bols of the states. A diffe rent assignment will result in a state table with different binary val­
ues for the states. The binary form of the state table is used \0 der ive the next-state and
output-forming combinational logic part of the sequential circuit. The complexity of the com­
binational circuit depends on the binary state assignment chosen.

Sometimes, the name transition table is used for a stare table with a binary assignment.
This convention distinguishes it from a state table with symbolic names for the states. In this
book. we usc the same name for both types of stale tables.

5 . 8 DESIGN PROCEDUR E

Design procedures or methodologies specify hardware that will implement a des ired behavior.
The design effort for small circu its may be manual. but industry relies on automated synthesis

226 Chapter 5 Synchronous Sequential Logic

tool s for designing massive Integrated circuits. The building block used by !>ymhc!>i!> tool .. is
the D flip -flop. Together with additional logic. it can tmple memthe behavior of JK and Tflip­
flops . In fact . desig ners generally do not concern themselves with the type of flip-flop: ramer.
their focus is on correctly describing the sequential functionality Ihat is to be implemented by
the synthesis tool , Here we will illus trat e manu al methods using D. JK. and T flip-flops,

The design of a clocked sequential circ uit starts from a set of specifications and culminate..
in a logic diagram or a list of Boolean functi ons from which the logic diagram can beobtained.
In contrast to a com binat ional circu it.hich is fully ..pecified b)' a truth table. a sequential cir­
cu it requ ires a stare table for its specifica tion. The first step in the design of sequential circuits
is to obtain a state tab le or an equ ivalent rep resentat ion. such as a Slate diagram.

A synchronous ..equential circ uit is made up of flip-flops and combinational gate.... Thede­
sign of the ci rcuit consists of choosing the flip-flops and then finding a combinational gate struc­
ture mat. together with the flip-flops. produces a circuit wh ich fulfills the staled specification...
The number of Fl ip-flo ps is determ ined from the number o f states needed in the circ uit. The
combinational circuit is derived from the state table by evaluating the flip-flop input equations
and output equations. In fact. once the type and number of flip-flops are determ ined. the design
process involves a transformation from a sequential circ uit prob lem into a combinational circuit
problem. In this way. the techniques of combinational circ uit design can be app lied .

Th e procedure for design ing synchro nous sequential circu its can be summarized by a Ii ..t of
recom mended steps ;

I. From the word description and specifications of the desired operation . derive a stale
diagram for the circui t.

2. Reduce the number of states if nece ssary.

3. Ass ign binary values to the states.

4. Obtain the binary-coded Slate table .

S. Choose the type of flip-fl ops to be used .

6. Derive the simpli fied flip-flop input equations and output equations.

7. Draw the logic d iagram.

Theord spcc tncn ion of the circ uit behavior usually assumes that the reader is familiar ith
digital logic terminology. It is necessary that the des igner use intu itio n and experience to ar­
rive at the correct interp retation of the circuit spec ificat ion". because word description s may
be incomplete and inexact. On ce such a speci fication has been set down and the state diagram
obtuined. it i... j:>().s.s ibJe /0 use knownsynthesis proCt'(1ure.s ro complele the design. Although there
are formal proce dures for state red uctio n and assignm e nt (steps 2 and Sj. tbey are seldom used
by experienced designers. Steps 4 through 7 in the design can be imp lemented by exac t algo­
rithms and therefore can be automated. Th e pan of the design that follows a well-defined pro­
cedure is refe rred [0 as synthesis. Designers using logic synthes is tool s (software) can follow
a simplified proce ss that develops an HDL description directly from a state diagram.Jett ing the
synthesi s 1001 determine the circuit elements and structure that implement the de scription .

11)e first step is a critical pan of the process. because succeeding steps depe nd on it. We
..... iII give one simple exa mple to demonstra te how a stale diagram is obtained from a ord
specification.

Sect ion S.8 Design Procedure 227

0

0

I S,,.,
0

0

•
SJi1 Sl iD

FIGURE 5 .27
State diagram for sequence detector

Suppose we wish to des ign a circuit that detects a sequence of three or more consecut ive l 's
in a string of bits coming through an input line (i.e .. the input is a serial bit stream) . The state
diagram for this type of circuit is shown in Fig . 05 .27. It is derived by starting with state So. the
rese t state. If the input is O. the circ uit stays in So. but if the input is I . il goes 10 state 51 to in­
dicate that a I was detected. If the next input is I, the change is to state S2 to indicate the ar­
rival of two consecuti ve t 's, bUI if the inpu t is 0, the ...tale goes back to So. The third consec utive
I send s the circuit to stare 53' If more I 's are detected , the circuit stays in 5J• Any 0 input sends
the circuit back to So- In this way. the circuit stays in 53as long as there are three or more con­
sec urive 1'5 recei ved. Thi s is a Moore model sequential circuit , since the output i ... I when the
circuit is in state 53 and is 0 otherwise.

Synth~sls Using 0 Flip-Flops

Once the stare diagram bas been derived, the rest o f the design fo llo ws a straig htforward syn­
thesis procedure. In fact, we can design the circu it by using an HIJL descriplion of the state di­
agra m and the proJX'r HOL synthesis 1001..10 obtain a synthe..ized netlist . (The Hp l. descnprion
of the state diagram will be similar to HOL Examp le 5 .6 in Section 5.6.) To design the circu it
by hand. we need to assign binary codes 10 the slates and list the state table. Thi s is done in
Table 05 .1 I. The table is derived from the Stale diagram of Fig. 5 .27 with a sequential binary as­
signment. We choose two D flip- flops 10represent the four states, and we labe l their outputs
A and B. There is o ne input .r and one output j- , The charac teris tic equation of the D fl ip-flop
is Q(t + I) = DQ, which mea ns that the next-state values in the state table specify the lJ input
condition for the flip-flop. The flip-flop input equat ions can be obtained directly from the next­
state columns of A and B and expressed in sum-of-minle rms form as

A(, + I) = D,(A. B. x) = ~ (J . 5. 7)

B(/ · 1) = D. (A. B. x) = ~(1.5. 7)

y(A. B. .r] = ~(6. 7)

228 Chapter 5 Synchronous Sequential logic

Table 5 .11
Stot~ Tab~ for SeqlRnu Dtr«tOf

Present Next
State Input State Output

A • • A • r
0 0 0 0 0 0
0 0 I 0 I 0
0 , 0 0 0 0
0 , I , 0 0
I 0 0 0 0 0
I 0 I I I 0
I , 0 0 0 ,
I , I I I ,

where A and B are the present -state values of fiip-flops A and B. x is the input. and DA and D B

are the inpu t equations. Th e mintenns for output y arc obtained from the output column in the
state tab le .

The Boolean equatio ns are simplified by means of the maps plotted in Fig , 5 .28. The sim­
pl ified equ ation s are

DA = Ax + Bx

D8 =Ax +B'x

Y = A B

TIle advantage of designing with D flip-flops is thai the Boolean equations.describing the in­
puis to the flip-flops can beobtained directly from the stale table . Software tools automatically
infer and se lect the f)-type flip-flop from a properly written HOL model. The schematic of the
sequential circuit is drawn in Fig. 5.29.

B

,
, - 14 8

B,
A 00 01 II 10.. " " -,

0

Al'
-. ..

If , , i

B

,
D , - A.r+ B'x

B• .
A 00 01 II 10.. III I .. "

0

Al'
" i:i~.

..
~.,& ~.

BB•A 00 01 II 10.. " " "
0 ,

AI, "
1(' l"r I :'; "

'=.,jJ
,

fiGURE 5 .28
Maps for sequence detector

Section S.8 Design Procedure 229

,

~
~

J ,0

ISl£4Z I

J)§

II

Ciock

T

A

8

B'

)

FIGURE 5.29
logic diagram of sequence detector

Excitation Tables

The design of a sequential circuit with flip-flops other than the D type is complicated by the
fact that the input equations for the circuit must be derived indirectly from the state table. When
D-type flip-flops are employed, the input equations are obtained directly from the next state.
This is not the case for the JK and T types of tli p-l1ops. In order to determine the input equa­
tions for the,e flip-flops, it is necessary to derive a functional relationship between the state table
and the input equations.

The flip-flop characteristic tables presented in Table 5. 1 provide the value of the next state
when the inputs and the present stale are known. These tables arc useful for analyzing se­
quential circuits and for defining the operation of the flip-flops. During the design process, we
usually know the transition from the present state to the next state and wish to find the flip-flop
input conditions that will cause the required transition. For this reason, we need a table that lists
the required inputs for a given change of stale. Such a table is called an excitation table.

Table 5. 12 shows the excitation tables for the two flip-flops. Each table has a column for
the present slate Q(t), a column for the next state Q (r + I). and a column for each input to show

230 Chapter 5 Synch ronous Sequential Logle

Table 5.12
Flip-flop Excitation Tobles

Q(t) Q(l = 1) J « Q(l) Q(t = 1) ~
0 0 0 X 0 0 0
0 I I X 0 I I
I 0 X I I 0 I
I I X 0 I I 0

(a) JK (b) T

how the requ ired transition is achieved. There are fourpossible transitions from the present slate
to the next stare .The required input conditions for each of the four transitions are derived from
the information ava ilable in the characteristic table. The symbol X in the tables represent s a
do n'H are condition, which means that it does not matter whethe r the input is 1 or O.

The excitation table for the JK flip-tlop is shown in part (a). When both present "late and next
state are O. the J input must remain at 0 and the K input can beeither 0 or I. Similarly.hen both
present state and next state arc 1. the K input must remain at O. while the J input can be 0 or 1.
If the flip-flop is to have a transition from the O-state to the l- state, J must be equal to I. since
the J input sets the fl ip-flop. However. input K may beeither 0 or I. If K = O.the J = I con­
dit ion sets the flip-flop as required ; if K = I and J = I. the flip-flop is complemented and
goes from the Ocstatc to the I-state as required . Therefore. the K input is marked with a don't ­
care condition for the O-to- I transition. For a transition from the I-state to the O-state. we must
have K = I. since the K input clears the llip-flop. However. the J input may be either a or 1.
since J = ahas no effect and J = 1 together with K = 1 complements the flip-flop with a re­
sultant transition from the l -state to the a -state .

The excitat ion table for the T flip-Ilop is shown in part (b). From the characte ri...tic table. we
find that when input T = I. the state of the flip-flop is complemented. and when T = O. the
state of the fl ip-flop remains unchanged. Therefore. when the state of the flip-flop must re­
main the same. the requirement is that T = O. When the state of the flip-flop ha.. to becom­
plemented. T must equal I .

Synthesis Using JK Flip-Flops

The manual synthesis proced ure for sequential circuits with JK flip-flops is the same as with
D flip-fl ops. except that the input equations must be evaluated from the present-state to the next­
state transition derived from the excitation table . To illustrate the procedure. we will synthe­
size the sequential circuit specified by Table 5.13. In addition to having columns for the present
state, input. and next state . as in a conventional state table. the table shows the nip-flop input
conditions from which the input equations are deri ved. The flip-flop inputs are derived from
the state table in conjunction with the exc itation table for the JK flip-nap. For example . in the
first row of Table 5.13. we have a transition for llip-flop A from 0 in the present state to 0 in
the next state . In Table 5.12. for the JK flip-flop. we find that a transition of states from pres­
ent state a to next state 0 requires that input J be 0 and input K be a don't-care . So 0 and X are

Section S.B Design Proced ure 231

Table 5.1J
Srat~ Tabk and JKflip-Flop Inputs

Present Nellt
State Input State Fllp .Flop Inputs

A • • A • J• '. J. '.
0 0 0 0 0 0 X 0 X
0 0 I 0 I 0 X I X
0 I 0 I 0 I X X I
0 I I 0 I 0 X X 0
I 0 0 I 0 X 0 0 X
I 0 I I I X 0 I X
I I 0 I I X 0 X 0
I I I 0 0 X I X I

entered in the first row under J,4 and K A, respecti vely. Since the first row also shows a transi­
tion for flip-flop B from 0 in the present state to 0 in the next state, 0 and X arc inserted into
the first row under In and KB, respec tive ly, The seco nd row of the table shows a transition for
flip-flop B from 0 in the present state to I in the next slate. From the excitat ion table. we find
that a transition from 0 to I requires that J be I and K be a don 't -care. so I and X are copied
into the second row under JIl and K n. respecti vely. The proce.... is continued for each row in
the table and for each ni p-flop. with the input conditions from the excitation table co pied into
the proper row of the particular flip-flop being considered.

The nip-flop inpu ts in Table 5.13 specify the truth table for the input equations as a func­
tion of present state A, present state B. and input .r. The input equa tions are simplified in the
maps of Fig. 5.30. The next-stare values are nOI used durin g the simplification, since the input
equat ions are a function of thc present state and the input only. Note the advantage of using J K­
type nip-flops when sequential circuits are designed manually. The fact that there are so man)'
don 's-care entries ind icates that the combinational circuit for the input equations is likely to be
simpler, because do n' t-care nun rerms usually help in obtaining simpler expressions. If there are
unused states in the state table. there will be additi onal don 't -care conditions in the map.

The four input equations for the pair of JK flip-flops arc listed under the maps of Fig. 5.30 .
The logic diagram (schematic) of the sequentia l circui t is dra wn in Fig. 5.3 1.

Synthesis Using T Flip-Flops

The procedure for synthesizing circuits using T flip , flops will bedemonstrated b), desi gnin g
a binary co unter. An n-bit binary count er consists of n flip-flops that can count in binary from
0 102" - I. The stale d iagram of a three -bit counter is shown in Fig. 5.32. As seen from ee
binary states indicated in..ide the circles. the nip -flop OUIP UIS repeat the binary coun t sequence
with a return to 000 after 111. The dire cted lines betwee n circles are not marked with input
and output values as in other state d iagrams. Remember that state transitions in cloc ked se­
quential circuns occur during a clock edge; the flip-flop.. remai n in thei r present slates if no
cloc k is applied . For that reason. the cloc k does nOI appear explici tly a!'> an inpu t variable in

232 Chapter S Synchronous Sequentia l l og ic

B B
B,

A 00 0' II 10.. -, '. .,
0 X X X X

I,",
,

A

B, ,

A ~, 01 II 10.. " ..
1
7 'j'"0

I,-,
X X X

I~
,

A

,
I" - Bx'

B B
B"A 00 OJ II 10

" -, II"',•
u X X II '
I," Il: , -. ,"..

X

,

A

B"
A ~I 0 ' II 10.. Ir t ' -.« ..

0 X X

A I,m, " " ..
I ' ~ I~ X

FIGURE 5 .30
Maps for Jand K input equations

, J'
v J J

CIt

J~; ,

J

CIk

11 .9 ,

A

A '

B

B'

Clod

FI(j,URE 5.:31
Logic diagram for sequential circuit with JI(flip- flops

Section S.8 Design Procedu re 233

WI III

0'.

@l ee---'
FIGURE 5.32
State diag ram of three-bit binary counter

a slate diagram or slate table. From this point of view. the state diagram of a counter does not
have to show input and output values along the directed lines. The only input to the circu it is
the clock. and the outputs are specified by the present state of the Flip-flops. The next state of
a counter depends entirely on its present state, and the state trans ition occurs every time the
clock goes through a transition.

Table 5.14 is the state table for the three-bit binary counter. The three flip-flops are sym­
bolized by A 2• A]. and Ao. Binary counters are constructed most efficiently with T flip-flops
because of their complement property. The flip-flop excitation for the Tinputs is derived from
the excitation table of the T nip-flop and by inspection of the state transition of the present state
to the next state. As an illustration. consider the flip-flop input entries for row 001 . The pres­
ent state here is 00 1 and the next state is 010. which is the next count in the sequence. Com­
paring these two counts, we note that A 2 goes from 0 to O. so TA2 is marked with 0 because
flip-nap A2 must not change when a clock occurs. Also, A I goes from 0 10 I, so TAJis marked
with a I because this nip-flop must be complemented in the next clock edge . Similarly, Ao

goes from I to 0, indicating thai it must be complemented. so T AO is marked with a I . The last
row. with present state I I I. is compared with the first count 000, which is its next state. Going
from all ts to all O's requires that all three flip-naps be complemented.

Table 5.14
5tate Table for Three-Bit Counter

Present State Next State Flip-Flop Inputs

A, AI A, A, A, Ao T" TAl T"

0 0 0 0 0 I 0 0
0 0 I 0 I 0 0 I
0 I 0 0 1 I 0 0
0 I I I 0 0 I I
I 0 0 I 0 I 0 0
I 0 I I I 0 0 I
I I 0 I I I 0 V
I 1 1 0 0 0 I I

234 Chapter 5 Synchronous Sequential Logic

~ I

11 1001

AA1Au .,,
00 01 11 10

". .',

I'~J~f:
m,

0 . , ;1//

,11
., m, ~A" "'.

~}~;~,

A

A

FIGURE 5.33
Maps for three-bit binary counter

A,

FIGURE 5.34
logic diagram of three-bit binary counter

The flip-flop input equations are simplified in the maps of Fig. 5.33. Note thai TAO has t 's
in all eight minterms because the least significant bit of the counter is complemented with
each count. A Boolean function that includes all mlnterms defines a constant value of J. The
input equations listed under each map specify the combinational part of the counter. in­
cluding these funct ions with the three flip-flops, we obtain the logic diagram of the count­
er. as shown in Fig. 5.34. For simplicity, the reset signal is not shown, but be aware that
every design should include a reset signal.

PROBLEMS

Answers 10 problems marked with " appear at me end of the book . Where appropriate, a logic design
and its related HDL mode ling proble m are cross refere nced .

Note: For each problem that requ ires writ ing and verifying a HDL model. a lesl plan should be wrinen

to ide ntify which functional features are to be tested during the simulation and how the~' will be tested.
For example. a reset on the fly could be tested by asserting the rese t signal while me simulated

machine is in a state other than the reset state . The test plan is to guide the development of a t~t bench

that will imple ment the plan . Simulate the model. u.sing the test be nch. and verify mat the beha vior is

Problems 235

correct. If synthesis tools and an ASIC cell library are available. the Verilog descriptions developed for

Prob\ems 5.34-5.46 can be assigned as ">)'l'Ithesis exer cises. The gate-\e\'e\ circuit prod uced b)' the

synthesis tools should be simulated and com pared with the simulation results for the presynthesis

model .

5.1 The D latch of Fig. 5.6 is constructed with four NAN D gates and an inverter. Consider the fol­
lowing three other ways for obtai ning a D latch . and in eac h case draw the logic diagra m and
verify the circu it operation;

(a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be
needed .

(b) Use NOR gates for all four gates. Inverte rs may be needed .

(c) Usc four NAND gates only (without an inverte r). This can be done by con nect ing the output
of the upper gate in Fig. 5.6 (the gate that goe s to the SR latch) to the input of the lower gate
(instead of the inverter output).

5.2 Construct a JK flip-flop. using a D flip -flop . a two-t o-one-line multiplexer. and an inverte r.
(HDL-see Problem 5.34.)

s.J Show that the characteristic equation for the complement output of a JK flip-flop is

Q' (I + I) = J 'Q' + KQ

5.4 A PN flip -flop has four operations. clear 10 O. no change. com plement. and set to I . when inputs
P and N are 00. 01. 10. and II. respe ctively.

(a) Tabulate the characteristic table. (h)· Derive the charac teris tic equation.

(c) Tabulate the exci tation table. (d) Show how the PN flip-flop can beconverted
to a D flip-flop.

5.5 Explain the differences among a truth table. a state table . a characteristic table. and an excitation
table. Also. explain the di fference among a Boolean equation. a state equation. a characteristic
equation. and a flip-flop input equation.

5 .6 A sequential circuit with two D flip-flops A and B. two inputs x and y, and one output z is speci­
fied by the followin g next-state and output equat ions (HDL-see Problem 5.35);

A(t + I) = x 'y + x B

B(t + I) = x/ A + , .

, - A

(a) Draw the logic diagram of the circuit.

(b) List the stale tab le for the sequential circu it.

(c) Draw the co rrespond ing state diagram.

5 .7· A sequential circuit has one flip-flop Q. two inputs x and y, and one output S. It consists of a full­
adder circuit connected to a D flip-flop. as shown in Fig. P5.7. Derive the stale table and state
d iagram of the sequential circ uit.

5.S· Derive the state table and the state diagram of the sequential circ uit show n in Fig. P5.8. Explain
the function that the circ uit performs. (HOt-see Problem 5.36.)

236 Chapter S Synchronous Sequential Logic

Clar/c

c
,~[[--s,

Q

FIGURl P5 .7

18 ']A' A 8

~
c~ $j C~T_~"§J, T

I I

~ ~

YT
FIGURE PS.8

5 .9 A sequential ctrcvit ha.\IVioJK flip-flops A and 8 and one input x_The cecuu Is described b) lhe
follow ing flip- flop inpul equatjonc

J A "" x K A -B'

J B - x K. - A

(a)· Deri ve the ~tale equat ions A(t + I) and 8 (t + I) by !\Ub:.lituting the inpul equations fur the
J and K variables,

(b) Draw the stale diagram of the circun .

5 .10 A seq uential circuit h~ IwoJKfiip-flops A and 8 . lwo inpul>. J: and y. and one output :. The flip­
flop input equations and circuil outpur equation are

J A - Bx + B' ,.'

J . "" A'x

K A -= B'x}-'

K B "" A + X}-'

Problems 237

(a} Draw the logic diagram of the circuit.

(b) Tabulate the state table .

(c) ~ Derive the state equations for A and B.

5 .11 * Starting from stale 00 in the sta te diagram of Fig. 5. 16, dete rmine the state transiti ons and
output sequence that wi ll be genera ted when an input sequence of 0101 1011101 1110 is
applied.

5.1 2* Reduce the number of states in the fo llowing state table, and tabulat e the reduced state tab le:

Ne xt State Output

Present State X = 0 X = 1 X = 0 x = I

a f b 0 0

b d , 0 0

" f e 0 0

d , , I 0
, d c 0 0

f f b I I

g g h 0 I

h g u I 0

5 .1 3'" Startin g from slate 11 and the input sequence 0 11100100 I I . determine the output sequence for

(a) the state table of the previous problem and

(b) the reduced state table from the previous problem. Show thai the same output sequence is ob­
tained for both.

5.14 Substitute binary assignment 2 from Table 5.9 to the stales in Table 5.8, and obtain the binary state
table.

5 .15* List a state table for the JK flip -flop , using Q as the presen t and next state and J and K as in­
puts. Design the sequential circui t spec ified by the state table , and show that it is equivalent to
Fig.5. 12(a).

5 .16* Design a sequential circu it with two D flip. flops A and B and one input x_in.

(a) When x_ in = 0, the state of the circuit remains the same. When x_ in = I , the circuit goes
through the state transitions from 00 to 0 1. to II , to 10, back to 00, and repeats.

(b) When x_ ill = 0, the state of the circuit remains the same. When -e.,in = I , the circu it goes
through the state transitions from 00 to II , to 0 1, to 10, back to 00 , and repeats. (HDL-see
Problems 5.38.)

5 .17 Design a one-input, one-output serial 2's complementer. The circuit accepts a string of bits from
the input and generates the Z's complement at the output. The circuit can be reset asynchronously
to stan and end the opera tion. fHDL-see Problem 5.39.)

2 38 Chapter S Synchro n o us Sequential Logle

5 .18· Design a sequential circuit with two JK flip-flops A and B and two inputs Eand F. 1f E "" O.the
circui t rcrnainv in the same state regardless of the value o f F. When E "" 1 and F - I. the cir ­
cuit goes through the state transitions from 00 to 01. to 10. to 11. back to 00. and repeats. Whe n
E = I and F = O. the circuit goesthrough the state trans itions from 00 to 11. to 10. to Ol . back
to 00. and repeats. (HDL-see Problem 5.40.)

5 .19 A sequential circuit has three flip-fl op s A. B. and C: one input ",_in: and one OUtput y_out. The
stale diagram is shown in Fig. P5,19. Tbe circuit is to be designed by treating me unused states
as don't-care conditions. Analyze the circuit obtained from the design to determine the effect of
the unused states. (HDL- see Problem 5.4 1.)

(a)· Use D flip-flops in the design.

(b) Use JK flip- flops in the design,

0,0

001

I I I

1,0

0,0

FIGURE PS .19

0,0

5 .20 Design the sequential circuit specified by the sta te diagram o f Fig. 5.19. using T flip-flops.

5 .21 What is the main difference betwee n an initial statement and an a1" -a)1i stateme nt in Verilog HDL?

5.22 Draw the waveform generated by the following sta tements:

(a) Init ial begin
w= O; #15w= 1; #6Ow=O; #25w =1 ; #40w= O;

end

(bl initial fo rk
w =O; #15 w=1 ; #6Ow=O; #25w =1 ; #4Ow=O;

joi n

5 .2)- Con side r the following statements. assuming that RegA contains the value of 30 initiall)':

(a) RegA = 75;
RegS =RegA:

(b) RegA <= 75;
RegS <= RagA:

What are the values of RegA and RegB after execution ?

5.24 Write and \ c rif)' an HDL beh avioral descripnon o f a positive-edge-sensitive D fl ip· flop with

(a) acnve- jow a~)nchronous p«' K'1and clear. (Th is t)'pe of fl ip-flop i S~"lI in Fig. 11 .13.)

lb) active-low synduOt\OUs ptc'>C\ and deat" .

S.2S A special posuive-edge-triggered flip-flop has I WO inplllS D I and D1 and a control inpu l lhal
cbooees between the IWO. wrue and venfy an flD L behOls'iora llbcrip(ion of this flip-flop.

S.U Write and verify an i lDL bd lol \ioral de!;cription of the JK flip-Ilop. using an if-eh e statement ba!lC\l
on the s alue of the pre-em"'ate.

(a)-Consider the charac1erislk equation when Q .. Our Q .. 1

tb) Conside r how the J and K inpuls affect the outp ut o f the flip- flop at each clock lick.

5.27 Rewrite and s'eri fy the description o f HDL Exa mple 5.S by combining the Sla{e tra nsitions and
output into tine a lwlllli bloc k.

5.U Simulate the sequentia l cin:ui t sho wn in Fig . 5. 17.

(a) Write Ihe HDl tkM'riplion of the stale diagram (Le .. a behaviora l model).

(b) Write the HDLde scription of the circuit diagram (i.e .• a structural model).

(c) Write an Il Dl stimul us with the sequence 00. 0 I. I I. 10 of inputs . Verify that the response
is the same for hoth descriptions.

5 .29 wrne a behavioral de!>Cripliun o f the state mach ine describe d by the slate di agr am shown in
Fig. P5.19. wnre a le~1 benc h and verify the func uo naluy o f lhe dc:~ription.

5 .30'" Draw' the logic diagram for the "Cquentia l circu it de scribed by the following HOl module:

module SeCLCkl (Input A. B. C, Cl K, ou tput reg Q);
reg E;

a lways @ (posedge Cl K);
beg in

E <= A &B;
Q <= E IC;

end
endmodule

Wh at change-, if an)', lIlU ~1 be incfuded in Ihe circuit if the lavt twc statements use block ing in­

stead of nunblocking as"ignment?

5 .31 . How ~hou ld lhe dcscnpnon in Problem 5.30 be wn nen M) Ihal the circuit has the same behavior
when the a,,~ignmenb are made with = instead o f with < .. '!

5.32 Using an initial statement with ,I hc jtin ... end block . write a Vo:ri log de scription of the wave­
forms shown in Fig. P5.32. Rcpo:al using a furk ••• joi n block.

5 .33 Explain why it is importan t that the vtim ulus signals in a teet bench be synchronized to the inec­
rive edge of the clock of the sequentia l circuit that is 10 be tes ted ,

5.W Usi ng behavioral models fflr the D flip-fl op and the inverter, write and verif)' an HD l model of
the J·K flip-Ilop described in Prob lem 5. 2.

5.35 Write and veri ty an n OL model o f tbe sequential circuir described in Problem 5 .6.

240 Cha pter 5 Synch rono us Seque ntia l l ogi c

enable

A

B

C
D

E

F

I
01020

FIGURE P5 .32
Wavefo rms fo r Problem 5 .32

I
' 0 60

I
70

S.36 w rite and verify an HDl structural descri ption of the machine ha ving the circuit diagram
(sc hematic) shown in Fig . P5.8.

S.37 Write and verify HDl behaviora l descriptio ns of the stat e machines ..hewn in Fig. 5.25 and
Fig . 5.26. w rite a test bench 10co mpare the sta re sequence s and input-output behaviors o f the
two mac hines.

5 .38 Write and verify an HDl behavioral descript ion of the machi ne described in Problem ~ . 1 6.

5.39 Write and verify a behavioral description of the machine specified in Problem 5. 17.

5.40 Write and verify a behavioral descri ption of the machine ..pecified in Problem 5.JS.

5 .4 1 Write and ver ify a behaviora l descri ption of the machi ne speci fied in Problem 5. 19. (Him: See
the discus-ion of the default case item preceding HDl Example ~. 8 in Chapter ~ . I

5 .42 Write and verify an HDl structural desc ription of the circuit shown in Fig. ~i.2 9 .

5 .43 Write and verify an HDl behavioral descri ption o f the three -bit binarycounter shoy, n in Figure
5.3~.

5 .44 w rite and ver ify a verilo g model of aD flip- flop having synchronou.. reset.

5 .45 Write and verify an HDl behavioral description of the seq uence detector described in Figure
5.27

REFEREN C ES

1 . B HASKER. l . 1997. A Verilog HDL Primer. Allentown. PA: Star Galaxy Pres...

2. BHASKER.l . 1998. verilog HDL Symhesis. Alle ntown . PA: Star Galaxy Press.

References 241

3 . Cuam. r.1. D. 1999. Modeling. Synthesis, and Rapid Prororyping with Verilog HDL. Uppe r Sad-

dle River, ~J : Prentice Hall.

4 . DIET'>lEYl::R. D. L. 1988. Logic Design of Digital S.wellls. 3d ed. Boston: Allyn Bacon.
S. GA-lSKI. D. D. 1997. Principles of Dig/tlll Design. Upper Sadd le River, NJ: Prentice Hall.

6 . HW EOS. J. P. 1993. /ntrodIKtioll to Digital Logic Design. Reading. MA : Addison -wesley.
7. KATZ, R. H. 2005. Contemporary Logic Design. Upper Saddle River. NJ: Prentice Hall.

8 . !\1ASO, M. M.• and C. R. KIMI'.. 2005. Logic l.md Computer Design Fundamentals & Kilinx 6.3
Swdelll Edit/on, 3rd ed, Upper Saddle River, KJ: Prentice Hall.

9 . tee .sox, V. P.• H. T. NAGLE. J. D. IRWL"'. and B. D. CARROLL. 1995. Digital Logic Circuit Analy.
sis and Design. Englewood Cliffs. Nl : Prentice Hall.

10. PALr.; tn~AR, S. 1996. Verilog HDL: A Guide to Digital Design and Symhesis. Mount ain View,

CA: Sun Soft Press (a Pren tice Hall title).

11 . ROTH, C. H. 2004 . Fundomentais ofLogic Design, 5th ed . 51. Paul, M:-J: Brooks/Cole .
12. T Hm lAS, D. E., and P. R, MOORBY. 2002 . The verilog Hardware Description u mgl/(/ge, 6th ed.

Boston: Kluwer Academic Publishers.
13. WAKERLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddl e River. NJ:

Pren tice Hall.

Chapter 6

Registers and Counters

6 . 1 REGISTERS

A clocked sequentia l circ uit consists of a group of n ip-flops and comb inational gales con­
nected to form a fe edback path. The flip-flops are esse ntial because. in their absence. the
circuit reduces 10 a purely combinat ional circuit (provide d that there is no feedback among
the gates). A circuit with flip-flops is considered a sequentia l circuit even in the absence of
combinationa l gates. Circui ts that include flip-flops are usually classified by the function
they perform rather than by the name of the sequential circuit. Two such circuits are regis­
ters and counters.

A register is a group of flip-fl ops. each one of which is capable of storing one bil of
info rmation . An n- bit register consis ts of a group of II flip-flo ps capable of storing n bits of
binary informat ion. In additio n to the flip-flops, a regis ter may have combinational gates
that perform certain data-processing tasks. In its broadest defini tion. a register consists of
a group of flip-flops together with gates that affect thei r ope ration. The flip-flops hold the
binary information. and the gates determine how the informa tion is transferred into the
register.

A COllllfer is essentially a register that goes through a predetermined sequence of binary
states. The gates in the counter are connected in such a way as to produce the prescribed se­
quence of states. Although counters are a special type of register. it is common to differentiate
them by giving them a different name.

Various types of registers are available commercially. The simplest register is one that con­
sists of only nip-flops. without any gates. Figure 6.I shows such a register constructed with four
D-type flip-flops to form a four-bit data storage register. The common clock input triggers all
flip-flops on the positive edge of each pulse, and the binary data available at the four inputs are

Section 6.1 Registe rs 243

fiGURE. 6 .1
Four-bit register

I,

I ,

'II
T

I'
T

~
T

D
,

k~~'};i~~~:~i
l

Clock Clear

A.

A ,

transferred into the register. The four outputs can be sampled at any lime to obtain the binary
information stored in the register. The input Clear_b goes to the active-low R (reset) input of
all four flip-flops. When this input goes to O. all flip-flops are reset asynchronously. The Clear_b

244 Chapter 6 Registers and Counters

input is useful for clearing the register to all D's prior to its clocked operat ion. The R inputs must
be maintained at logic I during normal clocked operation. Note that. depending on the nip-flop.
either Clear. Cteas;b. reset. or resecb ca n be used to indicate the transfer of the register to an
all O's state.

Reg iste r with Parallel Load

Synchronous dig ital systems have a maste r clock ge nerator that supplies a co ntinuous train
of cloc k pulses. The pulses are applied to all flip-fl ops and registers in the syste m. The
master clock acts like a dr um that supp lies a consta nt beat to all pans of the sys tem. A sep­
arate control signal must be used to dec ide which register operation will ex ecute at each
cloc k pulse . The transfer of new informat ion into a reg iste r is referred to as loading or up­
dating the register. If all the bits of the reg ister are loaded simultaneo usly with a co mmo n
clock pulse. we say that the loading is done in parallel . A clock edge applied to the C in­
put s of the reg iste r of Fig. 6 .1 will load all four inputs in para llel. In this configuration. if
the co ntent s of the reg ister must be left unc ha nged . the inputs must be held constant o r the
clock mu st be inhibited fro m the circuit. In the first ca se. the data bus dri ving the register
would be unav ailable for othe r traffi c . In the second case. the clock can be inh ibited from
reach ing the register by controlling the clock input signa l with an enabling gate . However.
inserting gates into the clock path is ill advi sed because it means that logic is perfo rmed with
clock pulses. The insertion of log ic ga tes pro duce s uneven propagation delays between the
master cloc k and the inputs of flip-flops. To fully synchronize the sys tem. we must ensure
that all clock pulses arrive at the same time anywhere in the system. so that all flip-flops
tri gger simultaneo usly. Perform ing logic with clock pul ses insert s vari able del ays and may
cause the sys tem to go out of synchronism. For th is rea son . it is adv isab le to co ntrol the
operat ion of the reg ister with the D inputs. rather tha n co ntrolli ng the clock in the C inputs
of the flip-flops. Th is cre ates the effect of a gated cloc k. but without affe cting the clock path
of the circuit.

A four-bit data-storage reg ister with a load cont rol input that is d irected through gates and
into the D inputs of the flip-flops is shown in Fig. 6.2. The additional gates implement a two­
channel mux whose output drives the input to the regis ter with either the data bus or the ou t­
put of the register. The load input to the register de termines the action to be taken with each
clock pulse. When the load input is I. the data at the four external inputs are transferred into
the reg ister with the next positive edge of the cloc k. When the load input is O. the outputs of
the nip-flops are co nnected to their respec tive inp uts. The feedback co nnecti on from output
to input is necessary because a D flip-fl op does not have a "no change" cond ition. With each
clock edge. the D input determines the next state of the regi ster. To leave the output un­
cha nged. it is necessary to make the D input equa l to the present value of the output ti.e .. the
output circula tes to the input at each clock pulse). The clock pulses are applied to the C in­
puts without interruption. The load input determines whether the next pulse will accept new
information or leave the information in the regis ter intact. The transfer of informat ion from
the data inputs or the outputs of the register is done simultaneously with all four bits in response
to a clock edge.

Section 6.2 Shift Registers 245

f-J--- Ao

I" - - -----1f----t----fE2I

Load----1>~_,_-r>~__.

I ,----+- - - +- ---[!I t-J-- - A'

f-~-- A,

C/Q"k ---------- - - - - - - - - - - ---!
FIGURE 6 .2
Four-bit register with parallel load

6 .2 SHIFT REG ISTERS

A register capable of shifting the binary information held in each cell to its neighboring cell ,
in a selected direction. is called a shift register. The logical configuration of a shift regis ter
consists of a chain of flip-flops in cascade. with the output of one flip-flop connected to the input
ofthe next flip-flop.Allllip-flops receive common clock pulses, which activate the shift of data
from one stage 10the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 6.3. The
output of a given flip-flop is connected to the D input of the flip-flop at its right. This shift reg­
ister is unidirectional. Each clock pulse shifts the contents of the register one bit position to the

246 Chapter 6 Reg isters and Counters

Serial _"'--j
input

e L K - <------+---- ---'--------'

FIGURE 6 .3
Four-bit shift reg ister

SO Serial
output

right.The configuration does not support a left shift. The serial il/flut determines v. hat goes into
the leftmost flip-flop during the shift. The serial output is taken from the output of the rightmost
flip-flop. Sometimes it is necessary to control the shift so thai it occurs only with certain pulses.
but not with others. As with the data register discussed in the previous section. the clock's sig­
nal can besuppressed by gating the clock signal to prevent the register from shifting.A preferred
alternative in high-speed circuits is to suppress the clock action. rather than gate the clock sig­
nal. by leaving the clock path unchanged, but recirculating the output of each register cell back
through a two-channel mux whose output is connected to the input of the cell. When the clock
action is not suppressed. the other channel of the mux provides a data path to the cell.

It will beshown later that the shift operation can becontrolled through the D inputs of the fl ip­
Flops rather than through the clock input. If, however. the shift register of Fig. 6.3 is used. the shift
can becontrolled with <In input by connecting the clock through an AKD gate. Note that the sim­
plified schematics do not show a reset signal. but such a signal is required in practical designs.

Serial Transfer

A digital system is said to operate in serial mode when information is transferred and manip­
ulated one bit at a time. Information is transferred one bit at a time by shifting the bib out of
the source register and into the destination register. This type of transfer is in contrast to par­
allel transfer. whereby all the bits of the register are transferred at the same time.

The serial transfer of information from register A to register B is done with shift registers. as
shown in the block diagram of Fig. 6.4(a). The serial output (SO) of registerA is connected to the
serial input (51)of register B. To prevent the loss of information stored in the source register, the
information in register A is made to circulate by connecting the serial output 10 it, serial input.
The initial content of register B is shifted out through its serial output and is lost unless it is trans­
ferred to a third shift register.The shift control input determines when and how many times the reg­
isters are shifted. For illustration here, this is done with an A.~D gate that allows clock pulses to
pass into the eLK terminals only when the shift control is active. (This practice can be problem­
atic because it may compromise the clock path of the circuit. as discussed earlier.)

Suppose the shift registers have four bits each. Then the control unit thai supervises the
transfer of data mu...t bedesigned in such a way that it enables the !ohift registers. through the
shift control signal. for a fixed time of four cloc k. pulses. This design is shown in the timing
diagram of Fig. 6.4(b). The shift control signal is synchronized with the clock and changes
value just after the negative edge of the clock. The next four clock pulses find the shift control
signal in the active slate. so the output of the AND gale connected to the eLK inputs produces

Section 6.2 Shift Registe rs 247

CL K

SO Sf

-':'

(a) Block diagram

Clock

T1 T2 TJ T~

(b) Timing diagram

1_ _ -

CLK - - - _ _ IUU1J1L _

Shift _

contro l

FIGURE 6.4
Serial t ran sfer from regis ter A to register 8

four pulses: 71•Ti .T3. and h Each rising edge of the pulse causes a shift in both registers. The
fourth pulse changes the shift contral to 0, and the shift registers are disabled.

Assume that the binary content of A before the shift is IOJI and that of B is 0010 . The se­
rial transfe r from A to B occurs in four steps. as shown in Table 6.1. With the first pulse. T1•
the rightmost bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost
position of A. At the same time, all bits of A and B are shifted one position to the right. The pre­
vious serial output from B in the rightmost position is lost, and its value changes from 0 to I.
The next three pulses perform identical operations. shifting the bits of A into B. one at a time.
After the fourth shift. the shift control goes to 0 and reg isters A and B both have the value
10 II . Thus. the contents of A are copied into B, so that the contents of A remain unchanged.

Table 6 .1
Serial-Transfer Example

Shift Reg ist e r A Shift Re g ist e r BTiming Pulse

Initial value
Afte r T1
Afte r T2
After T3
Afte r T4

, ,
' I, Q, " ' ~ 0, "--,

'-.-> I- I ~O- 1~ l_ D

I I I 0 I I
o 1 I I ' 0 1
, 0 I I 0

i , 0
o '- 1
o 0
, 0, ,

o

c
c

'-' .---

248 Chapter 6 Registers and Counters

The difference betwee n the serial and the parallel mode of operation should be apparent
from this example. In the parallel mode, information is available from all bits of a register and
all bits can be transferred simultaneo usly during one cloc k pulse. In the serial mode. the reg­
isters have a single serial input and a single serial output. The information is transferred one
bit at a time while the registers are shifted in the same direction.

Serial Addition

Operations in digital computers are usually done in parallel because that is a faster mode of op­
eration. Seria l operations are slower because a data-path operation takes several clock cycles.
but serial operatio ns have the advantage of requiring fewer hardware components. In VLSI
circuits. they require less silicon area on a chip. To demonstrate the serial mode of operation.
we present the design of a serial adder. The parallel counterpart was presented in Section -loA.

The two binary numbers to beadded serially are stored in two shift registers. Beginning with
the least significa nt pair of bits. the circuit adds one pair at a time through. a single full-adde r
(FA) circuit. as shown in Fig. 6.5. The carry out of the full adder is transferred to a D flip-flop,
the output of which i.. then used as the carry input for the next pair of significant bits. The sum
bit from the S ou tput of the full adder could be transferred into a third shift register. By shift­
ing the sum into A while the bits of A are shifted out. it is possible to use one register for sror­
ing both the augend and the sum bits. The seria l input of register 8 can be used to transfer a
new binary number while the addend bits are shifted out during the addition.

Shift
control

CL.I<

Serial
input

I
/~~:"z:~:it;;q!~St? 1

$hifu¢gister,A
I-,~" ",~":*,~:;;;~;~" ,,!,,

• ' S f-
Ij ';i(~FA !;

r-«
Ii.·;,/..ijll. ' '

I-
~; 1///#/4/'1,S() I z .~'1 C

;S~'~~;~~~~I~'~

Q ~
D

C

Clea r

~

:w.~~.t·
"--'-'

FIGURE. 6 .5
SerIal adder

Section 6.2 Shift Registe rs 249

The opera tio n of the serial add er is as follows: Initially. register A hold s the augend, regis­
ter B holds the adde nd. and the carry flip-flop is cleared to O. The outputs (SO) of A and B pro­
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides
the input carry at z. The shift co ntrol enables both registers and the carry flip-flop . so at the next
cloc k pul se. both registers are shifted once to the righ t, the sum bit from S enters the leftmost
flip -flop of A. and the output carry is tra nsferred into flip -flo p Q. The shift contro l enables the
reg isters for a number of clock pulses equal to the number of bi ts in the registers. For ea ch suc­
cee di ng clock pul se, a new sum bit is transferred to A. a new carry is tran sferred to Q, and both
register s are shifted once to the right. Th is process continues until the shift control is disabled.
Thu s, the addition is accomplished by passing each pair of bits together with the pre vious carry
th rough a sing le full -adder circuit and transferri ng the sum, one bit at a tim e, into reg ister A.

Initially, register A and the carry flip -flop are cleared to 0, and then the first number is added
from B. While B is shifted through the fu ll adde r, a second number is transferred to it through
its seria l inpu t. The seco nd number is then added to the co ntents of regis ter A whi le a third
number is trans ferre d seria lly into register B. Th is can be repeated to perform the addition of
two, three, or more four-bit numbers and accumulate their sum in register A.

Comp ari ng the seria l adder with the parallel adder described in Section 4.4 , we note several
differences. The para lle l adder uses registe rs with a parallel load. whereas the serial adder use s
shift registers. The number of full -adde r circuits in the parallel adder is equal to the number of
bits in the binary numbers. whereas the serial adder requ ires only one full -adder circ uit and a
carry flip-flop. Excluding the registers. the parallel adder is a co mbinational circ uit, whereas the
serial adder is a sequential cir cuit which consis ts of a full adder and a flip-flop that stores the out­
put carry. Thi s design is typic al in serial operations because the result of a bit-time operation may
depend not only on the present inputs, but also on previou s inputs that must be stored in flip-flops.

To show that serial operations can be designed by means of sequential circuit procedure . we
will redesign the seria l adder with the use of sta te table. First. we ass ume that two shift regi s­
ters arc availa ble to store the binary numbers to be added seria lly. The seria l outputs from the
registers are de signated by x and y. The sequentia l circ uit to be designed will not include the
shift registers , but they will be inserted later to show the co mplete circuit. The sequential cir­
cuit proper has the two inputs, x and y. that provi de a pair of significant bits, an output 5 that
ge ne rates the sum bit , and flip-fl op Q for stori ng the carry. The slate tab le that specifies the se­
quential ci rcuit is listed in Tab le 6.2. The present state of Q is the present value of the carry.
T he prese nt carry in Q is add ed together with inputs .r and y to produce the sum bit in output
S. The nex t state of Q is equal to the output carry . Note that the state table entri es are ide ntical
to the ent ries in a full-adder truth tab le, except that the input carry is now the present state of
Q and the output carry is now the next state of Q.

If a D flip -fl op is used for Q, the circuit red uces to the one show n in Fig . 6.5 . If a JK flip ­
flo p is used for Q, it is nece ssary to de termine the va lues of inputs J and K by referring to the
excita tion tabl e (Table 5 .12). Thi s is done in the last two co lum ns of Tab le 6.2. Th e two flip­
flop input equat ions and the output equation ca n be simplified by means of maps to

JQ = .ry

KQ = x 'y' = (x + y) '

5 = x EB y EI1 Q

25 0 Cha pte r 6 Reg isters and Counters

Table 6.2
Stat,. TobIt for Strial Add«

Present St ate Inputs Next State Output flip-Flop lnpub

Q • , Q • J. K.

0 0 0 0 0 0 X
0 0 I 0 I 0 X
0 I 0 0 I 0 X
0 I I I 0 I X
I 0 0 0 I X I
I 0 I I 0 X 0
I I 0 I 0 X 0
I I I I I X 0

Shirl
control

eLK

Serial
inpUI

L .1/ SO .r
Shifl regi~lc:r A y.

~
S / SO y L J.- Shifl rCl isler 8

- I> e

Q ./ "
am

FICUR1 6 .6
SH ond form of serial adder

The ci rcuit d iagram is shown in Fig. 6.6. The c ircuit con..i..rs of three gales and a l K n ip-flop.
The two !'.hift registers are included in the diagram to show the complete serial adder. S Ole

that o utput 5 is a function not only of .r and)'. but also o f the present sta te of Q. The ne xt "tate
of Q is a function of thc present state of Qand of the values 0 (.(and y thai come out of the ..e­
rial output s of the ..hift registers.

Universal Shift Register

(fth e flip-flop outpuus of a ..hift register are accessible. then information entered serialI)' b)' "hiIt­
ing can be taken out in parallel from the outputs of the nip-Oops. If a parallel load capability
is added to a !>hift reg ister. then data entered in parallel can be taken OUt in serial fa..hion by
shifting the data stored in the register.

Sectton 6 .2 Shift Registers 251

Some shift regi sters provide the nece ssary input and outputtermin als for parallel transfer.
Th ey may also have both shift-right and shift- left capabilities. The most general shift register
has the following capabilities:

l. A d ear cont rol to clear the register to O.

2. A clock input to synchro nize the ope rations.

3. A shijt-right control to enable the shift-right operation and the serial input and ompllt lines
associated with the shift right.

4 . A sl,i/I-lt/t <,;ontr.,l to enable the shrt t- le tt oper at ion and the serialsnpui and ot/ lp ut ut'o~ s

associated with the shift left.

5. A pa ralle l-load control to enable a parallel transfer and the n input lines associated with
the parallel transfer.

6. 1/ para llel output lines.

7. A co ntrol state that leaves the information in the register unchanged in response to the
clock. Other shift regis ters may have only some of the preced ing functions. with ut least
o ne shift ope ra tion.

A register capable of shifting in one d irection on ly is a unidirect ional shift register. One
that can shift in both directions is a bidi rectional shift register. If the reg ister has both shifts and
parallel-load capabilities. it is referred to as a universal 5hift register.

The block diagram symbol and the circuit diagram of a four-bit universal shift register that
has all the capabilities j ust listed are shown in Fig. 6.7. The circuit consis ts of four D fli p-flops

andfour multiplexers. The four multiplexershave twocommonselectioninputs 51 andsQ. Input
a mcacnmutnptexcr i s ~tcO;: IC,j whcn ~ 1~O - 00. inp u t I i ~ ~CkC1CU w hen .l'1.l"O - 0 1, ami si m ­

ilarly for the other two inputs. The selection inputs cont rol the mode of operation o f the regis­
ter accord ing to the function entries in Table 6.3. When 5150 = 00 , the present value of the
register is appli ed to the D inputs of the flip -flops. Thi s cond ition forms a path from the output
of each flip-flop into the input o f the same flip-flop. so that the output recirculate!'> to the input
in this mode of ope ration. The next clock edge transfers into each flip-flop the binary value it held
previously. and no change of state occurs. When 5 \50 = 0 1. terminal I of the multiplexer inputs
has a path to the D input s of the flip-flops. This causes a shift-right ope ration, with the serial
input transferred into flip-flop A3. When 5150 = 10. a shift-left operation results, with the other
serial input going into flip-flop A o. Finally. when 51.1'0 = II . the binary information on the par­
allel input lines is transferred into the register simultaneously during the next clock edge. Note
that data enters M SH_in for a shift-right operation and enters LSH_ill for a shift-left opera tion.

Stnft registers are ofte n used to interface digital systems situated remotely fro m each other.
For exa mple. suppose it is necessary to transmit an n-bit qu antity between two points. If the
distance is far. it will beexpensive to use" lines to transmit the II bits in para llel. It is more eco­
nomical to use a single line and trensrmt the info rmation serially, one bit at a time. T he trans­
mitter acce pts the n-bit da ta in parallel into a shift register and then transmi ts the data serially
along the co mmon line. Th e receiver accepts the data serially into a shift register. When all "
bits are recei ved , they can be taken from the outputs of the register in parallel. Th us, the tra ns­
mitter performs a parallel -to-serial conve rsion of data and the receiver does a se rial-to-parallel
conversion.

252 Chapter 6 Registers and Counters

eLK

l--- t., t. t..

rc c c c
V D V V

',- ' x l ' X I , X I 4X I

'0 -
MUX MUX ~I UX MUX

, 2 I 0 , 2 I 0 , 2 I 0 J 2 1 0

I I I I I I L

Serial Serial
input fur L..- inpul for

shift- right shift-left
I,

FIGURE 6.7
Four-bit universal shift register

Parallel inputs

(b)

I , I.

Section 6.3 Ripple Counters 253

Table 6.3
f unction Tabf~ for th~ RftJi~ t~r of f iq. 6.7

Mode Con trol

" .. Reg ister Operati on

0 0 S o change
0 I Shift right
I 0 Shift left
I I Parallel load

6 .3 RIPPLE COUNTERS

A register that goes throug h a prescribed sequence of stales upon the application of input pulses
is called a COl/nttr. The input pc tses may be clock pulses. or they may originate from some
external source and may occur al a fixed Interva l of time or at random . The sequence of states
may follow the binary number sequence or any other sequence of slates. A cou nter that follows
the binary number sequence is ca lled a binary COl/flier. An n-bit binary Counter con sists of n

tlip-tlops andcancouminbinary from 0 through 2" - J.
Count ers are available in two categories: ripple counters and synchronous counters. In a

ripple co unter. a fl ip-flop output tran sition serves as a source for trigg ering other nip-flops . In
other words, the C input of some or all flip-flops are triggered. not by the common clock pulses.
but rather by the transition that occurs in othe r flip-flop outputs. In a synchronous counter. the
C input s of all flip-flops receive the common clock. Synchronou s counters are prese nted in
the next two sec tions. Here. we present the binary and BCD ripp le counters and ex plain their
operatio n.

Binary Ripple Counter

A binary rip ple counter consis ts of a series connect ion of com ple menting flip-fl ops. with
the o utput of eac h flip- flop connec ted to the C input of the ne xt higher order flip-flop. Th e
flip-flo p hold ing the least significant bit recei ves the incoming count pulses. A co mple­
menting flip-flo p can be obtained from a l K fli p-flop with the 1 and K input s tied together
or from a T flip-flop. A third possibility is to use a [) flip-flop with the comp lement output
connected to the D input. In this way. the D input is alway s the complement of the present
stale. and the next clock pulse will cause the flip -flop to complement. The log ic diagram of
IWOa-bit binary ripp le counters is sho wn in Fig. 6.8 . Th e counte r is constructed with co m­
plementing flip-flop s of the T type in part (a) and J) type in part (b). The o utput of each flip­
flop is connec ted to the C input o f the nex t flip-flop in sequence. The flip-flop hold ing the
least significant bit receives the incoming count pulses. The T inputs of all the flip-flop s in
(a) are connected to a permanemlogic I , making each flip-flop complement if the signal in
its C input goes throug h a negative transition. The bubble in fron t of the dynamic indicator
symbol next to C indicates that the flip-fl op s respond 10 the negative-ed ge transi tion of the

254 Chapter 6 Registers and Counters

H - - A,

Count

A,

A,

} ti;
'oj!,:..

~
C R ,;,~,

i:
T

'~

'--< >C ,:I
R "
?

i\' ':;0 .•',

:Ill
'--< '."", 'eilb- c ",,:

·.:" R .~.,

[\ib:-:·;.;I
";,~..,,'1.

L. t>cR ;;

Logic I

Cmm

Reset Resel

(a) Wilh T nip·flops (b) Wilh D nip-flops

f1(;URE 6 .8
four-bit binary rtpple counter

Sect ion 6.3 Ripp le Counters 255

Table 6.4
Binary Count Sequence

A, A, A, A.

a a 0 0
0 a 0 1
a 0 1 a
a a 1 1
a 1 a a
0 1 0 1
0 1 1 a
0 1 1 1
1 0 a 0

input. The nega tive transition occurs when the output of the previous flip-flop to which Cis
connected goes from 1 to O.

To understand the opera tion of the four-bit binary ripple counter, refer to the first nine binary
numbers listed in Table 6.4 . The count st,U1Swith binary 0 and increments by I with each count
pulse input. After the count of 15, the counter goes back to 0 to repeat the cou nt. The least sig­
nificant bit. Ao• is complemented with each count pulse input Every time that Ao goes from
1 to O. it complements AI. Every time that Al goes from I to 0, it complements A2. Every
time that A2 goes from 110 0, it complements A 3. and so on for any other higher order bits of
a rippl e counter. For example, consider the trans ition from count 001110 0 1011 Ao is comple­
mented with the co unt pulse. Since Aogoes from I to 0, it triggers A I and complements it. As
a result. A 1 goes from 110 O. which in tum comp lements A ~ . changing it from 0 to I. A2does
not trigger A). because A2 produces a positive transition and the flip-flop responds only to
negative transitions. Thus, the count from 00 11 to 0100 is achieved by changing the bits one
at a time, so the count goes from 0011 1000 10, then to 0000, and finally to 0 100. The flip-flops
change one at a time in succession, and the signal propagates through the co unter in a ripple
fashion from one stage to the next

A binary counter with a reverse count is called a binary countdown counter. In a count­
down counter, the binary count is decremented by I with every input count pulse. The count
of a four-bit countdown counter starts from binary 15 and continues to binary co unts 14, 13.
12, .. .• 0 and then back to 15. A list of the count sequence of a binary countdown counter shows
that the least significant bit is complemented with every count pulse. Any other bit in the
sequence is complemented if its previous least significant bit goes from 0 to I . Therefore. the
diagram of a binary countdown counter looks the same as the binary ripple counter in Fig. 6.8,
provided that all flip-flops trigger on the positive edge of the clock . (The bubble in the C in­
pUIS must be absent.) If negative-edge-triggered flip-flops are used, then the C input of each
flip-flop must beconnected to the complemented output of the previous flip-flop. Then, when
the true output goes from 0 to I. the complement will go from 1 to 0 and complement the next
fl ip-flop as required,

256 Chapt er 6 Regist er s and Counters

FIGURE 6 .9
State diagram of a deci mal BCD counte r

BCD Ripple Counter

A decimal counter follows a sequence of 10 states and returns to 0 after the co unt of9. Such a
counter must have at least four flip-flops to represent each decimal digit. since a decimal digit
is represented by a binar y code with at least four bits. The sequence of stales in a decimal
counter is dictated by the binary code used to represent a decimal digit. If BCD is used. the se­
quence of slates is as shown in the state diagram of Fig. 6.9. A decimal counter is similar to a
binary counter. except that the state after 100 1 (the code for decimal digit 9) is ooסס (the code
for decim al digit 0).

The logic diagram of a BCD ripple co unter using 1K flip-flops is shown in Fig. 6. 10. The
four outputs are desig nated by the letter symbol Q. with a numeric subscript equ al to the bi­
nary weight of the corresponding bit in the BCD code. NOEe that the output of QJ is applied 10

the C inputs of both Q2 and Qs and the output of Q2 is applied to the C input of Q-I ' The 1 and
K input s are connected either to a perm anent I signal or to outputs of other flip-flops.

A ripple counter is an asynchronous sequential circuit. Signals that affect the flip-tlop tran­
sition depend on the way they change from I to O. The operation of the counter can be ex­
plained by a list of conditions for flip-flop transitio ns. These conditions are deri ved from the
logic diagram and from know ledge of how a l K flip-flop operates. Remembe r thai when the
Cinput goes from Ito O. the flip-flop is set if 1 = I. is cleared if K = I . is compl emented if
1 = K = I. and is left unchanged if 1 = K = O.

To verify that these conditions resu lt in the sequence requ ired by a BCD ripp le counter , it
is necessary to verify that the flip-flop trans itions indeed follow a sequence of states as spec­
ified by the state diagram of Fig. 6.9. Ql changes state afte r each clock pulse. Q~ comp lements
every time Q l goes from I 10 O. as long as Qs = O. When Qs becom es 1.Q~ remains at O. Q4
complements every time Q2 goes from I to O. Qs rema ins at 0 as long as Q~ or Q-I is O. When
both Q2and Q4 become I. Q8complements when QJ goes from I to O. Qs is cleared on the next
transition of Qj.

The BCD counter of Fig. 6.10 is a decade counter. since it counts from 0 to 9. To count in dec­
imal from 0 to 99, we need a two-decade counter. To count from 0 to 999. we need a three-decade
counter. Multiple decade counters can beconstructed by connecting BCD counters in cascade,
one for each decade. A three-decade counter is shown in Fig. 6.11. The inputs to the second and
third decades come from Qs of the previous decade. When Qs in one decade goes from I 10 O. it
trigger s the count for the next higher order decade ",'bile its own decade goes from 9 10 O.

Section 6.3 Ripple Counters 257

co- J 1-.-
c_, c

~ K

J '. :"1-/ .

- rt~~\~\f

- J

C

~ X

t..,
J

C

- xc' ~

Q,

Q.

Q.

FIGURE 6. 10
BCD ripple counter

Logic I

258 Chapter 6 Registers and Counters

Counl
pulses

HY digit 10\ digit 100 digi t

FIGURE 6 .11
Bloc k diagram of a three-decade dec imal BCD counter

6 . 4 SYNCHRONOUS COUNTERS

Synchronous counters arc different from ripple counters in that clock pulses arc applied to the
inputs of all flip-flops. A common clock triggers all flip-flops simultaneously. rather than one
at a time in succession as in a ripple counter. The dec ision whether a flip- flop is to be
complemented is dete rmined from the values of the data inputs. such as T or J and K at the time
of the cloc k edge. If T ::: 0 or j ::: K ::: O. the flip-flop doe s not change state. If T ::: I or
J ::: K ::: I. the flip-flop co mplements.

The design proced ure for synchronous counters was presented in Section 5.8. and the design
of a three-bit binary counter was carried out in conjunction wi th Fig. 5.31. In this section. we
present some typical synchronous counters and explain their operation .

Binary Counter

The design of a synchronous binary co unter is so simple that there is no need to go through a
sequential logic design process. In a synchronous binary counter. the flip-flop in the least sig­
nificam position is complemented with every pulse . A flip-flop in any other position is com­
plemented when all the bits in the lower significant positions arc eq ual to I . For example. if
the present state of a four-bit counter is A3A2AtAo ::: 00 11 . the next co unt is 0100. Ao is al­
ways co mplemented. A I is complemented beca use the present state of Ao ::: I . A2 is comple­
mented because the present Slate of AlAo::: I I. Howe ver. A3 is not complemented. because
the present state of A2A] AO ::: 0 11. which does not give an a11- I 's co ndition.

Synchronous binary counters have a regular pattern and can be constructed with comple­
menting flip-flops and gates. The regular pattern can be seen from the four-bit counter depicted
in Fig. 6.12. The C inputs of all flip-flops are connected to a common clock . The co unter is
enabled with the count enable input. If the enable input is O. all j and K inputs arc equal to 0
and the clock does not change the state of the counter. The firs t stage. Ao-has its J and K equal
10 I if the counter is enabled. The other j and K inputs are equal to I if all previous least sig­
nificant stages are equal to I and the count is enabled. The chain of AND gates generates the
required logic for the J and K inputs in eac h stage. The counter can be extended to any num­
ber of stages. with each stage having an additional flip-flop and an Af' O gale that gives an
output of I if all previous flip-flop outputs are I.

Section 6.4 Synchronous Counters 259

Count enable

J

- !>c

K

---l

~Ot,;t;,
-~!;{)Y*f

K;{ Y!

C
J

- >C.
K

---l

J

- I>C
IC ..

I j- T

A,

o next stage

FICURE 6. 12
Four-bit synchronous binary counte r

e LK

260 Chapter 6 Regi sters and Counters

Note that the flip-flops trigger on the positive edge of the clock . The polarity of the clock
is not essential here. hut it is with the ripp le counter.The synchronous counter can be triggered
with either the positive or the negative clock edge. The complementing flip-flops in a binary
counter can be of either the JKIYpe, the Ttype, or the D type with XOR gates. Theequivalency
of the three types is ind icated in Fig. 5 .13.

Up-Dow n Bina ry Counter

A synchronous countdown binary counter goes through the binary states in reverse order, from
1111 down ooסס10 and back to 1111 to repeat the count. It is possible to design a countdown
counter in the usual manner, but the result is predictable by inspection of the downward binary
count. The bit in the least significant position is comple mented with each pulse . A bit in any
other position is complemented if all lower significant bits are equal to O. For exam ple, the next
state after the present slate of 0 100 is 00 11. The least significant bit is always complemented.
The second significa nt bit is co mplemented because the first bu is O. The third significant bit
is complemented because the first two bits are equal to O. But the fourth bit does not change,
because nOI all lower significant bits are equa l to O.

A countdown binary counter can be construc ted as shown in Fig. 6 .12, except that the in­
puts to the AND gates must come from the complemented outputs. instead of the normal out­
puts, of the previous flip-flops. The two operations can be combined in one circui t to fonn a
counter capable of counting either up or down. The circuit of an up-down binary counter using
T flip-flops is shown in Fig. 6.13. It has an up control input and a down control input. When
the up input is I. the circuit counts up. since the T inputs receive thei r signals from the values
of the previous normal outputs of the flip-flops. When the down input is I and the up input is
0, the circuit counts down, since the complemented outputs of the previous flip-flops are ap­
plied to the Ti nputs. When the up and down input s are both 0, the circui t does not change state
and remains in the same count. When the up and down inputs are both I. the circuit counts up.
This set of conditions ensures that only one operation is perfo rmed at any given time. S Ole that
the up input has priority over the down input.

BCD Counter

A BCD counter counts in binary-coded decimal from ooסס 10 1001 and back 10 ooסס . Because
of the return 100 after a count of 9, a BCD counter doe s not have a regular pattern. unlike a
straight binary count. To derive the circuit of a BCD synchronous counter. it is necessary 10 go
through a sequential ci rcuit design procedure.

The stale table of a BCD counter is listed in Table 6.5.The input conditions for the Tfli p-f1ops
are obtained from the present- and next-stale conditions. Also shown in the table is an output y.
which is equal 10 I when the present stale is 100 1. In this way.yean enable the count of the next­
higher significant decade while the same pulse switches the present decade from 100 1 to (XX)().

The flip-flop input equations can be simplified by mea ns of maps. The unused stares for
minterms 10to 15 are taken as don 't-care terms. The simplified functions are

Section 6.4 Synchronous Counters 261

Up-~---------~

,:-.....
c ::·

.?2s·:· .::

1~~~:%,;.

!-__!.~I;"t. ----~- A ,

1-__.t>If-------A ,

eLK

FIGURE 6 .11
Four-bit up-down binary counter

262 Chapter 6 Registers and Counters

Table 6 .S
Sto te Table for BCD Counter

Present St ate Next State Output Fllp.Flop Inputs

Qs Q., Q, Q. Qs Q., Q, Q. r TQs TQ., TQ, TQ.

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0 1 1
0 1 0 0 0 1 0 1 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 1
0 1 1 0 0 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 1 1 1
1 0 0 0 1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 1 0 0

TQ4 = Q2Ql

TQ8 = QIIQl + Q-lQ2Ql

)' = QSQI

The circuit ca n easily be drawn with four T fhp-flops. five AND gates, and one OR gate.
Synchronous BCD counters can be cascaded to form a counter for decimal numbers of any
length.The cascading is done as in Fig. 6.1I , except that output), must beconnected 10the count
input of the next-higher significant decade.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a para llel-load capability for trans­
ferring an initial binary number into the counter prinr to the count operation. Figure 6.1~ shows
the lop-level block diagram symbol and the logic d iagram of a four-bit regis ter that has a par­
alle lload capability and can operate as a counter. when eq ual to I . the input load co ntro l d is­
ables the count operation and causes a transfer of data from the four data inputs into the four
flip-flops. If both contro l inputs are O. clock pulses do not change the state of the register.

The carry output becomes a 1 if all the flip-flops are equal to I while the count input is en­
abled. This is the condition for complementing the flip-flop that holds the next significant bit.
The carry output is useful for expanding the counter to more than four bits. The speed of the
co unter is increased when the carry is generated directly from the outputs of all four flip-flops.
because of the reduced de lay for generat ing the carry. In going from state II I I to lXXXI. only
one gate delay occurs. whereas four gate delays occur in me AND gate chain shown in Fig. 6.12.
Similarly. each flip-flop is associa ted with an AND gate that receives all previous flip-flop
outputs directly instead of connecting the AND gates in a chain.

The ope ration of the co unter is summarized in Table 6.6. The four control inputs-Clea r.
eLK. l.ood. and GJ//Ilt-determine the next state. The Clear input is asynchronous and. when
equal to O. cause!'> the co unter to be cleared regard less of the presence of cloc k pulses or other

Section 6.4 Synchronous Counters 263

CO""==;=iL_ _ ~l.ood I

~Bil Binary CO\IfIle r

A,

A,

()a

.J
- -{) ~

i> ~
<, ---.,.

I !,h:=
-{)

--j (;s
I L-- L.--

~ - -
'------- J1--j -L J

c
1"1>~ H '\ K

t-

--]\ r-t-t-

'--

~
J

C

--r K
-{)

!---rl. ;--

~J
J

fitt ~ c '

4® 22/~
;ij V c..o,;::.v

,," C

I,

Lood

Cll'ur
cu:

Count

(bi

FIGURE 6 .14
Four-bit binary counter with paraltelload

264 Chapter 6 Regi sters and Counters

Table 6 .6
Function TobIe for the Counter ofFig. 6.14

Clear e lK LOAd Co unt Functio n

0 X X X Clear to 0
I 1 I X Load inputs
I I 0 I COUn! ne xt binary ~tate

I I 0 0 No change

inputs. Th is re lat io nship is ind icated in the table by the X entri es. which symbolizedon't-care
co nd itions for the other inputs. The Clear input must be: in the I state for all other operations.
With the Load and Count inputs both at O. the outputs do not change. even when clock pulses
are applied .ALoad input of I causes a transfer from inputs 10-/3 into the register during a pos­
itive edge of CLK. The input data are loaded into the register regardless of the value of the
Count input. because the COIlIIt input is inhibited when the Load input is enabled. The Load
input must be 0 for the Count input 10contro l the operation of the count er.

A counter with a parallel load can be used to generate any desired count sequence. Figure6.15
shows two ways in which a ccunrer with a parallel load is used to generate me BCD coum. ln each
case, the Countcontrol is sct to I 10 enable the count throughthe eLK input. AI'\(). recall thaI till:
load control inhibits the count and mal me d ear operation is independent ofother control input' .

The AND gate in Fig. 6.15(a) detects the occurrence of state 1001. The co unter is initially
cleared to O. and then the Clear and Count inputs are set to I. so thecounter isactiveat all times.
As long as the output of the AND gale is O. each positive-edge clock Increments the counter by I.
When the o utput reaches the co unt of 1001. both Ao and A3become I. making theoutput of the
AND gate equal to I. This condition activates the Loadinput therefore. on the next clock edgethe
register doe s not count. but is loaded from its four inputs. Since all four inputs areconnected to logic
O. an all-D's value is loaded into the register following the count of 100 1. Thus. the circuit goes
through the count from 0000 through 1001 and back to 0000. as is required in a BCD counter;

In Fig . 6. l5(b). the NAND gate detect s the count of 1010. but as soon a.. thi..count occ urs.
the reg!ster is cleared. Th e co unt 10 10 has no chance of Slaying on for any appreciab le time.

Loud

(a) Using the load input

C OIIIII z 1

Clrur - I

CIt.'IIT

Counter
of Fig. 6.14

I I I t
Inpu ts have no effect

(b) Using the clear inpu t

COImr - I

LOdd - O

CLK

FIGURE. 6 .1 S
Two ways to achieve a BCD counter using ill counter with parallel load

Sect ion 6.5 Oth er Counters 26S

becau se the register goes immediately to O. A momentary spike occurs in output Ao as the
count goes from 10 10 to lOl l and immediately to 0000. The spike lIlay be undesirable, and for
that reason. this co nfiguration is not recommended. If the counter has a synchronous clear
input, it is possible 10clear the counter with the clock after an occurrence ofthe 100 1 count.

6. 5 OTHER COUNTERS

Counters can bedesigned to generate any desired sl..'tJuence of states. A divide-by-V counter (also

known as a modulo-N coun ter) is a co unter tha t goes through a repea led sequence of N states.
The sequence may follow the binary count or may be any othe r arbitrary sequence. Counters
are used 10 generate timing signals 10 control the sequence of operations ill a d igital system.
Counter s can also beconstructed by means of shift registers. In this sectio n. we present a few
examples of nonbinary counters.

Counter with Unused States

A circuit with" nip-flops has 2~ binary states.There arc occasions when a sequential circu it uses
fewer than this maximum possible number of Males. Stales that are not used in specifying the
sequential circu it are not listed in the Male fable. In simplifying the input equations, the unused
states may be treated as do n' t-care condition s or may be assigned specific next states. Once the
circuit is designed and constructed. outside interfe rence may cause the circuit to enter one of the
unused states. In that case, it is necessary 10 ensure that the circui t eventuall y goes into one of
the valid slates so that it can resume normal ope ration. Otherwise. if the sequential circuit ci r­
culates among unused states. there will be no way 10 bring it back to its intended sequence of
state transitions. If the unused slates are treated as don't-care conditions. then once the circuit
is designed. it must be invesrigatcd to determine the effect of the unused Slates. The next state
from an unused state can be determined from the analysis of the circuit after it is designed.

As an illustration. consider the co unter specified in Table 6.7. The count has a repealed sequence
of six stales. with flip-naps B and C rcpean ng the binary count 00. 01. 10. and flip-flop A alter­
nating between 0 and I every three counts. The count sequence of the counter is nor straight bi­
nary, and IWO states. 011 and I I I. are nOI included in the count. The choice of JK llip-llops results
in the flip-flop input conditions listed in the table. Inputs KBand Kc have only t's and X's in their

Ta ble 6.7
Stat~ Table for Counter

Present State Next St ate Flip -Flop Inputs

A • C A • c I. B. I, B, I, B,

0 0 0 0 0 I 0 X 0 X I X
0 0 I 0 I 0 0 X I X X I
0 I 0 I 0 0 I X X I 0 X
I 0 0 I 0 I X 0 0 X t X
t 0 I t t 0 X 0 t X X I
I t 0 0 0 0 X I X t 0 X

266 Chapt er 6 Registers and Counters

A

100

(b) Siale diagram

(,;*---{Oll

0'0

/8):<-'--8

~
c

B

C/o<k

(a) Logic diagram

Logic 1 - '---+-{

FIGURE 6.1 6
Counter wIth unused states

columns, so these inputs are always equal to I. The other flip-flop input equations can be stm­
plified by using mintcrms 3 and 7 as don't-care conditions. The simplified equations are

l A = B KA = B

JB = C K B = I

Jc = B' Kc = I

The logic diagram of the counter is shown in Fig. 6. I6(a). Since there are two unused stales,
we analyze the circuit to determine their effect. If the circuit happens to be in stare 0 I I because
of an error signal, the circuit goes to state 100 after the application of a clock pulse. Thi s action
may be determined from an inspect ion of the logic d iagram by noting that when B = I. the
next clock edge complements A and clears C to 0, and when C = I, the next clock edge co m­
plements B. In a similar manner, we can evaluate the next state from present state II I to be 000.

The state d iagram includ ing the effec t of the unused states is shown in Fig. 6. I6Ib). lfthe cir­
cuit ever goes 10one of the unused slates because of outside interfe rence, the next count pulse
transfers it to one of the valid states and the circuit continues to coo nt correctly. Thus. the counter
is self-correcting. In a self-correcting counter, if the counter happens to be in one of the unused
states , it eve ntually reaches the nonnal count sequence after one or more clock. pulses. An
alternat ive design could use add itional logic to direct every unused state to a speci fic next stale.

Section 6.5 Other Counters 267

Ring Counter

liming signals that control the sequence of operations in a digital system can be generated by a
shift register or by a counter with a decoder, A ring counter is a circular shift register with only one
flip-flop being set at any particular time; all others are cleared. The single bit is shifted from one
flip-flop to the next 10 produce the sequence of timing signals. Figure 6.17(a) shows a four-bit

Sh,n__
right ... 1) .1 " 2, "...,.t

(a) Ring-coun ter (initial value " ! (XX))

eLK

___r
T,_ -.-Jn _
T, _ _ -.-Jne--_ _

(b) Seque nce of four timing signals

Co unt
enable

(c) Co unte r and decoder

fiGURE 6 .17
Generation of timing signals

268 Chapter 6 Registers and Counters

shift register connectedas a ring counter. The initial value of the reg ister is I@andrequires
Preset/Clear fhp- flops . The single bit is shifted right with every clock pulse and circ ulates back
from T3 to To. Each flip -flo p is in the 1 state once every fou r clock cycles and prod uces one of
the four timi ng sig nals shown in Fig. 6. 17(b). Each output becomes a 1 after the negative-e dge
tran sition o f a cloc k pulse and remains 1during the next cloc k cycle .

For an alterna tive design.the timing signals can begenerated by a two- bit counter that goe s
through four distinct states . T he decoder shown in Fig. 6 .17(c) decodes the fou r states of the
counter and ge nerates the required seq uence of timing signals .

To ge nerate 211timi ng signals, we need either a shift register with 21t flip-flops or an ,,-bit binary
co unter toge ther with an n-to_21t·line decoder. For example, 16 timing signals can be generated
with a l6-bit shift register connected as a ring counter or with a a-bit binary coun ter and a 4-to-l 6­
line decoder. in the first case. we need 16 flip-flops. In the second, we need -t fbp-fl ops and 16 four­
input A.'ID gates for the decoder. It is also possible to generate the timing signals \\ith a combination
of a shin register and a decoder. That way, the number of flip-flops is less than that in a ring coumer,
and the decoder requires only two- input gates. This combination is called a Johnson cowl/a.

Johnson Counter

A k-bit ring co unter circulates a sing le bit among the flip-fl ops to pro vide k di stingu ishable
states. The number of states can bedoubled if the shift register is co nnected as a switch-tail ring
counter. A switch-ta il ring counter is a ci rcular shift register with the comp lemented ou tput of
the last flip -flop co nnected to the input of the fir st flip-flop. Figu re 6 .18(a) shows such a shift

1-'----jD

CLK 4- --J -l- --J

(a) Four-stage switch-tail ring counte r

C

E

E'

Sequence
fl ip-flop OUlP UIS

AND gale required
number A B C E for output

1 0 0 0 0 AT
2 1 0 0 0 AB'
3 1 1 0 0 Be
4 1 1 1 0 CE'
5 1 1 1 1 AE
6 0 1 1 1 A 'B
7 0 0 1 1 B'C
8 0 0 0 1 C' E

(b) Co unt sequence and req uire d decoding

FIGURE6 .18
Construction of a Johnson counte r

Section 6.6 HDl for Registers and Counters 269

register. The circular connection is made from the complemented output of the rightmost flip­
flop to the input of the leftmost flip-flop. The register shifts its contents once 10 the right with
every clock pulse. and at the same rime, the complemented value of the E flip-flop is transferred
into the A flip-flop. Starting from a cleared state. the switch-tail ring counter goes through a
sequence of eight slates, as listed in Fig, 6.18{b). In general, a k-bit switch-tail ring counter will
go through a sequence of 2k states. Starting from all (l's, each shift operation inserts I 's from
the left until the register is filled with all l 's. In the next sequences, O's are inserted from the
lefl until the register is again filled with all O's.

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide out­
puts for 2k timing signals.The decoding gates are not shown in Fig. 6.18. but are specified in the
last column of the table. The eight AND gates listed in the table. when connected to the circuit.
willcomplete the construction of the Johnson counter. Since each gate is enabled during one par­
ticular state sequence. the outputs of the gates generate eight timing signals in succession.

The decodi ng of a k-bit switch-tail ring counter to obtain 2k timing signals follows a regu­
lar pane m. The a11-0's state is decoded by taking the complement of the two extreme flip-flop
outputs. The all- t ' s state is decoded by laking the nonnal outputs of the two extreme flip-flops.
All other states are decoded from an adjacent I , 0 or O. 1 pattern in the sequence. For exam­
ple. sequence 7 has an adjacent O. I pattern in flip-flops B and C. The decoded output is then
obtained by taking the complement of B and the normal output of C. or B'C.

One disadvantage of the circuit in Fig. 6. 18(a) is that if it finds itself in an unused state, it
will persist in moving from one invalid state 10another and never find its way to a valid state.
The difficulty can becorrected by modifying the circuit to avoid this undesirable condition. One
correcting procedure is 10 disconnect the output from nip-flop B that goes to the D input of flip­
flop C and instead enable the input of flip-flop C by the function

Dc = (A + C)B

where Dc is the flip-flop input equation for the D input of flip-flop C.
Johnson counters can be constructed for any number of timing sequences. The number of

flip-flops needed is one-half the number of timing signals. The number of decoding gates is
equal to the number of timing signals. and only two-input gates are needed.

6 .6 HD l FOR REGISTERS AND COUN TERS

Registers and counters can be described in Verilog at either the behavioral or the structural level.
Behavioral modeling describes only the operations of the register, as prescribed by a function
table. without a preconceived structure. A structural-level description shows the circuit in tenus
of a collection of components such as gates, flip-flops, and multiplexers. The various compo·
nents are instantiated to form a hierarchical description of the design similar to a representation
of a logic diagram. The examples in this section will illustrate both types of descriptions.

Shift Register

The universal shift register presented in Section 6.2 is a bidirectional shift register with a par­
allel load. The four cloc ked operations that are perfonned with the register are specified in
Table 6.6. The register also can be cleared asynchronously. Our chosen name for a behavioral

1/V2001. 2005
1/Register output
1/Parallel input
/I Select inputs

/I Seri al inputs
1/Clock and Cle ar

270 Chapter 6 Regi sters and Counters

description of the four-bit universal shift register sho wn in Fig. 6.7(a l. the nam e
Shiff-Regis/a _-l_'}('I,. signifies the behavioral model of the internal de tai l o f the top-level
block d iag ram symbol and d istinguishes that mode l fro m a structural one . The behavio ral
model is presented in HDL Example 6.1, and the struc tural model is given in HDL Example
6.2.Th e top-level block diagram symbol in Fig. 6.7(a) indicates that the four-bit universal ~hift

reg ister has two selection inputs (s1• .1-0), two serial inputs (shifUeft. shifc rigllt). 3 four -bit par­
allel inpuf (/..../JOr). and a four· bil parallel output (A....jJflr). The elements of \ 'CClOr l...J¥lr/ 3: OJ
correspond to the bits /., ,. .. ,10 in Fig. 6 .7, and simi larly for AJar13: OJ. The al \\ a ~' s bloc k
describes the fi ve operat ions that can beperformed with the register. The Clea rinpu(clears the
register asynchronously with an active-low signal. Clear must behigh for the register to respond
to the positive edge of the cloc k. The four clocked operations of the register are determined from
the values of the two select inputs in the case statement. (s l and sO are concatenated into a
two-bit vector and are used as the expressio n argument of the case statemcnr.: Th e shifting
operatio n is specified by (he concatenation of the serial input and three bits of the register. For
example. the statement

specifics a concatenation of the serial data input for a right shift o peration (.uSB_iIII with bits
A-Jmr/3: I) of tile output data bus. A reference 10 a contiguous range of bits ithin a vector
is referred to as a part select , The four-bit result of the concatenation is transferred (0 register
A-par 13: OJwhen the clock pulse triggers the operatio n. Th is transfer prod uces a shift-right
operat ion and updates the reg ister with new informat ion. The shift operation overwri tes the
contents of A-IJar/OI with the contents of A-parl I). Note that only the functionality o f the
circuit has bee n desc ribed, irrespective of any particular hardware. A synthesis too l would ere­
ale a netlist o f AS IC ce lls to implement the shift regis ter.

ImL Exa mple 6,1

1/Behavioral desc ription of a 4·bit universal shift register
/I Fig. 6.7 a nd Tab le 6.3
module ShifCRegister_4_beh (

output reg (3: 0] AJlar,
Input 13: 0) I....par,
Input 51 , sn.

MSBJn. LSB_in.
CLK. Clear

);
always @ (posedge CLK, negedge Clear)

if (- Clear) A....par <= 4'bOOOO;
e lse

case ({51, sa»
2'bOO: AJlar <= A""'psr;
2'b01: A....par <= {MSBJ n, A""par(3: 1]};

1/V2OO1. 2005

1/No change
1/Shift right

Section 6.6 HDL for Registers and Counters 271

2'b10: A....par <:: {A_par[2: 01. LSB_in}:
2'b11: AJlar <:: I_par;

endcase
endmodule

/I Shift left
If Parallel load of input

fI No change
{f Shift right
fI Shift left
/I Parallel load of input

Variables of type re g retain their value until they are assigned a new value by an ass ignment
statement. Co nsider the follo wing alternative case statement for the shift register model :

case ({s1, sO})
11 2'bOO: A_par <:: AJlar:
2'b01: A_par <:: {MSB_in, A_par [3: 1]};
2'b10: A_par <:: {A_par [2: 0]. LSB_in}:
2'b11: A_par <:: IJlar;

endca se

Without the case item 2 'bOO. the case statement wou ld nOI find a match between {s1, sO}
and the case items, so register Ay ur wou ld be left unchan ged.

A structural mood of the universal shift register can be described by referring to the logic
diagra m of Fig. 6.7(b).The diagram shows that the register has four multiplexers and four D flip­
!lops. A mux and flip-flop together are modeled as a stage of the shift register. The stage is a
structural mudd, too, with aninstantiation and interconnection of a module for a mux and another
for a D flip-flop. For simplicity, the lowest-level module s of the structure are behavioral models
of the multiplexer and fl ip-flop.Attention must be paid to the details of connecting the stages cor­
rectly. The structural description of the register is shown in HDL Examp le 6.2. The lop-level
module declares the inputs and outputs and then instantiates four copies of a stage of the regis­
ter. The four instantiations specify the interconnections between the four stages and provide the
detailed construction of the register as specified in the logic diagram. The behavioral description
of the l1ip-flop uses a single edge-sensitive cyclic behavior (an always block). The assignment
statements use the nonblockin g assig nment operator « =) , the model of the mux employs a
single level-sensitive behavior, and the assignments use the blocking ass ignment operator (=).

HOI. Example 6.2

If Structural description of a 4·bit universal shift register (see Fig. 6.7)
module ShifCRegister_4_str (1/V2001, 2005
output [3: OlA_par, 1/Parallel output
Input [3: 0] IJlar, 1/Parallel input
input st . sO, 1/Mode select
input MSB_in. l SB_in. CLK, Clear 1/Serial inputs, clock, clear

);

If bus for mode control
assign [1:0] sefect e {s1, sO}:

If Instantiate the four stages
stage STO(AJlar{O], A_par[1]. LSB_in. ,-par[O]. A_par[O], select. CLK, Clear):
stage sr i (AJlar[1], AJlar[2], A_parl0], IJlar[1], A_parI1], select, Cl K, Clear):

272 Chapter 6 Reg isters and Counters

stage 5T2 (A'-par[2], A_par[3], A_par{l l , l.-par{21, A.-par{2], select, ClK, Clear);
stage 5T3 (A.-par[3), MSBJn, A.-par{21, 1J>a r{3J, AJ>8 r{3), select, ClK, Clear);

endmodule

1/stage mode control bus
1/Cloc k, Clear for flip-flops

output
inp ut [1: 01
input
wire

1/One stage of shift register
module stage (iO, 11, 12, 13, a, select. CLK, Clr);

input iO, 1/circulation bit selection
11, 1/data from left neighbor or serial input for shift-right
i2, 1/data from right neighbor or serial input for shift-left
i3; 1/data from parallel Input
Q;
select;

CLK, Clr;
mux_ou t;

1/ instantiate mux and flip-flo p

Mux_4_x_1 MO (mux_out, iO, i1, i2, i3, select);
D_f1 ip_flop M1 (0, mux_out. CLK, Clr);

endmodu le

1/4x1 multiplexer 1/behavioral model

module Mux_4_x_ 1 (mux_ou t, iO, It . i2, i3, select);
out put mux_out;
input iO, 11, 12, i3;
Inpu t [1 : OJ select;
reg mux_out;
always @ (select, o. i1 . 12, 13)

case (select)

2'bOO: mux_out = iO;
2'b0 1: mux_out= 11;

2'b10: mux_out = i2;
2'b11: mux_oul = i3;

endcase
endmodule

1/Behaviora l model of 0 flip-flop

module D_flip_f1op(0, 0 , CLK, Clr) ;
output Q;
Input 0 , ClK, Clr;

reg 0 ;

always @ (posedge CLK, negedge Clr)
If (- el r) 0 <= l 'bO; else Q <= 0 ;

endmodule

/I Data output
/I Output carry
/I Data input
/I Active high to count
/I Active high to load
/I Positive-edge sensitive
/I Active low

Section 6.6 HDL for Registers and Counters 273

The above examples presented two descriptions of a uni versa l shift register to illustrate
the different styles for modeling a digital circuit. A simu lation should veri fy that the mod­
els have the same functionality. In prac tice, a designer deve lops only the behavioral model ,
which is then synthesized. The function of the synthesized circuit can be compared with the
behavioral desc ript ion from which it was compiled. Eliminating the need for the designer
to develop a structural model produce s a huge improvement in the efficiency of the des ign
process.

Synchronous Counter

HDL Example 6.3 present s Bina1)'_Counter_4_Par_Load. a behavioral model of the syn­
chronous counter with a paral lel load from Fig. 6.14. Count, Load, CLK, and Clear are inputs
that determine the operation of the counter according to the function specified in Table 6.6. The
counter has four data inputs, four data outputs, and a carry output. The internal data lines (13,
/2,/l, 10)arebundled as Data_in[3: OJ in the behavioral model. Likewise, the register that holds
the bits of the cou nt (A3, A2, AJ , AO) is A_count[3: OJ. It is good practice to have identifiers
in the HDL model of a circuit correspond exactly to those in the docu mentation of the model.
That is not always feasib le, however. if the circuit-level identifiers are those found in a hand­
book, for they are often short and cryptic and do not exploit the text that is available with <l11

HDL. The top-level block diagram symbol in Fig. 6.14(a) serves as an interface between the
names used in a circuit diagram and the expressive names that can be used in the HDL model.
The carry output C_out is generate d by a combinational circuit and is specified with an assign
statement. C_out = I when the coun t reaches 15 and the counte r is in the count state. Thus,
e_OUf = I if Count = 1, Load =0, and A = 1111; otherwiseC_out = O. Thc a lways block
specifies the operation to beperformed in the register, depending on the values of Clear, Load,
and Count . A 0 (active-low signal) at Clearresets A to O. Otherwise, if Clear = 1, one out of
three operations is triggered by the positive edge ofthe clock . The if, else if. and else statements
estab lish a precedence among the control signals Clear, Load. and Count corresponding to the
specification in Table 6.6. Clear overrides Load and Count ; Load overrides Count . A synthe­
sis too l will produce the circuit of Fig. 6.14(b) from the behavioral model.

HDL Exam ple 6.3

/I Four-bit binary counter with parallel load (V2001, 2005)
/I See Figure 6.14 and Table 6.6
module BinarL Counter_4_Pacload (
output reg [3: OJ A_count,
output C_out,
Input [3: OJ Data_in,
Input Count,

Load,
ClK,
Clear

);

274 Chapter 6 Registers and Counters

assig n C_out = Count & (- Load) & (A_count == 4'b1111);
alway s @ (posedge CLK, negedge Clear)

If (- Clear) A_count <= 4'bOOOO;
else if (Load) A_count <= data_in;
else if (Count) A_count <= A_count + 1'b1;
else A_count <= A_count; II redundant statement

endmodule

Ripple Counter
The structural description of a ripple co unter is shown in HDL Exam ple 6.-t The first module
instantiates four inte rnally com plementing flip- flops defined in the second mod ule as
Comp_D..fl ip..flop (Q. CLK. Reset). The cloc k (input eLK) of the first flip-flop is connected
to the external control signal Count. (Counr replaces CLK in the port list of Instance FO.) The
clock input of the second flip-flop is connected 10 the o utput of the first. (AOreplaces eLK in
instance Fl .) Similarly, the clock of each of the other flip-flops is connected to the output of
the previo us flip-flop. In this way, the flip-flops are chained together to create a ripple counter
as show n in Fig. 6.8(b).

Th e second mod ule describes a complementing flip-flop with delay. The circuit of a com­
plementing flip-flop is constructed by connecting the co mplement out put 10 the D inpu t. A
reset input is included with the flip-flop in order to be able to initialize the counter; otherv..ise
the simulator would assign the unknown value (X) to the output of the flip-flop and prod uce use­
less results. The fl ip-flop is ass igned a delay of two time units from the time that the clock is
applied 10 the time that the flip-flop co mplements. The delay is specified by the state ment
Q <= #2Q. Notice that the delay operator is placed to the right of the nonblocking assign­
ment operator. Th is form of delay, called intra-assignment delay. has the effect of postponing
the assignment of the co mplemen ted value of Qto Q. The effect o f model ing the dela y will be
apparent in the simulation results. Th is style of mode ling might be useful in simulat ion. but it
is to be avoided whe n the model is to be synthesized. The results of synthes is depe nd on the
ASIC ee ll library that is accessed by the tool , not on any propagation delays that might appear
within the model that is to be syn thesi zed.

IIIlL Exa mple 6.4

1/Ripple counter (See Fig. 6.8(b))
' timescale 1ns / 100 ps
mod ule Ripple_Counter_4bil (A3, A2, A1, AO, Count, Reset);

output A3, A2, A1, AO;
input Count, Reset;

II Instantiate complementing flip-flop
Comp_D_fIip_f1op FO(AO, Count, Reset);
Comp_D_fIip_flop F1 (A1, AO, Reset);
Comp_D_f1ip_f1op F2 (A2, A1, Reset);

Sectlon 6.6 HOt for Registers and Counters 275

Comp_D_f1 ip_f1op F3 (A3, A2, Reset):
endmodule
/I Complementing f1ip-ffop with delay
I/ Input to 0 flip-flop =0'
module Comp_D_f1ip_flop (a.CLK, Reset);

output 0 ;
input CLK, Reset;
reg 0 :
always @ (negedge CLK, posedge Reset)
if (Reset) 0 <= 1'bO;

else a <= #2 - 0 : /I intra-assignment delay
endmodule
/I Stimulus for tesling ripple counter
module CRipple_Counter_4bit;

reg Count:
reg Reset;
wi re AO. A1. A2, A3;

I/ Instantiale ripple counter
Rlpple_Counter_4bit MO (A3, A2, A1, AO, Count, Reset);

always
#5 Count = -COUnt;

Initial
begin
Count = 1bO;
Reset =1b 1;
#4 Reset = 1'bO;

end

initial #170 Sfinlsh:

endmodule

The lest bench module in HDL Example 6.4 provides a stimulus for simulating and verify­
ing the functionality of the ripple counter.The always statement generates a free-running clock
with a cycle of 10 lime units. The flip-flops trigger on the negative edge of the cloc k, which
occurs at t = 10, 20. 30. and every 10 time units thereafter. The waveforms obtained from this
simulation are shown in Fig. 6.19. The control signal Count goes negative every 10 ns. AU is
complemented with each negative edge of Count , but is delayed by 2 ns. Each flip-flop is com­
plemenred when its previous l1ip-flop goes from 1 to O. After t = 80 ns, all four flip-flops
complement because the counter goes from Dil l to 1000. Each outp ut is delayed by 2 m•• and
because of that. A3 goes from 0 to I at t = 88 ns and from I 10 0 at 168 ns. Notice how the
propagation delays accumulate to the last bit of the counter, re\ ulting in very slow counter ac­
tion. This limits the practica l utility of the counter.

276 Chapter 6 Reg isters and Counters

0.0 ns 57.0 ns 114.0 05 171.0 ns

Reset

Count

AD
Al

A2

A3

1 = 88 05 1 :. 16805

(a) From 0 to 180 ns

70.0 ns 77.0 ns 84.0ns 91.0 ns 98.0 m

Reset

Count

AD -----'
Al
A2

A3

(b) From 70 to 98 ns

FIGURE 6 .19
Simulat ion output of HDl Example 6.4

PROBLEMS

Answers to problems marked with " appear at the end of the boo k. Where ap propriate . a logic des ign

and its related HDL modeling prob lem are cross referenced .
Note: For each problem that requires writing and verifying a Verilag description, a test plan should
be writte n to identify whic h funct ional features are to be tested during the simulation and how they
will be tested. For example. a reset on the fly could be tested by asserting the reset signal 'W hile the
simulated machine is in a state othe r than the reset stale. The test plan is to guide the development of
a test bench that will implement the plan. Simula te the model , using the test benc h. and verify that
the behavior is correct. If synthesis tools and an ASIC cell library or a field-programmable gate array
(FPGA) are avai lable . the Veri log descriptions develope d for Problems 6.3.\.-6.5 1 can be assigned as

Problems 277

synthesis exerc ises. The gate-level circuit produced by the syn thesis too ls should be simulated and

co mpared with the sim ulation results for the presynthes is model. (Be aware that in some of the HOL

problems there may be a need to de al with the issue of unused states: see the discussion of the default

case item preceding HO L Example 4.8 in Chapter 4.)

6 .1 Include a two-in put :-lAND gate in the register of Fig. 6. 1, and connect the gate output to the C
inputs of all the flip-flops. One input of the l'Ar>.:D gate receives the cloc k pulses from the clock
generator, and the other inp ut of the NAND gate provides a paralle lload control. Expl ain the
operation of the modified regist er. Explain why this circuit might have opera tional problems.

6 .2 Include a synchronous clear input in the regis ter of Fig. 6.2. The modified register will have a par­
allel-load capability and a sync hronous clear capability. The register is clea red sync hronously
whe n the dock goes through a po sitive trans ition and the d ear inpu t is equal to 1. (HDL-see
Problem 6.35(a). (b) .)

6.1 What is the difference betw een serial and para llel trans fer? Exp lain how to convert serial data to
parallel and parallel data to serial. What type of register is needed?

6.4· The contents of a four-bit register are initia lly lOll. The register is shifted six times to the right,
with the serial input being 101 101. What are the contents of the regis ter after each shift?

6 .5 The four-bit unive rsal shift register shown in Fig . 6.7 is enclosed within one IC package.
(a) Draw a block diagram of the IC, sho wing all inpu ts and outputs. Includ e two pins for the

power supp ly.
(b) Draw a bloc k diagram, using two ICs. to prod uce an eight -bit universal shift register.

6 .6 Desig n II fou r-bit shift register with a parallel load. using D flip- flops. There are two control in­
puts: shift and load. When shift = I, the co ntents of the register are shifted by one posi tio n.
New data are transferred into the register when load " 1 lind shifr » O. If both control inputs
are equal to O.the contents of the regis ter do not change. (HDL - see Problem 6.35(c), (d).)

6 .7 Draw the logic diagram of a four-bit register with four D flip-flops and four 4 x I multiplexers with
mode selection inputs sl and so. The register operates according 10 the follo wing function table
(HDt-see Problem 6.35(e), (D.)

"
n
n

..
o

o

No chang<'

Complemem the fOUl output.

C1O;\T n:gi.ter to 0 (.ynchronuu. with the d ock)

Loadparalleldata

6 .8· The serial adder of Fig . 6.6 uses two four-bit registers . Register A holds the binary number DIal
and register B holds 0 111. The carry flip-flop is initially reset to O. List the binary values in reg­
ister A and the carry flip-flo p afte r each shift.

6.9 Two ways to implement a serial adder (A + B) are presented in Section 6.2. It is necessary to
modify the circuits to convert them to seria l subrractors (A - B).
(a) Using the circuit of Fig. 6.5, show the changes needed to perform A + 2' s complement of

B. (HOL - see Problem 6.35(h).)
(b)* Using thc circuit of Fig. 6.6 . sho w the changes needed by modifying Table 6.2 from an adde r

to a subtracter circui t. (See Problem 4.12 .) (HOL - see Problem 6.35(i).)

278 Chapter 6 Registers and Counters

6 .10 Design a serial 2's complernenter with a shift register and a flip-flop. The binary number is shift­
ed out from one side and its 2's complement shifted into the other side of the shift register. tHOL
- see Problem 6.35(j).)

6 .11 A binary ripple counter uses flip-flops that trigger on the positive edge of the clock. What will be
the count if
(a) the normal outputs of the flip-flops are connected to the cloc k. and
(b) the complement outputs of the flip-flops are connected to the clock?

6.12 Draw the logic diagram of a four-bit binary ripple countdown counter. using
(a) flip-flops that trigger on the positive edge of the clock. and
(b) llip-llo ps that trigger on the negative edge of the clock.

6 .13 Show that a BCD ripple counter can be constructed from a four-bit binary ripple counter-uh asyn­
chronous clear and a NAND gate that detects the occurrence of count IOIO. IHDL - see Prob­
lem 6.35(k).}

6 .14. How many flip-flops will becomplemented in a IO-bit binary ripple counter 10 reach the next count
after the fo llowing counts?
(a) 1001100111
(b) 00111 11 I 11
(c) 11 11 11 111 1

6 .15. A flip-flop has a 3-ns delay from the lime the clock edge occurs to the lime the output is com­
plemented. What is the maximum delay in a IO-bit binary ripple counter that uo;es this type of ll ip­
flop? What is the maximum frequency the counter can operate with reliably?

6 .16* The BCD ripple counter shown in Fig. 6.10 has four tlip-flops and 16 states. of hich only 10
are used. Analyze the circui t. and determine the next slate for each of the other si,; unused states.
What will happen if a noise signal sends the circuit to one of the unused states?

6.17. Design a four-bit binary synchronous counter with D flip-flops.

6.18 What operation is pcrfonned in the up-down counter of Fig. 6.13 when both the up and down in­
puts are enabled'! Modify the circuit so that when both inputs are equal to I. the counter does not
change state. (HDL - see Problem 6.35(1).)

6 .19 The n ip' flop input equations for a BCD counter using Tflip-flops are given in Section 6.4. Ob­
tain the input equations for a BCD counter that use, (a) JK nip-flops and (bJ"' D flip-flops. Com­
pare the three designs to determine which one is the most efficient.

6 .20 Enclose the binary counter with parallel load of Fig. 6. 1~ in a block. diagram. she ing all inputs
and outputs.
(a) Show the connections of four such blocks to produce a 16-bit counter with a par..ule lload.
(b) Construct a binary counter that counts from 0 through binary~.

6.21 . The counter of Fig. 6.l4 has two control inputs-Load (L) and Count (C)--and a data input. I,.
(a) Derive the flip-flop input equation, for J and K of the first stage in terms of L C. and I.
(b) The logic diagram of the first stage of an integrated circuit (7~ 1 61) is sbc n in Fig. P6.21.

verify that this circuit is equivalent to the one in (a).

6 .22 For the circuit of Fig. 6.14. give three alternatives for a mod-I 2 counter
(a) using an AND gate and the load input.
(b) uvlng the output carry.
(c) using a ~A~D gate and the asynchronou s clear input.

Problems 279

Count (C) ----+------""":-~IE;;;.

FIGURE P6.21

6.23 Design a timing circuit which provides an output signal that Mays on for exactly eight clod: cy­
cles. A start signal sends the output to the I stare. and a fter eigh t clock cycles the signal returns
to the astate. (HDL - see Problem 6.45.)

6.24· Design a co unter with T flip -flops that goes through the following binary repeated sequence: 0,
1.3.7.6.4, Show that when binary states OIU and 101 are taken to be don' t-care conditions. the
co unter may not ope rate properly. Find a way 10 correc t the design. (HDL - see Problem 6.53 .)

6 .25 II is necessary to genera te six repea ted timing signals To through r:~ similar to the ones shown in
Fig. 6. I 7(c) . Design the circuit using (HDL - see Proble m 6.46).
(a) flip-flops only.
(b) a cou nter and a decoder.

6 .26. A digita l system has a clock generator that prod uces pulses at a frequency of 80 MHz. Design a
circuit thaI pro vides u cluck with u cycle time of 50 ns.

6.27 Design 3 coun ter with the following repea ted binary sequence: 0, 1. 2. 3, 4, 5. 6. Use JK flip- flops.
(HDL - see Problem 6.5 1.)

6 .28* Design 3 counter with the following repea ted binary seq uence: O. 1,2. 4.6. Use D flip-flops.
(HDL - sec Problem 6.5 1.)

6 .29 List the eight unused states in the switch-tail ring counter of Fig . 6. 18(3). Determine the next
state for each of these sta tes. and show that if the co unter finds itself in an invalid state. it docs
not return to a valid sta te. Modify the circui t as recommended in the text, and show that the count­
er produces the same sequence of sta res and that the circuit reaches a valid slate from any one of
the unused states.

6.30 Sho' that a Johnson counter With 11flip -flops produ ces a sequenceof2n stares. LiMthe 10states
produced with five flip-flops and the Boolean terms of each of the 10AND gate output s.

6 .11 Write andverify the HDLbehavioral and structural descriptions of the four-bitregister ofFig. 6.1.

6 .32 (a) Write and verify an HDL behavioral descriplion o f a four-bit regi ster with paral lel load and
asynchronous clear.

(b) Write and veri fy an HDL struc tural descrip tion of the four-bit regi ster with parallel load
shown in Fig. 6.2. Usea 2 x 1 mulliplexer for the flip-flop inputs. Include an asynchronous
dear input.

(c) Check both desc riptions, using a test bench.

6.33 The follo wing program is used to simulate the binary counter with paral lel load described in HDL
Exa mple 6.3 :

If Stimulus lor testing (he binary coun ter of Exam ple 6.3
module testcounter:

280 Chapter 6 Regist ers and Counters

re g Count, loa d. Cl K, Clr;

reg [3: Ol iN;

wire CO;

wire [3: 0] A;

coun ter cnt (Count, load. IN. Cl K, cir, A, CO):

always

#5 ClK = · ClK;

Initia l

begin

cir = 0:

ClK = 1;

loa d = 0; Count = 1;

#5Clr= 1;

#30 load = 1: IN =4'b1' 00;
#20 load = 0;

#60 Count = 0;
#20 $finls h;

00'
en dmodul e

Go over the program and predict what would be the output of the counter and the carry output from

t = 0 to 1 = 15 5 ns.

6 .34· Write and verify the HOL behavioral description of a four-bit shift register (see Fig. 6.3).

6 .35 Write and verify
(a) a structural HDL model for the register de scribed in Problem 6.2
(b)* a behavioral HDL model for the register desc ribed in Problem 6.2
(c) a structu ral HDL model for the register described in Problem 6.6
(d) a behavioral HO L model for the register described in Problem 6.6
(e) a structu ral HOL model for the register described in Problem 6.7
(I) a behavioral HOL model for the regi ster described in Problem 6.7
(g) a behavioral HOL mode l of the binary counter described in Fig. 6.8(b)
(h) a behavioral description of the serial subtracter describe d in Problem 6.9Ia)
(i) a behavioral description of the serial subtracte r desc ribed in Prob lem 6.9(b)
m a behavioral descri ption of the serial 2's complernemer described in Problem 6.10
(k) a behavioral description of the BCD ripple counter described in Problem 6.13
(I) a behavioral description of the up-down counter described in Problem 6. 18

6 .16 Write and verify the HDL behavioral and structural de scriptions of the four-bit up-down counter
whose logic diagram is desc ribed by Fig. 6.13, Table 6.5. and Table 6 .6 .

6 .1P Write and verify a behavioral description of the counter described in Problem 6,1-l.
(a) using an if ••• else statement
(b) using a case statement
(c) a finite state machi ne.

6 .38 Write and verify the HDL behavioral description of a four-bit up-down counter with paral lel load
usin g the following control inputs:
(a)* The counter has three control inputs for the three operations Load. Up, and Do....·n. The order

of precedence is Load, Up. and Down.

Problems 281

(b) The co unter has IWO !K'leclion inputs 10 specify four operations: Up. Down. Load. and 00

change .

6 .39 Write and veri fy HOI. behaviora l and structural descriptions of the cou nter of Fig. 6.16.

6 .40 Wri te and \'erify an HOI. description of an eight-bi t ring coun ter similar [0 the one shown in
Fig. 6.17(a).

6.41 Write and verify the HDL <bcription of a four-bit switch-tail ring (Joh nson)counter (Fig. 6.1&).

6 ."Z- The comment with the lasl clause of the ih taremenl in Bin.a,,_Counrt'r_"_Par3nad in HOL Ex­
ample 6.3 11011$thatlhc suuemem is redundant. Exp lain why thi~ statement can be removed with­
out changing the behavior implemented by the desc ription .

6 .43 The scheme shown in Fig. 6.4 gates Ihe d ock to control the serialtransfer of data from shifl reg­
ister A to shift registe r H. L sing multiplexers at the input of each cell o f the shifl registers . de ...e1op
a structural model uf an alterna tive circuit that docs not alter the d ock path. The top level of the
design hierarchy is to instantiate the shift registe rs. The modu le describing the shift register is to
have instantiations of Flip-fl ops and rnuxcs . Describe'the mux and fl ip-flop mod ules with behav ­
ioral model s. Be sure to consider rese t. Develop a test bench 10 sim ulate the circ uit and demo n­
stra te the transfer of data.

6.44 Modify the design of the serial adder shown in fi g. 6.5by removing the gated cloc k to the D Flip­
!lop and supplying Ihe clock signal to it direc tly. Augment the D flip-flop with a mux 10 recircu­
late the contents of the flip-flop when shifting is suspe nded and 10 provide the carry out of the full
adder whe n shifti ng is act ive. The shift registers are 10 incorporate this feature also. ramer than
use a gated d ock. Tbe lOp level of the design is 10 insrantiale modules us jng behavioral model s
for the shift registers . full adder. D fllp-Ilop, and max. Assume .synchronous reset Develop . test
bench to simu late the circuit and demonstrate the tran sfer of data.

6 .4S. Write and "'eri fy a behavioral deM:Tiption of a finite state machine to implement tht-counter de­
scribed in Problem 6 .24.

6 .46 Problem 6.25 specifies an implementation of a circuit 10 generate timing signals using
(a) only Ilip-flcps and
(b) a coumer and a decoder.
As an alternat ive, write a behavioral description (without considerat ion of the actu al hardware)
of a sta le machi ne whose output generates the timing signals To lhrou gh Ts.

6 .41 w rtre a behavioral descript ion o fthe circuit sho wn in Fig. 1'6047. and verify that the circuit 's out­
put is asse rted if successive samples of the input have an odd numher of 1'5.

6 .48 Write and verify a behavioral de scription of the cou nter show n in Fig. P6.48(a); repeat for the
counter in Fig. P604!l(h).

6 .49 Write a test plan for verifying the functionality of the universal shift register described in HDL
Example 6. 1. U"ing the test plan , simulate the model given in HDL Example 6.1.

6.S0 Writ e and verify a behavioral model of the counter descri bed in
(a) Problem 6 .27
(b) Prob lem 6 .28

6.51 Wilhou t requinng a stale machi ne. and using a shifl l't'gister and add itional logic. wri te lind ver­
ify a model of an anemative 10 Ihe seq uence detector described in Figure S.27. Co mpare the
implementations.

282 Chapter 6 Registers. and Counters

FIGURE. '6.47
Circuit for Problem 6.41

("I/UII' f 7: OJ

:1-"---1 0 Qf-J-f- P_odd

COW'll f 7:0J

c.)
FIGURE. '6.48
Circuit for Problem 6.48

Cbl

References 283

REFERENCES

1. BH"SKER, J. 1997. A Verilv.1I HDL Primer. Allentown. PA: Star Galaxy Press.

2. BHASKER, J. 1998 . Veri/og HDL Synthesis, Alle ntown, PA: Sta r Galaxy Press.

1. Dum, 1\1. D. 1999. Modeling, Svnthesu. and Rapid Protorypingith Veri/og HDL Uppe r Sad­

dlc River, Nl Prenti ce Hall.

4 . ClLEm, M . D . 2m3, Advanced Digital Designith the Veri/oK HDL Upper Saddl e River, NJ:

Pre ntice Hall.

5. Cnsrn. M. D. 2004. Starter's Guide to Verilog 200/. Upper Saddle River, NJ: Prentice Hall.

6 . D IETMEYER, D. L. 1988. Logic Design ofDigital Systems, 3d ed. Boston: Allyn Bacon.

7, GAJSKt, D. D. 1997 . Principles ofDigitol Design. Upper Saddle River, NJ: Prentice HaH.

8 . HAYES, J. P. 1993. Introduction 10 Digital Logic Design. Reading, ~A: Addison-Wesley.

9 . KATZ, R. H. 2(x)5. Contemporary: Logic Design. Upper Saddle River, NJ: Prentice Hall.

10. MANO. M. M.• and C. R. KIMI'. 2005. Logic and Comp uter Design Fundamentals & Xi/inx 6.3

Sri/dent Edition, 3rd ed . Upper Saddle River, NJ: Pre ntice Hall.

11. N I'LSO"J. V. P., H. T. N AGLE. J. D. IRWIN. and B. D. C,\RROLL. 1995. Digital Logic Circuit Analy­

sis and Design. Englewood Cliffs. NJ: Prenti ce Hall.

12. PALNITKAR, S. 1996 . Verilog HDI..· A Gilide to Digital Design and Synthesis. Mountain View.

CA: SunSoft Press (a Pren tice Hall ti tle).

11. ROTH. C. H. 2004. Fundamentals ofLagic Design. 5th ed. St . Paul, XtN: Brook s/C ole .

14. THOMAS. D. E.• and P. R. Mocea v. 2002. The J,,~n'L(lg Hard....ureDescription Language, 6th ed.

Boston: KluwerAcademic Publishers.
15 . WAKfRLY, J. F. 2006. Digital Design: Principles and rracticrs. 4th ed. Upper Saddle River, ~J:

Pren tice Hall.

Chapte r 7

Memory and Programmable Logic

7 .1 INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved when needed for processing. When data processing takes place .
information from memory is transferred to se lected registers in the processing unit. Interme­
dia te and fina l results obta ined in theprocessing unit are trans ferred back to bestored in mem­
ory . Binary information recei ved from an input device is stored in memory. and information
transferred to an ou tput device is tak en from memory. A memory unit is a collecti on of cells
capable of s.toring a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access memory
(RA\f l and rrad-anly memory (RO~). RA\t: stores new information for laterU~. The Pl'OC\."'iS
of storing new information intomemory is referredto as a memory write operation. Theproce..s
o f transferri ng the stored infonnation out of memo ry is refe rred to as a memory " ad opera­
tion . RA~ can perform both write and read operations. RO~ can perfonn onl y the read op­
eration. Th is means that suitable binary information is already stored inside memory and can
be retrieved or rea d at any time. However, that information cannot be altered by writing .

ROM is a programmable logic device (PLO). Thebinary information that is stored within such
a device is specified in some fashio n and then embedded within the hard ware in a process is
refe rred to esprogrumming the device. The word "prog ramming" here refers to a hardw are pro­
cedure which specifi cs the bits that are inserted into the hardw are configuration of the dev ice.

ROM is one example o f a PLO. Other such units are the programmable logi c array (PLA).
programmable array logic (PAL), and the field -programmable gate array (FPGA). A PLO is an
integra ted circuit with intcmallogic gates connected through electronic paths that behave sim­
ilarly to fuse s. In the original state o f the device. all the fuses are intact. Programming the
device Invol ves blo wing those fuses along the paths that must be removed in order to obtain

284

(a) Conventional symbol

Section 7.2 Random-Access Memory 285

(b) Array logicsymbol

FIGURE. 7 .1
Conventional and array logic diagrams for OR gate

the particular contiguration of the desired logic function . In this chapter, we introduce the con­
figuration of PLOs and indicate procedures for their use in the design of digital systems . We
also present CMOS FPGAs, which are configured by downloading a stream of bits into the de­
vice to configure transmission gates to establish the internal connectivity required by a speci ­
fied logic function (combinational or sequential).

A typical Pill may have hundreds to millions of gates interconnected through hundreds to thou­
sands of internal paths. In order to show the internallogic diagram of such a device in a concise
form, it is necessary to employ a special gate symbology applicable to array logic. Figure 7.1 shows
the conventional and array logic symbols for a multiple-input OR gate. Instead of having multi­
ple input lines into the gate. we draw a single line entering the gate.The input lines are drawn per­
pendicular to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will be used throughout the chapter in array logic diagrams.

7 .2 RANDOM -ACCESS MEMORY

A memory unit is a collection of storage cells. together with associated circuits needed to trans­
fer information into and out of a device. The architecture of memory is such that information
can be selectively retrieved from any of its intemallccations. The time it takes to transfer in­
formation to or from any desired random location is always the same-hence the name random­
access memory, abbreviated RAM. In contrast, the time required to retrieve information that
is stored on magnetic tape depends on the locat ion of the data.

A memory unit stores binary information in groups of bits called WOrt/so A word in memo­
ry is an entity of bits that move in and out of storage as a unit. A memory word is a group of
I 's and D's and may represent a number, an instruct ion , one or more alphanumeric characters.
or any other binary-coded infonnation. Agroup of 8 bits is called a byte. Most computer mem­
ories use words that are multiples of 8 bits in length. Thus. a l6·bit word contains two bytes.
and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated as
the total number of bytes that the unit can store.

Communication between memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direct ion of transfer. A
block diagram of a memory unit is shown in Fig. 7.2. The n data input lines provide the infor­
mation to be stored in memory. and the n data output lines supply the information coming out
of memory. The k address lines specify the particular word chosen among the many available.
The two control inputs specify the direction of transfe r desired : The Write input causes bina­
ry data to be transferred into the memory. and the Read input causes binary data to be trans­
ferred out of memory.

286 Chapter 7 Memory and Programmable logic

l: addre uees --+

"'rile

IIdala input~

IIdala output lines

fiGURE 7.2
Block diagram of a me mory unit

Th e memor y unit is specified by the number of words it contains and the number of bits
in each word. The address lines select one particular word . Each word in memor} i ~ assigned
an ide ntification number. called an add ress. starting fro m 0 up 10 24 - I. where k is the
number of address lin es. The selection of a speci fic wor d inside memory is done by apply­
ing the k· bi t address to the address lines. An internal decod er accepts this addre ss and opcm
the paths needed to select the word spec ified. Memori es vary great ly in size and may range
from 1.024 wo rds. requiring an add ress of 10 bits. to 232words. req uiring 32 address bits. It
is customary to refe r to the num ber of words (or bytes) in memory with one of the lcuers K
(kilo). ~1 (mega). and G (g iga). K is equal to 210• 1'.1 is equal to 210• and G is equal to 2:10.
Thus. (HK "" 2 16. 2~1 = 21J. and 4G = 232.

Con sider. for example. a memory unit with a capacity of IK words of 16 bits each. Since
IK "" 1.02-t = 210 and 16bits constitute two byt es. we can say that the me[Jl()f) can accom­
modate 2.()..t8 = 2K bytes . Figure 1.3 shows possible contents of the first three and the lao,{

Memory add ress

Binary Decimal !-temol)' coe teet

o

000000<XXl1

(lXXXlXlOIO 2

1111111101 l02t

1111111110 1022

1111III III 1023

flc;, URE 7.3
Contents of. 102-4 x 16 memory

11011010101011101!
tOI01OIli00l IOOI

ICXKXl IIOIOlOOOIIOI
Ii

~.

···-.,
10011lOHl 1OIOl OO

10000110100011110 !

neunooncoun

Section 7.2 Random-Access Memory 287

three words of this memory. Each word contains 16 bits that can be divided into two bytes. The
words are recognized by their decimal address from 0 to 1,023. The equivalent binary address
consists of 10 bits. The first address is specified with ten O's: the last address is specified with
ten ls. because 1.023 in binary is equal to 1111111 111.A word in memory is selected by its bi­
nary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The IK X 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word. As
another example. a 64K X 10 memo ry will have 16 bits in the address (since 64K = 216)

and eac h word will consist of 10 bits. The number of address bits needed in a memory is de­
pendent on the total number of words that can be stored in the memory and is independent of
the number of bits in each word. The number of bits in the address is determined from the re­
lationship 2* e m. where m is the total number of words and k is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operation s. As alluded to
earlier. the write signal specifies a transfe r-in operation and the read signal specifies a transfer­
out operation. On accepting one of these control signals. the internal circuits inside the mem­
ory provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

l. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memo ry to the data input lines.

3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address lines.

The steps that must be taken for the purpose of transferri ng a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines. The contents of the selected word do not change after
the read operation. i.e.. the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for read ing and writing in a somewhat different configuration. Instead
of having separate read and write inputs to control the two operations. most integrated circuits
provide two other control inputs: One input selects the unit and the other determi nes the oper­
ation. The memory operations that result from these control inputs are specified in Table 7.1.

The memory enable (sometimes called the chip select) is used to enable the particular mem­
ory chip in a multichip implementation of a large memo ry. When the memory enable is inac­
tive. the memory chip is not selected and no operation is performed. When the memory enable
input is active. the read/write input determines the operation to be performed.

288 Chapter 7 Memory and Programmable l ogic

Tabl e 7.1
Control Inputs to Memory Chip

Memory (nable Read/Write Memory Operation

o
1
1

x
o
1

None
Write to selected word
Read from selected word

Me mory Description In HDL

Memory is modeled in the Verilog HDL by an arra y of registers . It is decl ared with a reg key­
word . using a two-dimensional arra y. The firs t number in the array spec ifies the number of
bits in a word (the word length) and the seco nd gives the number of words in memory (rnem­
ory depth) . For example, a me mory of 1.024 words with 16 bits per word is declared as

reg[15: 0] memword to: 1023];

Thi s statement descri bes a two-dimensional arra y of 1.024 reg isters. each containing 16 bus.
The second array range in the declaration ofmemword specifies the total number of wo rds in
memory and is equivalent to the address of the memory. For example. memword[512] refers
10 the lfi-bit memory word at addre ss 5 12.

The operation of a memory unit is illu strated in HDL Example 7.1. The memory has 64
words of four bi ts each. There are two control inputs : Enable and ReadWrite. The Dataln and
DataOut lines have four bits each . The input Address mu st have six bits (since 26 = 64). The
memory is dec lared as a two-dimensional array of reg isters , with Mem used as an identifier that
can be refe renced with an index to access any of the 64 words. A memory operation requires
that the Enable input be active . T he ReadWrite input de termi nes the type of ope ration. If
ReadWrite is I . the memory performs a read operation symbolized by the statement

DalaOut +- Mem [Address);

Execution of this statement causes a tran sfer of four bits from the selected memory word spec­
ified by Address onto the Da1aOut lines. If ReadWri1e is O. the memory performs a write op­
eration symbolized by the statem ent

Mem (Address) +- Oa ta ln;

Execution of this statement causes a transfer from the four-bit Dataln lines into thememory word
selectedby Address.When Enable is equalto 0, the memory is disabled and the outputs areassumed
to be in a high-impedance stale, indicated by the symbol z.Thus. the memoryhas three-stare outputs.

HDL Exa m ple 7.1

1/Read and write operations of memory
II Memory size is 64 words of four bits each.

modu le memory (Enable. ReadWrite, Address, Dataln, DataOut);
in put Enable, ReadWrite;
Input [3: OJ Dataln;

Section 7 .2 Random-"cce~~ Memory 289

Input (5: 01 Address;
output 13: 01 DataOut;
reg {3: OJ DataOut;
reg (3: OJ Mem [0: 631:
always @ (Enableor ReadWritel
tf (Enable)

If (ReadWrite) OataOut =Mem [Address);
else Mem (Address) " Dataln;

else OataOut " 4'bz;
endm odu le

II 64 x 4 memory

II Read
II Write
II High imped ance slate

TIming Waveforms

The operat ion of the memory unit is controlled by an external device such as a central processing
unit (CPU) . The CPU is usually synchronized by its own clock . The memory. ho wever. docs
not employ an internal clock. Instead. its read and write ope rations are speci fied by co ntrol in­
puts. The access time of memory is the time required to se lect a word and read it. The cycle
lime of memory is the time requ ired to comple te a write o peration. Th e CPU mu st provide the
memory control sig nals in such a way as to synchronize its internal clocked ope rat ion s with
the read and write operatio ns of memory. Thi s means tha t the access time and cycle time of
the memory mu st be within a time equal to a fixe d number of C PU clock cycles .

Suppose as an examp le that a CPt; operates with a clock freq uency of50 ~Hz., givi ng a pe­
riod of 20 ns for one clock cycle. Suppose also that the CPU communicates wi th a memory
whose access time and cycle time do not exceed 50 ns. This means that the write cycle termi­
nates the storage of the selected word within a 50-ns interval and that the read cycle provides
the output data of the selected word within 50 ns or tess . (The two numbers are nOI always the
same.) Since the periodof the CPU cycle is 20 ns. it will be necessary 10 devote at least two­
and-a-half. and possibly three. clock cycle!'. for each memory req ues t.

The memory timing shown in Fig. 7.4 is for a CPU with a 5O-~Hz clock anda memory with
50 ns maximum cycle time. The write cycle in part (al shows three 2Q.ns cycles: n .T2.andT3.
Fora write operation. the CPU must provide the addre..s and input data 10 me memory. This is done
at the beginning of TI . (The two lines that cross each other in the address and data waveformsdes­
ignate a poss ible change in value of the multiple lines.) The memory enable and the readlwri te sig­
nals must beactivated after the signals in the addres.s lines are stable in order to avo id destroying
data in other memory words. The memo ry enable signal switches to the high level and the read/write
signal switches to the low level to indicate a write operation. The two control signals must stay active
for at least 50 ns. The add ress and data signals mu st remain stable for a short time after the con­
trol signal s are deact ivated. At the completion of the thin! cloc k cycle. the memory write operat ion
is completed and the C PU can access the memory again with the next TI cycle.

The read cycle shown in Fig. 7.4(b) has an address for the memory provided by the CPU.
The memory-enab le and read/wri te signals must be in thei r high level for a read operation.
The me mory place s the da ta of the word selected by the address into the output da ta lines with­
in a 5O-ns interval (or less) from the time that the memory enable is activated . The CPU can
transfer the data into one of its interna l registers during the negative transition of T3.The next
n cycle is available for another memory request.

290 Chapter 7 M emory and Programmable Logic

_ 20 nsee -

Cloo;:k
-.I Tl \'--_ / T2 \'--~/ T3 \,--_ 0 1

Addr ess validMemory~ >Caddress --'"',c~~~~'__ _

MCmOry-.!
enable

Read!
Write

\ (Initiate writing

L
Latcbed.r:

Data
input

(a) Write cycle

50 nsec •

Clock

Address valid

Memor -.!"'-
enable Initiate read

Memory~ >C
address --,"". -""""'''''''' _

L
Read!
Write

Data
output

________________~x Data valid >C
(b) Read cycle

FIGURE 7 .4
Memory cycle timing waveforms

Types of Memories

The mode of access of a memory system is determi ned by the type of components used. In a
random-access memo ry, the word locations may be thought of as being separated in space.
each word occupying one particular location. In a sequential-access memory. me informa tion
stored in some medium is not immediately accessible, but is available only at certain intervals
of time. A magnetic disk or tape unit is of this type. Each memory location passes me read and
write heads in turn. but information is read out only when the requested word has been reached.

Sect ion 7.3 Memory Decoding 291

In a random-access memory, the access time is always the samc regard less of the particular 10­
calion of the word . In a sequential -access memory. the time it takes to access a word depend!'>
on the pos ition of the word with respect to the posit ion of the read head : therefore. the access
time is variable .

Integra ted circuit RA~! units are available in two cpereting modes: static and dynamic. Sta­
tic RAM (SRA..\ 1Jconsists essentially of internal latches that store the binary information . The
store d information remains valid as long as po wer is applied to the unit. Dynamic RA M
(DRAM) stores the binary information in the form of e lectric charges o n capacitors provided
inside the chip by ~tOS transistors. The stored charge on the capaci tors tends to d ischarge with
time. andthe capacitors must beperiodically recharged by refreshing the dynamic memory. Re­
freshing is do ne by cycling through the words c\'ery few milliseconds to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a singte mem­
Of)' chip. SRA M is easie r 10 use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volatile ,
CMOS integrated circuit RAM s, both static and dynamic. are of this category , since the binary
cells need externa l powe r to main tain the stored information. In contrast, a nonvolatile memo ­
ry, such as magnetic disk. retains its stored information after the remov al of power, This type of
memory is able to retain information because the data stored on magnetic components are rep­
resented by the d irection of mag netization . which is retai ned after power is turned off ROM is
another nonvolatile memory ,A nonvola tile memory enables dig ital computers to store programs
thai will be needed again after the computer is turned o n. Prog rams and data that ca nnot beal­
tered are stored in ROM . while other large programs are maintained on magnetic dish. The lat ­
rcr programs are tran sferred into the computer RA~I as needed. Refore the powt:r is turned off.
the binary information from tbe com puter RAM is transferred to the disk so that the informa­
tion wiII be reta ined .

7. 3 MEMORY DECODING

In addition to requ iring storage components in a memory unit. there is a need for decoding ci r­
cuits to select the mtmory word specified by the input addre..... In this sect ion. we present the
interna l construction of a RAM and demon strate the operunon of the decoder. To beable to in­
clude the entire memory in one d iagram. the memory unit presented here has a small capaci ty
of 16 bits. arran ged in four words of 4 bits each. An example of a two-d imensional coincident
decoding arrangement is presented to show a more efficient decod ing scheme that is used in
large memories. We then give an example of addr ess multi plexing commonly used in DRAM
integra ted circuits.

Internal Construction

The internal construction of a RA~1 of m words and n bits per word consists of m X II binary
storage cells and associated decoding ci rcu its for selecting individual words . The binary sror­
age cell is the basic building block of a memory unit. The equ ivalent logic of a binary cell that
stores one bit of information is shown in Fig. 7.5. The storage part of the cell is modeled by an
SR latch with associated gate s to form a D latch. Actually, the cell is an electroni c circuit with

292 Chapter 7 Memory and Programmable Logic

setea

Input -~----1=~=l_)

L_~<}- ""_ _ ReadiWrilt

OutpUI

•
Jnpur~

•I
Read w rue

Outpu t

FIc;,URE 7 .S
Memory ce ll

(b j Block diagram

four to six transistors. Nevertheless . it is poss ible and convenient to model it in term s of logic
symbols . A bin ary sto rage ce ll mus t be very small in order 10 be able to pack as many cells
as possible in the small area available in the integrated circuit chip. The binary ce ll stores one
bit in its internal latch . The select input enables the ce ll for reading or writi ng. and the
read/write input de termines the operation of the cell when it is selected. A I in the read/write
input provides the read operation by fanning a path from the latch to the output termi nal. A
oin the read/write input provides the write operation by forming a path from the input terminal
to the latch.

The logical co nstruction of a small RA..\1. is shown in Fig. 7.6. This RA\1 co nsists of four
words of four bits each and bas a total of 16 binary cells. The small blocks labe led Be repre­
sent the binary celt with its three inputs and one output. as specified in Fig. 7.Slb J. A memory
with four words need.. two addre ss lines. The two addre ss inputs go through a ~ X J. decoder
to select one of the four words. The decoder is enabled with the memory-enable input When
the memol'}' enable is O. al l outputs of the decoder are 0 and none of the memory words are se­
lected. with the memory select at I, one of the four word !'> is selec ted. dictated by the value in
the two address lines. Once a word has been selected. the read/write input determine... the op­
eration . During the read opera tion. the four bits of the selec ted word go through OR gates to
the output terminal.... (Note that the OR gates are drawn according to the array logic estab­
lished in Fig. 7.1.) During the write operation. the data available in the input lines arc trans­
ferred into the four binary cells of the selec ted word. The binary cells that are not selec ted are
disabled. and their previous binary values remain unchanged . When the memory selec t input
that goes into the decoder is equal to O. none of the word s are selected and the contents of all
cells remain unchanged regardless of the value of the read/write inpu t.

Commercial RA\h may have a capacity of thousand s of word s. and each word may range
from I 10 ~ bits. The logical constructio n of a large-capacity memory would be a direc t ex­
tension of the configuration shown here . A memory with 2· words of II bits per word requires
k address lines that go into a Ie X 21; decoder. Each one of the decoder outputs ~ICCh one word
of n bits for reading or writing .

Sectio n 7.3 Memory Decoding 293

Input data

Word ol---l-----,r---- -l-----,-----,l-----,- - -jf--,

2 x4
decoder

Word Jl--f-t-- ,---+-l----,---+-f---,- -t-j--,

'i.e
i.''"

fiNMemory
enable

Rc:adlWrite + __~'-_+-__...__ I_- -- __1--- .J

Ad"""
inpuh

Output data

FIGURE 7.6
Diagram of a 4)(4 RAM

Coincident Decoding

A decoder with k inputs and 2~ outputs requires 21 AND gates with k inputs per gate. The total
number of gates and the num ber of inputs per gate can he reduced by employing two decoders
in a two -dimensional selecti on scheme. The basic idea in two -dimensio nal decoding is to
arrange the memory cells in an array that is close as possibleto square. In this configuration.
two kJ2-input decoders are used instead of one k-inpul decoder. One decoder performs the row
selection and the othe r the co lumn selection in a two-dimensional matri x configuration .

The two-d imensional selection pattern is demonstrated in Fig. 7.7 for a l Kcword memory.
Instead of using a single 10 x 1.024 decoder. we use two 5 x 32 decoders. With the single
decoder. we would need 1.024 AND gates with 10 inputs in each. In the two-decoder case. we
need 64 A.~ gates with 5 inputs in each. The five most significant bits o f the address go to
input X and the five least significant bits go 10 input Y. Each word within the memory array is
selected by the coincidence of one X line and one Yline. Thus. each word in memory is selected

294 Chapter 7 Memory and Programmable logic

y

• 20 • • • 31

x

f iGURE 7.7
Two-dimensional decoding structure for a 1K·word memory

OIHXl

X

10100

Y

by the coincidence between I of 32 rows and I of 32 columns, for a total of 1.01.t \>, ord... Note
thaI eac h intersect ion represen ts a word that may have any number of bits.

As an example. consider the word whose address is~. The Io-bit binary equivalent o f~
is 0 1100 10100 . Th is makes X = 01 100 (binary 12) and Y = 10100 (binal') 10). The a -bit
word tha i is selected lies in the X decoder Output number 12 and the Ydecoder o utput number
20. All the bits o f the word are selected for reading or wri ting .

Address Mult iplexing

The SRAM memo ry cel l modeled in Fig. 7.5 typically contain.. six transistors. In order to build
memories with higher density, it is necessary to reduce the number of transistors in a cell. The
DRAM ce ll contains a single MOS transistor and a capacitor. The charge stored on the capac­
iter discharges with lime, and the memory cells must be periodic ally recharged by refresh ing
the memory. Becau se of their simple cell structure. DRA Ms typically have four time s the den­
sity of SRA~ls. Th is allows four times as muc h memory capacity 10 be placed on a given size
of chip. The cost per bit of DRAM storage is three to four times le ss than tha i of SRA~J stor­
age. A further COl'I savings is realized beca use of the lower PO" er requirement ofDRA~t cells.
These advantages make DRAM the pre ferred technology for large memories in personal dig­
ital computers . DRA M chips are available in capacities from ().lK 10 156~t bits. Most DRA~1s
have a l -bit word size. so several chips have to be combined 10 produce a larger word size.

Section 7.3 Memory Decoding 29S

Because of their large capacity. the address decoding of DRA~h is arranged in a two­
dimensional array. and larger memories often have multiple arrays. To reduce the number of pins
in the Ie package. designers utilize address multiplexing whereby one set of address input pins
accommodates the address components. In a two-dimensional array. the address is applied in two
pans at different times......ith the row address first and the column address second. Since the same
!IC1 of pins is used for both parts of the address, the size of the package is decreased significantly.

We will use a 64K·word memory to illustrate the addre...s-mulnplexing idea. Adiagram of the
decoding configuration is she.....n in Fig. 7.8. Thememory consists of a two-dimensional array of
cells arranged into 256 rows by 256 columns. for a tota.l. of 28 x 28 = 216 = 64K words. There
is a singledata input line. a single data output line, and a readlwriteoontrol. as well as an eigbt-bit
address input and two addless ,~1TlJ~j . the latter included for- enabling the row andcolumn address
into their respective registers.Therow address strobe (RAS) enables the eight-bit row register. and
the column address strobe (CAS)enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates thaI the registers are enabled on the zero level of the signal.

- - -" -~-

RAS-t--~-------,

RcadiWrile

Dala O,l"
in ou t

FI~URl 7 .8
Address multiplexing for a 64K DRAM

296 Chapter 7 Memory and Programma ble Logic

The 16-bit address is applied 10the DRA\1 in two steps using RAS andCAS. Initially, both
strobes are in the I ..rare. The 8-bil row address is applied to the address inputs and RAS i,-.
changed 10 O. This load.. the row address into the row address register, RAS also enables the row
decoder so that it can decode the row address andselect one row of the array. After a time equiv­
alent to the settling lime of lIle row selection. RAS goes back 10 the I level. The 8-bit column
address is then applied 10the address inputs. andCAS is driven 10 the0 Slate. This transfers the
column acdres.. into the column register and enables the column decoder. Now the two pam of
the address are in their respective registers. the decoders have decoded them 10select the 01lC' cell
corresponding to the row and column address. and a read or write operation can beperformed on
lIlat cell. CAS must go back 10the I level before initialing anoebermemory operation"

7 . 4 ERROR DE TEC TION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data pam of a memory
unit may cause occasional errors in storing and retrieving the binary information. The reliability
of a memory unit may be improved by employing error-detecting and error-correcting codes.
The most common error detection scheme is the parity bit. (See Section 3.9.' A parity bit is gen­
erated and stored along with the data word in memory. The parity of the word is checked after
reading it from memory. The data word is accepted if the parity of the bits read out is correct.
If the parity checked results in an inversion. an error is detected, but it cannot be corrected.

An error-correcung code generates multiple parity check bits thai are stored \\ ith the data
word in memory. Each cbcck bit is a parity avera group of bits in the data word. When the word
is read back from memory. theassociated parity bits are also read from mernot) and compared
with a new set of check bits generated from the data that have been read. If the check bits are
correct. no error has occurred. If the check bits do not match the stored pari ty, lht!)-generate a
unique pattern. ca lled a syndrome. that can be used 10 identify the bit thai is in error. A single
error occurshen a bit changes in value from I to Oor from 0 10 I during the write or read op­
erauon. If the specific bit in error is identified, then the error can be corrected by compte­
menting the erroneous bit

Hamming Code

One of the most common error-correcting codes used in RAMs was devised by R. W. Ham­
ming. In the Hamming code. k. parity bits are added 10an n-bit data word. forming a new word
of n + k bits. The hit positions are numbered in sequence from I to n + k, These positions
numbered as a power of2 arc reserved for the parity bits. The remaining bits are the data bits.
The code can beused with words of any length. Before giving the general characteristics of the
code. we will illustrate its operat ion with a data word of eight bib .

Consider. for example. the 8-bil data word I10001no. We include ~ parity bits with the
8-bit word and arrange the 12 bits as follows:

Bil position: I
PI

2 3 4 5 6 7 8 9 10 II 12
Pl IP4 1 0 0 f\ 0 1 0 0

Section 7.4 Error Detection and Correction 297

The 4 pari ty bits , PI. P2, Pol' and PII• are in positions 1,2. 4. and 8. respectively. T he 8 bits of
the da ta word are in the remaining posi tions . Each parit y bit is ca lculated as follows:

PI = XOR orbits (3. 5, 7, 9. II) = 1$1 $ 0$0$ 0 = 0

P2 = XOR of bits (3, 6, 7. 10. 11) = 1 E& DEB O$ I EB O = 0

Pol = XO R of bits (5. 6, 7. 12) = I $ O$ OEB O = 1

Pg = XORofbi ts (9 . IO, 11.1 2) = 0 $ 1$0$0 = 1

Remember that the cxctusive-Ok operat ion performs the odd function: It is equal to I for an odd
number of " s in the variables and to 0 for an even number of I 'soThus. each parity bit is set so
that the total number of l 's in the chec ked positions. including the pari ty bit, is always even.

The 8-bit data word is stored in memory together with the 4 parity bits as a 12-bit compos ­
ite word . Subs tituting the 4 P bits in thei r prope r pos itions. we obta in the 12-bit co mposite
word stored in memory:

Bit position:
o
1

o
2

1
3

1
4

I 0 0
5 6 7

1
8

o I
9 10

o 0
11 12

When the 12 bits arc read from memory. they are checked again for errors. The parity is chec ked
over the same combination of bits. incl uding the parity bit. The 4 check bits are evaluated as
follows:

C j = XOR orbits (I. 3. 5, 7, 9. 11)

C2 = XORof bits (2 . 3.6. 7, 10. 11)

Col = XORofbit s (4. 5, 6, 7. 12)

Cg = XOR ofbi IS (8. 9, 10, 11. 12)

A 0 check bit de signates e ven parity over the checked bits and a I designates odd parity. Since
the bits were stored with even parity, the result . C = CgC.jC2CI = 0000. indicates that no error
has occurred. However. if C *" 0, then the 4 -bit binary number formed by the check bits gives
the position of the erro neous bit. For example. co nsider the fo llowing three cases:

Bit po sition: 1 2 J 4 5 6 7 8 9 10 11 12
0 0 1 I I 0 0 1 0 1 0 0 1'\0error

1 0 1 I 1 0 0 1 0 1 0 0 Error in bit I

0 0 I 1 () 0 0 1 0 1 0 0 Error in bit 5

In the first case, there is no error in the l2·bit word. In the second case. there is an error in bit
position number I bec ause it changed from 0 to I. The th ird case shows an error in bit posi­
tion 5. with a change from I toO. Evaluating the XQR of the corres ponding bits, we determine
the 4 check bits to be as follows:

c. C, C, C,
For no error: 0 0 0 0
With error in bit I : 0 0 0 1
With error in bit 5: 0 1 0 1

298 Chapter 7 Memory and Prog rammable Logic

Th us. for no error, we have C = 0000; with an error in bit I , we ob tain C = 0001: and with
an error in bit 5. we ge t C =: 0 101. When the binary number C is not equal to ()(X)(). it gives
the pos ition of the bit in error. The error ca n be corrected by complementing the correspondin g
bit. Note that an error can occ ur in the dat a word or in one of the pari ty bus.

The Hamming code can be used for da ta words of any length. In general. the Ham ming code
co nsists of II. chec k bits and n da ta bits. for a total of II + II. bits. The syndrom e value C co nsists
of II. bits and has a range of 2k values betw een 0 and 2k - I . One of these values. usually zero.
is used to indicate that no error was detected . leaving 2l - I val ues to indicate which of the
11 + k bits was in error. Each of these 2k - 1 values ca n be used to uniq uely describe a bit in
error. Therefore. the range of k mu st be equal to or greater than /I + k. giving the re lationship

2k- I ;;::: Il + k

Solving for n in terms of k, we obtain

2k - I - k. ;;:::11

This rel ationship gives a fonn ula for es tablishing the number of data bits tha t can be used in
co njunc tion wit h k check bits. For example, when k. = 3. the number of data bits that can be

used is 1/ ~ (23 - I - 3) = 4 . For k = 4. we have 2~ - 1 - -l = I I. giv ing " es 11. The
da ta word rna)' be less than I I bits, but mu st have at least 5 bits: otherwise. only 3 check bits
will be needed. Thi s justifies the use of 4 chec k bits for the 8 data bits in the previous exam­
ple . Range.. of II for va rious values of k are listed in Table 7.2.

The grouping of bits for parity generation and checking can be determined from a list of the
binary numbe rs from 0 through i ' - I . The least signific ant bit is a I in the binary numbers I. 3,
5. 7. and soon. The second significant bit is a I in the binary numbers 2. 3, 6. 7, and soon. Co m­
paring these numbers with the bit positions used in generating and checking parity bi~ in the Ham­
ming code. we note the relat ionship betwee n the bit gro upings in the code and the position of the
l-bits in the binary count sequence. Note that each group of bits starts with a number that is a
power of 2: I, 2. 4. 8. 16. etc. These numbers are also the position numbers for the parity bits .

Sing le-Error Correctio n, Double-Error Detection

T he Hammin g cede can de tec t and correc t on ly a single error. By adding another parity bit to
the coded word, the Hamming code ca n be used to correc t a single error and detect double
errors. If we include this add itional parity bn. rhcn the previous 12-bil coded word becomes
OO l llOOIOi OOPI ~ ' w here P13 is eval uated from the excl usive-O R of the other 12 bits. This

Table 7,2
Range ofData Bits for" Cheel Bits

Number of Check Bits, ,.

3
4
5
6
7

Range of Data Bits, IJ

2-4
5- 11
12- 26
27- 57

58-120

Section 7.5 Read-Only Memory 299

produces the 13·bit word 00 11100101 001 (eve n parity). When the 13-bit word is read from
mem ory. the chec k bits are evaluated. as is the parity P over the entire 13 bits. If P = O. the
pari ty is co rrec t (even parity). but if P = 1. then the parity over the 13 bits is incorrect (odd
pari ty). Th e fo llowing fo ur cases can arise:

If C = 0 and P = O. no erro r occurred.

If C :F 0 and P = I, a single error occ urred that can be corrected.

If C :F 0 and P = 0, a doub le error occurred that is detected . but that cannot be corrected .

If C = 0 and P = I. an error occ urred in the P13 bit.

This scheme may detect more than two erro rs, but is not guaran teed to detect all such errors.
Integrated circ ui ts use a modified Hamming co de to generate and check parity bit s for

sing le-error correctio n and double-error det ecti on . The modified Hamming code uses a
more efficient parity co nfig uration that balances the number of bits used to calculate the
XOR operation . A typ ical inte grate d ci rc uit that uses an 8-bit data word and a 5- bit check
wo rd is Ie type 74637. Oth er inte grated circuits are avai lable fo r dat a words of 16 and 32
bits. Th ese circuits ca n be used in co nj unctio n wi th a me mory unit to correct a sing le erro r
or detect double erro rs during write and read opera tions.

7 .5 READ -ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored. The
binary informatio n must be spec ified by the designer and is then embedded in the unit to form
the required interconnection patt ern. Once the pattern is established. it stays within the unit even
when po wer is turned off and on aga in.

A block diagram of a RO M consisting of k inputs and n output s is shown in Fig. 7.9. The in­
puts provide the address for memo ry. and the outputs give the data bits of the stored word that is
selected by the address. The number of words in a ROM is determined from the fact that k address
input lines are needed to specify 2k words. Note that ROM does not have data inputs. because it
does not have a write operat ion. Integrated circ uit ROM chips have one or more enable inputs and
sometimes come with three-state outputs to facilitate the construction of large arrays of ROM .

Con sider. for example. a 32 X 8 ROM. The unit consis ts of 32 word s of 8 bits each. Th ere
are five input lines that form the bin ary number s from 0 through 31 for the address. Figure 7.10
shows the internal logic construction of this RO M. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.

n outputs (data)

FIGURE 7.9
ROM block diagram

300 Chapt er 7 Mem ory and Programmable Logic

A,

I
V

I
A. A, A. A, A, A, '"FIGURE 7.10

Internal logic of a 32 x 8 ROM

The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. (See Fig. 6.1.) Each OR gate must becon­
sidered as having 32 inputs. Each output of lhe decoder is connected to one of the inputs of each
OR gate. Since each OR gate has 32 input connectio ns and there are 8 OR gates, the ROM con­
tains 32 x 8 = 256 internal connections. In general. a 21 X n ROM will have an intern al
k X 21 decoder and n OR gates. Each OR gate has 2k inputs, which are connected to each of
the outputs of the decoder.

The 256 intersectio ns in Fig. 7.10 are programmable. A programmable connection between
two lines is logically equivalent to a switch that can bealtered to be either closed (meaning that
the two lines are co nnected) or open (meaning that the two lines are disconn ected). The pro­
gramm able intersection between two lines is sometimes called a crosspoint. Various physical
devic es are used to implement crosspoint switche s. One of the simplest technologie s employs
a fuse that normall y connects the two points. but is opened or "blown" by the app lication of
a high-voltage pulse into the fuse.

The internal binary storage of a ROM is specified by a truth tab le that shows the word con­
lent in each addres s. For example. the content of a 32 X 8 ROM may be speci fied with a truth
table similar to the one shown in Table 7.3. The truth table shows the five inputs under which
are listed all 32 addresses . Each addre ss stores a word of 8 bits. which is listed in the outputs
columns. The table shows on ly the first four and the last four words in the ROM. The complete
table must include the list of all 32 words.

The hardware procedure that programs the ROM blows fuse links in accordance with a
given truth table . Fur example. programming the ROM according to the truth table given by
Table 7.3 result s in the configuratio n shown in Fig . 7 ,11. Eve ry 0 listed in the truth table

Section 7.5 Read-Only Memory 301

Table 7. 3
ROM Truth Table (Partial)

In pu ts Outputs

I, I, I, I, I, A, .. A, A, A, A, A, A,

0 0 0 0 0 I 0 I I 0 I I 0
0 0 0 0 1 0 0 0 I 1 I 0 I
0 0 0 1 0 1 1 0 0 0 I 0 I
0 0 0 1 I 1 0 1 I 0 0 I 0

0 0 0 0 0 0 1 0 0 I
0 I 1 1 I 0 0 0 I 0
1 0 0 1 0 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1

I.

I,

/,

I ,

", '!lllllJ.- -4----if----f--+--+- ---1'"--- f-- + - -

~~;T ~?;.:::'
,:.." ·;1,"

:' :28 f---f--- f--- +-- +--+--+ - +-+--
29f---+-4--'f--t- + - I--t- + ­
3O f-+~f-+--jI-+--j-+--j­

'f".} l f----+-+ - + - >f..----jf-----+- + - +-­
'---""---"''''''-'-'

A,

FIGURE 7.11
Prog ramming the ROM acco rding to Table 7.3

specifies the absence of a connec tion. and every I listed specifies a path that is obta ined by a
connection. For example. the table specifies the eigh t-bit word 101100 10 for permanent stor­
age at address 3. The four O's in the word are programmed by blowing the fuse links between
output 3 of the decoder and the inputs of the OR gates associated with outputs A(i. AJ• A2. and
Ao. The four l 's in the word are marked with a X to denote a temporary connect ion, in place
of a dot used for a permanent connection in logic diagrams. When the input of the ROM is
000 II . all the outputs of the decoder are 0 except for output 3, which is at logic I. The signal

302 Chapter 7 Memory and Programmable l ogic

equivalent to logic I at decoder output 3 propagates through the connections to the OR gate out­
puts of A , . A3. A4. and A]. The other four outputs remain at O. The result is that the stored word
10I I00 rOls applied to the eight data outputs.

Combinat ional Circuit Implementat ion
In Section 4.9. it was shown that a decoder generates the 2Krnimerm s of me k input variables.
By inserting OR gales to sum the mintenns of Boolean functions. we were able to gene rate any
desired combinational circu it. The ROM is essent ially a device that includes both me decode r
and the OR gates within a single device to form a minterm generator. By choos ing connectio ns
for those minterms which are included in the function , the ROM outputs can be programmed
to represent the Boolean functions of the output variab les in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpretation is that
of a memory unit that contains a fixed pattern of stored words. The second interpretation is mat of
a unit which implements a combinational circuit. From this point of view. each output terminal is
considered separately as the output of a Boolean function expressed as a sum of minterms. For
example. the ROM of Fig. 7.11may beconsidered 10 bea combinational circuit wi th eight outputs.
each a function of the five input variables. Output A , ca n beex pressed in sum of minterms as

A,(I,. I,. J,. 11. /0) ~ };(O. 2. 3.... . 29)

(The three dots represent minterms 4 through 27, which are nOI speci fied in the figure.I A con­
nection marked with X in the figure produces a minterm for the sum. All other crosepoints
are not connected and are not included in the sum.

In pract ice, when a combinational circuit is designed by means of a RO\t. it is not neces­
sary to design the logic or to show the internal gate connections inside the unit All that the de­
signer has to do is specify the particular ROM by its Ie number and provide me applicable truth
table. The truth table gives all the information for programming the RO~1. No internallogic
diagram is needed to acco mpany the truth table.

Design a combinat ional circ uit using a ROM. The circuit accepts a three-bit number and out­
puts a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases. this is
all that is needed. In other cases , we can use a partial truth table for the RO\I by utilizing cer­
tain properties in the output variables. Table 7.4 is the truth table for the combinational circuit.
Three inputs and six outputs are needed to accom modate all possible binary numbers. We note
that output Bo is always equal to input Ao. so there is no need to generate Bo with a ROM.
since it is equal to an input variable. Moreover, output B] is always O. so this output is a known
constant. We actually need to generate only four outputs with the ROM; the other tWOare read­
ily obtained. The minimum size of ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 x 4. The ROM implementation is
shown in Fig. 7. I2. The three inputs specify eight words of foue bits each. The truth table in
Fig. 7.12(b) specifies the information needed for programming the ROM. The block diagram

Section 7.S Read-Only Memory 303

Table 7.4
Truth Table for Circuit of Example 7. 7

Inputs Outputs

A, A, Ao ., ., ., ., ., ., Decimal

0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 1 I
0 I 0 0 0 0 I 0 0 4
0 I I 0 0 I 0 0 I 9
I 0 0 0 I 0 0 0 0 16

I 0 I 0 I I 0 0 I 25
I I 0 I 0 0 I 0 0 J6
I I I 1 I 0 U U I 49

0 - -

li.ff/;/{{:!-W%f~~', "1//,.•...
I,' i~'//(/j;~~j Ii!;j'ij;:

• '. I ", ".".,

8 x 4 ROM
[·'i1:{tXi,* f 1.4,1?/... ··c,".~l...... '...~.i,}, /·j.'I/-";:.1-;':fr~· ~1.:l,?}i!.I. .',J

(al Block diagram

B, A, A, Ao 8, 8 , B, B,

B, 0 U 0 0 0 0 0

fl ,
0 0 1 0 0 0 0
U I 0 0 0 0 I

B, 0 I 1 0 0 I 0
I 0 0 0 1 U 0

8, I 0 1 0 1 I 0
I I 0 I 0 0 I

8 , I I I I 1 0 0

(b) ROM tr uth table

FIGURE 7.12
ROM Implementation of Example 7.1

of Fig. 7.12(a) shows the required connections of the combinat ional circuit.

•
Types of ROMs

The requ ired paths in a ROM may beprogram med in four different ways. The first is ca lled mask
programming and is done by the semiconductor company duri ng the last fabrication process of
the unit. The procedu re for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. Th e truth table may be submitted in a spec ial fonn pro­
vided by the manufacturer or in a specified form at on a computer output medium. The manu­
facturer makes the corresponding mask for the path s to prod uce the 1's and D's according to the
customer's truth table. This procedure is costly because the vendor charges the customer a spe­
cial fee for custom maski ng the particular ROM. For this rea son, mask progranuning is eco­
nomical on ly if a large quantity of the same ROM configuration is to be ordered.

For small q uantities, it is more economica l to use a second type of ROM called
programmable read-only memory, or PROM. When ord ered, PROM units contain all the fuses
intact. giv ing all ls in the bits of the stored words. The fuses in the PROM are blown by the

304 Cha pter 7 Memory and Programmable Log ic

application of a high-voltage pulse to the device through a special pin. A blown fuse defines a bi­
nary 0 state and an intact fuse gives a binary I state. This procedure allows the user to program
the PRO~ in the laboratory to achieve the desired relationship betwe en input addresses and
stored words. Special instruments called PROM programmers are avai lable com mercially 10 fa­
cilita te the procedure. In any case, all procedures for programming RO~1s are hardware proce­
dure s, even though the word programming is used .

The hardware procedure for prog ramming ROMs or PROM s is irreversible. and once pro­
gramrned.tbe fixed pattern is permanent and cannot be altered. Once a bit pattern has been es­
tablished . the un it must be discarded if the bit pattern is to be changed. A third type of RO~1

is the erasable PROM. or EPROM. which can be restructured to the initial state even though
it has been programmed previo usly. When the EPROM is placed under a special ultravio let light
for a given length of time. the shortwave radiation d ischarges the internal floating gates tha t
serve as the programmed connect ions. After erasure, the EPROM returns to its initial state and
can be reprogrammed to a new set of values.

The fou rth type of ROM is the electrically erasable PROM (EEPRO~ or E2PROM). This
device is like the EPROM. except that the previously programmed connections can be erase d
with an electrical sig nal instead of ultravio let light. The advantage is [hat the device can be
erased without remov ing it fro m its socket.

H ash memory devices are similar to EEPROMs. but have additional buil t-in circuitry to
selectively program and erase the device in-circuit, without the need for a special programmer.
They have widespread app licatio n in modern technology in cell phones. digital camera... se t­
top boxes. digital TV. telecommu nications. non volatile data storage. and microconrrollers.
Their low consumpt ion of power makes them an attractive storage med ium for laptop and note­
book computers. Flash memories incorporate additional circuitry , too. allowi ng simultaneous
erasing of block s of memory. for example, of size 16 Kbytes to 64 Kbytes. Like EEPROMs.
flash me mories are subject to fatigue. typical ly hav ing about 105 block erase cycles.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD}-an integrated circuit with
programmable gates divided into an AND array and an OR array to provide an A."D-OR sum­
of-product implementation. There are three major types of combinational PLDs. differing in
the placement of the programmable connections in the A~D-OR array. Figure 1.13shows the
configuration of the three PLOs. The PROM has a fixed AND array con structed as a decoder
and a programmable OR array. The prog ramm able OR gates implement the Boolean functions
in sum-of- mintenns form. The PAL has a programmable ASD array and a fixed OR array. The
AND gates are programmed to prov ide the product terms for the Boolean functions. which are
log ically summed in each OR gate. The most flexible PLD is the PLA. in which both the A.'<0
and OR arrays can beprogrammed. The product terms in the AND array may be shared by any
OR gate to provide the required sum-of-prod ucts implementation. The names PAL and PLA
emerged from different vendors during the development of PLOs. The implementation ofcom­
binational circuits with PROM was demonstrated in this section. The design of combinational
circuits with PLA and PAL is presented in the next two sections.

Section 7.6 Programmable Logic Array 305

(a) Programmable read-only memory (PRO~)

IV "·;·:·' C·:->:'·L '· '·' '''''''''' '{<'· '...,.
Inputs + ,,-.-programr:na

ble
.... f-------J:..L.~:t.'.:.:~.·.'::._.:.:.;.:~..:.:.~...::~:·.:""".R·.·,,·~~.:,,:.·:~.'. ,::.:::~.•.:'.~.~.:.-~.~.~.~.;:..~.~.:.:~.~.:' :I---- Outpl<lS

!\:~:;1t~.~~r.~tf.~i;$·': ;v~.:'.:-,-}.~<:
(b) Programmable array logic (PAL)

tnputs ------+i~zt~~;~.~::1: f-------r
(c) Programmable logic array (PLAl

FIGURE 7.13
Bai ic configu ration of three Pl Ds

7 . 6 PROGRAMMABLE LOGIC ARRAY

Outputs

The PLA is similar in concept to the PRO M. except that the PLA does not provide full decod­
ing of the variables and does not generate all the minterms. The decoder is replaced by an array
of AND gates that can be programmed to generate any product tenn of the input variables.
The product terms are then connected 10 OR gates to provide the sum of products for the re­
quired Boolean functions.

The internallogic of a PLA with three inputs and two outputs is shown in Fig. 7.14. Such a
circuit is too small to be useful commercia lly, but is presented here to demonstrate the typical
logic configuration of a PLA. The diagram uses the array logic graphic symbols for complex cir­
cuits. Each input goes through a buffer-inverter combination, shown in the diagram with a com­
posite graphic symbol, that has both the true and compleme nt outputs. Each input and its
complement are connected to the inputs of each AND gate, as indicated by the intersections be­
tween the vertical and horizontal lines. The outputs of the AND gates are connected to the in­
puts of each OR gate. The output of the OR gate goes to an XOR gate, where the other input
can be programmed to receive a signal equal to either logic I or logic O. The output is inverted
when the XOR input is connected to 1 (since x $ 1 = x'). The output does not change when
the XOR input is connected to 0 (since x $ 0 "" x) . The particular Boolean functions imple­
mented in the PLA of Fig. 7.14 are

F1 = AB' + AC + A' BC'

F, ~ (AC + BC)'

306 Chapter 7 Memo ry and Programmable logic

B -----tL:==:::;l

-+-+--iI-+-+-+---1~}---+-~I<-- AC

'~"C- --t--t- - BC"'$.:§f£

C C' B B' A A ' I--t-- o
t--+-- l

i f;ii;:>- F,

F,

FIGURE 7.14
PLA with three Inputs, four product terms, and two outputs

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose crosspoinrs are connected and
marked with a X. The output of an OR gate gives the logical sum of the selected product terms.
The output may be complemented or left in its true form, depending on the logic being realized.

The fuse map of a PLA can be specified in a tabular form. For example, the programming
table that specifies the PLA of Fig. 7.14 is listed in Table 7.5. The PLA programming table con­
sists of three sections . The first section lists the product terms numerically. The second section
specifies the require d paths between inputs and AND gates. The third section specifies the
paths between the AND and OR gates. For each output variable, we may have a T'(for true] or
C (for complement) for program ming the XOR gate. The product terms listed on the left are
not part of the table ; they are included for reference only. For each product term. the inputs are
marked with I, 0, or - (dash). If a variable in the product term appears in the form in which
it is true, the corre sponding input variable is marked with a 1. If it appears complemented. the
corresponding input variable is marked with a O. If the variable is absent from the product
term, it is marked with a dash.

Section 7.6 Programmable LogicArray 307

Table 7.5
PtA Programming Tobie

Product Term

AB '
AC
BC
A' BC'

1
2
3
4

No": See telll for mean ings of dal.Bes.

The paths between the inputs and the AND gates are specified under the column head "In­
puts" in the programming table. A I in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple­
ment of the variable to the input of the AND gate, A dash specifies a blown fuse in both the
input variable and its complement. It is assumed that an open terminal in the input of an AND
gate behaves like a I ,

The paths between the AND and OR gates are specified under the column head "Outputs ,"
The output variables are marked with l 's for those product terms which are included in the func­
tion, Each product term that has a I in the output column requires a path from the outpu t of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse , It is as­
sumed that an open terminal in the input of an OR gate behaves like a O. Finally. a T (true) out­
put dictate s that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to I.

The size of a PLA is specified by the number of inputs. the number of produc t terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and eight outputs . For n inputs, k product terms. and m outputs, the interna l logic of the PLA
consists of n buffer- inverter gates, k AND gates, m OR gates, and m XOR gates. There are
2n x k connections between the inputs and the AND array, k x m connections between the
AND and OR arrays . and m connections associa ted with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections
of the unit as was done in Fig. 7.14. All that is needed is a PLA programming table from which
the PLA can be programmed to supply the required logic. As with a ROM, the PLA may bemask
programmable or field progra mmable. With mask programming. the customer submits a PLA
program table to the manufacturer, This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that
is available is the field-programmable logic array, or FPLA, which can be programmed by the
user by means of a commerc ial hardware programmer unit.

In implementing a combinational circuit with a PLA, careful investigation must be under­
taken in order to reduce the number of distinct product terms. since a PLA has a finite number
of AND gates. This can be done by simplifying each Boolean function to a minimum number
of terms. The number of literals in a term is not important, since all the input variables are

308 Chapter 7 Memory and Prog rammable Logic

availabl e anyway. Both the true value and the complement of each function should be simpli­
fied 10 see which one can be expressed with fewer product terms and which one provides prod­
UCt terms thai are common to other functions.

Implement the following two Boolean functions w ith a PLA:

FI (A,B, C) = L (O. 1.2,4)

F, (A , B, C) ~ L (O. 5. 6. 7)

The 1.....0 functions are simplified in the maps of Fig. 7. 15. Both the true value and the com­
plement of the functions arc simplified into sum-of-products form . The combination that gives
the minimum number of product terms is

PI = (A B + AC + BC)'

aod

F2 "" AB + AC + A'B 'C'

This combination gives four distinct product terms: AB. AC, Be . and A'B'C' . The PLA pro­
gramming table for the combination is shown in the figure . Note that outpu t PI is the true OUt­
put, even though a C is marked ove r it in the table . This is because FI is generated with an
AND-OR circuit and is available at the output of the OR gate. The XOR gate complements the
function to produce the true FI outpu t.

PLA programming table

- 1
- 1 1
o 0 0

FIC;URE 7.15
Solutio n to Example 7,2

•

B

C

BC
A 00 01 11 10.. m, m, m,

0 1 0 0 0

l'
m, m. m. m,

0 1 1 1A

B

C

BC ,
A 00 01 11 10.. m, m, m,

0 1 1 0 1

l'
m, m, "', m,

1 0 0 0A

Ou tputs
(C) (T)

Fl £2

Inputs

A BC
Produ ct

1'=
AB 1
AC ,
BC 3
A'S 'C' 4

The combinational circuit used in Example 7.2 is too simple for implementing with a PLA.
It was presented merely for purposes of illustration.A typical PLA has a large number of inputs
and product terms. The simplification of Boolean functions with so many variables should be
carried OUI by means of compurer-asslsred simplification procedures,Thecomputer-aided design
program simplifies each function and its complement 10 a minimum number of terms. The pro­
gram then selects a minimum number of product terms that cover all functions in the form in
which they are true or in their complemented form. The PLA programmi ng table is then gener­
ated and the required fuse map obtained. The fuse map is applied to an FPLA programme r that
goes through the hardware procedure of blowing the internal fuses in the integrated circuit .

Section 7.7 Programmable Array Logic 309

7 .7 PROGRAMMABLE ARRAY LOGIC

Th e PAL is a programmable logic device with a fixed OR array and a programmable AND array.
Because only the AND gates are programmable, the PAL is easier to program than. but is not
as flexible as. the PLA. Figure 7. 16 shows. the logic configuratio n of a typical PAL with four in­
puts and four outputs. Each input has a buffer- inverter gale. and each output is generated by a
fixed OR gate. There are fou r sections in the unit. each composed of an AND-OR array that is
three wide. the term used to indicate that there arc three programmable AKD gates in each sec­
lion and one fixed OR gate. Each AND gate has 10 programmable input connections. shown in
the d iagram by 10 vertical lines intersecting each horizontal line. The horizonta l line symbol.
izes the mult iple-input configuration of the AND gate. One of the outp uts is connected to a
buffer-inverte r gate and then fed back into two inputs of the AND gates.

Commercial PALdevices contain more gates than the one shown in Fig. 7.16. A typical PAL
integrated circuit may have eight inputs. eight outputs. and eight sections. each consisting of an
elghr-wide Arcb -O g array. The output terminals are sometimes driven by three-state bulTers or
inverters.

In de signing with a PAL. the Boolean functions must be simplified to fit into each section.
Unlike the situation with a PLA. a product term cannot beshared among two or more OR gates.
Therefore. each function can be simplified by itself, without regard to common product terms.
The number of prod uct terms in each section is fixed. and if the number of tenus in the func­
tion is too large. it may be necessary to use two sectio ns to implement one Boo lean function .

As an example of using a PAL in the design of a combinational circuit. consider me followi ng
Boolean funct ions. given in sum-of-minterms form:

...(A. B. C. D) - I (2. 12. 13)

.,(A. B. C. D) = I (7. 8. 9.10. II . 12. 13. 14. 15)

y(A. 1i.C, D) = I (0.2. 3. 4.5. 6. 7.8. 10. 11. 15)

, (A. n.C. D) = I (U. 8. 12. 13)

Simplifying the four functions to a minimum numbcr of terms results in the following Boo lean
function s:

It-' = ABC' + A'B'CD'

x = A + BCD

J = A'H + CD + B'D '

1. = ABC' + A'H 'CD' + AC' D ' + A'S'C'D

= I I ' + AC'D' + A'S'C D

Note that the function for c has four product terms. The log ical sum of two of these terms is
equal to 1\'. By using 1\', it is possible to reduce the number of term s for z from four to three .

Th e PAL programming table is similar to the: one used for the PLA. excep t that o nly the in­
puts of the AND gates need to he programmed. Table 7.6 lists the PAL programming table for
the four Boo lean functions. The table is d ivided into four sections with three product terms in

310 Chapter 7 Me mory and Programmable Logic

P"xI""

AND gales inpUl'

2 3 4 S 6 7 8 9 10

I,

I ,

I ,

I,

term ----,
•
I

2

I I,
I

- ,

,
·i" .

~,
• Ii ./

6 .-

7

~

• ./

,

10

~

II
./

r.:-::7\
12 1'<1%:

2 3 4 S 6 7 8 9 10

f1GUR17. 16
PAL with four Inputs. four outputs. and a three- wide AND-OR rtrueture

F,

F,

F,

Section 7.8 Sequential Programmable Devices 311

T.ble 7,6
PAL Programming Tablr

AND Inpub

Product Term A • C D .. Ou tputs

1 I I 0 " " '" ABC' + A' B'CO'
2 0 0 I 0
3
4 x'" A + BC D
5

•
7 0)' - A'B~ CO ~ B'D '

8 I
9 0 0

10 l - w + AC'O' + A'B 'C'O
II 1 0 0
12 0 0 0 I

each. to conform with the PAL of Fig. 7.16. The first two sections need only two product terms
to impleme nt the Boolean function. The last section. for outpu t z, needs four product terms.
Using the output from w, we can reduce the function 10 three terms.

The fuse map for the PAL as specified in the programm ing table is shown in Fig . 7,17, For
each I or 0 in the table, we mark the corresponding intersection in the diagram with the sym­
bol for an intact fuse. For each dash. we mark the diagram with blown fuses in both the true
and complement inputs . If the A..'\Dgate is not used , we leave all its input fuses intact. Since
the corresponding input receive s both the true value and the complement of each input vari­
able. we have AA' '" 0 and the output of 1heA.''D gale is always O.

As with all PLDs. the design with PALs is facilitat ed by using computer-aided design tech­
niques. Theblowing of internal fuses is a hardware procedure done with the help of special elec­
tronic instruments.

7.8 SEQUENTIAL PROGRAMMA8lE DEVICES

Digital systems are designed with flip-flops and gates. Since the combinational PLD consists
of only gates, it is necessary 10 include external flip-flops when they are used in the design. Se­
quential programmable devices include both gates and flip-flops. In this way. the dev ice can
beprogrammed to perform a variety of sequential-circuit functions. The re are seve ral types of
sequential programmable devices available commercially, and each device has vendor-specific
variants within each type. The intema l logic of these devices is too complex to be shown here .
Therefore. we will describe three major types without going into their detailed construction:

I. Sequential (or simple) programmable logic device (SPLD)

2. Complex programmable logic device (CPLD)

J. Field-programmable gate array (FPGA)

312 Chapter 7 Mem ory and Prog rammable Logic

•

,

,

Al'OD gales inputs

A A' B B' C C D D' w w'
"~

te rm -----,
•

~
1

2
~

3 x

,

W I ',
~

, x

L AnfuSC's inUC1
(aJay~. 01

7

~

e --;::=J

9

10

11 --;::=J

12 I·m",
v.

x Fuce inlal;1

. Fuse blo.... n

Prod

D

c

8

A

A A' B' B' C C D D' w ~

FIGURE 7.17
Fuse map for PALas spedfled In Table 7.6

Section 7.8 Sequential Programmable Devices 313

Inputs ---------1
O Ulp UIJ

Aip-filil'S f-4"-

FlCoURE 7.18
Sequential programmable logic device

The sequentia l PLD is sometimes referred 10as a simple PLD to differentiate it from the cern ­
plex PLD. The SPLD includes fli p-flops, in addition to the AND--OR array, within the integrated
circuit chip. The result is a seq uential circu it as sho wn in Fig . 7.18. A PAL or PLA is. modi fied
by including a number of flip-flops connected 10 fonn a regis ter, The circu it outputs can be taken
from the OR gates or fro m the outputs of the flip-flops. Addit ional programmable co nnection s
are available 10 include the flip-flop outputs in the product terms forme d with the AND array.
The flip-flops may be of the D or the JK type.

The first programmable device developed 10 suppo rt sequential ci rcuit implementat ion is
the field-p rogram mable logic seq uencer (FPLS). A typical FPLS is orga nized around a PLA
with several o utputs driving flip- flops . Th e flip-flops are flexib le in that they ca n be pro­
grammed to operate as ei ther the JK o r the D type. The FPLS did nOI succeed commercia lly,
beca use it has too many programmable connectio ns. The configuratio n mostly used in a n
SPLD is the combina tional PAL together with 0 flip-flops. A PAL that includes flip-flops is
referred to as a regist ered PAL, to signify that the device co ntains flip. flop s in add ition 10 the
AND--DR arr ay. Each section of an SPLD is ca lled a macrocetl. which is a ci rcuit that comains
a sum-of-products co mbinatio nal logic function and an optional flip-flop. wewill assume an
AND-OR sum-of-products function, but in practice, it can be anyone of the two -leve l im­
plementations presented in Sec tion 3.7.

Figure 7.19 shows the log ic of a basic macrocelt . The AI'\D- OR array is the same as in the
co mbinational PAL shown in Fig. 7. 16. Th e output is driven by an edge-triggered D flip-flop
co nnected 10a common clock input and changes state on a clock edge . The output of the flip­
flop is co nnected to a three- state buffer (or invert er) controlled by an o utput-enable signal
marked in the diagram as OE. The o utput of the flip-flop is fed back into o ne of the inputs of
the program mable AND gates to provide the present-state co ndition for the sequential ci rcuit.
A typical SPLD has from 8 to 10 macrocells within one Ie package. All the flip-flop s are con­
nected to the common eLK input, and all three-Male buffers are controlled by the OE input.

In addition to programming the AND array, a macrocell may have other programm ing features.
Typical programming options include the ability to either use or bypass the flip-flop, the selection
ofclock edge polarity, the selection of preset and clear for the register, and the selection of the true
value or complement of an output. An XOR gate is used 10 program a true/compl ement condition.
Multiplexers select between two or four distinct paths by programming the selection inputs.

Th e design of a digi tal system using PLDs often requ ires the connection of severa l devices
to produce the complete specification. Forthis type of applicat ion, it is more economica l to usc
a complex programmable logic device (CPLD), which is a collection of indi vidual PLDs on a
single integrated circuit. A programmable interconnection structure allows the PLDs to be co n­
nected to eac h other in the same \ovay that can be done with individual PLDs.

314 Chapter 7 Me mory and Prog rammable Logic

eLK DE

-
i< D-D -t>I ~
@
'i§J , "" eLK

FIGURE 7 .19
Basic macrocell logic

110

.-
FIC;URE 7.20
General (PtD configuration

G
I <0

"ad

Figure 7.20 shows the general configuration of a CPLD. The device cons ists of multiple
PLDs interconnected through a programmable switch matrix . The input-output (110) blocks pr0­

vide the connec tions to the Ie pins. Each un pin is driven by a three-state buffer and can be
programmed 10act as input or output, The switch matrix receives inputs from the unblock and

Section 7.8 Sequent ial Programmable Devices 315

directs them 10 the individual mecrocetls. Similarly. selected OUtpUISfrom macrocell s are sent
to the OUtpUIS as needed. Each PlD typically contains from 8 to 16 macrocetls. usually fully
connected. If a macrocelt has unused product terms. they can beused by other nearby macro­
cells. In some cases the macrocell flip-flop is programmed to act as a D. JK. or T flip-flop.

Different manufacturers have taken different approaches to the general architectureof CPlDs.
Areas inhich they differ include the individual Pl.Ds (sometimes CalledjiuzClioll blocks), the
type of mecrocetls. the lJOblocks. and the programmable interconnectionstructure. The best way
10 investigate a vendor-specific device is 10look at !he manufacturer's literature.

The basic component used in VLSI design is the gal~ array.hich consists of a pattern of
gates. fabricated in an area of silicon. that is repeatedtbousards of times until the entirechip is cov­
ered w ith gates. Arrays of one thousand 10 several hundred thousand gales are fabricated w ithina
single Iechip, depending on the technology used.The design with gate arrays requires that the cus­
remer provide the manufacturer the desired interconnection pattern.The first few levels of the fab­
ricationprocess arecommon and independent of the final logic function.Additional fabrication steps
are required 10 interconnect the gates according to the specifications given by the designer.

A field-programmable gate array (FPGA) is a VlSI circuit that can be programmed at the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks.
surrounded by programmable input and output blocks and connected together via program­
mable Interconnections. There is a wide variety of internal configurations within this group of
devices. The performance of each typeof device depends on the circuit contained in its logic
blocks and the efficiency of its programmed interconnections.

A typical FPGA logic block consists of lookup tables. multiplexers. gales, and flip-flops, A
lookup table is a truth table stored in an SRA..\ l and provides the combinational circuit functions
for the logic block. These functions are realized from the lookup table. in the same way that com­
binational circuit functions are implemented with RO~1. as described in Section 7.5. For exam­
ple, a 16 x 2 SRA\f can store the truth table of a combinational circuit that has four inputs and
two OUtpUlS. The combinational logic section. along with a number of programmable multiplex­
ers, is used to configure the input equations for the flip-flop and the output of the logic block,

The advantage of using RA~1 instead of RO~f 10 store the truth table is thai the table can
be programmed by writing into memory. The disadvantage is thai the memory is volatile and
presents the need for the lookup table' s content 10be reloaded in the event that power is dis­
rupted . The program can be do wnloaded either from a host computer or from an onboard
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is turned
off, The device must be reprogrammed every time power is turned on. The ability to reprogram
the FPGA can serve a variety of applications by using different logic implementations in the
program.

The design with PLD, CPLD. or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. Among the tools that are available are schematic
entry packages and hardware description languages (HDl'i), such as ABEL, VHDL. and Ver­
Hog. Synthesis tools are available that allocate. configure, and connect logic blocks to match
a high-level design description written in HDl. As an example of CMOS FPGA technology,
we will discuss the Xiliox FPGA.1

316 Chapter 7 Mem ory and Programmable l ogic

Xllln x FPGA.

Xilinx laun ched the world's first commercial FPGA in 1985. with the vintage XC2000device
famil y.2The XC3000 and XC.JOOO fami lies soon followed. setting the stage for tcday's Spar­
tann.I , and Vin t xTlo1 device families. Eac h evolution of devices brought improvements in den­
sity. performance. power cons umption, voltage levels. pin counts. and functionality. For
example. the Spartan famil y o f devices initially offered a maximum of oWK system gaits. but
today' s Spartan·3E o ffers 1.6 !1.t gates plu s block RAM .

Basic Xlllnx Architecture

The basic architecture of Spartan and earlier device families consists of an array of config­
urable logic blocks ICLBs). a variety of local and global routing resources. and input-output
(VO) blocks (lOBs). programmable VO buffers , and a SRAM·bas ed configuration memory. as
shown in Fig. 7.2 1.

Horizontal
tong line

Matrix
"--',~ '.

Switch
Maln Jl

Malrix

vemcet
long; line

FIGURE 7.21
Basic architecture of XlIIn. Spartan and predecessor devices

~Sce-.Xilinx.com for up-to-date informationabout XiIin, pmduet~.

Section 7.8 Sequential Programmable Devices 317

tonflg ura b le LogIc Block (CLB)

Each CLB consists of a programmable lookup tab le. multiplexers. registers. and paths for con­
trol signals. as shown in Fig. 7.22. Two of the function generators (F and G) of the lookup
table can generate any arbitrary function of four inputs. and the third (H) can generate any
Boo lean function of three input s. The H-function block can get its inputs from the F and G
look up tables or from externa l inputs. The three function generators can be program med to
generate (I) three different func tio ns o f three independent sets of varia ble s (two with four in­
puts and o ne with three inputs-one function must be regbrered within the CLB). (2) an arbi ­
trary funct ion of five varia bles. (3) an arb itrary function of four variables togeth er with some
funct ions of six variables. and (4) some functions o f nine variables.

Each e LB has two storage de vices that can beconfig ured as edge-trig gered flip-flops with
a common dock. or. in the XC4(X)()X. they can be configured as flip-flops or as transparent
latches with a common clock (programmed for either edge and separa tely invertible) and an
enable. The storage element s can get their inputs from the function generators or from the Din

input. The other element can get an external input from the HI input. Th e function generators
can also dr ive two outputs (X and Y) directly and independently of the outputs of the storage
elements . All of the se outputs can be connected to the interconnect network . The storage ele­
ments are dri ven by a global set/reset during power-up; the global set/ rese t is programmed 10

match the program ming of the loca l SIR control for a given storage element.

Dist ri but ed RAM

Tbe three function generators within a CLB can be used as either a 16 X 2 dual-pon RAM or a
32 X I single-pot RA\ t. TbeXC40Xl devices do rot bave block RA.\ t. buta group of thtir U Bs
can form an array of memory. Spartan deviceshave block RA.\ l:in addition to distributed RA.\1.

Interconnect Resources

A grid o f sw itch matrices overlays the archi tecture of CLB:i. to provide general-purpose inter­
connec t for branching and routing throughout the device. The interconnec t has three types of
general-purpose interco nnects: single- length lines. double-length lines. and long line... A grid
of hori zontal and vert ical single-length lines con nects an array orswitch boxes that provide a
reduced numbe r of connections between signal paths within eaeh box. not a full crossbar ..witch.
Each CLB has a pair of three-state buffers that can drive signals onto the nearest horizontal tines
above or below the CLR.

Direct (ded icated) interc onnec t lines provide routing between adjacent vertical and hori­
zontal CLBs in the same column or row. These are relatively high speed local connections
through metal . but are not as fast as a hardwired metal connection bec ause of the delay in­
curred by routing the signal paths through the transmission gales that configure the path. Di­
rect interconnect lines do not U'-C the switch matri ces. thus eliminating the delay incurred o n
paths going throu gh a matrix.'

) See XiliR'l. documentation for1M pin-ollC 00II" Clll i0ll5 10 clolat>lidl loc<1l inlm:onnttt5betw een a _B•.

318 Chapter 7 Memory and Programmable Logic

. "

Section 7.8 Sequential Programmable Devices 319

"';"

Intercon nect palh

FIGURE 7.23
RAM cell controlling a PIP t ransmis sion gate

Double-length lines traverse the distance of two CLBs before entering a switch matrix. skip­
ping every other CLB.These lines provide a more efficient implementation of intermediate-length
connections by eliminating a switch matrix from the path. thereby reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew. high-fan­
out control signals. Long vertical lines have a programmable splitter that segments the lines and
allos t.....o indepe ndent routing channels span ning one-half of the array. but located in the
same column. The routing resources are exploited automatically by the routing soft.....are. There
are eight low-skew global buffers for clock distribution .

The signals thai drive long lines are buffered. Long lines can be driven by adjacent CLBs
or lOBs and may connect to three-state buffers that are availab le to CL Bs. Long lines provide
three-state buses within the architecture and implement wired-AND logic. Each horizontal
long line is driven by a three-state buffer and can be programmed to connect to a pull-up re­
sistor.hich pulls the line to a logical I if no driver is asserted on the line.

The programmable interconnect resources of the device connect CLBs and lOBs. either di­
rectly or through switch boxes. These resources consist of a grid of two layers of metal seg­
ments and programmable interconnect points (PIPs) within switch boxes. A PIP is a CMOS
transmission gate whose "tate (on or off) is determined by the content of a static RAM cell in
the programmabl e memo ry. as shown in Fig. 7.23. The connection is established when the
transmission gate is on (i.e .• when a I is applied at the gate of the a-channel transistor). and a
ois applied at the gate of the p-channel transistor. Thus. the device can be reprogrammed sim­
ply by changing the contents of the controlling memory cell.

The arc hitecture of a PIP-based interconn ection in a switch box is shown in Fig. 7.24.
which shows possible signal paths through a PIP. The configuration of CMOS transmission
gales determines the connection between a horizontal line and the opposite horizontal line
and between the vertical lines at the connection. Each switch matrix PIP requ ires six pass
transistors to establish full connect ivity.

320 Chapter 7 Mem ory and Programmable logic

I1
--"--

fer..~
- --,

- II
---L *-;.~.:.

" "
j

FIC;URE 7.24
Circuit for a program mable PIP

I/ O Block (lOB)

Each programmable va pin has a programmable lOB having buffers for compatibility with TTL
and CMOS signal levels. Figure 7.25 shows a simplified schematic for a programmable lOB.
It can be used as an input, an outp ut. or a bidirectional port. An lOB that is configured as an
input can have direct. latched. or registered input. In an output configuration. the lOB has di­
reel or registered output. The output buffer of an lOB has skew and slew control. The regis­
ters available 10 the input and output path of an lOB are driven by separate. invertible clocks.
There is a global set/reset.

Internal delay elements compensate for the delay induced when a clock signal passes through
a global buffer before reaching an rOB. This strategy eliminates the hold condition on the data
at an external pin. The three-slate output of an lOB puts the output buffer in a high-impedance
slate . The output and the enable for the output can be inverted. The slew rate of the output
buffer can becontrolled to minimize transients on the powe r bus when noncritical signals are
switched.The lOB pin can be programmed for pull-up or pull-down 10prevent needless power
consumption and noise.

The devices have embedded logic 10 support the IEEE 1149.1 (JTAG) boundary scan stan­
dard .There is an on-chip test access port (TAP) controller. and the l/O cells can be configured
as a shift register. Under testing. the device can be checked 10 verify thai all the pins on a PC
board are connected and operate properly by creating a serial chain of all of the va pins of the
chips on the board . A master three-state control signal puts all of the lOBs in high-impeda nce
mode for board testing.

Enhanceme nt s

Spartan chips can accommodate embedded soft cores. and their on-chip distributed. dual-port.
synchronous RA~f (Se lec tRAM) can be used to implement first-in. first-out register fi les

Sectio n 7.8 Sequentia l Prog ramma ble Devices 321

Slew rale
centro!

_.: Passive
.. pull-up
pull.dollln

Output . -J l)F-"-- ...J
clock

OU IPUI
bu ffer

Input
buffer

Inpur .--f>~-----==r­
clock

FIGURE 7.25
XC4000 series 106

"

SPOR::.~:i.f.--="-.

••
Ib X 2
J2)(1

Ram.:Irray
••

"

DO or O J ---:- -1MH- - -L:':::;::'-J

WE

WCLK

FIGURE 7.26
Distributed RAM cell formed from a lookup table

(A FOs). shift registers. and scratchpad memories. The blocks can becascaded to any width and
depth and located anywhere in the pan. but their use reduces the CLBs available for logic.
Figure: 7.26 displays the structure of theon-chip RAM that is fonned by programming a lookup

322 Chapter 7 Memo')' and Prog ramma ble Logic

table to implement a single-port RAM with synchronous wri te and asynchronous read. Each
CLB can be programmed as a 16 X 2 or 32 x I memory.

Dual-port RAMs are emulated in a Spartan devic e by the structure sho....-n in Fig. 7.27, which
has a single (common) write port and two asynchronous read ports. A CLB can form a mem­
ory having a max imum size of 16 X 1.

Xlllnx Spartan Xl FPGAs

Spartan XL chips are a further enhancement of Spartan chips, offering highe r speed and density
(40JXX) system gates, approximately 6,(0) ofwhich are usable) and on-chip, distributed SelectRA\ 1
mem ory,' The lookup tables of the devices can implement 22" different functions of n inputs.

4

WE - - -J

D --,----J

WCLK

~rite
~~rol

SPO

FIGURE. 7 .27
Spartan dual-port RAM

4 The maximum number of logic gates for a Xilinx fPGA is an estimate of the maximum number of logic H~ that
could be realized in a design consisting of only logic functions (no me mory). Logic capaciry is expressed in terms
of the number oftwo-in put :-JA.'ID gales tha I would be requ ired 10 implement the WIle Dumber and 1)"JlC of logi c
functions (Xllin x App. SOle).

Section 7.8 Sequential Programmable Devices 323

Table 7.1
Attributes of the Xilinx Spartan Xl Device Family

,i sp..... .. xL '? XCS05/XL' XCSlO/XL ·~ XCS20/XL·' . XCS1O/XL) XCS40/ XL

Ij; Sy~'~'~'G~t~1 2K-5 K 3K- IOK 7K-20 K IOK-30 K I3K-40K

1''I:Logic Cellsl ., 'i.~, 238 466 950 1.368 1,862

Max Logic Gates 3,000 5,000 10,000 13,000 20,000

I..Y; Aip-flops" i,:::;.' 360 616 J,120 1,536 2,016

MaxRA.\1 Bhs 3,200 6,272 12.800 18,432 25.088

l'i ',Max Avail llO / ' 77 112 160 192 224

I 20-30% of CLB~ 11.> RAM ,

2 1 Logic cell = fou r-inpul lookup table + flip- flop .

The XL series is targeted for applications for which low cost, low power. low packaging,
and low test cost are important factors constraining the design. Spartan XL devices offer up to
gO-MHz system performance. depending on the number of cascaded lookup tables, which re­
duce performance by introducing longer paths. Table 7.7 presents significant attributes of de­
vices in the Spartan XL family.

The architecture of the Spartan XL and earlier devices consis ts of an array of CLB tiles
mingled within an array of switch matrices, surrounded by a perimeter of lOBs. These de­
vices support only distribu ted memory. whose use reduces the number of CLBs that could
be used for logic. The relatively small amoun t of on-chip memory limits the devices to ap­
plica tions in which operations with off-chip memory devices do not compromise perform­
ance obje ctives. Beginning with the Spartan II series. Xilinx suppo rted configurable
embedded block memory, as well as distributed memory in a new architecture.

Xlllnx Spartan II FPGAs

Aside from improvements in speed (2OQ.MHz I/O switching frequency). density (up to 200,000
system gates) and operating voltage (2.5 V). four othe r features distinguish the Spartan II
devices from the Spartan devices: (1) on-chip block memory, (2) a novel architecture. (3) sup­
port for multiple va standards, and (4) delay locked loops.!

The Spartan II device family, manufactured in 0.2210. 18-J.Lm CMOS technology with six
layers of metal for interconnect. incorporates configurable block memory in addition to the dis­
tributed memory of the previous generations of devices. and the block memory does not reduce
the amount of logic or distributed memory that is available for the application. A large on-chip
memory can improve system performance by eliminating or reducing the need to access off-chip
storage.

' Spartan II devices do not >upport low-volwge differen tial signaling (LVDS) or jow-vone ge postuv e emitt er-couple d

logic (LVPECL) I/O standards.

324 Chapter 7 Memory and Prog rammable l ogic

Reliable clock distribution is the key to the synchronous operation of high-speed digital cir­
cuits. If the clock signal arrives at differen t times at different pans of a circu it. the device may
fail to operat e correctly. Clock skew reduces the available time budget of a circuit by lengthen­
ing the SClUp time at registers. It can also shorten the effective hold-time margin of a flip-flop
in a shift register and cause the register to sltift incorrectly. At high clock freque ncies {shorter
clock periods). the effect of skew is more significant because it represents a larger fraction of
the clock cycle time. Buffered clock trees are commonly used to minimize dock skew in FPGAs.
Xilinx provides all-dig ital delay-locked loops (OLLs) for clock synchronization or manage­
ment in high-speed circuits. OLLs eliminate the clock distribution delay and provide frequency
multip liers. frequency dividers. and clock mirrors.

Spartan II devices are suitable for applic ations such as implementing the glue logic of a
video capture system and the glue logic of an ISDN modem. Device attributes are summarized
in Table 7.8, and the evolution of tech nology in the Spa nan series is evident in (he data in
Table 7.9.

Tab le 7.8
Sparton II Device Attributes

Spartan II fPGA;Xc:zhs XOS3(r ~xciiso XC2S100 XC2S1S0 XC2S200

I3K-30K

972

24,576

132

23K-50K

1,728

32,768

176

37K- IOOK

2.700

40.960

196

S2K-150K

3.888

49.152

260

7I K- 100K

5.192

57.W,..
1 2Q-3O'K o{CLB ~ as RAM.
1 I Logic ce ll '" four-inputlookup table + Ilip-Ilcp.

Table 7.9
Comparison of the Spartan Device Families

XC4000 XC4000
Based Based

SK-40K 5K-40K

Distributed Distributed
RAM RAM

80 MHz 1 00 ~fHL

4 4

5 V 3.3 V

No No

v lnex
Based

15K- 2ooK

Block +
Distributed

100 MHz

16

1.5 V

Yes

Sect ion 7.8 Sequential Programmable Devices 325

_-,0000 0000 0000 0 0 0 0 000000ooS > .':':::-

l OLL 1000 0 0 0 DDDDDD~

~ ~ DDDDDDODDDDD~~
§D ~ DDnnDDDDnnDD ~ ~
§D ~ DDuuDDODuuDD ~ D§
§D ~ DDDDDDJDDDDDD~ D§
§D~ DDDDDOtDODDDD ~ D§
i=!D ~ DDnnDDiDDnnDD ~ Di=!tj] CUh :.i CLBs "t:j

U; DDuuDDUDuuDD;~
§D~ DDDDDD'DDDDDD~D§
I DLL IBBBBBB DDDDDD~

0 0 0 0 0 0000000 : 0 0 0 0 000000 00

F1CUR£ 7.28
Spartan II architecture

The top-level tiled architecture of the Spartan II device. shown in Fig. 7.28. marks a new
organization structure of the Xilinx parts. Each of fou r quadra nts of CLBs. is supported by a
Dll and is flanked by a 4.(J96-bit block6 of RAM. and the periphery of the chip is lined
with lOB s..

Each CLB contains four logic cells , organized as a pair of slices. Each logic cell. shown
in Fig. 7.29, has a four-inputlook up table.J ogic for carry and control. and a D-type flip-flop.
The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan II part family provides the flexibility and capacity of an on-chip block RAM:
in addition. each lookup table can be configured as a 16 X I RAM (distributed). and the pair
of looku p tables in a logic ce ll can be configured as a 16 X 2 bit RAM or a 32 X I bit
RAM.

The lOB !'> of the Spa rtan II family are individually programm able to support the refer­
ence. output voltage . and termin ation voltages of a variety of high -speed memory and bus

6 Part. areI\ailabtt ""ith up10 I~ blocb l~bK bibl.

326 Chapter 7 Memory and Programmable Logic

Logic Cell

Y

YQD S Q

CK

bf
YB

CMry
end

Control
Log;,

GJ--H
Gl - -r-H

F51N

BY

SR-r==~§:J;=ttH--:

XQ

x
D S Q

CK

~X8

FJ--H
F2--r-H

BX
C1N

CLK
CE

FIGURE 7.29
Spartan II CLB slice

standards. (See Fig. 7.30.) Each lOB has three registers that can function as D.typt flip­
flops or as level-sensitive latches. One register (TFF) can be used to register the signal
that (synchronou sly) controls the programmable output buffer. A second register (OFF)
can be programmed to register a signal from the internal logic. (Alternatively, a signal from
the internal logic can pass directly to the output buffer.) The third device can register the
signal coming from the UO pad. (Alternatively. this signal can pass directly 10 the internal

Section 7.8 Sequential Programmable Devices 327

110
-~. f')n

To Other To Next
External I/O

V REF
Inputs of

Banks

Programmable
output buffer

EC

EC

OSR Q

IFF
CK

o

IQ
1

ICE---i1~=n

D SR 0
TIT

eLK - h --j CK

TeE~E~C
SR ----UJ=[,

fiGURE. 7.10
Spartan II lOB

logic.) A co mmon clock. d rives each register. bu t each has an inde pendent clock enable. A
programmab le delay eleme nt on the input path ca n be used to eli mi nate the pad-to-pad
ho ld time.

Xlllnx Vlrtex FPGA,

The vlrtex device series" is the leading edge of Xilinx techno logy. Thi s family of de vices ad­
dresses four key factors that influence the solutio n to comp lex system-level and system-an-chip
design s: (I) the level of integ rat ion, (2) the amount of embedded memory, (3) performance
(timing), and (4) subsystem interfaces. The fam ily targets applications requ iring a balan ce of
high- performance logic. serial connectivity. signal proces sing, and embedded processing (e.g.,
wirel ess co mmunica tions). Process rules for leadi ng-edge Virtex parts stand at 65 nm, with a

? Vmu, Vwx·t1. II Platform. II-Pm'ProX, and Vmcx-.sMulti-PlatformFPGA.

328 Chapter 7 Memory and Programmable Logk

•
•
•

OO ~
OO ~
OD ~
[!I]~

~~ ~
OO ~
OO~
DD~

0
0 '"<'" ""e ..

~

D ~ ;;- '"~

'"

0
'"0 <
'" "

" •
~ l-g

0 J! -a
~

'"-"0

DOD
DOD
ODD
D[!fl
DC~
DOD
DOD
O~b

'"< "'" ,
] t
). ;;- '"•"

'"<'" "e ,
~ ~}. 'a- '"~

•
•
•

DD
DD
DD
[II]
L:~
DD
DD
DD

DeM: Clock :\ianag~'

FICURE 7.J1
Virtex II overall architecture

G_'
Clock MuJO

I· V opera ting voltage. The roles allow up to 330,000 logic cells and over 200.lXlO internal
flip-flops with clod: enable. together with over 10 Mb of block RAM, and SSO·~ml clock
technology packed into a single die.

The vi ncx family incorporates physical (electrical) and protocol support for 20dilTerent1l0
standards, including LVDS and LVPECL, with individually programm able pins. Up to 12dig­
ital clock managers provide support for frequency synthesis and phase shifting in synchronous
applications requiring multiple clock domains and high-frequency 110. The vlnex arctnrec­
ture is shown in Fig. 7.3 1, and its lOB is shown in Fig. 7,32,

Problems 329

FIGURE 7.J2
Virtell lOB block

PROBLEMS

Answers 10 problem~ marked wilh - appear al the- e nd oflhc boo L.

7 .1 'Ibe rTk"rTlOf}' umts Ih31 follow are specified by the- number o f words times (he number of bilSper
word . How many addrC's~ lines and input-output data tines are needed in each ca se?
(a) 8K x 16
(b) :!G x 8
(c) 16M x 32
(d) 256 K x 64

7.2"' Give lhe number ot bytes stored in the memories Ii!>lcd in Problem 7.1.

7,J- Word number 723 in the memory show n in Fig. 7.3 contains the binary equivalento f 3.451. List
the IO·bil addres!> and the 16-hit memory content of the word .

7.4 Show the memory cycle nrning waveforms for the write and read operatio ns. Assume a CPU
cloc k of 100 MHz and a memory cycle lime of 25 ns.

7 .S Wri te a test bench for the memory described in HDL Example 7.1. Th e test prog ra m sto res
bin ary 5 in add ress 3 and binary 10 in address 43. The n Ihe two addresses are read to verify
the ir sto red co nte nts.

330 Chapter 7 Memory and Programmable Logic

7 .6 Enclose the 4 x 4 RAM of Fig. 7.6 in a block dia gram showing all inputs and outputs. Assum­
ing three- state outputs, construct an 8 X 8 memory using four 4 X 4 RAM units .

7.7' A 16K X 4 memory uses coincident decodi ng by splitting the internal decod er into X-selection
and r -sejectton.

(a) What is the size of each decoder, and how many Ar..ro gales are requ ired for decoding me
address?

(b) Determine me X and Y selection lines mat are enabled when the input addre ss is the binary
equivalent of 6,000 .

7.8' (a) How many 32K X 8 RAM chips are needed to provide a memory capacity of 256K bytes?

(b) How many lines of the addres s must be used to access 256K bytes? How many of these lines
are connected to the address inputs of all chips?

(c) How many lines must be decoded for the chip select inputs ? Specify the size of the decode r.

7.9 A DRAM chip uses two-dimensional address multiplexing. II has 13 common addresspins, wi th the
row address havin g one bit more than the column address. What is the capaci ty of the memory?

7 .1 0"' Given me g-bit data word 0 101101 1. generate the 13-bit composite word for the Hamming code
that corrects single errors and detects double errors .

7 . 1 1' Obtain the l5-bit Hamm ing code word for the It-bit data word 1100100 1010.

7 . 12' A 12-bil Hamming code word containing 8busofdata and 4 parity bits is readfrom memory. What
was the original 8-bit data word that was written into memory if the 12-bil word read out is as foljows:
(a) oo1סס 11010 1 0

(b) 10111 ooסס 1 10

(c l 101111 110100

7 .1 J ' How many parit y check bits must be included with the data word to achieve single-error correc­
tion and double-error detection when the data word contains
(a) 16 bits.
(b) 32 bits.
(c) 48 bits.

7 .14 It is necessary 10 formulate the Hamming code for four data bilS. !». ~, l\.and 1>,. together with
three parity bits. PI .~' and P4.

(a) ' Evaluate the 7-bit composite code word for the data word 00 10.
(b) Evaluate three check bits, C4•C2.and Cl, assum ing no error.
(c) Assum e an erro r in bit OJ during writin g into memory. Show how the erro r in the bit is

detected and correct ed.
(d) Add parity bit Ps to incl ude dou ble-error detection in the cod e. Assume that errors occurred

in bits fI and lJs. Show how me double error is detected.

7 .15 Given a 64 X 8 ROM chip with an enable input. show the external connections necessary to con­
struct a 256 x 8 ROM with four chips and a decoder.

7 .16' A RO~t ch ip of 4,096 x 8 bits has two ch ip select inputs andoperates from a 5'\'0It power sup­
ply. How many pins are neededfor the integrated circuit package? Draw a block diagram, and label
all input and output terminals in the ROM .

Problems 331

,"

I l~"
"
"
" flO'"

fiGURE P7.17

7.17 The 32 x 6 ROM. together with the 2° line, as shown in Fig. P7.17, convens a six-bit binary num­
ber to its corresponding two-digit BCD number. f or example. binary 100001 converts to BCD
0 11 0011(decimal 33). Specify the truth table for the ROM.

7.1~ Specify the size of a ROM (number of words and number of bits per word) that will accommo­
date the truth table for the following combinational circuit components:
(a) a binary multiplier that multiplies two a-bit binary words,
(b) a 4·bi t adder- subtracter,
(c) a quadruple two-to-one-line multiplexer with common select and enable inputs, and
(d) a BCD-to-seven.segment decoder with an enable input.

7 .19 Tabulate the PLA programming table for the four Boolean functions listed below. Minimize the
numbers of product terms.

A(x, y, ,) = L (I, 2,4,6)

B(x, y, a) = L (O, 1,6, 7)

C(X, y, e) = L (2, 6)

D(x, y, ,) = L (I , 2, 3,5 , 7)

7 .20 Tabulate the truth table for an 8 x 4 ROM that implements the Boolean functions

A(x, y, z) = L (O, 3, 4, 6)

B(x, y, e) = L (O , 1, 3, 7)

C(x, y, z) = L (I, 5)

D(x, y, ,) = L (O, 1, 4, 5, 7)

Considering now the ROM as a memory. Specify the memory contents at addresses I and 4.

332 Chapter 7 Memory and Programmable logic

7 .21 Derive tho: PLA programming table for the combinational circuit that squares a three-bit number.
Minimize the number of product terms. (See Fig. 7.12 for the cquive jent RO~I implementation.•

7 .22 Derive the RO:-'1 programming table for !he combinational circuit that squares a +.bit number. Min­
imize the number of product terms.

7 .23 Livt the PLA programm ing table for the BCD- to-e.\ce~s - 3 -code converter wh~ Boolean func­
tions are simplified in Fig. 4.3.

7 .24 Repeat Problem 7.23. using a PAL.

7 .25- The following is a truth table of a three- input. four-output combinational circuit:
Inpu t i Outpllh

• , • A B C 0

0 0 0 0 0 0

0 0 1 1

0 1 0 1 0

0 1 0 0

1 0 0 0 0

1 0 1 0 0 0

0 0

1 0

Tabulate the PAL programming table for the circui t. and marl; the fuse map in a PAL diagram
similar to the one shown in Fig. 7.17.

7.26 Using the registered macroceu of Fig. 7,19. show the fuse map for a sequential circuit with t.....o
inputs .r andy and one flip-flop A described by the input equation

DA = xffi..,,'Gl A

7.27 Modify the PAL diagram of Fig. 7.16 by including three clocked D-IYpe flip- nop ~ between the
OR gates and the outputs. as in Fig. 7.19 , The diagram should conform with the block diagram
of a sequential circuit. The modification will require three additional buffer- inverter gates and six
verticallines for the flip-flop outputs to be connected to the ASD array through programmable
connections. Using the modified registered PALdiagram. show the fuse map that will implement
a three-bit binary counter with an output carry.

7.28 Draw a PLA circuit to implement the functions
PI :: A'H + AC' + A.'BC'
F2 :: (AC + AB • Be)'

7.29 Develop the programming table for the PLA described in Problem 7.26,

References 333

REFERENCES

1. HAMMI~G , R. Vol. 1950 . Error Detecting and Error Correct ing Code s. Bell Svst. Tech. J. 29:

147-160.
2. KITSON, B. 1984. Programm able A rray Log ic Handbo ok . Sunnyvale, CA: Advanced Micro

Devices.
3. LIN, S., and D.1. COSTELLO, JR. 1983. Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall.

4 . Memory Components Handbook. 1986. Santa Clara, CA: Intel.
S. NELSON, V. P., H. T. :-l"AGLE, J. D. IRWIK, and B. D. CARROLL. 1995. Digital Logic Circuit Analy-

sis and Design. Upper Saddle River, :-l"J: Prentice Hall.

6 . Programmable Logic Data Book. 1988. Dallas: Texas Instruments.
7. The Programmable Logic Data Book, 2d ed. 1994. San Jose, CA: Xilinx, Inc.
8. TOCCI, R. 1., and N. S. WIDMER. 2004. Digital Systems Prin ciples and Appli cations, 9th ed. Upper

Saddle River, NJ: Prentice Hall.
9 . TRIMBERGER, S. M. 1994. Field Programmable Gate Array Technology. Boston: Kluwer Academic

Publishers.
10 . WAKERLY. J. F. 2006. Digital Design: Principles and Practices, 4th ed Upper Saddle River, NJ:

Prentice Hall.

Chapter 8

Desig n at the Register Transfer Level

8 . 1 INTRODUCTION

A digital system is a sequential logic system co nstruc ted with flip-flops and gates. Sequential
circuits can bespecified by means of state tables as shown in Chapter 5. To specify a large dig­
ital system with a state table is very difficult, because the number of states would be enor­
mous. To overcome this difficulty, digital systems are designed via a modular approach. The
sys tem is part itioned into modular subsys tems. each of which performs some function . The
modules are co nstructe d from such digita l devices as registers. decoders. multiplexers, arith­
metic elements, and control logic . The various modules are interconnected with datapaths and
control signals to fonn a digital sys tem. In this chap ter. we will introduce a design methodol­
ogy for describing and designing large, complex digital systems.

8 . 2 REGIS TER TRANSFER LEVEL (RTL) NOTATION

Themodules of a digital system are bestdefined by a set of registersand theoperations that are per­
formed on the binary information stored in them. Examplesof register operations are shift, count,
clear. and load. Registers are assumed to be the basic componentsof the digital system. The in­
fonnation flow and processing performedon the data storedin the registersare referred 10 as register
transfer operations, We'll see subsequently how a hardware description language includes opera­
ton; that correspond to the register transfer operations of a digital system. A digital system is rep­
resented at the register transfer level (R1l..) when it is specified by the following threecomponents:

I , The set of registers in the system.

2. The operations thai are performed on the data stored in the registers.

3. The control that supervises the sequence of operations in the system.

334

Section 8 .2 Register Transfer level (RTl) Notation 335

A register is a group of flip-nops that stores binary infonnation and has the capability of per­
forming o ne or more elementary operations. A register can load new information or shift the
infonnatio n to the right or the le ft. A counter is. considered a regjste r that increments a num­
ber by a fixed value (e .g.• I). A flip-flop is considered a one-bit regis ter that can be set. cleared.
or complemented. In fact. the flip-flops and associated gates of any sequential circu it can be
called regis ters by this definitio n.

Theoperations executed on the informa tion stored in registers are elementary operations thai
are perfonned in parallel on a data wordconsisting of bits during one clock cycle. The data pro­
duced by the ope ration may replace the binary information that was in the regi ster before the
operation exe cuted. Altern atively. me result may be transferred to another register (i.e.• an op­
eration on a register may leave its contents unchanged). Th e digital circuits introd uced in
Chapter 6 are registers that implem ent elementary operations. A counter with a parallel load is
able to perform me incre mcnt-by-o ne and load operations. A bidi rectional shift regi ster is able
to perform me shift-rig ht and shift-left ope rations.

The operations in a digital system are controlled by timing signals that sequence the oper­
ations in a prescribed manner. Certa in conditions thai depend on result s of previous operations
may determine the sequence of future operations. The outputs of the control log ic are binary
variables that initiate the vario us operations in the system's registe rs.

Infonnation tran sfer from one register to anoth er is designated in symbolic fonn by mean s
of a rep lacement operator. Th e statement

de notes a transfer o f the contents of regis ter RJ into register R2---that is. a replaceme nt of the
contents of register R2 by the contents of register RJ. By defin ition. the contents of the source
regi ster RI do nOlchange after the transfer. They are merely copied to RI . Thearrow symbol­
izes thetransfer and its direction: it points from the register whose con tents are being transferred
and towards the register tha i will receive the contents . A control signal would determine when
the operation ac tua lly executes.

The controller in a digital sys tem is a finite state machine whose ou tputs are the control
signals govern ing the regi..ter ope rations. In synchro nous machines. the operations are !>yn­
chronized by the system cloc k.

A statement that specifies a register tra nsfer operation implies that a datapath (i.e .• a se t of
ci rcu it con nec tion!'» is availab le from the outputs of the source register to the inputs of the des­
tination register and that the desti nation register has a parallel load capability. Data can be
transferred serially between registers. too . by repeatedly shifting their co ntents along a single
wire. one bit at a time. Normally. we want a register transfer ope ration to occur. not with every
clock cycle. but only under a predetermined condition. A conditional statement governing a reg­
ister transfer operation is symbolized with an if-then statement such as

If (TJ = I) then (R2 - RJ)

where T1 is a contro l signal genera ted in the contro l sect ion. NOIe that the clock is not incl ud­
ed as a variable in the register transfer statements. It is a....umed that all transfers occur at a clock­
edge transition (i.e. , a trans itio n fro m 0 to I or from I to O). Although a contro l condition such
as TI may become true before the clock transition. the act ual transfer does not occur until the
clock transition does.

336 Chap ter 8 Design at the Reg ister Transfer Level

A conuna may be used to separate two or more operations thai are executed at the same
time (concurrently). Consider the statement

If (TJ - I lth," (R2-RI ,RI -R2)

This statement specifies an operation that exchanges the contents of two registers: moreover.
the operation in both registers is lriggered by the same clock edge, provided thai T3 == 1. This
simultaneous operation is possible with registers that have edge-t riggered flip-flops con­
trolled by a common clock (synchronizing signal). Other examples of register transfers are as
follows:

Rl - Rl + R2

R3-R3 + I

R4 - shrR4

R5 -0

Add contents of R2 to Rl (RI gets Rl + R2)

Increment R3 by I (count upwards)

Shift right R4

Clear R5 toO

In hardware. addition is done with a binary paralle l adder. incrementing is done with a COUnI­

cr. and the shift operation is implemented with a shift register. The type of operations most
often encountered in digital systems can beclassified into four categories:

1. Transfer operations. which transfer (i.e.•copy) data from one register to another.

2. Arithmetic operations. which perform arithmetic on data in registers.

3. Logic operations. which perform bit manipulation (e.g., logical OR) of nonnumeric data
in registers.

4. Shift operations. which shift data between registers.

The transfer operation does not change the information content of the data being moved from
the source register to the destination register. The other three operations change the infonn a­
no n content during the transfer. The register transfer notation and the symbols used to repre­
sent the various register transfer operations are not standardized. In this text, we employ two
types of notation. The notation introduced in this section will be used infonn ally to specify and
explain digital systems at the register transfer level. The next section introduces the RTL sym­
bols used in the Verilog HDL.

8 .3 REGISTER T RA N SFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a hardware de­
scription language (HDL). In Verilog, descriptions of RTL operations use a combination of
behavioral and dataflow constructs and are employed to specify the register operations and the
combinationallogic functions implemented by hardware. Register transfers are specified by
means of procedural assignment statements within an edge-sensitive cyclic behavior. Combi­
national circuit functions are specified at the RTL level by means of continuous assignment state­
ments or by procedural a..signment statements within a level-sensitive cycl ic behavior. The
symbol used to designate a register transfer is either an equals sign (==) or an arrow «==); the
symbol used to specify a combi national circuit function is an equals sign. Synchronization

Section 8.3 Regi ster Transfer Level in HDL 337

with the cloc k is represented by associating with an always statement an event control ex­
pression in which sensitivity to the clock event is qualified by posedge or negedge. The always
keyword indicates that the associated block of statements will be executed repeatedly, for the
life of the simulation. The @ operator and the event control expression preceding the block of
statements synchronize the execution of the statements to the clock event.

The following examples show the various ways to specify a register transfer operation in
Verilog:

(a) assign S = A + B;
(b) always@ (A, B)

S= A + B;
(c) always@ (negedge clock)

begin
RA =RA+RB;
RD = RA:

end
(d) always @ (negedge clock)

beg in
RA <= RA + RB;
RD <= RA;

end

If Continuous assignment for addition operation
/I Level-sensitive cyclic behavior
{f Combinational logic for addition operation
fI Edge-sensitive cyclic behavior

fl Blocking procedural assignment for addition
/I Register transfer operation

1/Edge-sensitive cyclic behavior

1/Nonblocking procedural assignment for addition
1/Register transfer operation

Contin uous assignments are used to represent and specify combinational logic circuits. In
simulation. a continuous assignment statement executes when the expression on the right-hand
side changes. The effect of execution is immediate. (The variable on the left-hand side is up­
dated .) Similarly, a level-sensitive cyclic behavior executes when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the =' operator
are immediate. The continuous assignment statement (assign) describes a binary adder with in­
puts A and B and output 5. The target operand in a continuous assignment statement (5 in this
case) cannot be a register data type. but must be a type of net. for example, wire . The proce­
dural assignment made in the level-sensitive cyclic behavior in the second example shows an
alternative way of specifying a combinational circuit for addition. Within the cyclic behavior,
the mechanism of the sensitivity list ensures that the output. 5, will be updated whenever A. or
B. or both change.

There are two kinds of procedural assignments: blocking and nonbtocking, The two are dis­
tinguished by the symbols that they use and by their operation. Blocking assignments use the
equals symbol (=') as the assignment operator. and nonblocking assignments use the left arrow
(< =') as the operator. Blocking assignment statements are executed sequentially in the order
[hat they are listed in a sequential block: when they execute, they have an immediate effect on
the contents of memory before the next statement can be exec uted. Nonblocking assignments
are made concurrently. This feature is implemented by evaluating the expression on the right­
hand side of each statement in the list of statements before making the assignment 10their left­
hand sides. Consequently, there is no interaction between the result of any assignment and the
evaluation of an expre ssion affecting another assignment. Also. the statements associated with
an edge-se nsitive cyclic behavior do not execute until the indicated edge condition occurs.

338 Chapter 8 Design at the Registe r Transfer Level

Co nsider the two examples given. In the blocking procedural assig nme nt, the first state ment
transfers the sum 10 RA and the second statement tran sfers the new value of RA into RD.At the
completion of the operation, both RA and RD have the same val ue. In the nonblocking proce­
dural assignment. the two operations are performed concurrently, M) thar RD receives the orig­
inal value of RA. The activity in both examples is launched by the clock und~oing a falling
edge transition .

TIle regi sters in a system are clocked simultaneously (concurrently). lbe D-i nput of each
flip-flop determine.. the value Ihat will be assigned to its output . independently o f the inp ut to
any other flip-flop. To ensure synchro nous operations in RTL design. and to ensure a match be­
tween an HDL model and the circuit synthesized from the model. it is necessary that non­
block ing procedural assig nme nts be used for all varia bles that are assigned a value with in an
edge-sensitive cyclic behav ior (always clocked), The nonblocking assignme nt that appe ars in
an edge-sensitive cyclic beh avior models the behavior of the hard ware of a synchronous se-
quential circuit accurately. ...

HDl Operators

The Verilog HDL operators and the ir symbo ls used in RTL design are listed in Table 8.1. The
arithmetic. logic. and !!>hift operat ors describe register tran sfer operation s. The logical and re­
lational operators spec ify co ntrol condi tions and have Boolean expressions as their argu ment s.

The operands of theari thme tic ope rators are num bers. The -e• - , •• and I operators form the
sum. difference. product. and quotient . respectively. of a pair of operands. The e xponent iatio n
operator (..) was added 10 the lang uage in 2001 and forms a double-precision floating-point
value from a base and exponent having a real . integer. or signed value. Neg ative numbers are
represented in z's-compierrem form . The modulus operator produces the remainder from the
division of two numbers. For example, 14 % 3 evaluates to 2.

There are two types of logic operators for binary word s: bitwise and reduction. The bitwise
operators perform a bit-by -bit operation on two vec tor operands to form a vector result. Tbey
take each bit in one ope rand and perform the operationith the corresponding bit in the other
operand. Negation (-) is a unary opera tor, it complements the bilo; of a single vector ope rand
10 form a vector result. The redu ct ion operators are also unary. acting on a single operand and
producing a scalar (one-bit) res ult. They operate pai rwise o n the bits of a word. from right 10

left . and yield a one-bit resul t. For exam ple. the red uction :'IIOR (- I) result s in 0 ith operand
00 101 and in I with operand 00000. The result of applying the r\ OR operat ion on the first two
bits is used with the third bit, and so forth. Negation is nor used a.. a reduct ion operator. Truth
tab les for the bitwise operators are the same as those listed in Table 4 .9 in Section ~ . 1 2 for the
corresponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same troth table). The output of an AND gate with two scalar inputs is the same a" the re sult
prod uced by ope rating on the two bits with the & operator,

The logical and relational operators are used to fonn Boolean expressions and can take u ri ­
abies or expression.. a...operands. (Nolf! : A variable i..atsc an expression.) Used basically (or de­
termining true or falsecondition.s, the logical andrelational operators evaluate to I if the condit ion
expressed is true and to 0 if thecondition is false . If the condition is ambiguous. they evaluate
to x. An operand tha t is a variable evaluates to 0 if the value of the variable is equal to zero and

Section 8.3 Register Transfer level in HDl 339

Table 8 .1
Verllog 200' HDL Opera tors

Operator Type Symbol Operation Performed

Arithmetic • addition

subtraction

multiplication

division

% modulus

exponentiation

Logic negation (complement)

(bitwise > AND

nr OR

reduction) • exclusive-OR (XOR)

Logical I negation

>& AND

II OR

Shift » logical right shift

« logical left shift

»> arithmetic right shift

«. arithmetic left shift

{.} concatenation

Relational > greater than

• less than

='" equality

!= inequality

=== case equality

1== case inequality

>. greater than or equal

•• less than or equal

to I if the value is not eq ual to zero. For ex am ple, if A = 1010 and B = 0000, then the ex­
press ion A has the Boolean va lue I (the number in question is not equal to 0) and the expres­
sio n B has the Boolean val ue O. Results of othe r operations w ith these values are as follo ws:

A&& B= O

A II S=1
!A= 0

!B = 1

Il logical AND
If logical OR
Il logical complement
Il logica l co mple me nt

340 Chapter 8 Design at th e Register Transfe r Level

(A :> B) = 1 /I is greater than
(A == B) = 0 /I identity (equality)

The relational operators === and !==test for bitwise equality (identity) and inequality in ver­
ilog 's fou r-val ued logic system. For example , if A = OxxO and B = DuO. the test A == = B
wou ld eval uate to true. but the test A == B would evaluate to x.

Verilog 200I has logical and arithmetic shift operators. The logical shift ope rators shih a vec­
tor operand to the right or the left by a specified number of bits. The vacated bit pos itions are
filled with zeros . For example, if R = 11010, then the statement

R =R »1;

shifts R to the right one pos ition. The val ue of R that results from the logical right-shift operatio n
is 01101. In contrast. the arithmetic right-shift operator fills the vacated cell (the mo st significant
bit (MSB» with its original contents when the word is shiftedto the right. The arithmetic left-shift
operator fills the vucatc-dce ll with a 0 when the word is shifted to the left. The ari thmetic righ t­
shift opera tor is used when the sign extension of a number is important. If R = 110 10. then the
statement

R :>:>:> 1;

produces the resu lt R = 11101; if R = 01101. it produ ces the result R = 00 110. There is no
d istinction betwee n the logical left -shift and the ari thmetic left-shift operators.

The concatenation opera tor pro vide s a mechanism for appendi ng multiple operands. It can
be used to specify a shift. incl uding the bits transferred into the vacan t positions. Th is aspec t
of its operation was sho wn in HDL Example 6.1 for the shift register.

Expressions areevaluated from left to right. and their operators associate from left 10right (with
the exce ption of the conditional operator) accord ing to the precedence shown in Table 8.2. For
example. in the expression A + B - C. the value of B is added to A. and then C is subtracted
from the resuh . ln the expression A + BIC. the value of B is divided by C. and then the result is
added 10A because the division ope rator (I) has a higher precedence than the addition operator
(+) . Useparentheses 10 establish precedence. For example, the expression (A + 8)/C is nol the
same as the express ion A + BIC.

Lo o p Statements

Verilog HDL has four types of loops that execute procedural statements repea tedly: repeat, fo r­
ever. while, and for. A ll looping statements must appear inside an initial or aI\t'8)'S block.

Th e repeat loop executes the associated statements a specified number of times. The fol-
lowing is an example tha t was used prev iously:

initial
beg in

clock = 1'bO;

repeat (16)
#5 clock =- clock;

end

Thi s cod e produ ces eight clock cycles with a cycle time of 10 time unit s.

Section 8.3 Regi ster Transfe r Level in HDL 341

Table 8 .2
Verilog Operator Precedence

+ - ! - & - & l - [
,

_ /\ 11- (unary) Highest precedence

••
•/%

+- (binary)

« » «< >>>

< <= > >=

"' .. != === != =

& <binary)
, ,- _II (binary)

I {binary)

&&

II
7: (conditional ope rator)

{} {{)} Lowest preceden ce

The fore ver loop causes uncondit ional, repetitive execution of a procedural statement or a
block of procedural statements. For example, the following loop produces a continuous clock
having a cycle time of 20 time units:

Initial
begin

clock = 1'bO;
forever

#10 clock = - clock;

end

The while loop executes a statement or a block of statements repeatedly while an expres­
sion is true. If the expression is false to begin with, the statement is never executed. The fol­
lowing example illustrates the use of the while loop:

integer count;
In it ial

begin
count = 0;
while (count < 64)

#5 count = count + 1;
end

II Control (index) variable fOf' loop

1/Two binary inputs
II Four binary outputs

342 Chap ter 8 Design at the Regist er Transfer Level

The valu e of counr is incremented from O!O 63. Each increment is delayed by five time units.
and the loop exits at the count of 64.

In dealing with looping statements. it is sometimes convenient 10 use the in teger data type
to index the loop. Integers are decl ared with the keyword fnteger . as. in the previous exam ple.
Although it is possible to use a reg variable to index a loop. sometimes it is more convenient to
declare an integer variable. rather than a reg. for counting purpo ses. Variables declared as data
type reg are stored as unsigned numbers. Those dec lared as data type integer an: store as signed
numbers in z 's-com plemem format. The default width of an integer h a minimum of 32 bits.

The for loop contains three pans separa ted by IWO semico lons:

• An initial condition.

• An expression to check for the terminating condition.

• An assig nment 10 change the control variable.

The following is an example of a for loop:

for (j = 0; j < 8; j = j + 1)
begin
1/procedural statements go here

end

The for loop sta tem ent repeats the exe cut ion of the proced ural statements eight times. The
control variable is j . the initial co nd ition is j =O. and the loop is repeated aslong a!l j is less
than 8. After eac h execution of the loop statement. the val ue of j is incremented by I.

A description of a two-to-four -line decoder using a for loop is shown in HDL Example 8.1.
Since o utput Y is evaluated in a procedural statement , it ITIu!>t bedecl ared as type rea. The co n­
trol varia ble for the loo p is the integer k. When the loop is expanded (unrolled). we get the fol­
lowing four condi tions (IN and Yare in binary. and the index for Yis in decimal):

if IN = 00 then Y(O) = 1; else V(O) = 0;

if IN= 01 then Y(1) = 1; else Y(1) = 0;

if IN = 10 then V(2) = 1; else Y(2) = 0;

if IN = 11 then Y(3) = 1; else Y(3) = 0;

Hil l Example 8.1

1/Description of 2 x 4 decoder using a fo r loop statement
module decoder (IN, V);

input 11: OJIN;
output 13: OJ Y;
reg 13: OJ Y;
integer k;

always @ (IN)
for (k = 0; k <= 3; k= k+ 1)

Section 8.3 Register Transfer Level In HOL 343

if (IN == k) Y[k] = 1;
else Y[k] ::: 0;

endmodule

Logic Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a synthesis
tool) transforms an HDL model of a logic circu it into an optimized netlist of gates that perform
the operations specified by the source code. There arevarious target technologies that implement
the synthesized design in hardware. The effective use of anHDL description requires that designers
adopt a vendor-specific style suitable for the particular synthesis tools. The type of ICs that im­
plement the design may be an application-specific integrated circuit (ASIC), a programmable
logic device (PLD), or II field-programmable gate array (FPGA). Logic synthesis is widely used
in industry to design and implement large circuit s efficiently. correctly, and rapidly.

Logic synthesis too ls interpret the source code of the hardware descrip tion language and
translate it into an optimized gate struc ture, accomplishing (correctly) all of the wor k that
would bedone by manual methods using Kam augh maps . Designs writte n in Verilog or a com­
parable language for the purpo se of logic synthesis tend to be at the regi ster transfer level. This
is because the HDL constructs used in an RTL description can be converted into a gate-leve l
descripti on in a straightforward man ner. The following examples discuss how a logic synthe­
siler can interpret an HDL construct and convert it into a gate structure .

The continuous assignment (assign) statement is used to describe combinational circuits. In
an HDL. it represents a Boo lean equation for a logic circuit. A continuous assignment with a
Boolean express ion for the right-ha nd side of the assignment statement is synthesized into the
corresponding gate circuit implemen ting the expression. An expression with an addition operator
(+) is interpreted as a binary adder with full-adder circuit s. An expression with a subtraction
operator (-) is converted into a gate-level subtracter consisting of full adders and exclusive­
OR gates (Fig. 4.13). A statement with a conditional operator such as

assign Y = S 7 In_1 : In_O;

trans lates into a two-to-one-line multiplexer with control input S and data inputs In_I and In_O.
A statement with multiple conditional opera tors specifies a larger mult iplexer.

A cyclic behavior (always . ..) may imply a combinational or sequential circuit. depe nding
on whether the event control expression is level sensitive or edge sensitive . A synthesis tool will
interpret as combinational logic a level-sensitive cyclic behavior whose event control expression
is sensitive to every variable that is referenced within the behavior (e.g.. by the variable's appearing
in the right-hand side of an assignment statement). The event control expression in a description
of combinational logic may not be sensitive to an edge of any signal. For example.

alwa ys @ (In_ 1 or In_Oor S)

If (S) Y = ln_1 ;

else Y = In_O;

trans lates into a two-to-one-line multi plexer. As an alternative. the case statement may be used
to imply large multiplexers. Th e casex statement treats the logic values x and z as don 't-cares
when they appear in either the case express ion or a case item.

344 Cha pter 8 Design at t he Register Transfe r Level

An edge-sensitive cycl ic behavior (e.g .. a lway s @ (po s edge clock» specifies a synchro­
nous (clocked) sequentia l circuit. The implementation of the corresponding circuit consists of
o flip-flops and the gates that implement the synchronous register transfer operations specifi ed
by the statements associa ted with the event control expression. Examples of such circuits are reg­
isters and counters. A sequential circuit description with a case statement translates into a con­
trol circuit with D flip-flops and gates that Conn the inputs to the flip-flops. Thus. each statement
in an RTL description is interpreted by the synthesizer and as signed to a corresponding gate
and flip-flop circuit. For synthesiza ble sequential circuits. the event control expression must be
sensitive to the positive or the negative edge of the clock (sy nchronizing signal). but not to both .

A simplified flowchart of the process used by industry to design d igital systems is shown
in Fig. 8. 1. Th e RTL description of the HDL design is simulated and checked for proper

Synthesize
Ilcllbl

C pare
Simulation

results

FIGURE 8 .1
A simplified flowcha rt for Hnt-besed modeling, verification, and synthesis

Sect ion 8.4 Algorit hm ic State Machines (AS Ms) 345

operation. hli ope rational features must match those given in the specification for the behav­
ior of the circuit. Th e test bench provides the stimulus sig nals to the simula tor. U the result of
the simulation is not satisfactory. the HDL descriplion is corrected and checked again. After the
simulation run shows a valid design, the RTL description is ready to becompiled by the logic
synthesizer. All errors (syntax. and function al) in the description must be eliminated before
synthesis . The synthesis tool generates a netlist equivalent to a gate-level description of the de­
sign as it is represented by the model . If the model fails to express the functionality of the spec­
ification. fhe circuit will fail to do so also. The gale-level circuit ls simulated with the same set
of stimuli used to check the RTL design . If any corrections are needed, the process is repeat­
ed until a satisfactory simulation is achieved. The results of the two simulat ions are compared
to see if they match. If they do not, the designer must change the RTL description to COITt'ct any
errors in the design. Then the description is again compiled by the logic synthesizer to generate
a new gate-level description. Once the designer is satisfied with the results of <Ill simulation
tests, the design of the circuit is ready for physical implementation in a technology. In practice,
additional testing will be performed to verify that the timing speci fications of the circuit can be
met in the chosen hardware technology. That issue is nut within the scope of this text.

Logic synthes is provides seve ral advantages to the designer. 11 takes less time to write an
HDL description and synthesize a gate-level realization than it docs 10 develop the circuit by man­
ual entry from schematic diagrams.Th e ease of changing the description facilitates exploration
of design alternatives. It is faster. eas ier. less expen..ive, and less risky to check the valid ity of
the design by simulation than it is to prod uce a hardw are prototype for eva luation. A schemat­
ic and the database for fab ricating the integrated circuit can be generated automatically by
synthesis tools . The HDL model can be compiled by different tools into different technologies
(e.g.. ASIC cells or FPGAs), providing multiple returns on the investment to create the mode l.

8 .4 ALGORITHMIC STATE MACHINE S (AS Ms)

The binary information stored in a digital system can be classified as either data or control in­
format ion. Data are discrete elements ofinformation (binary words) that are manipulated by per­
forming arithmetic, logic, shift, and other similar data-process ing operations. These operations
are implemented with digital components such as adders. decoders , multiplexers, counters. and
shift registers. Control information provides command signals that coordinate and execute the var­
ious operations in the data section in order to accom plish the desired data-processing tasks.

The log ic design of a d igital sys tem can bed ivided into two distinct pans. One pan is con­
cemed with the design of the digital circ uits that perform the data -processing operations. The
other pan is concerned with the design of the control circuits that determine the sequence in
which the various actions are perform ed.

The relationship between the control logic and the data-processing opera tions in a digital sys­
tem is shown in Fig. 8.2. The data-processing path. commonly referred to as the datapath: unit,
manipulates data in registers according to the sys tem's req uirements. The control unit issues a
sequence of co mmands to the datapath unit. Note thai an internal feedback path from the da ta­
path unit to the control unit provides status cond itions that the co ntrol unit uses together with
the external (primary) inputs 10 determi ne the sequence of cont rol signals (outputs of the control

346 Chap te r 8 Design at the Register Transfer level

tnput
dutu

r··--·- -------- - -.--.--.----------- -----------------.

Input ! ~~~~Zl
signals i

(tx/fm u{j i

i
I, StatUS

signuls

i ,.................._ -_ _ ---_._--_._.__ _......... _ _ _._ .~

Ou/pm
daea

FI('UR E 8.2
Control and datapath Inte raction

unit) that direct the operation of me datapath unit. We 'lI see later that understanding how to

model this feedback relation ship with an HDL is very important.
The control logic mat generates me signals for sequenc ing the ope rations in me datapath unit

is a finite sta te machine (FSM) . i.e.• a synchronous sequential circ uit. The control commands
for the system are produced by me FSM as functions of the primary inputs. the sta tus signals.
and the state of the machine. In a given state. the outputs of me controller are the inputs to me
darap ath unit and dete rmin e me operations that it will execute . Depend ing on status cond itions
and other external inputs. the FSM goes to its next stale to initiate other operations. The digi­
tal ci rcuits that ac t as the control logic provide a time sequence of signals for initiating the op­
erations in the datapath and also determine the next state o f the control subsystem itself

The control sequence and datap ath tasks of a d igital system are specified by means of a
hardware algo rithm. An algorithm consists o f a finite number of procedural steps that spec ify
how to obtain a solution to a problem . A hard ware algorithm is a procedure for solving the
problem with a given piece of eq uipment. The most challenging and creative pan of d igital de­
sign is the formulation of hard ware algorithms for achieving required objectives. The goa l to
implement the algorithms in silicon as an integrated circuit.

A flowchart is a convenient way to specify the sequence of procedural steps and decision paths
for an algorithm. A tlo wchart for a hardware algori thm translates the verbal instruction.. [0 an
information diagram that enumerates the sequence of operations togethe r with the cond itions nec­
essary for their execution. A flowchart that has been developed spec ifica lly to de fine digital
hardware algorithms is called an algorithmic statemachine (ASM) chart . A stare machine is
another term for a sequential circu it. which is the basic structure of a digit al system.

ASM Chart

The AS M chan resembles a conventional flowchart. but is interpret ed somewhat different ly.
A conventional flowchart de scribes the procedu ral steps and deci sion paths of an algorithm in

Section 8.4 Algorithmic State Machines (ASMs) 347

1Binary code J oioi

t~~ztf*i~!1~1;~?f:?1%%i~~t
Otll{luJ: sigMb;:!egistit:Opera lians ~

j

FIGURE 8.1
ASM chart state box

(b)

a sequential manner, without taking into conside ration thei r lime rela tion..hip. The ASM: chan
describe s the sequence of events, a.. well as the timing relat ionship between the states of a se­
quent ial controller and the event!'. thai occur while going from one state 10 the next (i.e., the
events that are synchronous with change:'> in fhe slate). The chan is adapted 10 specify accurately
the control sequence and datuputh operations in a digital system, taking into cons ideration the
constraints of digital hardware.

The ASM chan is composed of three basic elements: the state box , the deci sion box . and the
conditional box . The boxes themsel ves are connected by directed edges ind icating the se­
quential precede nce and evolutio n of the states as the machine operates . There are various
ways to attach information to an ASM chan. In one , a stale in the control sequence is ind icat­
ed by a state box , as shown in Fig. 8.3(a). The shape of the state box is a rec tang le within
which are written register opera tions or the names of output signals that the contro l generates
while being in the ind icated state. The state is given a symbolic name , which is placed within
the upper left comer of the box. The binary code assigned to the state is placed at the upper right
come r. (The state symbol and code can be placed in other places as well.) Figure 8.3(b) gives
an example of a state box. The state has the symbolic name SJ)t11lSe, and the binary code as­
signed to it is 0 101. Inside the box is written the register operat ion R - O. which indicates
that regis ter R is to be cleared to O. The name StarcOP-A ins..ide the box indicates. for exam­
pie, a Moore-type output signal that is asse rted while the machine is in slate SJ'duse and that
launc hes a certain operation in the datupath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM chart s, but it can lead
to confusion about when the register operation R - 0 is to execute. Although the operation is
written inside the state box. it actually occurs when the machine makes a trans ition from
SJIOlIU to if'; next stale . In fact. writing the regis ter ope ration within the state box is a way (al­
beit possib ly confusing) to indicate that the contro ller must assert a signal that will cause the
register opera tion to occur when the machine changes state. Later we' ll introduce a chan and
no tation that are more suited to digital design and that will eliminate any ambiguity about the
register operations contro lled by a state mach ine.

The decision box of an ASM chan describes the effect of an input (i.e .• a primary, or external,
input or a status. or internal, signal) on the control subsystem. The box is diamond shaped and has
two or more exit path". as shown in Fig. 8.4. The input condition to be tested is wri tten inside [he
box. One or the other exit path is taken, depending on the evaluation of the condition. In the bi­
nary case . one path is taken if the condition is true and another when the condition is false. When
an input condition is assigned a binary value, the two paths arc indicated by I and 0, respectively.

348 Cha pter 8 Design at the Register Transfer leve l

Exit path

FIGURE 8 .4
ASM chart decision box

! Him")' eo<l<'

:SlUle "am~

Moore -tyJ'C output si~nll is

Uncondi tional register
o rations

Cnooilionat/
(M,; aIYYQUlpU~
. and regisle{:~;~

:::, OpCration li-)~'-

(a)

FIGURE8 .5
ASM chart co nd itional box

V
F-G L(J(ld-":-G

100 , 100

SJ D
,b l (0)

The state and decision boxes of an ASM chart are similar (0 those used in con ventiona l
flowcharts. The third element. the cond itional bo x, is unique to the ASM chart . The shape of
the conditional box is show n in Fig. 8.5(a), lis rounded comers differentiate it from the state
box. The input path to the condi tional box must come from one of the exit paths of a deci sion
box. The outputs listed inside theconditional box are generated as Mealy-type signals during
a g iven state; the register operations listed in tbe conditional box. are associated with a transi ­
tion from the state. Figure 8.5(b) shows an example with a conditional box . The control gen­
erates the out put signal Stan when in state 5_1 and checks the status of input Flag. If Flag = I.

Section 8.4 Algor ithmic State Machines (ASMs) 349

then R is cleared to 0 ; otherw ise. R remains unchanged . In either case. the next stare is 5_2 . A
register operation is associated with 5_2. We again note tha i th is style of chan can be a source
of confusion. because the state machine does 0 01 execute the indicated reg ister operation R - 0
when it is in S_J or the operation F - G when it is in 5_2 . Th e notati on actual ly indicates that
when the controller is in S_J. il must assert a Mealy-type signal that will cause the regis ter op­
erat ion R - 0 to execu te in the datapath unit. subject (0 the condition that Flag = O. Likewise.
in state 5_2. the controller mu~t generate a Moore-type output sig nal that causes the register
operation F - G 10 execu te in the datapath unit. The opera tions in the datapath unit are syn­
chronized to the clock edge that causes the sta te to move from 5_J to 5_2 and from 5_2 10

5_3. respectively. Th us, the control signal generated in a given state affects the operatio n o f a
register in the datapath when the ne xt d ock. tra nsition occ urs. The result of the ope ration is
appare nt in the next stale .

The AS M chart in Fig. a .5{h) mixes descriptions of the dataparb and the controlle r, An ASM
chart for only the controller is shown in Fig. 8.5(c), in which the regi ster ope rat ions are omit­
ted . In their place arc the control signals that must be generated by the contro l unit to launch
the operations of the datapath unit . Thi s chart is useful for describ ing the controller, but it doe s
not conta in adequate information about the dataputh . (we'll addre ss this iss ue later.)

ASM Block

An ASM block is a structure constsn ng of one state box and al l the deci sion and conditional
bo xes connec ted to its exit path. An AS:\I block. has one e ntrance and any number of exit paths
represented by the struc ture of the decision boxes. An AS~I chan consists of one or more
interconnected blocks. An exampl e of an AS~1 block is given in Fig. 8.6. Associated with state

011

lb}

010
••••_.J

100

F

fi GURE8.6
ASM block

350 Chapter 8 Design at the Register Transfer level

5_0 are two decision boxes and one conditional box. The d iagram distinguishes me block with
dashed lines around the entire structure, but this is not usually don e, since the AS M chan
uniquel y defines each bloc k from its structure. A state box without any deci sion or condi tion­
al boxes const itutes a simple block .

Each block in me ASM chart describes the state of the system during one clock-pulse in­
terval (i.e .. the interval between two success ive active edges of the cloc k). The operations with­
in the state and co nditional boxes in Fig . 8.6(a) are initiated by a common clock pulse when
the state of the controller transition s from 5_0 to its next state. The same clock pulse tran sfers
the system controller to one of the next states, 5_1. 5_2. or 5_3. as d ictated by the binary val­
ues of E and F. The ASM chan for the controller alone is shown in Fig. 8.6(b). The Moore-type
signal iner..A is asserted while the machin e is in 5_0 ; the Mealy-type signal Clear_R is gen­
erated conditionally when the state is 5_0 and E is asserted. In general. the Moore-type outputs
of the controller are generated unconditionally and are indicated within a state box : the Mealy­
type outputs are generated conditionally and are indicated in the conditional boxes connected
to the edges that leave a decision box .

The ASM chart is similar to a state diagram. Each state block is equivale nt to a state in a
seq uential ci rcuit. The decision bo x is equivalent to the binary information written along the
directed lines that connect two states in a state diagram. As a co n-.equence. it is sometimes
convenient to convert the chan into a state diagram and then use sequentia l circuit procedu res
to design the control logic . As an illustration, the ASM chart of Fig. 8.6 is drawn as a state di­
agram in Fig. 8.7. The states are symbolized by circl es. with their binary values writt en inside.
Th e directed lines indicate the cond itions that determine the next state. The unconditional and
conditional operat ions that must be performed in the datapath un it are not indicated in the state
diagram.

Sim plif icat ions

A binary decision box of an ASM chart can be simplified by labeling o nly the edge corre­
sponding 10 the asserted decision vari able and leaving the other edge withou t a label. A further
simplifica tion is to omit the edges corresponding to the state trans itions that occur when a reset
condition is asse rted. Output signals that are nOI asserted are not shown on the chart: the pres­
ence of the name of an output signal ind icates that it is asse rted .

EF "'OO

010
£F -Ol

011

e» 1

100

fiGURE 8 .7
State diagra m equivalent to the ASM chart o f Fig. 8 .6

Section 8.4 Algorithmic State Machines (ASMs) 3S1

nmlng Considerations

Thetimin g for all registers and nip-flops in a digital system is controlled by a master-clock gen­
erator.Tbe clock pulse.. are applied not only 10 the regt srers of the datapath. but also 10 all the
ni p-flops in the state machine implementing the control unit. Inputs are also synchronized to
the clock, because they are normally generated as outputs of another ci rcuit that uses the same
clock signals. If the input signal changes at an arbitrary time independe mly of the clock. we
ca ll it an asynchronous Input. Asynchronous inputs may cause a variety of problems. as dis­
cussed in Chapter 9. To simplify the design. we will assume thai all inputs are synchronized
with the clock and change slate in response to an edge transition.

The major difference between a co nventional flowchart and an AS:\.I chart is in interpret­
ing the time rela tionship among the various operations. For exa mple. if Fig. 8.6 were a co n­
vennonal flowchart, then the operations listed would be considered to follow one after anothe r
in sequence: First register A is incremented. and only then is E evaluated. If E "" I, then reg­
ister R is cleared and control gees to state 5_3. Otherwi ..e (if E "" 0). the next step is to eval­
uate F and go to state L l or L 2. In contrast, an ASM chan co nsiders the entire block as one
unit. All the regi ster operations that are specified within the block must occ ur in syncbronism
at the edge transit ion of the same clock pulse while the system changes from 5_0 to the next
state. This sequence of eve nts is presented pictorially in Fig. 8.8. We assume positive-edge
triggering of all flip-flops. An asserted asynchronous reset signal (il' secb) transfers the con­
trot ci rcuit into stare S_O. While in state 5_0. the contro l circui ts check inputs £ and F and
generate appropriate slgnalv accord ingly. If resl't_b h not asserted. the following operations
occ ur simultaneous ly at the next positive edge of the clock :

I . Register A is incremented.

2. If £ = I, register R is cleared.

3. Control transfers to the next state. as specified in Fig. 8.7.

Note that the two operations in the datapath and the change of state in the control logic occur
at rbe same time. Note also that the AS:\.I chart in Fig. 8.6(a) indicates the register ope rations
[hat must occur in the datapath unit, bUI does not indicate the control signal that is to befonned
by the control unit. Conv ersely. the chan in Fig. 8.6(b) indicates the contro l signals. bUI not the
datapatb operations. We will now present an AS~ID chart 10 provide the clari ty and comp lete
infonnation needed by logic designers.

Positive edge ofClock

Cl'KJl ==n I
I--- Prt senl Slale ----t-eu JI Oft --.o-i
I (5_0) I (SjorS...zorSJ) I

FIGURE 8 .8
Transition between states

352 Chapter 8 Design at th e Register Transfer Level

ASMD Chart

Algorithmic stare machi ne and datapath (AS MD) cham were developed to clarify the infor­
mation displayed by ASM charts and to provide an effective tool for designing a contro l unit
for a given datapath unit. An ASMD chart differs from anASM chart in three important ways:
(I) An ASMD chart does not list register opera tions within a slate bo x. (2) the edge s of an
ASMD chart are annotated with regis ter operations that are concurrent with the state transit ion
indicated by the edge. and (3) an ASMD chart includes condit ional boxes identifyi ng the sig­
nals which control the register operations thai annota te the edge s of the chart. Thus. an ASMD
chan associates register operations with stale transitions rather than with stares,

Designers form an ASMD chart in a three-step process that creates an annotated and corn ­
pletely specified ASM chart for the controller of a da tapath unir. The ste ps are to (I) form
an AS M chart displaying onl y how the input s to the controller determine its state tran sit ion s.
(2) convert the ASM chart to an ASMD chart by annotating the edges of the ASM chart 10 in­
dicate the concurrent reg ister operations of the datapath unit. and (3) modify the ASMD chan
to ident ify the con trol signals that are generated by the co ntrolle r and that cause the ind icated
register operat ions in the datapath unit. The ASMD chart produ ced by this process clearly and
completely speci fies the finite state machine of the controller and identi fies the register oper ­
ations of the given data path.

One important use of a slate machine is to co ntrol register operations on a datapath in a se­
quential machine thai has been partitioned into a controller and a darapath, An ASMD chart links
the ASM chan of the co ntroller 10 the datapa th it controls in a man ner thai serves as a unive r­
sal model represe nting all synchronous digital hardware design. ASMD charts help clarify the
design of a sequential machi ne by separating the design of its datapath from the design of the
controller. while maintaining a clear relationship betwee n the two units. Register operations that
occur co ncurre ntly with slate transitions are annotated o n a path of the chan. rather than in
stale boxes or in conditional boxes on the path . becau se these registers are not pan of the con­
troller, The outpu ts generated by the contro ller are the signals thai control the registers of the
da tapath and ca use the register operations annotated on the ASM D chan.

8 . 5 DESIGN EXAMPLE

We will now present a simple example demonstrating the use of the ASMD chan and the regis.
rcr transfer representation. We stan from the initial specifications of a system and proceed with
the development of an appropriate ASMD chart from which the digital hardware is then des igned.

Th e datapath unit is to cons ist of two JK flip- flops E and F. and o ne four-bit binary co unt­
er A{3: OJ. Th e ind ividual flip-flops in A are denoted by A 3• A2• A I. and AI). ith A3 holding
the most significant bit o f the count. A signal. Stan, initiates the system's operation by clear­
ing the cou nter A and flip- flop F. At each subsequent clock pulse. the counter is incremented
by I until the operations stop. Counter bits A2 and A3 determine the sequence of operations:

If A2 = O. E is cleared to 0 and the count co ntinues.

If A2 = I. E is set to I: then, if A3 = O. the cou nt continues. but if A) = I. F is set 10
I on the next clock pulse and the system stops cou nting,

Section 8.5 Design Example 353

Then. if Start =O. the system remains in the initial state. but if Star t = I. the opera­
tion cycle repeats.

A block diag ram of the system's architecture is shown in Fig. 8.9(.1). with (I) the registers
of the datapath unit. (2) the exte rnal (primary) input signals. (3) the status signals fed back
from the datapath unit to the control unit. and (4) the control signals generated by the control
unit and input to the datapatb unit. Note that the names of the control signals clearly indicate
the operat ions that they cause to beexecuted in the datapath unit. For example. clr..J_Fclears
registers A and F. The name of the signal resecb (altemanvely, reset_bar) indicates that the
reset action is acti ve low. The internal details of each unit are not shown.

ASMD Chart

An ASMD chart for the system is show n in Fig. 8.9(b) for asynchronous reset action and in
Fig. 8.9(c) for synchronous rese t action. The chart shows the state transitions of the controller
and the datapath operat ions assoc iated with those transitions. The chan is not in its final form.
for it does not identify the control signals generated by the controller. The nonblocking Ver­
Hog operator «=) is shown instead of the arrow (-) for register transfer operations because
we will ultimately use the ASMD chart to write a verilog description of the system.

When the rese t action is synchronous. the transition to the reset state is synchronous with
the clock. This transition is shown in the diagram. but aff other synchronous 1l'set path s are omit­
tedfo r clarity, Tbe system remains in the reset state. S_iJlt'. umil Stan is asserted . When that
happens (i.e.• Start = I). the state moves to Sj . At thr next clod; edge. depending on the
values of A ;! and A 3 (decoded in a priority order). the state returns to S_1 or goes to 5_2. From
5_2. it moves uncond itionally to S_jd/~. where it awaits another assertion of Stan.

Tbe edges of the chan represent the state transitions that occur at the act ive (i.e., synchro­
nizing) edge of the clock (e.g .• the rising edge) and are annotated with the register operations
that are to occ ur in the datapath . wi th Stan asserted in S_id/~, the state will tran..ition to S_ I
and the registers A and F will be deared. Note that. on the one hand. if a register operation is
anno tated on the edge leaving a state box. the ope ration occ urs unconditionally and will be
controlled by a Moore-type signal. For example. register A is incremented at every clock edge
that occurshile the machine is in the state S_ 1. On the other hand, the register operation set­
ting register E annotates the edge leaving the decision 1>0 .\ for A2. The signal controlling the
opera tion will be a Mealy-type signal asserted when the system is in state S_1 and A2 has the
value I. Likewise. the control signal cleari ng A and F is asserted conditionally: The system is
in state S_idlf' and Sian is asserted.

In addition to showing that the counter is incremented in state S_1, the annotated paths
show that other operations occur conditionally w ith the same clock edge:

Either E is cleared and control slays in state Sj (A2 = 0) or

E is set and control stays in stare S_ 1 (A 2A) = 10) or

E is set and control goes to state S_2 (A2A-' = I I).

When control is in state S_2. a Moore-type control signal mu...t beasserted to set flip-flop F to
I. and the state return.. to S_idle at the next active edge of the clock.

354 Chapter 8 Design at the RegisterTransfer Level

Status signa ls

A' /

A2

Sian
!itCF

clr..AJ
iflcr..A

DaIQ~"h

A

I I
e
o
F

o

(.)

F < = l

A <= A + 1
A <= A + I

F < -I F < = l
/

(b) (e)
FICURE 8 .9
(a) Block diagram for de sign example
(b) ASMDchart for controller state transitions, asynchronous reset
(c) ASMDchart for controller state transitions, synchronous reset
(d) ASMD chart for a completely specified controller, asynchronous reset

Note: A3 deno tes A13),
A2 denotes A[2j.
< - de no tes no nblocking assignment
resetb denotes act ive-low reset condit ion

A < = A + I

reseCb

Section 8.5 Design Example 3SS

The third and final step in cre ating the AS:vrDchan is to insert conditional boxes for the sig­
nals genera ted by the controller or to insert Moore-type signal.. in the state boxes, as shown in
Fig. 8.9{d). Tbe signal clr-A_F is generated conditionally in state 5_idle. incr-A is generated
unconditi onally in S_ I. clr_E and sec£ are generated co nditionally in 5_ 1. and St'CF i..ge n­
era ted unconditionally in S_1. The AS\ t chan has three states and three bloch . The block as­
sociated with S_idle consi..ts of the slate box . one deci sion bo x. and one condi tional box. The
block associated with 5_1 consists o f only the slate bolt . In addition to clock and rt'uCb. me
control logic has o ne e xternal input. Start, and two status inputs. A2 and A3.

In this example. we have shown how a verbal (tex t) descri ption (specification) of a design
is trans lated into an AS\ 1D chan tha t completely describes the controller for the datapa th. in­
dicating the control ..ignals and the ir associated reg iste r operations. Th is design example does
not have a practical app lication. and in general. depending on the interpretation. the AS \ ID chan
prod uced by the three-step design proces.. for the controller may be sirnplified and formulated
diffe rent ly. Ho wever. o nce the AS\ 1D chart is establ ished . the procedu re for design ing the
circuit is straig htforward. In practice. desig ners use the A5,HO chart to write veritog models
of the controller and the dataputh and then synthesize a circuit directly f rom the Veri/OR de­
scription. We will first design the system man ually and then write the HDL description. keep­
ing synthes is as an optional step for those who have acce ss to synthes is tools.

nmlng Sequence

Every bloc k in anAS~m chan spec ifies the signals which contro l the operatio ns thai are to be
initialed by o ne common cloc k. pulse. The control signals ..pcc ifiedith in the state and con­
ditiona l boxes in the block. are fonned wh ile the controller is in the indicated stare. and the an­
notated operations occur in the datapa th unit when the sta le mak es a tran sition alon g an edge
that exits the state , Th e change from one state to the nex t is performed in the control logic . In
orde r to apprec iate the timing relationship involved. we will list the step-by-step sequence of
operations after each clock. edge. beg inning with an assertion o f the signal Stan unt il the <'ys­
rem returns to the reset (initial) slate. 5_idle .

Tab le 8.3 shows the binary value, of the counter and the two flip-flops after every clock.
pu lse . The table also shows separately me status of A 2 and A3• as well as the present state of
the controller. We stan with state S_1 right after the input signal Stan has caused the counter
and flip-flop F 10 be c leared. We iIl assume that the machine had been running before it e n­
tered S_idle. instead of enter ing it from a reset co nditio n. Th erefore. the value of E is assumed
to be I. because E is set 10 I when the machine enters 5_1 . before moving to S_idle (as shown
at the bottom of the table). and because E does not change during the transition from S_idle to
5_1. The system stays in state 5_1 dur ing the next 13 clock pu lses. Each pulse increment s the
counter and either clears or sets E. Not e the relationship between the time at which A2 be­
comes a 1 and the time at which E is set to I. When A = (A3 A2 Al .(0) 001 1, the next (4th)
cloc k pulse increments the counter to 0 100. but thai same clock edge sees the value of A2 as
O. so £ remains cleared . T he next (5 th) pulse changes the cou nter from 0 100 to 010 1. and be­
cause A 2 is eq ual to I before the clock pulse arri ves. £ is set to I. Similarly. £ is cleared to 0
not when the count goes fro m 0 111 to 1000. but when it goes from 1000 to 100 1. which is
whe n A2 is 0 in the present val ue or the cou nter,

356 Chapter 8 Design at t he Register Transfer Level

Ta ble 8 .3
~quenu of Opn-otionl for lHsign Example

Counter flip-Flops

A. A, A, Ao E f Conditions Sta t e

0 0 0 0 I 0 .4.2 "" 0, A) = 0 U
0 0 0 I 0 0
0 0 I 0 0 0
0 0 I I 0 0

0 0 0 0 0 .4.2 -1 ,14.) - 0
0 0 I I 0
0 I 0 I 0
0 I I I 0

0 0 0 I 0 A2 ., O. AJ .. I
0 0 I 0 0
0 I 0 0 0
0 I I 0 0

0 0 0 0 .4. 2 - I. AJ - I
0 I I 0 U
0 I I I S_idlt

When the count reaches 1100 . both A 2 and A) are equal 10 1.1De next clock edge incre ­
mentsA by I. sets £ to I. and transfers control to stale 5_2. Control stays in 5_2 for a ni)"one
clock period . The clock edge associated with the path lea ving 5_2 sets flip-fl op F lo I and
tran sfers co ntrol to state S_idJe. The system stays in the initial state S_idlr as long as Stan
is equal 10 O.

From an observation of Table 8.3. it may seem that the operations performed on E are
delayed by one clock pulse. This is the difference betwee n an AS MD chan and a co nven­
tional flowchart . If Fig. 8.9(d) were a co nve ntional flo wcha rt. we would ass ume that A is
first incremented and the incremented value wou ld have been used to check the status of A 2.
The operations that are performed in the d igital hardware as spec ified by a block in the
ASMD chart occ ur during the same cloc k cycle and not in a sequence of operations followi ng
each other in time. as is the usual interpretation in a conventional flowchart . Thu s. the value
of A 2 to be co nsidered in the decision box is taken from the value of the counter in the
present state and before it is incre men ted . Thi s is beca use the decision box for E belongs
with the same block as state S_J. The digital circuits in the co ntro l unit generate the signals
for all the ope rations specified in the present block prior to the arrival ofthe nt'xt dock pulse.
The ne xt cloc k edge executes all the operations in the registers and flip- Flops. incl uding
the Flip-flops in the controller that de termine the next state. using the present values of the
output signals of the co ntroller. Thus. the signals tha t co ntrol the operations in the datapa th
unit are formed in the co ntro ller in the cloc k cycle (contro l stal e) pru eding the cloc k edge
at which the operations execute.

Section 8.5 Design Example 357

Controller and Datapath Hardware Des ign

The AS~ID chan provides all the infonnation needed to design the digital system-the datapath
and the con troller. The actual boundary between the hardware of the controller and that of the
datapath can be arbitrary. but we advocate, first, that the datapath unit contain only the hard­
ware associa ted with its operations and the logic requi red, perhaps. to form status signals used
by the contro ller, and, second. that the control unit contain all of the log ic requ ired to gener­
ate the signals that control the operations of the datapath unit. The requ irement s for the design
of the datapath are indicated by the control signals inside the state and conditional boxes of the
ASMD chan and are specified by the annotations of the edges indicating datapath operations.
The control log ic is determined from the decis ion boxes and the requ ired state transitions. The
hardware configuration of the datapath and co ntroller i\ shown in Fig. 8.10.

,A

Dt .fign_fumplt
r-r-

lI Cl>fllfol/tr
'-':i§.,," ", .<.~~.!"

Stan
I

s_ ...:-4tt,{" ,.-
··'clt':.£:

I ik..t ,
". (/r,)t::.:" .; I

I A, DUf<lpUlh Iirni,;A- !I A, "~";-"'i/f./
d«k iJ./ 'rt.sdJ.i! '-.:f: iI

fesf'l_b
£

doc' - - f-t-I-+- -f

FIGURE 8 .10
Data path an d cont ro ller fo r desig n example

358 Chapter 8 Design at the Reg ister Tran sfer l evel

Note that the input signals of the control unit are the external (primary) inputs (Stan. re,~e t_b.

and clo ck) and the status signals from the datapath (A2 and A3). Th e status signals pro vide in­
formati on about the present cond ition of the datapath. Th is information. together with the pri ­
mary inputs and information abou t the present state of the machine. is used to form the output
of the contro ller and the value of the next state. Th e outputs of the controlle r are inputs to the
datapath and determine which operations will beexecuted when the clock undergoes a tran si­
tion . Note . also. that the state of the control is not an output of the cont rol unit. eve n if the en­
tire design is encapsulated in only one modu le.

The control subsystem is shown in Fig. 8.10 with only its inputs and outputs. with names match­
ing those of the ASMD chart. The detailed design of the controller is considered subsequently.
The datapath unit consists of a four-bit binary counter and two l K flip-flops. "The counter is sim­
ilar to the one shown in Fig. 6.12. excepr thar additio nal interna l gates are required for the syn­
chronous clear opera tion. The counter is incremented with every clock pulse when the controller
state is S_J. It is cleared only when control is at state S_idle and Stan is equal to I. The logic for
the signal efr-A_Fwill be included in the controller and requires an AKD gate to guarantee that
both conditions are present. Similarly. we can anticipate that the controller will use A:'\L>gates to
form signals st'C E and clr_E. Depending on whether the controller is in state S_' and \\ helher A2
is asserted. st'C F controls flip-flop F and is asserted unconditionally during state 5_2. Note that
all flip-flops and registers. including the flip-flops in the control unit. use a common clock.

Reg iste r Transfer Representation

A digital sys tem is represe nted at the register transfer level by specifying the registe rs. in the
system. the operations performed, and the control sequence. The register operatio ns and co n­
tro l inform ation can be specified with an ASMD chart . It is convenient to separa te the control
logic and the register operations for the datapath . The ASMD chan prov ides this separation and
a clear sequence of steps to design a contro ller for a datapa th. The contro l information and
register transfer operations can also be rep resen ted separately. as shown in Fig. 8.11. The stale
diagram specifies the control sequence. and the register operatio ns are represented by the reg­
ister transfer notation introd uced in Section 8.2. Th e state transition and the signal controlling
the register operation are shown with the operation. Th is repre sentati on is an altern ative to the
representation of the sys tem described in the ASMD chart o f Fig. 8.9(d) . On ly the ASMD chan
is really needed . but the state diagram for the controller is an alternat ive representation that iii
useful in manual design. The information for the state diagram is taken d irectly from the AS~ID
chart. The state names are specified in each state box. The conditions that cause a change of
state are specified inside the diamond-shaped decision bo xes of the AS~ID chart and are used
to annotate the state diagram. The directed lines betwee n states and the condi tion associated
with each follow the same path as in the ASMD chart. The register transfer ope rations for each
of the three states are listed fol lowing the name of the state. Th ey are taken from the state
bo xes or the annotated edges of the ASMD chart.

State Table

The state diagram can be convened into a state table from which the sequentia l ci rcuit of the
controller can be designed. First, we must assign binary values to each state in lhe AS~ID
chart. For" flip-flops in the control sequential ci rcuit. the ASMD chart can accommodate up

Section 8.5 Design Example 359

Staff = 0

S.JJ~\-----.(
Staff - I

5j dl.. _ 5j. d r.../C F:

5_1 - 5_1. iller_A :

ifIAz -lJ thenJ'fC I:':
if (Az '" 0) then clr_E:

S..l - S_idle. wI_F:

'b'

A

A - A + l

1:' - 1
t -o
F-1

flGURl 8 .11
Register transfer-level description of design example

to 2" states. A chan ith 3 or 4 states requ ires a sequential c ircuit with two f li p-f lops. With 5
10 8 states. there is a need for three flip-flops, Each combination of llip-flop values represents
a binary number for one of the Mates.

A srare table for a controller is a list of present states and inputs and their corresponding next
stales and outputs. In most cases . there are many don' t-care input conditions that must be in­
cluded. so il is advisable 10arrange the state table to take those conditions into consideration.
We a......lgn the following binary values 10 the three states : S_idle :: OO.Sj = 0 1.andS_2 = I I.
Binary stale 10 is nOI used and will be treated as a don't -care condition. The stale table COrTe­

spending to the state diagram is shew n in Table 8.4. Two flip-flops are needed, and they are

Table 8 .4
State Table for tlK Controller of Fig. 8. '0

Pre sent Next
Stat e Inputs State Outputs

... -e
Present-State ~ ~ ... ",'

b'~, .' , .'~

Symbol C, C. Start ' 2 " C, C. • - • ., oS• • •
5_id/e 0 0 0 X X 0 0 0 0 0 0 0
S_idl.. 0 0 I X X 0 I 0 0 0 I 0

S_l 0 I X 0 X 0 I 0 I 0 0 I
S_l 0 I X I 0 0 I I 0 0 0 I
U 0 I X I I I I I 0 0 0 I
5_2 I I X X X 0 0 0 0 I 0 0

360 Chapter 8 Design at the Register Transf er level

labeled G] and Go. There are three inputs and five outputs. The inputs are taken from the con­
ditions in the decision boxes . The outputs depend on the inputs and the present state of the con­
trol. Note that there is a row in the table for each possible transi tion between states. Initial state
00 goes to slate 01 or stays in 00. depending on the value of input Start. The other two inputs
are marked with don 't-care x's, as they do not determine the next slate in this case . While the
system is in binary state 00 with Start = I , the control unit provides an output labeled clr...A_F
to initiate the required register operations, The transition from binary state 0 1depends on inputs
A 2 and A), The sys tem goes to binary state II on ly if A 2A) = I I; othe rwise, it remains in
binary state 01. Finally. binary slate I I goes 10 00 independently of the input variables.

Contro l Logic

The procedure for designing a sequential circuit start ing from a state table was presented in
Chapter 5. If this procedure is applied to Table 8.4. we need to use five-variable maps 10 sim­
plify the inpu t eq uations. Thi s is because there are five variables listed under the present-state
and input columns of the table. Instead of using maps to simplify the input equations. we can
obtain them directly from the state table by inspection. To design the sequential circuit of the
co ntroller with 0 flip-flops, it is necessary 10 go over the next-state columns in the state table
and derive al l the conditions that must set each flip -flop to I. From Table 8.4. we note that the
next-state column ofG I has a single I in the fifth row. The D input of llip-flop Gl must beequal
to 1 during present slate S_1 when both inputs A2 and A) are equ al to 1. Thi s condition is
expresse d with the J) flip-flop input equation

DCI =S_1A2A)

Sim ilarly, the next-state column of Go has four t 's, and the condition for selling this flip-flop is

To derive the five output functions. we ca n exploit the fact that binary state 10 is not used.
which simplifies the equation for clr...A_F and enables us to ob tain the following simplified set
of output equations:

set_E = S_IA2

clrj:: = S_1A2'

set F = S_2

clr_A_F = St ar r S_id le

incr_A = S_1

The logic diagram showing the interna l detail of the controller of Fig. 8.10 is drawn in Fig. 8.12.
NOIe thai although we deri ved the output equat ions from Table 8.4. they can also beobtained
directly by inspection of Fig. 8.9(d). This simple example illustrates the manual design of a eon­
troller for a datapath. using an ASMD chart as a starti ng point. The fact that synthesis too ls au­
tomatically exec ute these steps should beappreciated.

Sum -'-""-2 3

A'= ;::::jA,

Section 8.6 HDl Descript ion of Design Example 361

c1r...A J

incr...A

FIGURE 8.12
logic diagram of the control unit for Fig. 8.10

8 . 6 HDL DESCRIPTION OF DESIGN EXAMPLE

In previous chapters,e gave examples of HDL descriptions of combinational circuits,
sequential circuits. and various standard components such as multiplexers. counters, and reg­
isters. We are now in a position to incorporate these components into the description of a spe­
cific design. As mentioned previously, a design can be described either at the structural or
behavioral level. Behavioral descriptions may beclassified as being either at the register trans­
fer level or at an abstract algorithmic level. Consequently. we now consider three levels of
design: structural description. RTL description. and algorithmic-based behavioral description.

The structural description is the lowest and most detailed level. The digital system is spec­
ified in terms of the physical components and their interconnection. The various components
may include gates. flip-flops, and standard circuits such a" multiplexers and counters. The de­
sign is hierarchically decomposed into functional units. and each unit is described by an HDL
module. A top-level module combines the entire system by instantiating all the lower level
modules. This style of descript ion require s that the designer have sufficient experie nce not
only to understand the functionality of the system, but also to implement it by selecting and con­
necting other functional elements.

The RTL description specifies the digital system in terms of the registers. the operations
performed. and the control that sequences the operations. This type of description simplifies
the design process because it consists of procedural statements that detenni ne the relationship
between the various operations of the design without reference to any specific structure. The

362 Chapter 8 Design at the Register Transfer Level

RTL descri ption implies a cert ain hardware configuration among the registers. allowing the
designer to create a design that can be synthesized automatically, rather than manually. into stan­
dard dig ital components.

The algorithmic-based behaviora l description is the most abstract level. describing the func­
tion of the design in a procedura l. algorithmic forrn similar 10 a programming language. It does not
provide any detail on how the design is to be implemented ith hardware. The algorithmic-based
behavioral description is most appropriate for simulating complex systems in order to verify de­
sign idea.. and explore tradeoffs. Descriptions at this level are accessible to nontechnical users
who understand programming languages. Some algorithms. ho.....ever. might nOI bes)nthesizable.

We will now illustrate the RTL and structural descriptions by using Ihe design example of
the pre vious section. The design example will serve as a model o f cod ing style for future ex­
arnple s and will exploi t alternative syntax options supponed by revisions 10 the Verilog lan­
guagc. (An algori thmic-based description is illustrated in Section 8.9.)

RTL Description

Th e block diagram in Fig. 8.10 descr ibes the design example. An HOL description of the
de sign exampl e can be written as a single RTL descriptio n in a Verilog mod ule or as a top­
level mod ule having instantiations of separate modules for the controller and the datapath. The
former opt ion simply ignores the boundar ies between the funct ional un its: the modules in the
latter option establish the boundaries shown in Fig . 8.9(a) and Fig. 8.10 . We advocate the sec­
ond option. because. in general. it distinguishes more clearly between the controller and the data­
path . This choice also allows one to easily substitute alternative controlle rs for a give n datapath
(e.g.• replace an RTL mode l by a structural model). The RTL description of the design exam­
pic is shown in HDL Example 8.2. Th e description follows the ASMO chart of Fig. 8.9(d).
which conta ins a complete descript ion of the controller. the datapeth. and the interface between
them (i.e.• the ou tputs o f the con troller and the status signals). Likewise. o ur description has
three modules: De.~ix,,_Example_RTL. Controller_RTL. and Datapat 1l_R TL. The descriptions
of the controller and the datapath units are taken directly from Fig. 8.9l..d). Design_£rumple_RTL
declares the input and o utput port s of the module and instantiates Controller_RTL and
Datapath_RTL. At this stage of the description. it is important 10remember to declare A a... a vec­
tor. Failure 10 do so will produce port mismatch errors when the descriptions are compiled to­
gether. Note that the status signals A12] and A/3} arc passed to the con troller . The primary
(externa l) inputs to the controller are Start. clock (10 synchronize the systemj . and resetb . The
active-low input signal resetb is needed to initialize the state o f the controller to S_idfe. With­
OUI that signal. the controller could nor be placed in a known initia l slate.

Th e controller is described by three cycl ic (always) behaviors. An edge-sensitive behavior
updates the state at the positive edge of the clock. depending o n whether a reset condition is
asse rted. Two level-sensitive behaviors describe the combinational logic for the next state and
the outpu ts of the controller. as specified by the ASMD chan . Notice tha t the description in­
cludes default assignm ents (0 all of the out puts tc.g.• secE = 0). This approach allows the
code of the cas t' logic 10 be simplified by expressing on ly explicit assertions of the variab les
(i.e .. values are assigned by exception). The approac h also ensures that every path through the
assignment logic a..signs a value to every variable . Thus. a synthesis tool will interpret the

Section 8.6 HDl Description of Design Example 363

logic to be combinational: failure to assign a value to every variable on every path of logic im­
plies the need for a transparent latch (memory) to implement the logic. Synthesis tools will pro­
vide the latch. wasting silicon area.

The three states of the controller are given symbolic names and are encoded into binary
values. Only three of the possible two-bit patterns are used, so the case statement for the next­
state logic includes a default assignment to handle the possibility that one of the three assigned
codes is not detected. The alternat ive is to allow the hardwa re to make an arbitrary assignment
to the next state (Ilext_~·tate = 2 'bx;). Also. the first statement of the next-state logic assigns
nex t_stat e = S)dle to guarantee that the next state is assigned in every thread of the logic. This
is a precaution against accidentally forgetting to make an assignment to the next state in every
thread of the logic, with the result that the description implies the need for memory, which a
synthesis tool will implement with a transparent latch.

The description of Datapath_RTL is written by testing for an assertio n of each co ntrol sig­
nal from Comroller_RTL. The register transfer operatio ns are displayed in the ASMD chart
(Fig. 8.9(d)). Note that nonbloc king assignments are used (with symbol < =) for the register
transfer operati ons. Thi s ensure s that the register operations and state transitions are concur­
rent , a feature that is especially crucial during control state 5_1. In this state, A is increment­
ed by I and the value of A2 (Al2]) is checked to determine the operation 10 execute at register
E at the next clock. To accomplish a valid synchronous design, it is necessary to ensure that
Al 2] is checked before A is incremented. If blocking assignments were used, one would have
to place the IWO statements that check E fi rst and the A statement that increments last. How­
ever, by using nonblocking assignments, we accom plish the required synchronization without
being concerned about the order in whic h the statements are lis ted. The co unter A in
Darapatlz_RTL is cleared synchronously because c1r....A_F is synchronized to the clock.

The cyclic behav iors of the controller and the datapath interact in a chain react ion: At the
active edge of the clock , the state and datapath regis ters are updated . A change in the state, a
primary input , or a status input causes the level-sensitive behav iors of the controller to update
the value of the next state and the outputs. The updated values are used at the next active edge
of the clock to determine the state transition and the updates of the datapath.

Note that the manua l method of design developed (I) a block diagram (Fig. 8.9(a» show­
ing the interface between the datapath and the controller. (2) anASMD chart for the system (Fig.
8.9(dJl, (3) the logic equations for the inputs to the flip-flops of the controller, and (4) a circuit
that implements the controller (Fig. 8.12). In contra st, an RTL model describes the state tran­
sitions of the controller and the operations of the datapath as a step towards automatically syn­
thesizing the circuit that implements them. The descriptions of the datapath and contro ller are
derived directly from the ASMD chart in both cases.

1101. Example 8.2

1/RTL description of design example (see Fig. 8.11)
module Design _Example_RTL (A. E, F, Sta rt, clock, reset_b);
fI Specify ports of the top-leve l module of the design
fI See block diagram, Fig. 8 .10
output [3: 0) A;
output E, F;

If (Start) c1r_Af = 1;
begin incr_A '" 1; if (A2) set_E = 1; else clr_E = 1; end
setf = 1;

if (Start) next_state = 5_1; else next_state = S_idle;
if (A2 & A3) next_state =S_2; else next_stale =S_1:
next_state = S_idle;
next_state = SJdle;

364 Chapter 8 Design at the Registe r Transfer Level

input Start, clock, resetj b:
I/ Instantiate controller and datapath units
Controller_RTl MO(sat_E, clr_E, seCF. clr_AJ, incr_A. A(2]. A(3]. Start. dock.
reset_b);

Datapalh_RTl M1 (A. E. F. seCE. elr_E, setJ. clr_AJ . incr_A, clock);
endmodule
modu le ControlJer_RTl (set_E, clr_E, self , clr_Af , iocr_A, A2. A3, Start. clock,

reset_b);
output reg set_E. clr_E, set_F, clr_A_F. incr_A:
input Start. A2, A3, clock, reseCb;
reg (1: 0] state. next_slate;
parameter S_idle = 2'bOO, S_, = 2'b01. S_2 = 2'b11; 1/State codes
always @ (posedge elock or negedge reseCb) 1/State transitions (edge sensitive)
If (reseCb == 0) state <= S_idle;
else state <= next_state;

1/Code next-state logic directly from ASMD chart (Fig. 8.9d)
always @ (state. Start, A2, A3) begin 1/Next-state logic (level sensitive)
next_state = S_idre;
case (state)

S_idle:
S_1:
S_2:
defaul t:

endcase
end
1/Code output logic directly from ASMD chart (Fig. 8.9<:1)
always@ (state. Start. A2) begin
set_E = 0; If default assignments; assign by exception
clr_E = 0;
set] = 0:
clr_AJ = 0;
incr_A '" 0;
case (state)

S_idle:
S_, :
8_2:

endc ase
end

endmodule
module Datapath_RTL (A, E. F. set_E. elr_E. seCF, c1r_AJ. iocr_A, clock):

output reg 13: OJ A; If register fo- counter
output reg E, F; If flags
Input seCE. clr_E. setf. d r_AJ. incr_A. clock;
If Code register transfer operations directly from ASMD chart (Fig. 8.9(d»

Section 8 .6 HDL Description o f Design Example 365

always @ (posedge clock) beg in
If (set_E)
If (elr_E)
If (se l_F)
if (c1r_A_F)
if (incr_A)

end
e ndmo dule

E <= 1;
E <= 0;
F <= 1;
begin A <= 0; F <= 0; end
A <= A + 1;

Testing the Design Description
The sequence of operations for the design example was investigated in the previ ous section.
Table 8.3 shows the values of E and F while register A is increme nted. It is instructive to de­
vise a test that checks the circui t to verify the validity of the HDLdescription . The test benc h
in HDLExample 8.3 provides such a module. (The procedure for writing tes t benches is ex­
plained in Section 4.12 .) The test module generates signals for Start. clock, and reset.b, and
checks the resulls obtained from regi sters A, E, and F. Initially, the resetb signal is set to 0 to
initialize the controller. and Start and clock areset to O. At time t = 5. the resec b signal is de­
asserted by selling it to I , the Start input is asserted by setting it to I . and the clock is then re­
peated for 16cycles. The $mo nitor statement displays the values of A. E, and F every IO ns.
The output of the simulation is listed in the example under the simulation log. Initially, at time
t = 0, the values of the registers are unknown , so they are marked with the symbol x.The first
positive clock transition, at time = 10. clears A and P, but does not affect E, so E is unknown
at this time . The rest of the tab le is identical to Table 8.3. Note that since Start is still equal to
I at time = 160. the last entry in the table shows that A and F are cleared to 0, and E does not
change and remains at I . This occurs during the second transition, from S_idle to 5_1.

111>1. Example 8.3

/I Test be nch for design example
modul e t_Design_Example_RTL;

reg Start , clock, resel_b ;
wire [3: OJ A;
wire E, F;
fl lnsta ntiate design example
Design_Exa mpJe_RTL MO(A, E. F, Start, clock, reseCb);
II Describe stimulus wavefo rms
initial #500 $flnls h; /I Stopwatch
Initial

begin
rese l_b = 0;
Start =0;
clock =0;
#5 reseC b =1; Sta rt =1;
repeat (32)

366 Chapter 8 Design at the Registe r Tra nsfer Level

begin
#5 clock = - clock; /I Clock generator

end
end

Init ial
Smonitor rA = %b E = %b F = %b time = %Od", A, E, F, Sti me);

end module
Simulation log:
Ae xxxx E = x F = xtime =O
A = 0000 E = x F =O time = 10
A = 000 1 E = 0 F = otime = 20
A = 00 10 E = 0 F = 0 time = 30
A = 00 11 E = 0 F = 0 time = 40
A = 0 100 E = 0 F = 0 time = 50
A = 0101 E = 1 F = 0 time = 60
A = 0110 E = 1 F = Otime =70
A = 0111 E = 1 F = 0 time = 80
A= 1000 E = 1 F = Otime = 90
A = 1001 E = OF e uume = 100

A = 1010 E = 0 F = 0 time = 110
A = 1011 E =0 F = otime = 120
A = 1100 E =0 F = o time = 130
A = 1101 E= l F= Otime= 140

A = 1101 E = 1 F= 1 time = 150
A = 0000 E = 1 F = 0 lime = 160

w aveforms produced by a simulation of Design.ExampleRtl. with the test bench are shown
in Fig. R. 13. Numerical values are shown in hexadecimal format.The results are annotated to call
attention to the relationship between a control signal and the operation that it cause... to execute.
For exam ple. the controlle r asse rts sec E for one dock cycle before the clock edge at which £ is
set to I. Likewise, setF asserts during the dock cycle before the edge at which F is .;,et to I. AI~,
clr..A_F is formed in the cycle before A and F are cleared. A more thorough verification of
De.'iigll_£ UUllpfcRTL would confinn thai themachine recovers from a reset on thefly (i.e.• a reset
thai is asserted random ly after the machine is ope rating). Note that the signals in the output of the
simulation have been listed in groups showing (l) clock and resecb. (2) Stan and the status
inputs, (3) the state. (4) the control signals. and (5) the datapath registers . It is strongly recom­
mended that the state always be displayed. because this information is esse ntial for verifying that
[he machine is opera ting correc tly and for dd>ugging lrs descrfptlon when it is nor. For the chosen
binary statc code. S_idle = ()(h = OH.S_J = 0 12 = IH. and S_2 == II ~ = 3H.

Structural Description

The RTL description of a design consists of procedu ral sraremenrs tha t de term ine the func­
tiona l behavior of the digital circuit. Th is type of description can beco mpiled by HOL synthesis
tools. from which it is possible toohtain the equivalent gate-level ci rcuit of the designIt is also

Section 8 .6 HD L De scrip t io n of Design Example 367

""arne
o so 100 I'"

~ ~~~~i-, ~ ~ ~~
,

dack "r~M,-b ; ; .
St<l'" f-' , , ,
A] . ,
AJ

; .
JI<lI~{J:O{

, i ~dr...AJ ~

srcE , : ,
d r_E I--'

,, ,
JrCF ,
incr..A ,

i /, :
A[J: O[x , c
£ 1'-<F

,

fIGURES.1 3
Simulation re sults fo r de sign exam ple

possible to describe the de..ign by its ..uu cture rather than its funct ion . A structural descript ion
of a design consists of instantiation... of components that define the circuit eleme nts and their
interconnections. In this regard . a structural description is eq uivalent to a schematic diagram
or a block diagram of the circuit. Contemporary de..ign practice rel ies heavily o n Rll. de­
scriptions. but we will present a struc tura l descriptio n here to contrast the two approaches.

For convenience. the circuit is again decomposed into two parts: the controller and the data­
path. The block diagram of Fig. 8.10 shows the high-level partition bet wee n these unit!"> . and
Fig. 8. I2 provides additional underlying structural de ta ils of the controller. The structure of the
datapath is evident in Fig. 8. 10 and consists of the flip-flops and me four-bit counter with syn­
chronous clear. The top level o f the Verilog desc ription replaces Dt'sigfl_E.tample_RTL. Cons­
roller_RTL.andDawpath_RTL by Desig1l_Example_SIR. Controller_STR.and Datapath5TR.
respectively. The descriptions of Controller_STR and Daraparh_STR will be structural.

HDL Example 8.4 presents me structura l description of the design example. II consists of a
nested hierarchy of modules and gales describing (I) me lop-level module. Design_Example....sTR.
(2) the modules describing the controller and the datapath. (3) the modules describing the f1ip­
flops and counters. and (4) gates implementing the logic of me controller. For simplicity. the
counter and flip-flops arc described by RTL models.

The top-level modu le (see Fig. 8.10) encapsulates me entire design by (I) instantiating the
controller and the da rapath modu les. (2) decl aring the primary (external) inpu t signals. (3) de­
claring the ou tput signals. (4) declaring the co ntrol sign als generated by me controller and con­
nected to the dataputh unit. and (5) declaring the status signals genera ted by me datapath unit
and connec ted to the contro ller, The port list is identical to me Jist used in the RTL descri ption.
The outputs are declared as " Ire type here because they serve mere ly to connect the outputs

368 Chapter 8 Desig n at th e Regi ster Transfer level

of the datapath module to the o utputs o f the top-leve l modu le. with thei r logic value being de­
termined wit hin the datapath modu le.

The control module desc ribes the circuit of Fig . 8.12. The outputs of the two ni p-flops 0 1
and GOare declared a" " i re data type. G I and GOcannot bedecl ared as reg data type because
they are outputs of an instantiated D flip-flop. DG I and DGOare undeclared identifi ers. i.e..
imp licit wires. The name of a variable is local to the module or procedu ral block in wh ich it is
declared , Nets may not be declared within a procedural block (e.g .• begin , " end). The rule
to remember is that a variable must bea declared register type (e.g.. reg) if and only if irs value
is assigned by a procedural statement (i.e., a blocking or nonblocking assignment statement with­
in a proce dural block in cycl ic or single-pas!'> behavior or in the output of a sequential LUP J.
Th e instantiated gate.. specify the com binationa l pan of the ci rcuit. There are two flip-fl op
input equations and three output equations. The outputs of the flip-flops GI and GO and the input
equations DGl and DGO replace output Q and input D in the instant iated flip-nap s. The D
flip-flop is then described in the nex t module. The structure of the dataparh un it has direct in­
puts to (he l K fl ip-flops.Note the correspondence between the modules of the HDL descrip­
tion and the struc tures in Figs. 8.9 . 8.10, and 8.12.

HDL Exa mple 8 .~

/I Structural description of design example (Figs. 8.9(a), 8.12)
module Design_Example_STR
(output [3: 0] A. /I V 2001 port syntax

output E, F,
inp ut Start, clock, reset_b

);

Controller_STR MO(clr_Af , seCE, c1r_E, setf , iner_A, Start, A[2], A[3]. clock,
reseCb);

Datapath_STR M1 (A. E, F, cICAJ, set_E, clr_E, setf, incr_A. clock):
endmodule

modul e Controller_STR
(output clr_A], set_E, clr_E, set] , incr_A,

Input Start, A2, A3, clock, resel_b
);

wire
parameter
wire

not (GO_b, GO);
not (G1_b, G1);

buf (incr_A, w2);
bUf (set] , G1);
not (A2_b, A2);

GO, G1;
S_idle = 2'bOO, S_l = 2'b01, S_2 = 2'b11;
w1, w2, w3;

Sectio n 8.6 HDl Descripti on of Design Exampl e 369

or (O_GO, w1, w2);
and (w1, Start, GO_b);
and (c1r_AJ , GO_b, Start);
and (w2, GO, G 1_b);
and (set_E, w2, A2);
and (clr_E, w2, A2_b);
and (0_G1 , w3, w2);
and (w3, A2, A3);
D_fIip_flop_AR MO(GO, O_GO, clock, reset_b);
D_fIip_flop_AR M1 (G 1, D_G1, d oCk, reseLb);

endmodule

/I datapath unit

module Oatapath_STR
(output 13: OJ A,
output E, F,
Input clr_A_F, seL E, c1r_E, seLF, incr_A, clock

):

JK_fIip_flop_2 MQ (E, E_b, sel_E, clr_E, clock);
JK_flip_flop_2 M1 (F, F_b, set_F, clr_A_F, clock);
Counler_4 M2 (A, iocr_A, d r_A_F, clock);

endmodule

II Counter with synchronous dear

module Counter_4 (o utput reg {3: OJA, Input incr, clear, clock);
always @ (posedge clock)
If (clear) A <= 0; else If (incr) A <= A + 1;

endmodu le

module O_fIip_flop_AR (0 , D, CLK, RST);
output 0 ;
input D, CLK, RST;
reg Q;

always @ (posedge e LK, negedge RST)
if (RST == 0) a <= l 'bO;
else Q <= 0 ;

endmodule

/I Description of JK fl ip-flop

module JK_flip_f1op_2 (a , a _not, J, K, ClK);
output Q , a _not;

370 Chapter 8 Design at the Register Transfer level

Input J, K, Cl K;
reg a;
ass ign a _not = - O:
always @ (posedgeClK)

case «J, K})
2'bQO: a <= Q ;

2'b01 : Q <= 1'bO;
2'b10: 0 <= 1'b1 ;
2'b1 1: 0 <= - 0 ;

endcase
end modu le

module t_Design_Example_STR;
reg Start, clock , reset_b;

wlre (3: OJ A;
wlre E, F;

II Instantiate design example

Design_Example_STR MO(A, E, F, Start , cloc k, reset_b);

II Describe stimulus waveforms

In itial #500 $fi nl sh; II Stopwatch
In iti al

beg in

reset_b =0;
Start =0;
clock = 0;

#5 reset_b = 1; Start =1;
repeal (32)

begin
#5 clock = - clock ; II Clock generator

.nd
.nd

In it ia l
$monltor ("A = %b E = %b F = %b time = %Od", A, E, F, $t1me);

endmodule

The struc tural description was tested with the lest bench thai verified the RTL description
to prod uce the results shown in Fig. 8.13. The on ly change necessary is the rep lacement of the
instant iation of the example from Design_ExampJe_RTL to Design_ExampJe_STR. The sim­
ulation results for DesignftampleflR matched those for Design_ExampJe_RTL. However,
a comparison of the two descriptions indicates that the RTI. style is eas ier to write and will lead
10 results faster if synthesis tools are available to auto matical ly synthesize the registers. the
combinational logic , and their interco nnections.

Section 8.7 Sequential Binary Multiplier 371

8 .7 SEQUENTIAL BINARY MULTIPLIER

Th is section introduces a second design example. It presents a hard ware algori thm for binary
mul tiplicat ion. propose s the register configuration for its implementation. and then shows how
to use an AS~tD chart to design darapath and irs controller.

TIle system we will examine multiplies two unsigned binary numbers.1be hardware algorithm
that was developed in Sectio n ~.7 to execute multiplication resulted in a combinational circuit mul­
tiplier with many adders and Al"'D gates. requiring a large area o f silicon for the implementation
of the algorithm as an integrated circuit. ln contra..t, in thi \ sectio n, a more efficie nt hardware
algori thm results in a seq uential mu ltiplier that uses only one adde r and a shift register. The sav­
ings in hardware and silicon area come about from a trade-off in the !>pace (hardwarej-tirne
domain. A parallel adde r uses more hardware. bUI forms its result in one cycle of the clock ; a
sequential adder uses less hardware. but takes multiple clock cycles to fonn its result.

The multiplication of two binary numbers Is done with paper and pencil by successive (Le..
sequential) add itions and shifting. The proce ss is best illustrated with a numerical exa mple. Let
us multiply the two binary numbers lOl l! and 10011 :

23 1011 1 mult ipli cand

19 100 \1 multiplier

10 111

10111

ooסס0

ooסס0

1011 1
437 110110101 product

The proce ss consi..ts of successively addi ng and shifting copies o f the multiplicand . Succes­
sive bits o f the multiplier are examined. least significant bi t first . If the multiplier bit is I. the
mult iplicand is copied do wn; otherwise. n's are copied down. The numbers copied in sccces ­
she lines are shifte d o ne pos ition to the left fro m the previous number. Final ly. the numbers
are added and their sum forms the product. The product obtained from the multiplication of two
binary numbers of II bits eac h ca n have up to 2n bits. It is apparent that the operations of
addi tion and shifting are executed by the algori thm.

When the multiplication process is implemented with digi tal hardware. it is convenient [0

change the process slightly. First. we note that , in the context of synthesizing a seq uential rna­
chine. the add-and-shirt algorithm for binary multiplication can beexecuted in a single clock cycle
or over multiple clock cycles, On the one hand. a choice to form the produc t in the time span of a
single d ock cycle will synthesize the circuit of a parallel multiplier like the one discussed in Section
4.7. On the other hand. an R11. model of the algorithm adds shifted copies of the multiplicand to
an accumulated partia l product. The values of the multiplier. mu ltiplicand . and partial produc t are
stored in registers. and the operations of shifting and addin g their contents are executed under the
control of a stale machine. Among the many possibilities for distributing the effort of muluplica­
tion over mu ltiple clock cycles. we; 0 consider that in which only one partial product is formed
and accumulated in a single cycle of the clock. (One alternative wouldbe10 use additional hardware

372 Chapter 8 Design at the Register Transfer Level

to form and accumulate two partial products in a clock cycle. but this would require more logic
gates and either faster circuits or a slower clock.) Instead of providing digital circuits to store and
add simultaneously as many binary numbers as there are I 's in the multiplier. it is less expensive
to provide only the hardware needed to sum two binary numbers and accumulate the partial prod­
ucts in a register. Second, instead of shifting the multiplicand to the left, the partial product being
fonned is shifted to the right. This leaves the partial product and the multiplicand in the required
relative positions. Third, when the corresponding bit of the multiplier is 0, there is no need to add
all O's to the partial product, since doing so will not alter its resulting value.

Regist e r Configuration

A block diagram for the sequential binary multiplier is shown in Fig. 8. I4(a). and the register
configuration of the datapath is shown in Fig. 8.14(b). Themultiplicand is stored in register B,

Rt ady .\lultip ficand Multiplit,

Sra,t

Q O

(.)

9

Registe r B (Multiplicund) I Register P(Counlt r)

lnr~Vt An l l l' 1'! 0101 01. ,. .- " ' .'

7 , 0

+

16 15 8 8 7 0
oI°I0 I0 0101010 010 I0I, 1o11 1'1 II

C Register A (Sum) Register Q (Multipfitr)

1
(b)

FIGURE 8.14
(a) Block diagram and (b) datapath of a binary mul tiplier

Section 8.7 Sequential Binary Multiplier 373

the multiplier is stored in register Q, and the partial product is formed in register A and stored
inA and Q. A parallel adder adds the contents of register B to register A. The C flip-flop stores
the carry after the addition. The counter P is initially set to hold a binary number equal to the
number of bits in the multiplier. This counter is decremented after the formation of each par­
tial product. When the content of the counter reaches zero. the product is fanned in the dou­
ble register A and Q, and the process stops. The control logic stays in an initial state until Stan
becomes I . The system then performs the multiplication. The sum of A and B fonn s the n most
significant bits of the partial product, which is transferred toA . The output carry from the ad­
dition, whether 0 or I , is transferred to C. Both the partial product in A and the multiplier in
Q are shifted to the right. The least significant bit of A is shifted into the most significant po­
sition of Q, the ca rry from C is shifted into the most significant position of A, and 0 is shift­
ed into C. After the shift-right operation, one bit of the partial product is transferred into Q
while the multiplier bits in Q are shifted one position to the right. In this manner, the least
significant bit of regis ter Q, designated by Q[O] , holds [he bit of the multiplier that must be
inspected next . The control logic determines whet her to add or not on the bas is of this input
bit. The control logic also receives a signal, Zero, from a circuit that checks counter P for zero.
Q[O]and Zero are status inputs for the control unit. The input signal Start is an external con­
trol input. The outputs of the control logic launch the req uired opera tions in the reg isters of
the da tapath unit.

The interface between the controller and the datapath consists of the status signals and the
output signals of the controller.The control signals govern the synchronous register operations
of the datapath. Signal loadregs loads the internal registers of the datapath, Shift_regs causes
the shift register to shift, Add]egs forms the sum of the multiplicand and register A, and
Deer_P decrements the counter. The controller also forms output Ready to signal to the host
environment that the machine is ready to mult iply. The cor nenrs of the register holding the
product vary during execution. so it is useful to have a signal indicating that its contents are
valid. Note, again, that the slate of the control is not an interface signal between the control unit
and the datapath . Only the signals needed to control the datapath are included in the interface .
Putting the state in the interface would requ ire a decoder in the datapath. and require a wider
and more active bus than the control signals alone. Not good.

ASMD Chart

The ASMD chan for the binary multiplier is shown in Fig. 8.15. The intermediate fonn in
Fig. 8.15(a) annotates the ASM chart of the controller with the register operations, and the
completed chart in Fig. 8. 15(b) identifies the Moore and Mealy outpu ts of the controller.
Initially. the multip licand is in B and the mult iplier in Q. As long as the circuit is in the ini­
tial sta te and Start = 0, no action occurs and the system remains in state S_idle with Ready
asserted. The mult iplication process is launched when Start = I. Then , (I) control goes fo
slate S_add. (2) register A and carry flip-flop C are cleared to 0, (3) registers Band Q are
loaded with the multiplicand and the multiplier, respectively, and (4) the sequence counter
P is set to a binary number n. equal to the number of bits in the mult iplier. In Slate S_add,
the multip lier bit in Q[OJ is checked. and if it is equal to I , the multiplicand in B is added to
the part ial product in A. The carry from the add ition is transferred to C. The part ial product

374 Chapter 8 Design at t he Register Transfer Level

(.)

P <- P- l

IC, A. QI<- IC,A. QI » I

(bJ

Slart

IC, AI < - A+ B
Addmull iplicund
/0 shifted sum

p < .. P-l Decrement cour uer

.
Q/O/'r -- -,/

"-..... IC, A. Ql <- IC, A, QI » 1

i i "'\.. "<, 17.bir r,gisle, shifts to the
/? right by one bit

resecb

FIGURE8 .15
ASMD cha rt for binary multi plier

in A and C is left unchange d if QIO) = O. The counter P is decremented by I regardless of
the value of Q/O}, so Deer_P is formed in slate S_odd as a Moore output of the controller.
In both cases, the next state is S-.shift. Registers C.A. and Q are combined into one composite
register CAQ. denoted by the concatenation {C. A. Q}. and its contents are shifted once to
the righ t to obtain a new partial product. This shift operation is symbolized in the flowchart
with the Verilog logical right-shift operator. > >. It is equivalent to the following statement
in register transfer notation:

Shift right CAQ. C-O

Section 8.7 Sequential Binary Multiplier 375

In terms of individual register symbols. the shift operation can be described by the following
register operations:

A-shr A,A n_t-C

Q- shrQ,Qn_t-AO

C~ O

Both registers A and Q are shifted right. The leftmost bit of A, designated by An- J, receives
the carry from C. The leftmost bit of Q, or Qn- l' receives the bit from the rightmost position
of A in Ao• and C is reset to O. In essence, this is a long shift of the composite register CAQ
with 0 inserted into the serial input, which is at C.

The value in counter P is checked after the formation of each partial product. If the contents
of P are different from zero, status bit Zerois set equal to 0 and the process is repeated to fonn
a new partial product. The process stops when the counter reache s 0 and the controller' s status
input Zero is equal to I. Note that the partial product fann ed in A is shifted into Qone bit at a
time and eventually replaces the multiplier. The final product is available in A and Q. with A
holding the most significant bits and Q the least significant bits of the product.

The previous numerical example is repeated in Table 8.5 to clarify the multiplication process.
The procedure follows the steps outlined in the ASMD chart. The data shown in the table can
be compared with simulation results.

The type of registers needed for the dat a processor subsys tem can be derived from the
register operations listed in the ASMD chart. Register A is a shift register with paralle l load to
accept the sum from the adder and must have a synchronous clear capab ility to reset the reg­
ister to O. Register Q is a shift register. The counter P is a binary down counter with a facility

Ta b le 8 .5
Num~rkaf Exampf~ For Binary Multlpll~r

Multiplicand B = 10111 2 = 17H = 2310 Multiplier Q = 10011 2 = 13H = 1910

C A Q p

Multiplier in Q U ()(J()()() 10011 101
Qo = I ; add B IJllil
First partia l product 0 lOl l! 100
Shift right CAQ 0 0 1011 nooi
Qo = t; addB IJllil
Second partial product I 00010 011
Shift right CA Q 0 10001 01100
Qo = 0; shift right CAQ 0 01000 lOlI O 010
Qo = 0; shift right CAQ 0 00100 01011 001
Qo = I; addB IJllil
Fifth partial product 0 11011
Shift right CA Q 0 01101 1010t 000
Finalproductin AQ = 01 101101012 = Ib5H

376 Chapter 8 De sig n at the Register Transfer l e vel

to parallel load a binary constant. The C flip-flop must be designed to accept the input carry
and have a synchronous clear. Registers B and Q need a para llel load capability in order to re­
ceive the multi plican d and multiplie r prior to the start of the multiplication process.

8.8 CONT ROLlOGIC
The design of a digital system can be divided into two parts : the design of the register trans­
fers in the datapa rb unit and the design of the control logic of the co ntrol unit. The control

logic is a finite slate machine; its Mealy- and Moore-type ou tputs control theopera tions of the
datapath. The inputs to the control unit are the primary (external) inputs and the interna l sta­
tus signals fed back. (rom the datapa th to the controlle r. The design of the system can be syn­
thesized from an RTL description derived from theASMD chan. Alternatively, a manual design
must derive the logic governing the inpu ts to the flip-flops holding the state of the contro ller.
The information needed to fonn the state diagram of the co ntroller is already co ntained in the
ASMD chart. since the rectangular bloch that designate stale boxes are the states of the sequen­
tial circuit. The diamond-shaped blocks that designate decision boxes detennine the logical con­
ditions for the next state transition in the state diagram.

As an example. the contro l state diagram for the binary multiplier developed in the previ­
ous section is shown in Fig. 8.I6(a). The information for the diagram is taken directly from the

Zero - I

Start - 0

Z ero - 0

(.)

State Transition Register Operations

From III
S_idle Initial nate

S_idle S_add A <= O. C <- O. P < - dp_"'idlh
S_add SJh;ft p <=p - !

if (QIOn then (A <- A + B. C <- C.....)

SJhijr shifl right ICAQI. C <'" 0

(b)

FIGURE 8.16
Control specificatio ns for binary multiplier

Section 8.8 Control l ogic 377

ASMD chart of Fig . 8.15. Th e three states S_idle through S_shift are taken from the rectangu ­
lar state boxe s. The input s Star t and Zero are taken from the diamond-shaped decision boxe s.
The register transfer operations for each of the three slates are listed in Fig. 8.16(b}and are taken
from the correspon ding state and conditional boxes in the ASMD chan . Establishing the state
transit ions is the initial foc us. so the outputs o f the contro ller are not sho wn.

There are two distinct aspec ts with which we have to deal whe n implementing the contro l
logic : Establi sh the required sequence of states and provid e signals to control the register op­
erations. The sequence of slates is specified in the ASMD chan or the state diagram. The sig­
nals for controlling the operations in the registers are specified in the register transfer statements
annotated on the ASMD chart or listed in tabu lar format. For the multiplier. these signals are
toadregs (for para llel loading the regis ters in the datapath unit). Decr.P (for decrementing
the counter) . Add_regs (for adding the multiplicand and the partial product). and ShiftJegs
(for shifting register CAQ) . The block diagram of the control unit is shown in Fig. 8.J4(b}.
Th e inputs to the controller are Start. Q/OJ. and Zero. and the outputs are Read)'. Loadr egs,
Decr.P, Addr e gs, and ShifCre gs. as specified in the ASMD chart. We note that Q/Oj affects
on ly the outp ut of the controller. not its state transitions. The machine tran sitions from S_add
to S_shift unconditionally.

An important step in the design is the assignment of coded binary values to the states. The sim­
plest assignment is the sequence of binary numbers . as shown in Table 8.6. A similar assignment
is the Gray code. according to which only one bit changes when going from one number to the
next. A state assignment often used in control design is the one-hot assignment. Th is assignment
uses as many bits as there are stales in the circuit. At any given time. only one bit is equa l to J
(the one that is hot) while all others are kept at 0 (all cold). This type of assignment uses a flip­
flop for each state. Indeed. one-hot encoding uses more flip-flops than other types of coding. but
it usually leads to simpler decoding logic for the next stale and the output of the machine. Because
the decod ing logic does not become more complex as stales are added to the machine. the speed
at which the machine can operate is not limited by the time required to decode the state.

Since the controller is a sequential circuit. it can be designed manually by the sequential logic
procedu re outlined in Chapter 5. However. in most cases this method is d ifficult to carry out
manually because of the large number of states and input s that a typical control circuit may have.
As a consequence. it is necessary to use specialized methods for contro l logic design that may
be considered as variations of the classical seq uential logic method. We will now present two
such design procedure s. One uses a sequence register and decoder. and the other uses one flip­
flop per state. Th e method will be presented for a small c ircuit. but it applies to larger circ uits
as well. Of course. the need for these methods is eliminated if one has software that auto mat­
ically synthesizes the ci rcuit from an HDL description .

Tab le 8 .6
State Anlgnment for Control

State

S_idle
S_add
SJhjft

Binary

00
0 1
10

Gray Code

00
0 1
II

One-Hot

001
0 10
100

378 Cha pte r 8 Desig n at the Reg ister Transfer Level

Seque nce Register a nd Decoder

The sequence-register-and-decoder (manual) method. as the name implies. uses a regi ster for
the control states and a decoder to provide an output corresponding 10 eecb of the states . (The
decoder is not needed if a one -hot code is used.) A regi ster with n flip-fl ops can have up to 2"
states. and an n-to-2"· line decoder has up to 2" outputs. An a-bit sequence register is e~sentially
a circuit with n flip-flops. together with the associated gates that effect their state trans ition s"

The AS~1D chan and the state diagram forthe controller of the binary muttiplier bave three
states and two inputs. (There is no need to consider QIO}.)To implement thedesign with a se­
quence register and decoder. we need two flip-flops for the register and a rwo-to-four-liee de­
coder. The output s of the decoder will fonn the Moore-type outputs of the controll er directly.
The Mealy-type outputs will be formed fro m the Moore outputs and the inputs.

The state tab le for the finite state machine of the controller is shown in Table 8.7. It is de­
rived directly from the ASMD chart of Fig. 8.15(b) or the state diagram of Fig. 8.16(a). We des­
ignate the two flip-flops as G l and Go and assign the binary states 00. 0 1. and 10 to S_idlt'.
S_odd. and S_shi/t. respectively. Note that the input col umns have don ' t-care entries whenev­
er the input variab le is not used 10 determine the next state. Th e outputs of the control circuit
are designated by the names give n in the ASMD chart . The particular Moore-type output vari ­
able that is equal to I at any give n time is determined fro m the equivalent binary value of the
present stale. Those output variables are shaded in Table 8.7. Thus. when the present state is
GIGO = 00. output Ri'ad)' must be equal to 1. while the othe r outputs remain at O. Since the
Moore-type outputs are a function of only the presen t state. they can be generated with a de­
code r circuit having the two inputs G1 andGo and using three of thedecoder outputs To through
T2 . as shown in Fig. 8. 17(a). whic h does not include the wiring for the state feedb ack .

The state machine of the controller can bedes igned from the state table by means of the clas­
sical procedure presented in Chapter 5. This example has a smal l number of states and inputs.
so we could use map!' to simplify the Boolean functions. In most con trol logic applica tions. the

Table 8 .7
Statlt Tab/It for Control CIrcuit

PreJent Next
State InputJ State

• • a,.. r
~

t .. t, .' ,
PreJent-St ate -e il' l;

~ g t
Symbol G, Go Start Q[O} Zero G, Go - Q ~ ~

S_idle 0 0 0 X X 0 0 0 0 0 0
S_idle 0 0 I X X 0 I I 0 0 0
S_aJJ 0 I X 0 X I 0 0 0 I 0 0
S_aJJ 0 I X I X I 0 0 0 I 0
S_shift I 0 X X 0 0 I 0 0 0 0 I
S_shift I 0 X X I 0 0 0 0 0 0 I

Section 8.8 Control Logic 379

R"',
5'""--j-<Y

QIOI - -+--1

Zm-- - -1

(.)

R"',

..-
~~'\~

NUl 51tU~ Logic:,...._._.._._.._._ ,

I

Zero __-+---'

i....._.._ __._.._.._ ~

(bl
FIGURE 8.17
logic diagram of control for binary multiplier using. sequence register and decoder

380 Chapter 8 Design at the Register Tran sfer Level

number of sta tes and inputs is much larger. In general. the app lication of the classical method
r"nIu.irei'> an e ltcc ssi vc amount o fork to obtain the l im plified input equalio ns fo r !he flip-flO(K
and is prone to error. The des ign can be simplified if we take imo cces toereuce lhe fllCl thai

the decoder outputs are ava ilable for use in thedesign. Instead of using flip-flop outputs as the
present-slat e condition s, ,,'e use meoutputs ofthe decode r to tndiaue tM presem-suur condi­
tion ofthe s~qu~ntjal circuit. Moreover, instead of using maps to simp lify the flip-flop equa­
tions. we can obta in the m directly by inspection of the stale tabl e. For example. from the
nelt t-..t.le condition<; in tbe sta te table . we fInd thai the nexl stale of G 1 is equal to I'hen the
present state is S_add and is equal to 0 whe n the pre sent slate is S_id/~ or SJhift. These con­

ditions can be specified by the equation

where DCI is the D input of flip- flop 6 1' Simi lar ly. me D input of Go is

DG4J = ToStart + T2 Zero'

Whe n deriving input equations by inspection from the stare table. we canno t be sure mat the
Boo lean functions have bee n simplified in the best possible way. (Synthes is tool s take care of
th is detai l automatically.] In general , it is adv isabl e to analyze the ci rcuit 10 ensure that the
equations derived do indeed produ ce the req uired state tran sitions.

The logic diagram of the control circuit is drawn in Fig . 8.17(b). It consists of a registerith
two flip-flops G, and Go and a 2 x 4 decoder. The outputs of the decoder are used to gener­
ate the inpu ts to the next -state logic as well as thecontrol ou tputs. Tbeoutpu ts of the controller
shou ld be connected to the datapath to acti vate the req uired register ope ratio ns.

One-Hot Des ign (One Flip-Flop per State)

Another method of contro l logic des ign is theone-hoi assignment. which results in a sequen­
tial circuit-ithone ni p-flop per state. Only one of the flip-flops contains a I at any time: all
others are reset to O. The single I propagates from one flip-flop to another unde r thecontrol of
decision logic. In such a configura tion. each nip-flop represents a Slate tha t is present only
when the control bit is transferred to it.

Thi s method uses the maximum number of flip-fl ops for the sequen tial circuit. For exam­
ple . a sequentia l circ uit with 12states requires a minim um of four nip-flops. By contrast, with
the met hod of one ni p-flop per state. the circuit req uires 12 flip- flops. one for each sta te . At
first glance. it may seem thai this method would Increase sys tem cost, since more flip-fl ops are
used . But the method offers some advan tage s that may not be apparent. One ad vantage is the
simplicity with which the logic can bedesigned by inspec tion of the ASMD chan or the state
diagram . No stare or excitation tables are needed if D·type fli p-flops are employed. The one­
hot method offers a sa vings in design effort. an increase in operational simplicity, and a pos­
sible decrease in the total number of gates . since a decoder is not needed.

Thedesign procedure willbe demonstrated by obtaini ng the cootrol circui t speci fied by thestate
diagram of Fig. 8.I6(a) . Since there art three stales in the state diagram. we choose three D nip­
flops and label their ootputs Go- 6). andG2•corrrsponding lo S_wk . S_add. andS_shift. respec­
tively.The input equations for setting each flip-flop to I are determined from thepresen t slate and

Sect ion 8.8 Control logic 381

the input condit ions along the corresponding directed lines going into the stale. For example. DGO.
the input to flip-flop Go. is set to I if me machine is in stale Go and Start is nOI asserted. or if the
machine is in state Gz and lira is asserted. These conditions are specified by the input equation:

DGo = Go Starr' + G2 Z ero

In fact. the condition for setting a flip-flop to I is obta ined directly from the state diagram .
from the condition specified in the dire cted lines going into the corresponding flip-flop state
ML>ed with the previous flip-flop slate. If mere is more than one directed line going into a slate.
all conditions must beORed . Using this procedu re for the other three flip-flops. we obtain the
remaining input equations:

DGl = Go Start + Gz Z ero'

tsca= G,

The logic diagram of the one-hot controller (with one flip-flop per state) is shown in Fig. 8.18.
The circuit consists of three D flip-flops labeled Gothrough G2, together with the associated gates

Start

QIO}

Zero

d ock

~&;%i~
Read)'

I?"I
IV ;}t~~::

il ~
Loedregs

-I f!!i-;iJ G.
0 ~

-

W:~ A ddJl'gs! ~'4'l{:1' , , G, "1 ,'0'&
-j) =liY JP D';::::WA\

:{Sjjddf, Decr_P

~il

L I1>''''''j''?1{f,'
Shl!/J fgs

"J,::'" ,,:.,:,):
(S~hjft) G,
'-: '6'j7.~iif:

~1;iA~Fjti~';:
,...... ,

~:r,:R.rr ,t, ,

FIGURE 8 .18
logIc diagram for one -hot state controller

382 Chapter 8 Desig n at the Register Transfer Level

speci fied by the input equations" Initially. flip-flop Go must be set to 1 andall other flip-flops
must be reset to O. so that the nip-flop representing the initial state is enabled. This can bedone
by using an asynchronous preset on flip-flop Go and an asynchronous clear for the other nip­
flops. Once started , the controller with one flip-flop per stare will propagate from one state to
the other in the proper man ner. Only one flip-fl op will be set to I with each clock edge: all
othe rs are reset to O. beca use the ir D inputs are equal to O.

8 . 9 HD L DESCR I PT IO N OF 8 1NARY MULTIPLIER

A second example of an HDLdescription of an RTLdesign is given in HDL Examp le 8"5. The
example is of the binary multiplie r de signed in Section 8.7. For simplicity. the entire descrip­
tion is " flattened" and encapsulated in one modu le. Comments will identify the co ntroller and
the data path . The first part of the description declare s all of the inputs and outputs as specified
in the block diagram of Fig. 8.14(a) . The machine will beparameterized for a five-bit data path
to enable a com pari"ion between its simulation data and the result of the mul tiplication with the
numerical example listed in Table 8.5. The same model ca n be used for a datapath having a
different size merely by changing the value of the parameters . The second part of the descrip­
tion declares all regi...ters in the contro ller and the dara path . as well as the one-hot encoding of
the Slates. The third pan speci fies implicit combinational logic (continuous assignment state ­
men ts) for the concatenated register G4.Q. the am status signal. and the RuJd)"output signal.
The continuous assignments for a m and R~ad}' are acco mplished by assigning a Boolean e x­
pression to their "in' declarations. The next sectio n describes the control unit. using a single
edge-sensiu ve cyclic beha vior to describe the state transition s. and a level-senslu ve cyclic be­
havior to describe the co mbinational logic for the next state and the ou tputs. Again. note tha i
defaul t assign ments are mad e to n~xt_slate. Load_"8S. D~cr_P. Add_" 8S. and Shifcngs.
The subsequent logic of the CMe statement assi gns the ir value by exception. The state tran si­
tions and the output logic are written directly fro m the AS~m chan of Fig. 8.15(b J.

The datapath unit describes the regi ster operations within a separate edge-sensiti ve cycli c
behavior. {For clarit y. separate cycl ic behaviors are used; we do not mix the descript ion of the
datapa th with the desc ription of the controller.} Each control input is decoded and is used to
specify the assoc iated operations. The addition and subtraction operations will be implement­
ed in hardware by combinational logic. Signal Lo(UC" 8Scauses the counter and the othe r reg­
isters to be loaded with their initial values. etc. Because the controller and datapath have bee n
partitioned into separate units. the control signals completely specify the beha vior of the data ­
path; explicit inform ation about the state of the controller is not needed and is not made ava il­
able to the dataputh unit.

The next-state logic of the co ntroller includes a default case item to direct a synthesis tool
to map any of the unused codes to S_jdf~. Th e default case item and the default assign ments
preceding the cast' statement ensure that the machine will reco ver if it somehow enters an un­
used state. They also prevent unintentional synthesis of latches. (Remember. a syn thesis tool
will synthesize latches when what was intended 10 be combinational log ic in fact fail s to com­
pletely spec ify the input-output function of the logic.)

Section 8.9 HOt Description of Binary Multiplier 383

HDL Exam ple 8.5

1/Set to width of data pathdp_width = 5;
Product;
Ready;
Multiplicand, Mulliplier;
Start , clock, reset_b;

[2*dp_width -1: 0]

module Sequential_Binary_Multiplier (Product. Ready, Multiplicand , Multiplier. Start,
clock , reset_b);
1/ Default configuration: five-bit datapath

parameter
output
output
Input
Input

BC_size = 3; 1/Size of bit counter

SJdle = 3'b001, 1/one-hoi code
S_add = 3'b010 ,
S_Shifl = 3'b100;
stale , next etete:

If Sized for datapathA, B, O:
c;
P;
Load_regs, Decr_P . Add_regs, Shift_regs;

reg [2: OJ
reg [dp_widlh -1: OJ
reg
reg [BC_si ze -1 : OJ
reg

parameter
parameter

If Miscellaneou s com binational logic

Product = (A , a};
Zero = (P == 0); If coun ter is zero
1/ Zero = - IP; 1/alternative
Ready = (sla te == SJ dle); If controller status

assign
wire

w ire
If control unit

always @ (posedge clock , negedge reset_b)
If (- reseCb) state <= SJdle; el se slate <= next_stale;

begin If (Slart) next state = S_add: Load_regs = 1; end
begin next_state = S_shift: Oecr_P = 1: If (0(0]) Add_regs = 1; end
beg in Shift_regs =1; if (Zero) nexCstate = SJdle:
els e next_Sla te = S_add ; end

next_state =SJdle;default:

always @ (state . Start, 0[0], Zero) begin
next_state = S_id le ;
Load_regs =0:
Oecr_P =0:
Add_regs = 0;
Shift_regs =0:
case (stale)

SJdle:
S_add :
S_shift :

384 Cha pter 8 Design at the Register Transfe r level

endcase
end

1/datapath unit
always @ {posedge clock)begln

if (Load_regs) begin
P <= dp_widlh;
A <: O;
C <:0;

B <=Uul!;pl;cand:
a <'" M ult ip l ie r :

end
If (Add_regs) {C. A} <= A + B;
If (Shift_regs) {C. A. O} <= {C. A. O} » 1;

if (Deer_PI P (= P·1;
end

endmodule

Test Ing the Multiplie r

HDl Example 8.6 shows a test bench for testing the multiplier. The inputs and outputss are
the same as those shown in the block diagram of Fig. 8.14(a) . It is naive to conclude that
an HDLdescription of a system is correct on the basis of the output it genera tes under the
application of a few input signals. A more strategic approach to testing and verification
exploits the partition of the design into its datapath and control unit. Th is partition supports
separate verificatio n of the controller and the datapath. A separate test bench can be devel­
oped to verify that the dataparh executes each operation and genera tes status signals cor­
rectly. After the daraparh unit is verified. the next step is to verify thai each control signal
is formed correctly by the control unit . A separate test bench can verify that the control unit
exhibits the complete functionality specified by the ASMD chart (i.e.• that it makes the cor ­
rect state transitions and asserts its outputs in response to the external inputs and the status
signals).

A verified control unit and a verified datapath unit together do not guarantee that the sys­
tem will operate correctly. The final step in the design process is to integrate the verified mod­
els within a parent module and verify the functionality of the overall machine. The interface
between the controller and the dataparb must be examined in order to verify that the pons
are connected correctly. For example. a mismatch in the listed order of signals may not be
detected by the compiler. After the datapath unit and the control unit have been verified. a
third test bench should verify the specified functionali ty of the complete system. In practice,
this requires writing a comprehensive test plan identifying that functionality. For example.
the test plan would identify the need to verify that the sequential multiplier asserts the sig­
nal Ready in state S_idle. The exercise to write a test plan is not academic: The quality and
scope of the test plan determine the worth of the verification effort. The test plan guides the
development of the test bench and increases the likelihood that the final design will match
Its specification.

II Set to width of oatapem
II Output from multiplier

Section 8.9 HOt Description of Binary Multiplier 385

Testin g and verifying an HDL mod el usually requires access to more info rmation than the
inputs and outputs of the machine. Knowl edge of the slate of the control unit , the control sig­
nals, the status signals, and the intern al registers of the datapath might all be necessary for
debugging. Fortunately, Verilog provides a mechanism to hierarch ically de-reference identifiers
so that any varia ble at any le vel of the design hierarc hy can be visible to the test bench .
Proced ural sta tements can display the informat io n req uired [0 suppo rt efforts to debug the
machine. Simulators use thi s mechanism to display waveform s of any variable in the design
hierarchy. To use the mechanism . we refe rence the variable by its hierarchical path name. For
exa mple. the reg ister P within the datapath unit is not an output pan of the mult iplier. bUI it can
be referenced as MO.P. Th e hierarchi cal path name consists of the sequence of mod ule identi­
fiers or block names, separated by periods and spec ifying the location of the variable in the
design hierarch y. We also note that simulators commonly have a graphical user interface that
displays all levels of the hierarchy o f a design.

The first te st be nch in HOL Ex ample 8.6 uses the sys tem task $strobe to d isp lay the re­
su lt of the co mputatio ns . This task is similar to the $d isp la)' and $m onitor tasks explained
in Section 4 . 12. T he $s t ro be system tas k pro vides a synchronization me chani sm to ensure
tha t data are di spl ayed onl y after all assignments in a given time step are exe cuted. Thi s
is very usefu l in synchro nous seq uential ci rcuits , where the time step begins at a clo ck
edge and mul tipl e assig nme nts may occur at the same time step o f simulation. Whe n the
system is synchronized to the po sitive ed ge of the clock . using $st ro be afte r the always
@ (posedge clock) stateme nt ensures that the display sho ws value s of the sig nal aft er the
clock pulse.

The test bench modu le t_Sequentia(]1ina1)'_Multip/ier in HOL Exam ple 8.6 instantiates
the module Sequential Binary_Multiplier of HDL Example 8.5. Both mod ules must be incl uded
as source files when simulating the multiplier with a Verilog HDL simulator. The res ult of thi s
simulation displays a simulation log with num bers identica l to the ones in Tab le 8.5. The code
includes a second test bench to ex haustively multiply five-bit values of the multiplicand and
the multiplier. Waveforms for a sample o f simulatio n result s are shown in Fig. 8. 19 . T he nu­
meri cal values of Multiplicand. Multiplier. and Product are d isplayed in decimal and bexa­

decim al formats. Insight can be ga ined by studying the displ ayed waveforms of the control
state. the control signals, the status signals. and the register operations. Enhance ments 10 the
multiplier and its test bench are co nsidered in the problems at the end of this chapter. In this
exampl e, 1910 X 2310 = 4371°' and 17H + ObH = 02Hwith C = I. No te the need for the
carry bi t.

MDL Exam ple 8.6

/I Te st bench for the binary multiplier
module t_SequenliaL Binary_Multiplier;
parameter dp_width = 5;
wire [2-dp_width -1: 0] Prod uct ;
wire Ready;
reg (dp_wldth -1: 0] MUltiplicand, Multiplier, II Inputs 10 multiplier
reg Start. clock , re set_b;

386 Chapter 8 Desig n at the Register Transfer Level

6,51)15,

dad~In_ ..b

SIan

J/(Jl~{2: 01
, 1 , , 1 1 4 12 1 4 12 14 2 , 1 2 I
= ,

Lc<Jd-,~gJ
~ ~ ~ ~

D~crY
' io..

~ ~ ~~

= ~
Add_r~gs

~ =' ~ShiftJ~gs

P{1: 0{ 0 , 4 3 I z I 1 0 s
Zm '--

~
8 /4: 0/ I . ':=".. t- 17 } 18

A{4:OJ l odl OO I 17 0/> ,nit 11 I .. I ().I l i b OJ 00
.

C :$.~ .-.

Q/4: 0{ 0' 13 19 I Oc I 16 I .. ts 13

MllffipfinvuJ/4: 0/ I . I 17 I 18

MlIllip/icafld{4: O{ 22 1 (21)-- 1 u
<,

MlIllipli~r{4: 0/ 13 <,

MlIllipli~r/": 0/ I. <,
PrQdUCl/ I): 0/ I " 013 23 179 059 22, IIb-

~
~ lb5 013

ProduCl/ l): 0/ '" I. '55 377 IJ9 55' 278 875i(JJ7 I .

R~ady = ..r--L-

FIGURE8.19
Simulation wavefonns for one-hot sta te controller

Section 8.9 HDl Description of Binary MUltiplier 387

II Instantiate multiplier
SequenliaL Binary-Mulliplier MO(Product, Ready, Multiplicand, Multiplier, Start, clock,
rese,-b);

II Generate stimulus waveforms
Initial #200 $f1nlsh ;
Initia l
begin

Start =0;
reset_b::: 0;
#2 Start = 1; reseCb ::: 1;
Multiplicand = 5'b10111; MUltiplier = 5'b10011;
#10 Start ::: 0;

end
Initial

begin
clcck e 0;
repeat (26) #5 clock = -ciock:

end
1/Display results and compare with Table 8.5
always @ (posedge Clock)
$st robe r C=%b A=%b O=%b P=%b time=%Od",MO.C,MO.A,MO.O,MO.P, $tlme);

endmodule

Simulation log:
C=O A=ooooO 0=1 0011 P=101 time=5
C=O A=10111 0 =1001 1 P=100 Ijme=15
C=O A=01011 0 =11001 P=100 time=25
C=1 A=00010 0=11001 P=011 lime=35
C=O A=10001 0 =01100 P=011 time=45
C=O A=10001 0=01100 P=010 lime=55
C=O A=01000 0=10110 P=010 time:::65
C=O A=01000 0=10110 P=001 lime=75

C=O A=001 00 0=01 011 P=001 time=B5
C=O A=11011 0 =01011 P=OOO time=95
C=O A=01101 0=10101 P=OOO tlme=105
C=O A=011D1 Q:::10101 P=OOD time=1 15
C=O A=01101 0:::10101 P=OOO time=125

r Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;
parameter dp_wldth = 5; II Width of datapath
wire f2 * dp_width -1: OJ Product;
wire Ready:
reg [dp_width ·1: OJ Multiplicand, Multiplier;
reg Start, clock, reset_b;

388 Chapter 8 Design at the Register Transfer Level

SequentiaLBinary_Multiplier MO(Product, Ready. Multiplicand. Multiplier, Start,
clock . reset_b);

Ini ti al #1030000 Sflnlsh ;
Initial beg in dock =0; #5 forever #5 clock =-cocc end
Initial fork

reseC b = 1;
#2 reseCb =0;
#3 reset_b = 1;

join
Ini tial begi n #5 Start = 1; end
Init ial beg in
#5 Multiplicand =0;

Multiplier'" 0;
repeat (32) #10 begin Multiplie r =Multip lier + 1;

repeat (32) @ (posedge MO.Ready) 5 Multiplicand '" Multiplicand + 1:

end
end

endmodule
"/

Behavioral Description of a Paralle l Multiplier

Structural modeling implicitly specifies the functionality of a digital machine by prescribing
an interconnect ion of gate-level hard ware units. In this fonn of mode ling , a syntbesis tool per­
forms Boolean optimization and translates the HDL description of a circuit into a Mdist of
gate s in a particular technology, e.g ., CMOS. Hardware design al ibis leve l often requires clev­
emess and acc rued experience. It is the most ted ious anddetailed form of modeling. In con­
trast, behavioral RTL modeling speci fies functi onality abstractly, in terms of HDL operators.
11K: RTI. mode l does not specify a gate-level implementation of the registers or the logic to con­
trol the operations that manipulate their conrents-c-rhose tasks are acco mplished by a synthe­
sis too l. RTL modeling implicitl y schedules operations by eltplic itly ass igning them 10 clock
cycles. The most abstract form of behavioral model ing describes only an algori thm. withoul any
referen ce to a physical implementation , a set of resources. or a schedule for the ir use. Thus.
algorithmic modeli ng allows a designer 10 explore trade-o ffs in the space (hardware) and lime
domai ns, trading processing speed for hard ware complexity.

HDL Example 8.7 presents an RTL model and an algorithmic model of a binary multiplier.
Both use a level-sensit ive cyclic be havior. The RTI.. model expresses the functionalit y of a
multipli er in a single statement. A synthesis tool will associate with the multiplication operator
a gate -level circuit equivalent to thai shown in Section 4.7. In simulation. when either the mul­
tiplier or the multiplicand changes, the produ ct will be updat ed. The time required to form the
prod uct will depe nd on the propagation delays of the gales available in the library of standard
cells used by the synthesis tool. The socood model is an algorithmic descriptionof the multiplier.
A synthesis tool wiU unroll the loop of the algorithm and infer the need for a gale-level circuit
equivalent 10 thar shown in Section 4.7.

Section 8.9 HDl Description of Binary Multiplier 389

Be aware thai a synthesis tool may not be able 10 synthesize a given algorithmic descrip ­
tion. even though the associated HDL model will simulate and produce correct results. One
difficulty is that the sequence of operations implied by an algorithm might not be physicall y
realizable in a single cloc k cycle. It then becomes necessary 10 distribute the operations over
multip le clock cycles . A 1001 for synthesizing RTL logic will not be able to automatically
accomplish the req uired distribution of effort. but a tool that is designed to synthesize algo­
rithms should be successfu l. In effect. a behavioral synthesis tool wou ld have to allocate the
regis ters and adde rs to implement multipl ication . If only a single adder is to be shared by all
of the operations that fonn a partial sum, the activity must bedistributed over multiple clock
cycles and in the correct sequence. ultimately lead ing 10 tbe sequential binary multiplier for
which we have ex plicitly designed the co ntroller for its datapath. Behavioral synthesis tools
require a d ifferent and more sophisticated style of modeling and are not within the scope of
this text.

HDL Exa mple 8.7

/I Behavioral (RTl) description of a parallel multiplier (n = 8)
modut e Mult (Product, Multiplicand. Multiplier);

input [7: OJ MUltiplicand, Multiplier;
output reg (15: OJProduct;
always @ (Multiplicand, Multiplier)

Product =Multiplicand · Multiplier;
endmodule
modul e Algorithmic_Binary-Multiplier #(parameter dp_width =5) (

output 12°dp_width -1: OJProduct. input (dp_width -1: OJMUltiplicand, Multiplier);
reg [dp_width -1: 0] A, S, 0 ; /I Sized for datapath
reg C;
Integer k;
assign Product = {C, A, O};
always @ (Mulliplier. MUltiplicarcl) begin

o = Multiplier;
B = Multiplicand;
C =0;
A = 0;
for (k = 0; k <= dp_width -1; k = k .. 1) begin
If (O(OJI (C, A) =A + 8;
{C. A, 0) ={C. A. O}» 1;

end
end

endmodule
module L Algorithmic_Binary_Multiplier;
parameter dp_width = 5; /I Width of datapath
wi re 12' dp_width -1: OJ Product;
reg Idp_width -1: OJ MUltiplicand, Multiplier;
integer Exp_Value;

390 Chapter 8 Design at the Register Transfer Level

reg Error;
Algorit hmic_Binary_Mul liplier MO(Product. MUltiplicand , Multiplier);

II Error detection

inItial # 1030000 fin ish;
alwa ys @ (Product) begin

Exp_Value = Multiplier · Multiplicand;
1/ Exp_Value = Multiplier · Multiplicand +1; II Inject error to confirm detection
Error = Exp_Value A Product;

end
II Generate multiplier and multiplicand exhaustively for 5 bit operands

initia l begin
#5 Multipl icand = 0;
MUltiplier =0;
repeat (32) #10 begin Multip lier = Multiplier + 1;

rep eat (32) #5 Multiplicand = Multiplicand + 1;

end
end

endmodule

8 . 10 DESIGN WITH MULTIPLEXERS

Theseq uence-register-and-decoder scheme for the des ign of a controller has three parts : the flip­
flops thai hold the binary stale value. the decoder that generates the control outputs. and the gates
thai determin e the nex t-stare and output signals. In Sect ion 4 .11. it was shown that a co mbi­
national circuit can be implemented with multiplexers instead o f indiv idual gates. Replacing
the gates with multiplexers results in a regular pattern of three levels o f components. The first
level consists of mu ltip lexers thai determin e the next stare of the register. The second level
contains a regi ster that hold s the present binary slate. The third level has a decoder that asserts
a unique outputline for eac h control stale. These three compone nts are predefined standard cells
in many integra ted ci rcuits.

Consider. for example, the AS M chart of Fig . 8.20. co nsis ting of four states and four co n­
tro l inputs. We are interested in only the control signals gove rning the state sequence. These
signals are independ ent of the reg ister operations of the darapath. so the edges of the gra ph are
not annotated with datapath register operations, and the graph does not identify the output sig­
nals of the co ntroller. The binary assignment for each state is indicated at the upper right comer
of the state boxes. The deci sion boxes specify the state transitions as a function of the four
control inpu ts: IV,.t. y. and z. Th e three-level contro l implementat ion , shown in Fig . 8.2 1. co n­
sists of IWOmult iplexers , MUXI and MUX2;a regi ster with two flip-flops. G) and Go: and a
decoder with four outpuls--d()o d" d2• and dJ• correspo nding to 5_0, 5_1,5_2. and 5_3. re­
spectively. The outputs of the state-register nip-flops are applied to the decoder inputs andalso
to the selec t input s of the multiplexers. In this way. the present state of the register is used to
select one of the input s from each multiplexer. Th e OUtpUISof the multiplexers are then app lied
to the D inputs of G l and Go. The purposeof eac h multip lexer is to produce an inpu t to its cor ­
responding flip-fl op equal to the binary value of that bi t of the next-state vector. The inputs of

Section 8.10 Design wi th M ultiplexers 391

,

o

10

o

, - "

•

FIGURE 8 .20
Exam ple of ASM chart with four control inputs

the multiplexer s are determined from the decision boxes andstate transitions given in the ASM
chart. For example. slate 00 stays at 00 or goes to Ol , depending on the value ofi npul w. Since
the next state of G] is 0 in eithe r case, we place a signal equivalent to logi c 0 in MUX l input
O. Tbe next stale of Go is 0 if w "" 0 and 1 if w "" 1. Since the next stale of Go is equal to w,
we apply CORICOI input w to MUX2 input O. This means that when the select inputs of the mul­
tiplexers are equal to present sta te 00, theoutputs of the multiplexers provide the binary value
that is transferred to the register at the next clock.pulse .

392 Chapter 8 Design at the Register Transfer Level

G,

,
z

do
d,

MUX select
d,

d,

G,

y,

eLK

FIGURE 8.21
Con trol lmplementatlon with multip lexers

To facil itate the eva luation of the mul tiplexer inputs , we prepare a tab le show ing the input
conditions for eac h possible state transition in the ASM chan. Table 8.8 gives this information
for the ASM chan of Fig. 8.20. There are two trans itions from presen t state 00 or 01 and three
from present state 10 or 11. The sets of transitions are separated by horizontal lines across the
table. The input conditions listed in the table are obta ined from the decision boxe s in the AS M
chan. For example. from Fig. 8.20, we note that present Slate 0 1 will go to next state 10 if x "" I
or to next stale II if x "" O. In the table, we mark these input conditions as x and .e'. respecti vely.
The IWO columns under " multiplexer inputs" in the table specify the input values that must be
applied to MUX I and MUX2. The multiplexer input for eac h present slate is determined from
the input conditions when the next state of the flip-flop is equal to I. Thus. after present state
01. the nex t stale of G l is always equal to I and the next state of Go is equal 10the complement
of x. Therefore. the input of MUX 1 is made equal 10 I and thai of MUX2 to x ' when the pres­
ent state of the register is 0 1. As another exam ple. afte r prese nt stale 10. the next stale of G] must
beequal to I if the input conditions are yz ' or yz.When these two Boolean terms are ORed to­
gether and the n simplified. we obtain the single binary varia ble y. as indicated in the table. The
next sta te of Go is equal 10 I if the inpul conditions are JZ "" I I . If the next state of G1 remains
at 0 after a given prese nt state. we place a a in the multiplexer input, as,shown in present state
00 for MUXl . lfthe next stale ofGI is always I , we place a I in the multiplexer input, as shown
in present state 0 1 for MUX I. The other entries for MUX I and MUX2 are derived in a similar

Sect ion 8.10 Design with Multiplexers 393

Table 8 .8
MultJplexer Input Conditions

Present Next Input
State State Conditi on Inputs

G, Go G, G. , MUXl MUX2

0 0 0 0 w'

0 0 0 I w 0 w

0 I I 0 x
0 I I I x' x '

I 0 0 0 y'
I 0 I 0 YZ I
I 0 I I y,)'Z ' + yz = y "I I 0 I y'Z
I I I 0 Y
I I I I y'Z')' + y'z ' =Y + Z' y'z + y'Z' = y'

manner. The multiplexer inputs from the table are then used in the control implementation of Fig.
8.21. Note that if the next state of a flip-flop is a function of two or more control variables. the
multiplexer may require one or more gates in its input. Otherwise. the multiplexer input is equal
to the contro l variab le. the com plement of the control variable. O. or I.

Design Example: Count the Number of Ones In a Register

We will demonstrate the mulliplexer implementation of the logic for a control unit by means
of a design examp le-a system that is to count the number of l 's in a word of data. The example
will also demonstrate the formulation of the ASMD chan and the implementation of the data­
path subsys tem.

From among various alternative s, we will co nsider a ones counter consisting of two regis­
ters Rl and R2. and a flip-flop E. (A more effic ient implementation is cons idered in the prob­
lems at the end of the chapter.) The system counts the number of I 's in the number loaded into
register RJ and sets register R2 to that numbe r. For exam ple. if the binary numbe r loaded into
RJ is 1011100 1, the circuit counts the five I's in RJ and sets register K2 to the binary count 101.
This is done by shifting each bit from register RJ one at a time into flip- flop E.The value in E
is checked by the control, and each time it is eq ual to 1. register R2 is incremented by I.

The block diagram of the datapath and co ntroller are shown in Fig. 8.22(a). The datapath
conta ins registe rs RJ, R2, and E, as well as logic to shift the leftmos t bit of RI into E. The unit
also co ntains logic (a NO R gate to detect whether RI is O. but that detail is omitted in the
figure). The exte rnal input signal Stan launches the operation of the machine; Ready indicates
the status of the machine to the exte rnal environment. The contro ller has SIaIUS input signals
E and Zero from the datapat h. These signals indicate the contents of a register holding the
MSB of the data word and the condition that the data word is O. respec tively. E is the output
of the flip-flop. Zero is the output of a circuit that checks the contents of register RI for all D's.
The circuit produces an output Zero = I when RI is equal to 0 (i.e .• when RI is empty of 1's).

394 Chapter 8 Design at the Register Transferlevel

$ignals~ E

Zm I
f "-""" RJ

-= Lom/ftI>

n~ft~ f
Corurolln

Shift-*ft
,-

IncrJU

;"f,- f I I

t I I

Start

Rtad,

count
(oj

Rl < -R1 +1= -r-

f

{E. Rll <- IE. Rll « I --=

(bJ

fiGURE 8.22
Block diagram and ASMD chart tot' count-ot-onf!S circuit

Rl < -R1+ 1

Section 8.10 Design with Multiplexers 395

A preliminary ASMD chan showing the state sequence and the register operations is il­
lustrated in Fig. 8.22(b), and the complete ASMD chan in Fig. 8.22(c). Asserting Start with
the controller in Lidle transfers the state to S_I , concurrently loads register Rl with the bi­
nary data word, and fills the cells of R2 with I' s. Note that incrementing a number with all
t 's in a counter register produces a number with all D's. Thus. the first transition from 5_1 to
5_2 will clear R2. Subsequent transitions will have R2 holding a count of the bits of data that
have been processed. The content of RI , as indicated by Zero, will also be examined in 5_1.
If RI is empty, Zero = I , and the state returns to 5_idle, where it asserts Ready. In state 5_1,
Incr_R2 is asserted to cause the datapath unit to increment R2 at each clock pulse. If Rl is not
empty of ls, then Zero = 0, indicati ng that there are some l 's stored in the register. The
number in RI is shifted and its leftmost bit is transferred into E. This is done as many times
as necessary, until a I is transferred into E. For every I detected in E, register R2 is incremented
and register Rl is checked again for more I 'so The major loop is repeated until all the l ' s in
Rl are counted. Note that the state box of 5_3 has no register operatio ns, but the block asso­
ciated with it contains the decision box for E. Note also that the serial input to shift register
Rl must be equal to 0 because we don't want to shift external I 's into Rl . The register Rl in
Fig. 8.22(a) is a shift register. Register R2 is a counter with parallel load. The multiplexer
input conditions for the control are determined from Table 8.9. The input conditions are
obtained from the ASMD chart for each possible binary state transition. The four stales are
assigned binary values 00 through 11. The transition from present state 00 depends on Start.
The transition from present state 01 depends on Zero, and the transition from present state I I
on E. Present state 10 goes to next state 11 unconditionally. The values under MUX 1 and
MUX2 in the table are determined from the Boolean input conditions for the next state of G1
and Go, respectively.

The control implementation of the design example is shown in Fig. 8.23. This is a three-level
implementation. with the multiplexers in the first level. The inputs to the multiplexers are ob­
tained from Table 8.9. The Verilog description in HDLExample 8.8 instantiates structural mod­
els of the controller and the datapath. The listing of code includes the lower level modules

Ta bl e 8 .9
Multiplexer Input Conditions for Design Exam ple

Present Next Input Multiplexer
State State Conditions Inputs

G, G. G, G. M UXl M UX2

0 0 0 0 Start'
0 0 0 1 Stan 0 Stan

0 1 0 0 Zero
0 1 1 0 Zero' Zero' 0

I 0 I I None I

1 I I 0 E'
I I 0 I E E' E

396 Chapter 8 Design at the Reg ister Transfer level

o

ZerQ'

£ '

Sian

o

£

d=k~===~reset]» l..'::5 ""'-:.J

5hifUe/t

FIGURE 8 .23
Control Implementation for count-of-o nes circuit

implementing their structures . Note tha t the data path unit does not have a reset signal to clear
the registers. but the models for the flip-flop , shift register. and cou nter have an active-low
reset. Th is illustra tes the use of Verilog data type supply) to hard wire those ports to logic value
I in their instantiation within Datapath_STR . Note also that the test bench uses hierarchical de­
referencing to access the stale of the controller to make the debug andverification tasks easie r.
without having to alter the modu le ports to provide acce ss to the internal signals. Another de­
tail to observe is that the serial input to the shift regi ster is hardwired to O. The lower level
mode ls are described behaviorally for simplic ity.

HDL Exam ple 8.8

module Coull t_Ones_STR_STR (count. Ready, data , Start. dock. reset_b);
/I Mux - decoder implementation of control logic
/I controller is structural
/I datapath is structural

parameter R1_size =8, R2_size =4 ;

output [R2_size -1: OJ count;
output Ready;

Section 8 .10 Design with Multiplexers 397

Input [R1_size -1: 0]
Input
w ire

data;
Start, clock, reset_b ;
load_regs, ShiftJeft , Incr_R2, Zero, E;

Controner_STR MO(Ready , Load_regs. ShiftJeft , Incr_R2 , Start, E, Zero,

clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, l oad_regs, ShiftJeft, Incr_R2,

clock) ;
endmodule

Mux_l
MUx_O

M'
MO
M2

Ready;
Load_regs, ShiftJ eft , tncr_R2 ;

Slart ;
E, Zero;

clock, resetb:
GND;

PWR;
SO = 2'bOO, Sl = 2'b01, S2 =2'b10, S3 = 2'b11; fI Binary code

Load_regs, ShiftJeft, Incr_R2 ;
GO, GO_b, D_inO, D_in1, G1, G1_b ;
Zero_b = -zero:
E_b = -E;
select = {G1, GO};
Decoder_out;
Ready:= - Decoder_oul [O];
Incr_R2 = - Decoder_out(l];
Shift_le ft =-Decoder_oul[2 };
(Load_regs, Ready, Start);
(DJn1, GND, Zero_b , PWR, E_b, select);
(DJnO, Start, GND, PWR, E, select) ;
(Gl , G1_b, D_in1, clock, reseC b);
(GO, GO_b, DJ nO, clock, resel_b);
(Decoder_out, Gl , GO, GND);

module Conlro ller_STR (Ready, Load_regs, ShiftJ eft , Incr_R2 , Start, E, Zero, clock,
resel_b);

output
output
Input
Input
Input
supplyO
supply 1
parameter
wire
wire
wire
wi re
wi re [1: 0]
wire [0: 3]
assign
assig n
assign
. nd
mux_4xl _beh
mux_4x 1_beh
D_fIip_f1op_AR_b
D_fl ip_f1op_AR_b
decoder_2x4_df

endmodule

E, Zero;
data;
Load_regs, ShiftJeft , Incr_R2, clock;

module Datapalh_STR (count, E, Zero, data, Load_regs, ShiftJeft, Incr_R2, clock);
parameter R1_size:= 8, R2_size =4;
output [R2_size -1: 0] count;

output
Input (R1_size -1: 0]
Input

398 Chapter 8 Design at the Registe r Transfer level

wire (R1_size -1: OJ
wire
supplyO
supply1
assi gn Zero = (R1 == 0);
Shift_Reg M1
Counter M2
D_f1 ip_f1op_AR M3
and

endmod ule

R1:
Zero;
Gnd;
Pwr;
/I implicit combinational logic
(R1, data, Gnd, Shift_left, l oad_regs, clock, Pwr);
(count, l oad_regs, Incr_R2, dock, Pwr);
(E, w1, clock, Pwr);
(w1, R1(RC size -1], Shift_left);

module Shift_Reg (R1, data, SI_O, Shift_left, l oad_regs, dock, reset_b);
parameter R1_size = 8;
output (R1_size -1: OJ R1;
input (R1_size -1: OJ data:
Input SI_O, Shift_left, Load_regs;
input clock, reset_b;
reg [R1_size -1: OJ R1 :
always @ (posedge clock, negedge reset_b)

if (reset_b == 0) R1 <= 0:
else begin

If (l oad_regs) R1 <= data; else
If (ShiftJ eft) R1 <= {R1(R1_size -2: OJ, SI_O}; end

endmodule
module Counter (R2, l oad_regs, Incr_R2, dock, reset_b);

parameter R2_size = 4;
output [R2_size -1: OJ R2;
input l oad_regs, Incr_R2;
Input clock, reseCb;
reg (R2_size -1: OJ R2:
always @ (posedge clock, negedge reset_b)

If (reset_b == 0) R2 <= 0;
else if (l oad_regs) R2 <= (R2_size (1'b1)}; 1/ Fill with 1

else if (Incr_R2 == 1) R2 <= R2 + 1;
endmodule
module D_f1 ip_f1op_AR (0 , D, ClK, RST);
output 0 ;
Input D, ClK, RST;
reg 0 ;
always @ (posedge c tx, negedge RST)

if (RST == 0) a <= 1'eo:
else Q <= D;

endmod ule

Section 8.10 Design with Multiplexers 399

module D_f1ip_f1op_AR_b (a, O_b, D, Cl K, RST);
output O,O_b;
input D, ClK, RST;
reg 0 ;
assign O_b = - 0 ;
always @ (posedge ClK, negedge RST)

jf (RST == 0) °<= 1'bO ;
else °<= D;

endmodule
1/Behavioral description of four-to-one line multiplexer
1/Verilog 2005 port syntax
module mux_4x1_beh
(output reg m_out,
Input in_O, in_1, ,"_2, ,"_3,
Input [1: 0] select

);
always @ (in_O, in_1, in_2, in_3, select) 1/Verilog 2005 syntax

case (select)
2'bOO: rn_out = in_O;
2'b01: m_out = in_1;
2'b10: m_out = in_2;
2'b11: m_out = in_3;

endease
endmodule

II Dataflow description of two-to-four-Iine decoder
1/ See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to indicate functionality clearly.
module decoder_2x4_df (D, A, B, enable);
output [0: 3] D;
input A, B;
Input enable;

assign

endmodule

D[O] = -(- A & -B & - enabte).
D[1] = - (- A & B & -enable),
D[2] = - (A & -B & - enable),
D[3] = - (A & B & -enabie):

module CCount_Ones;
param eter R1_size = 8, R2_size =4;
wire [R2_size -1: 01 R2;
wire [R2_size ·1: 0] count;

400 Chapter 8 Design at the Reg ister Transfer Level

wire Ready;
reg (R1_size -1: OJ data;
reg Start. d ock. reset_b;
wire [1: 01 state; " Use only for debug
assign state e {MO.MO.G1. MO.MO.GO};
CounCOnes_STR_STR MO(count Ready, data, Start, dodt. reset_b);
Initia l #650 $fin lsh ;
Initial beg in clock e 0; #S forever #5 clock = - clock: end
Initia l fork
#1 reseCb = 1;
#3 reseCb = 0;
#4 reseCb = 1;
#27 reset_b = 0;
#29 reset_b = 1;
#355 reset_b = 0;
#365 resel_b = 1;
#4 data = 8'Hff;
#145 data = 8'haa;
#25Start= 1;
35 Start = 0;
#55 Start = 1;
#65 Start = 0;
#395 Start = 1;
#405 Start = 0;

join
endmodule

Test Ing the Ones Counter

The test bench in HDl Example 8.8 was. used to produce the simulation results in Fig. 8.2.1.
Annotations have been added for clarification. In Fig. 8.2.s(a). r~u,-b is toggled low at
t = 3 to driv e the co ntroller into S_jdl~. but with Start not yet having an assigned ..-alue.
(The default is x.) Consequentl y. the controller enters an unknown state (the shaded wave­
form) at the next clock. and its output s are unknown. When reu,-b is asserted (low) again
at t = 27, the state enters S_id/e. Then, with Start = I at the first clock after Teset_b is de­
asserted, (I) the controller enters S_ I, (2) Load_Tegs causes Rl lo be set 10 the value of
data , namely, 8' Hff, and (3) R2 is filled with 1'5. At the next clock, R2 starts counting from O.
Shift_left is asserted while the controller is in state 5_2. and incr_R2 is asserted while thecon­
troller is in stale 5_1. Notice that R2 is incremented in the next cycle after incr_R2 is a..­
serted . No output is asserted in stale 5_3. The counting sequence continues in Fig. 8.2.s(b)
until am is asserted, with E holding the last I of the data word. The next clock produces
count = 8, and stare returns to S_idl~ . (Additional testing is addressed in the problems at
the end of the chapter.)

Section 8.11 Race-Free Design 401

Machine begins
counting

,e5el_b asserted (low). but
Sian un kno wn

Name
0 l 3D -: 60 90 120

clock ~J'-~ ...rL...rL...rL...rL

' enoc b ' " u

Stan
Zero
E '--

slate/I: 0/
statrll]
5lale/OJ ~ ~

Ready
L oadJegs

~Shjftjeft
IncrJU

dala/ 7: OJ

RI/7: 0J
E
R2/3: OJ 0
count/3: 0/

I
/ \

R2 fi lled with Is Rl loaded wilh data

(,)

FICiURE 8.24
Simulat ion waveforms for cou nt-of-ones circuit

8 .11 RACE -FREE DESIGN

Once a circuit has been synthesized, either manual ly or with tools. it is necessary 10 verify that
the simulation results produced by the HDL behavioral model match those of the netlist of the
gates (standard cell s) of the physical circuit. It is important to resolve any mismatch, because
the behavioral model was presumed to be correct. There are various potential sources of mis­
match between the results of a simulation. but we will consider one that typically happens in
HDL-based design met hod ology. Three realities contribute to the potential probl em : (I) A
physical feedback path exists between a datapath unit and a control unit whose inputs include
status signals fed back from the datapath unit; (2) blocked procedural assignments execute
immediately, and behavioral model s simulate with 0 propagation delays., effectively creating
immediate changes in the outputs of combinational logic when its inputs change (i.e., changes
in the inputs and the outputs are scheduled in the same time step of thesimulation); and (3) the

402 Chapter 8 Design at the Register Transfer l evel

Rl is empty of Machin.. returns to Compuwrio1/.S a"
Is S_idle don..

Name
120 ISO -. 240 \ "!"

clock~~~ ~

"sel_b -. \
Start
Ze ro \
E

state{1:0j 1 2) 1 2) I 2) I 2) 1 2) I 0
stat..{l j F:-..rL-J L-J ~

stat..{Oj

Ready
LoadJ ..gs

l::::ShifUef/ .--::;
hie' _R2

daraf7:0j ff aa

R/{7:0j ffi ro J.. eo ctl SO 00

E
R2{3: OJ 2) 4 5 6 7 ,
coun/{3: 0/ 2) 4 5 6 7 s

/

/
1f2 holds numb.., of Is

(b)

FIGURE 8 .24 (Cont inued)

order in which a simulator executes multiple blocked assignments 10 the same variable at a
given time step of the simulation is indeterminate (i.e.• unpredictab le).

Now con sider a sequential machine with an HDL model in which all ass ignments are
made with the blocked assignment operator. At a clock pulse. the register operations in the
datap ath, the state transitions in the controller, the updates of the next state and output logic
of the controller. and the updates to the status signals in the datapath are all scheduled 10 occur
at the same time step of the simulation. Which executes first? Suppose that when a clock pulse
occur s. the state of the controlle r changes before the reg ister operations execute . The change
in the state could change the outputs of the control unit. The new values of the outputs would
beused by the datapath when it finally exec utes its assignments at that same clock pulse. The

8 .12

Section 8.12 Latch-Free Design 403

result might not be the same as it would have been if the datapath had executed its assign­
mem s before the co ntrol unit upda ted its state and outputs. Conversely, suppose that when
the cloc k pulse occurs. the datapath unit executes its operations and updates its status signals
tirst . The updated status signals could cause a change in the value of the next state of the con­
troller. which would be used to update the state . The result could differ from that which
would result if the stale had been updated before the edge-sensi tive operations in the da ta­
path executed. In either ca se. the timing of register transfer operations and stale transi tions
in the different rep resentations of the sys tem might not match . Fortunately. there is a solu­
tion to this dilemma.

A designer can eliminate the software race conditions just described by observing the rule
of modeling combinational logic with blocked assignments and modeling state transitions and
edge-sensitive register operations with nonblocking assign ments. A software race can not hap­
pen if nonb lockin g ope rato rs are used as shown in all of the examples in this text . because the
samp ling mechanism of the nonblocking operator breaks the feedback path between a state
transition or edge-sensitive datapath operation and the combinatio nal logic that forms the next
state or inputs 10 the registers in the datapath unit. The mechani sm does this because simula ­
tors evaluate the expressions on the right -hand side of their nonblocking assignment state­
ments before any blocked assignmen ts are made . Thus. the nonblocking a...signmen ts cannot
be affected by the resul us of the blocked assignments. In sum. always use the block ing opera­
tor to model combinational logic. and use the nonblocking operator to model edge-sensitive reg­
ister operations and state transitions.

It also might appear that the physical struc ture of a datapath and the controller together cre­
ate a physical (i.e.• hardware). race condition. because the status signals are fed back to the con­
troller and the outputs of the controller are fed forward to the datapath. Howe ver. timing analysis
can verify that a change in the output of the controller will not propagate through the datapath
logic and then through the input logic of the contro ller in time to have an effect on the output
of the co ntrolle r until the next cloc k pulse. The stale cannot update unti l the next edge of the
clock. even though the status signals update the value of the next state. The flip-flop cuts the
feedback path between clock cycles. In practice. timing analysis verities thaI the circuit will
operate at the specified clock freque ncy. or it identities signal paths whose propagation delays
are problematic . Remember the design must implement the correct logic and operate at the
speed prescribed by the clock.

LATCH -FREE DESIGN

Continuo us assignments model combi natio nal logic implicitly . A feedback-free continuou.s as­
signment will synthesize to comb inational logic. and the input-output relationship of the logic
is automatically sensitive to all of the inputs of the circuit. In simulation. the simulator mon­
itors the right -hand sides of all continuous ass ignments. detects a change in any of the refer­
enced variable s. and updates the left-hand side of an affected ass ignment statement. Unlike a
continuous assignment. a cyclic behavior is not necessarily com pletely sensitive to all of the
variables that are refe renced by its assignments statements. If a level-sensitive cyclic behav­
ior is used to describe combinational logic. it is essential tha t thesensi tivity list include every

404 Chapter 8 Design at the Registe r Transfer level

variable that is referenced on the left-hand side of an assignme nt statement in the behavior.
If the list is incomplete, the logic de scribed by the beh avior will be sy nthes ized wi th latches
at the ou tputs of the logic . This implementation wastes silicon area and may have a mismatch
betwee n the simulation of the behav ioral model and the synthes ized circuit. These difficul­
ties can be avo ided by en suring that the sensitivity list is complete . but. in large ci rcuits , it is
easy to fail to include every referenced vari able in the sens itivity list of a level-sen sitive cyclic
behavior . Conseq uently. Verilog 2001 incl uded a new ope rator to reduce the risk of acc iden ­
tally sy nthes izing latches.

In Verilog 200 1. the tokens@ and " can be combined as@·or @(·)and areusedwithout
a sensitivity list to indicate that execution of the assoc iated stateme nt is sens itive to every vari ­
ab le that is refere nced on the right-hand side of an assignment statement in the log ic. In effect.
the ope rator @. indicates that the logic is 10 be interpreted as level-se nsitive comb inational
logic ; the logic has an imp licit sensitivity li!'.t composed of all of the vari able!'. that are refer­
enced by the proced ural assignments . Using the @. operator will prevent acc iden tal synthe­
sis of latches.

IIDL Example 8.9

The following level-sensitive cyclic behavior will synthesize a two-channel multiplexer.

modu le mux_2_V2001 (output reg 131: OJy. lnput [31: OJ a. b, Input sel);
alway s @"
y =sel ?a: b;

endmodule

The cyclic behavior has an implicit sensitivity list consisting of a. b. and sel.

8 . 13 OT HER LANGU A G E FEATURES

The examples in this text have used only those featu res of the Verilog HDL that are appropriate
for an introd uctory course in logic design. verilog 2001contains featu res that are very useful to
designers. but which are nor considered here. Among them are mult idimensional array s. variable
pan selects. array bit and pan selects. signed reg, net. and pan declarations. and local parameters.
These enhancements are treated in more advanced texts using Verilog 2001and Verilog 2005.

PR0 8 LEM S

Ans.....ers 10 problems marked with · appear at the end of the book.

8 .1 · Explain inords andrite HDL statements for the operations specified by the following regis­
ter transfer notation:
(a) R2 --R2 + I. R I -- R
{b) R.J-R.J - J
(c) If (SI = J) then (RO-- Rl) else if (S2 Zf 1) Ihen (RO- R2)

Problems 405

8 .2 Draw (I) a block diagram shewing the controller. datapath unit (with internal registers). and sig­
nals, and (2) the port ion of an ASMD chart startin g from an initial sta te. There are two con trol
signals: x and y, If .ry = 01. register R is incremented by 1 and control goes to a second state. If
.ry -= 10. registe r R is cleared to zero and control goes from the initial state to a third state. Oth­
erwi se. control stays in the init ial state. Assume active-low synchronous reset.

8 .1 Draw the AS MD charts for the following state transitions:
(a) If x = I. contro l goes from state SI to state 52; if x = O. generate a conditional operation

R < = R + 2andgo fromSl toS2'
(b) If x = I . control goe s from 51to 52 and then to 53; if x = O. control goes from 51 to 53'
(c) Sta rt from state5J; the n if xy = 00. gotoS2; if xy = 10. gOtOS3; andifxy = OI.goto SI:

otherwise. go to 53.

8 .4 Show the eight exn paths in an ASM block emanating from the decision boxes thai chec k the
eig hl possible binary values o f three contro l variables x. j', and e.

8 .S Explain how the ASM and ASMD charts differ from a conventional flowchart . Using Fig . 8.5 as
an illus trat ion. show the difference in interpretation.

8 .6 Construct a block diagram and an ASMD chart for a digital syste m that counts the number of
people in a room. The one door through which people enter the room has a photoce ll that changes
a signal x from Ito 0 when the lighl is interrupted . The y leave the room from a seco nd door with
a similar photoc ell ihal changes a signal)' from I to 0 when the light is interrupted . The datapath
circuit consists of an up-down counter ith a display that shows how many people are in the
roo m,

8 .7· Ora..... a block diagram and an ASMD chan for a circuit ith two eight-bit regis ters RA and RB
that receive two unsigned binary numbers. The circuit performs the subtraction operation

RA -RA - RB

Use the method for subtraction described in Sec tion 1.5. and set a borrow !lip- flop to I if the an­

swer is negative . Write and verify an HDL model o f the c ircuit.

8 .S* Design a digi tal circuit with three l6-bit registers AR. BR, and CR that perform the following
ope rat ions:
(a) Transfer two l6-bi t signed numbe rs (in 2's-complement represe ntation) to AR and SR .
(b) If the number in AR is negative. divide the number in AR by 2 and transfer the result to reg­

b ter e R.
(c) If the number in AR is posltlve but nonzero. multiply the numbe r in BR by 2 and transfer the

resu lt to register CR.
(d) If the number in AR is zero. clear register CR to O.
(e) Writ e and verify a beha vioral model of the circuit.

8.9* Des ign the controller whose state diagram is given by Fig. 8. I I(a). Use one flip-flop per state (a one­
hot assignmenrj. Write. simulate, verify, and compare RlL and struct ural models of the co ntroller.

8 .10 The sta te diagram of a control unit is shown in Fig . P8. IO. II has fou r states and two inputs .rand

y. Draw the equiva lent ASM chart. Write and verify a Veri log mode l of the controller.

8.11 . Design the controller whose state diagram is shown in Fig. P8.IO. Use D flip- flops.

8 .12 Design the four-bit counter with synchronous clear spec ified in Fig. 8.10.

8 .11 Simulate Design_Exampfe_STR (see HDL Example 8A). and verify that its beha vior marches
that of the RTL description. Obtain state Intormsno n by di spla ying GO and GJ as a concatenat­
ed vector for the stale.

406 Chapter 8 Design at the Register Transfer Level

.r - a

00

.I = l , y -O

10
.t - I .t -I
Y .. I '----"J--,-- --c-- \..::'/__--" y = 0

FICiURE Pa.l0
Control state diagram fo r Problems 8.10 and 8,11

S.14 What, if any. are the consequences of the machine in Desjgn_E:.mmple_RTL (see HDL Example
8.2) entering an unused state?

S.15 Simulate Dt'sig/l_£.mmple-fiTL, and verify that it recovers from an unexpected reset condition
during its operation, i.e., a "running reset" or a "reset on-me-fly."

S.16- Develop a block diagram and anASMD chart for a digitalcircuit that multiplies two binary num­
bers by the repeated-addition method. For example. to multiply 5 x 4. the digital system evalu­
ates the productby adding the multiplicand four times: 5 + 5 + 5 .,. 5 ,. 20. Design the circuit.
Let the multiplicand be in register BR, the multiplier in register AR. and the product in register
PRoAn adder circuit adds the contents of BR to PRoAzero-detection signal indicates whether AR
is O. Write and verify a verijog behavioral modelof the circuit.

S.l P Prove thai the multiplication of two n-bit numbers gives a product of length less than or equal to
2/1 bits.

S.lS- In Fig. 8.14, the Q register holds the multiplier and the B register holds lhemultiplicand. Assume
that each number consists of 16 bits.
(a) How many bits can be expected in the product, and where is it available?
(b) How many bits are in the P counter. and what is the binary number loaded into il initially?
(c) Design the circuit thai checks for zero in the Pcounter.

8 .19 List the contents of registers C,A, Q, and P in a manner similar to Table 8.5 during the process
of multiplying the two numbers 1101t (multiplicand) and 101 11 (multiplier).

8 .20'" Determine the time il takes 10 process the multiplication operationin the binarymultiplierdescribed
in Section 8.8. Assume that the Q register has n bits and the clock cycle is 1nanoseconds.

8 .21 Design the control circuit of the binary multiplier specified by the stale diagram of Fig. 8.16.
using multiplexers. a decoder. and a register.

8 .22 FigurePS.22 showsan alternative ASMDchartfor a sequentialbinarymultiplier. Writeand verify an
RTLmodelof the system Comparethis designwiththatdescribedby theASMDchart in Fig. 8.15(b).

S.23 Figure PS.23 showsan alternative ASMDchartfor a sequentialbinarymultiplier. Writeand verify an
RTLmodel of the system.Compare thisdesignwiththatdescribedby the AS~ID chartin Fig. 8.15(b).

It <- 0
c <- o

, B <- Mulfiplictmd
Q <- Mll ltipfit'
1' < " mJ itt

=+,""",/,

1' < - 1' - 1
/Jtcrtmtnl COUntt ,

s""""

<,
Ie.A, QI <- IC, A. QI » I
17-M rtgu'", Jhift$ 10 tht
right by on .. bil

fiGURE P8.n
ASMD chart lor Prob lem 8.22

Problems -407

8 .24 The HDL desc rip tion of a sequ ential binary multiplier give n in HDL Example 8.S encapsulates
the descripnons of the controlle r and the datapath in I single Verilog module. Write and verify a
model that encapsulates the controller and datapath in separate modules. .

8.2$ 1be sequentia l binary multiplier described by the ASMD chan ia Fig_8.IS don not consider
...·hethe r the multiplicand Of the sh.ifted multiplier is O. lberefOC'C. it executes for a fixed number
ofclock cycles. independently of the data..
(a) Dev elop an ASMD chart fOf. more efficienl multiplier that will term inate evecunce I!i soon

I!i either word is found 10 be u rn.

408 Chapter 8 Design at the Register Transfer Level

.'~..
- -<'l'A.t .)-'-- - - ---'

FIGURE P8 .23
ASMD ch art fo r Problem 8 .23

A <: 0
C < -O
B <- ,\{ulliplicM d
Q < .. Mullipli,.r
P <- m_5izr

DecrementCOU flUr

P < = P - 1

Add m ullipliCllfld
/0 5hifr..d sum
(C, A! < - A +B

Ie. A. Ql <= tc.A. QI » I
17-bil register 5hiju 10 Ih..
righl b.vone b il

(b) Write an HDL descript ion of the circuit. The controller and datapath are to be encapsulated
in separate Verilog mod ules.

(c) Write a test plan and a test bench . and verify the circuit.

8 .26 Modify the AS MD chan of the sequential binary multiplier shown in Fig. 8.15 to add and shift
in the same clock cycle . Write and verify an RTL description of the system.

8 .27 The seco nd test bench give n in HDL Exam ple 8.6 generates a prod uct for all possible values of
the multiplicand and multiplier. Verifying that eac h result is correct wou ld not be practical. so
modify the test bench to include a statement that forms the expected product. Write additional
statements to co mpare the result produced by the RTL description with the expected result. Your
simulation is to produce an error signal indicating the result of the comparison. Repeal for the struc­
tural model of the multiplier.

8 .28 Write the HDL structural description of the multiplier designed in Section 8.8. Use the block di­
agram of Fig. 8. I4(a) and the control circuit of Fig. 8.18. Simulate the design and verify 115 func­
tionality by u~ ing the test bench of HDL Example 8.6.

Problems 409

8 .29 AnASMD chan for a Iinite stale machine is shown in Fig. PH.29.The ~gi\ler operations are not

specified. because we are interested only in de\ igning the rontrol log ic.
la) Draw the equ ivalent state diagram.
(b) Design the coneot unn with one f1i p-nop per stare.
(c) Lisl lhc stale lable for Ihe control unit.
(d) Design the control unit with three D flip-naps. a decoder. and gales.

""S;;.o ·~:·~o:.:.~""~:sii::

•
0

~I
0 • 00 1

Y
Sj ~~:-

010

!V '-<.''~"~~".",;;.:.....~~

o

•

F)-'----- - --,

110

111

FIGURE. P8.29
ASMD chart for Problem 8.29

101

410 Chapter 8 Design at the Register Transfer Level

(e) Deri ve a table showing the multiplexer input conditions for the control unit.
(f) Design the control unit with three multiplexers, a register with three flip-flops, anda 3 x 8

decoder.
(g) Using the results of (0, write and verify a structural model of the controller.
(h) Write and verify an RTL description of the controller.

8.30" What is the value of E in each HOL block. assuming that RA - I"!
(a) RA=RA - 1: (1)) RA <=RA .1:

If (RA ="' 0) E = 1: If (RA u O) E o 1:

al.. E :: 0: e!• • E <:: 0:

8 .31 · Using the Verilog HOL operators fisted in Table 8.2. assume that A = 4'bOt10. B - '; 'bOO lO.
and C = 4'bOOOO and eva luate the result of the follo wing operations:

A· B; A. + B: A · B; -c; A & B; AI B; A" B; & A; - IC; o4 II B; A&& C; 104; A < B; A > B;

A I-B:

8 .32 Consider the following always block:

alway. @ (posedg. eLK)

If (5 1) R1 <= R1 + R2:
.1•• lf (52) R1 <=R1+ 1:

.1•• R1 <= R1;

Using a four-bit counter with parallel load for Rl (as in Fig. 6.IS) and a foor-bit adder. draw a block
diagram showing the connections of components and control signals for a possible synthesis of

the block .

8.33 The multilevel case statemen t is often translated by a logic synthe sizer into hardware multiplex ­
ers. How would you translate the following case block into hardware (assu me registers of eight
bits each)"!

ca•• (state)

SO: R4 = RO;

5 1: R4 - R1;

52: R4 " R2:
53: R4 " R3:

endcasa

8 .34 The design of a circuit that counts the number of ones in a register is carried out in Section 8.10.
The block diagram for the cireuit is shown in Fig . 8.2.:!{a), a complete AS MD chan for the cir­
cu it appears in Fig. 8.22(c), and structural HOL mode ls of the datapath and con troller are given
in HOL Example 8.8. Using the operations and signal names indicated on theAS~O chart.
(a) w rite DatopalhJlEH. an RTI.. descri ption of the datapath unit of the ones Counter. Write a

test plan specifying the functionality that will be tested. andwrite a test bench to implement
the plan. Execute the test plan to verify the functio nality of the datapatb unit. and produce
annotated simulation results relating me Ie$l plan to me waveforms.prod uced in a simulation.

(b) Write COli/roller_BEH. an RTL descripti on of the contro l unit of the ones counter. Write a
test plan specifying the functionality that will be tested, and write a test bench to imple­
ment the plan. Exec ute the lest plan to verify the functionality of the con trol unit. and pro­
duce an notated si mulation results relat ing the test plan to the wa veform s produ ced in a
simulation.

(e) Writt' Cmtnt_O/les_BEH_BEH. a lop-level module e ncaps ulating and integrating
CO fltrolltr_BEH and Dotopalh _BEH. Write a lest plan and a tes t be nch. and verify the

Problems 411

description . ProdIlC'e annotated simulation results relating the test plan to the waveforms pro­
duced in a ~imulat ion .

(d) Write Conrroll~rJlEHjHQI, an RTL descripnon of a one -OOl: controller implementing die
ASMD chan of Fig . 8.22(c). Write a test plan specifying the functionality that will be test·
ed, and writ e a test bench to im plemen t the plan. Execute the te~1 plan and produce annotat ·
ed simulation resul ts relating the tes t plan to the waveform~ produced in a simulation.

(~} Write Cou"t_O"~J_BEH_'_Hot, a top- level modu le encapsulating the module
Conlro/lu_BEH_/ J1or and Datapath_BEH. Write a te!>l plan and a lest bench, and veri fy
the dncription. Prod uce annotated simulation results relating the test plan to the waveforms
produ ced in a simulation.

&.)5 The HDl descri ption and test benc h for a circuit that ccc ms the number of ones in a register are
given in HDL Example 8.8. Modify the test bench and simulate the circuit to verify dial the sys­
tem operat es co rrec tly for the fo llow ing patte rns of data: 8 S'hff. S'hOf. S'hfO. S'hOO, S'haa.
8 'hOa, 8 'haO, 8'hSS, 8' hOS, S'hfSO, 8' has, and S'h5a.

8 ,)6 The design of a circuit that counts the number of ones in a register is carried out in Section 8.10.
The block diagram for the circuit is shown in Fig. 8.22(a), a com plete ASMD chart for this cir­
cuit appears in Fig. 8.22(c), and structural HDl models of the darapath and contro ller are given
in HDL Example 8.8. Using the ope rat ions and signal names ind icated on the ASMD chart ,
(a) Design the control logic, emp loyi ng one flip-fl op per state (a one-hot assig nment). List the

input equation s for the four flip-flops.
(b) Write Conlroll~r_Gales_' fiot, a gate-level HDL structural descri ption of the circu it, using

the co ntrol de signed in pan (a) and the signals shown in the block diagram of Fig. 8.22{a).
(c) Write a test plan and a test bench. and then veri fy die controll er.
(dl Write Count_OnesJ ;atesj _HO/_STR, a top- Ie\el modu le encaps ulating and integrating in­

stantiations of COtIlro/{('r_GO/('j_JJloIand Dalupalh..sTR. Write a Iesl plan and a test bench
to veri fy the description. Prod uce annotated simulatio n resuns rela ting the tes t plan to the
waveforms produced in a simulation.

8.37 Compared with the circuit presented in HDL Example 8.8, a moreefficient circui t that cou nts the
number of ann in a data word is described by the block diagram and the pattiaily completed
AS~D chart in Fig. PS.J 7. This circui t accomplishes addition and shifting in the same clock
cycle and adds the LSB of the data registe r 10 the counter register al every cloc k cycle .
(a) Complete die AS\.1Dchart .
lb) Using the ASMD chan, write an RTl description of the circuit. A lop-level Verilog modu le ,

Cou"CoLo"~!J_Z_Beh is to instantiate separate modules for die datapath and control units.
(c) Des ign the control log ic. using one flip-flop per state (a one-hot ass ignment). List the input

equations for the Ilip- Ilcps .
(d) Write the HDl structu ral description of the circuit. using the controller designed in part (b)

and the block diagram of Fig. P8.37(a).
(e) Write a test be nch to test the circuit. Simulate the circuit to verify the ope ration described in

both the RTL and the structural programs.

8 .)8 The addition of two signed binary numbers in the signed- magnitude representation follows the
rules of ordinary arit hmetic: If the two numbers have die ume l ign (both positive or both nega­
tive). lhe two mag nitudes are added and the sum ha-s the common l ign ; if the two numbers have
opposite signs. the smal ler magn itude is subtracted from the largn and the resul t has the sign o f
the larger magn uude. wrue an HDl behavioral~p'ion for add ing two 8-bit signed numbers
in signed-magnitude reprt' §C'ntation and veri fy. The leftmost hit of the number ho lds the sip! and
the odier seven bits hold the magni tude.

412 Chapter 8 Design at the Register Transfer level

""'-b=~L~_~Clock

R2 <- sr - Rl tO!
- RI <- Rl > I

dara

CO/lI/l

RJ[Oj

La o

S la l/M

sigll als

Stan

Rrody

(0' (b'

flGURl P8 .J7
(a) Alterna tive circuit for a ones counter
(b) ASMD Chart for Problem 8.37

8.)9" For the circuit designed in Problem 8.16,
(a) Write and verify a structural HDL description of the circuit. The datapath and conuoue r arc

to be described in separate units.
(b) w rite and verify an RTL description of Ihe circuit. The datapath andcontroller are to bede­

scribed in separate units.

8.40 Modify the block diagram of the sequential multiplier given in Fig. 8. I4<a) and theAS~1D chan
in Fig. 8.15Ib) to describe a system thai multiplies 32-bit words. but with 8-bit tb}1e\loide) encr­
nal datapaths.The machine is to assert Ready in the (initial) reset stale. When Stem is assened.jhe
machine is to felch the data bytes from a single 8-bit data bus in consecutiveclock cycles (multi­
plicand bytes first, followed by multiplier bytes. least significant byte fiNt) and store the data in
datapath registers. GoC Dola is 10 be asserted for onecycle of the clock when the transfcr j<; com­
plete. When Rill! is asserted, the product is 10 be fonned sequentially. DoneProduct Is 10 be as­
sertedfor oneclockcyclewhen the multiplication iscomplete. Whena signalSendJJara isa....serted,
each byte of the product is to be placed on an g-bit output bus for one clock cycle. in sequence.
beginning with the least significant byte. The machine is to return to the initial state after the prod­
uct hasbeen trancmlrtcd, Consider safeguards. such as not attempting to sendor receive data while
the product is being fonned. Consider also other features that might eliminate needless multipli­
cation by O. For example. do not continue to multiply if the shifted multiplier is empty of 1'5.

8 .41 The block diagram and panially completed ASMD chan in Fig. PSAI describe the behavior of a
two-stage pipeline that acts as a 2: I decimaror with a parallel input and output. Decimators are
used in digital signal processors to move data from a datapath with a high d ock rate to a data­
path with a lower d ock rate. conven ing data from a parallel format 10 a serial formal in the
process. In the datapath shown. entire words of data can be transferred into the pipeline at twice
the rate al which the contents of the pipeline must be dumped tore a holding registeror consumed
by some processor. Thecontentsof the holding register RO can be shiftedout serially, to accomplish

Data

8

Problem s 413

IPI . PO} <~ 10.0}

/' lPi. POI < = (0. 01

PI <'" Datu
PO< =Pl

\
RO<= (Pl , PO)

Ibl

FIGURE P8.41
Two-stage pipeline registe r: Data path un it and ASM D chart

an overall parallel-to-serial conversion of the data stream . The ASMD chan indicate s that the
machine has synchronous reset 10 S_id/e . where it waits until rst is de-asserted and En is assert­
ed. Note that synchronous transitions which would occur from the other Mates to S_idfe under the
action of rst are not show n. With Ell asserted. the machine transitions from S_id fe to S_ J. ac­
companied by conc urrent register operations that load the MSByte of the pipe with Data and
move the content of P I to the LSByte (PO). AI the next cloc k. the state goes 10SJ ulf. and now
lhe pipe is full. If Ld is asse rted 'II the next clock, the machine moves to Sj while dumping the
pipe into a holding register RO. l f Ld is not asse rted. the machine enters S_wait and remains there
until Ld is asserted . at which lime it dumps the pipe and returns to S_I or to S_idle, depending
on whether Ell is asse rted. too . The data rare at Rois one-ha lf the rate at which data are supplied
to the unit fro m an external datapath.
(a) Develo p the complete ASMD chan.
(b) Using the ASMD chan developed in (a), write and verify an HDL model of rhe datapath.
(e) Write and verify a Verilog behavioral mode l o f the co ntrol unit .
(d) Enca psul ate the datapath and co ntroller in a top-leve l mod ule. and verify the integrated

system.

414 Chapter 8 Design at the Register Transfer Level

REFE REN C ES

1. ARSOLD. "t G. 1999. Verilog Digital Computer Design. Upper Saddle River, ?\J : Prentice Hall.
2 . BHASKElI.. 1. 1997. A Verilog HDLPrimu . Allentow n. PA; Star Galaxy Press.

3 . BHASKER. J. 1998. Verilog HDI. Synthesis. Allentown. PA: Star GalaJl.y Press.

4 . CIl.ETT1. M. D. 1999. Modeling. Synthesis. and Rapid Prototyp ingith Vt'rilog HDL t:ppcr Sad­
dle River. :'\J: Prentice HalJ.

5 . CllETTl. M. D. 2003. Modeling. S)'nt~$js. and Rapid Proto,>p ingith Vt'rilog HDL Upper Sad-
dle River. S J; PrenticeHall.

6 . CLARE. C. R. 1971. Designing Logic S)·.s tems Using Start' Machint's. New ¥ork; ~1cGraw-HiI1 .

7 . HAVES. 1. P. 1993. introduction to Digital Logic Design: Reading. MA; Addison-Wesley.
8 . IEEE Stnndard Hardware Descript ion Language Based on the Vu ilog Harth'a f'(' Description

Langu agt' (IEEE Std 1364-2001). 2001. New York; Institute of Electrical and Electronics
Engin......rs.

9. MASO. M. M. 1993. Computer Syslem Architecture. 3d ed. Upper Saddl ... River.:'\1: Prentice
Hall.

10. MASO. M. ~1.. and C. R. KlME. 2000. Logic and Computt'r Cksi gn Fundamenlals. 3rd ed. Upper
Saddle River, 1'\1; Prentice Hall.

11 . PAllTKAR. S. 2003. Veri/og HDL: A Guidt'to Digital Design and Syntht'sis. Mountain View.
CA: SunSoft Press (a Prentice Hall Title) .

12. SMITH. D. 1. 1996. HDI. Chip Design. Madison. AL: Doone Publications.
13. ThOMAS. D. E.. and P. R. MOOR8V. 2002. Tht' Veri/og Hardware Description Language. 5lh ed.

8 0' 100: Kluwer Academic Publishers.
14. WISKl£R. D.• and F. PROSSER. 1987. The Art of Digital Design, 2d ed. Englewood Cliffs. ~l

Prentice-Hall.

Chapter 9

Asynchronous Sequential Logic

9 . 1 INTRODUCTION

A sequential circuit h specified by a time sequence of inputs. outpu ts. and inte rnal states. In
synchronous sequential circuits. the change of internal state occurs in response to the syn­
chronized clock pulses. Asynchronous sequential circu its do not use clock pulses. The cha nge
of interna l state occurs when there is a change in the input variables. The memory elements in
synchronous sequential circuits are clocked flip-flops . The memory elements in asynchronous
sequential circuits are either unclocked flip-flops or time-delay elements. The memory cepe­
biliry of a time-delay device depends on the finite amount o f time it lakes for the signal 10
propaga te through d igital gales. An asynchronous sequential circuit qu ite often resembles a
combinational circuit with feedback.

The des ign of asynchronous sequential circu its is more difficult than that of synchronous cir­
cu its because of the timing prob lems involved in the feedback path . In a prope rly designed
synchronous syste m. timing problems are el iminated by triggering al l flip-flo ps with the pulse
edge . The change from one state to the next occurs during the short time of the pulse transi­
tion. Since the asynchro nous circuit does not use a clock. the state of the syste m is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stab le condition even though a feedbac k path exists.

Asynchronous sequential circuits are useful in a variety of applications. They are used when
speed of operation is important. especially in those cases where the digital sys tem must reo
spend quickl y withou t having to wait for a clock pulse. They are more economical to use in
small indepe ndent syste ms tha t require only a few components, as it may not be practical to
go to the expense of providing a ci rcuit for generating clock pulses. Asynchronou s circui ts are
useful in applicat ions where the input sig nals to the system may change at any time . inde­
pendently of an internal clock. The communication between two units. each having its ow n

415

416 Chapter 9 Asynchro nous Sequential Logic

independent clock, must bedo ne with asy nchro nous ci rcuits . Digital desi gners often prod uce
a mixed system in which some pan of the synchro nous system has thecharacteristics of an asyn­
chronous ci rcuit Knowledge of asynchro nous sequential logic behav ior is helpful in verifying
that the total digi tal system is ope rating in the proper manner.

Figure 9.1 shows the block diagra m of an asy nchronous seque ntial circuit that consists of
a combinational circuit and de lay ele ments connected to form feedback loops. Th ere are n
input variables. m output variables. and k: internal states. The de lay elements can be visualized
as providing short-term memory for the seq uential ci rcuit. In a gate-type circu it, the pro paga ­
tion delay that exis ts in the combinational circuit pat h from inpu t to output provides sufficient
delay alo ng the feedback loop so that no specific delay elements are actually inserted into thc
feedback path. The present-state and next-state variables in asynchron ou s seq uential circu its
arc customarily ca lled secondary variables and excitation variables, respectively. The exci ta­
lion variables should not beco nfused with the exci tab le table used in the de sign of clocked se­
quential circ uits.

" "
<, "einput mouipul

variables variables

" ..
y, Y,

k secondary k excitation
variables y, Y, variables
(present (neX!slale)

stale)

y. Y.

Delay

FI(i,URE 9.1
Block diagram of an async hrono us sequen tial circuit

Section 9.2 Analysis Procedure 417

When an input variable changes in value, the y secondary varia bles do not change instan­
taneousty. It lakes a certain amount of time for the signal 10 propagate from the input term i­
nals, through the combinational circuit. to the Yexcitation variables. which generate new values
for the next state. These values propagate through the delay elements and become the new
present state for the seco ndary variables. Note the distinction between the v's and the Y's. In
the steady-state condition, they are the same, but during transition they are not. For a given value
of input variables. the system is stable if the circuit reaches a steady-state condition with Yi = Y;
for i = 1. 2, . . . • k. Otherwise. the circu it is in a conunuous transition and is said to be unsta­
ble. It is importa nt 10 realize thai a transition from one stable state to another occurs only in re­
spouse to a change in an inputvariable. Thi s is in con trast to synchronous systems. in which
slate transitions occur in response to the application of a clock pulse.

To ensure proper opera tion, asynchronou s sequential circuits must beallowed to attain a sta­
ble state before the input is changed to a new value. Because of delays in the wires and the gate
circuits, it is impossible to have two or more input variables change at exactly the same instant
of time without an uncertainty as to which one changes first. Therefore , simultaneous changes of
two or more variables are usually prohibited. This restriction means that only one input variable
can change at anyone time and the time between two input changes must be longer than the time
it lakes the circuit to reach a stable state. Such oper ation. defined es fundamental mode. assumes
thai the input signals change one at a time and only when the circuit is in a stable condition.

9 .2 ANALYSIS PROCEDURE

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
desc ribes the sequence of internal states and outputs as a function of changes in the Input vari­
ables .A logic diagram manifests the behavior of an asynchronous sequential circuit if it has one
or more feedback loops or if it includes unclocked flip-flops . In this sect ion. we will investi­
gate the behavior of asynchronous sequential circu its that have feedback paths without em­
ploying fl ip-flops. Unclocke d Flip-flop s are ca lled latches, and their use in asynchronous
sequentia l circu its will be explained in the next section.

The analysis procedure will be presented by means of three specific examples. The first ex­
ample introduces the transi tion table, the second define s the flow table , and the third investi­
gates the stability of asynch ronous sequential circ uits.

Transition Table
An exa mple of an asynchronous sequential circuit with only gates is shown in Fig. 9.2. The di­
agram clearly shows two feedback loops from the OR gate outputs back 10 the AND gate in­
puts. The circuit consists of one input variable x and two internal states. The internal states
have two excitation variab les, Y, and Y2. and two secondary variables, Yl and)'2. The delay as­
sociated with each feedback loop is obtained from the propagation delay between each Y input
and its corresponding youtput. Each logic gate in the path introduces a propagation delay of
about 2 to IOns. The wires that conduct elec trical signals introduce approximately a I-ns delay
for each foot of wire. Thus, no addit ional external delay elements are necessary when the com­
binational circuit and the wires in the feedback path provide sufficient de lay.

418 Chapter 9 Asynchronous Seq uenti al logic

Y,

Y,

FIGURE 9.2
Example of an asynchronous seq uential circuit

The analysis of the circuit starts with a consideration of the excitation variab les as outputs
and the secondary variables as inputs. We then derive the Boolean expressions for the excita­
tion variables as a function of the input and secondary variables. These expressions. readi ly ob­
tained from the logic diagram. are

Yl = XY I + x'n
Y2 = xYI + .t 'n

The next step is to plot the Y1 and Y2 functions in a map. as shown in Fig. 9.3(a) and (b). The
encoded binary values of the)' variables are used for labe ling the rows. and the input .r vari­
able is used to designate the columns. This co nfiguration results in a slightly different three­
variable map from the one used in previous chapters . However, it is still a valid map. and such

,
,y, 0 1

00 @ 01

01 11 e
11 e 10

10 00 @

,
,y, 0 1

00 0 1

01 1 1

11 1 0

10 0 0

y y
,

~, 0 1

00 0 0

01 1 0

11 1 1

10 0 1

y

(a) Map for
Y l - XYI + X'Y2

(b) Map for (e) Transition table
Y2= xy '1+ X'y:

fiGURE 9.3
Maps and transition table for the circuit of Fig . 9.2

Section 9.2 Analysis Procedure 419

a configuration is. more convenient in dealing with asynchronous seque ntial circuits. !\OIe that.
unlike what was done in previous chapters. the varia bles belonging to the appropriate squares
are not marked along the sides of the map.

Tbe transition table sbcwn in Fig. 9.3(c) is obta ined from the maps by combining the binary
values in corres ponding squares, The transition table shows the value of Y = f lY.!inside each
square.The fin! bit of Y is ob tained from the value of f l. and the second bit is obtained from
the value of Yl in the same square position. For a stare to bestable, the secondary variables must
match the excitation variables (i.e .• the value of Y must be the same as that of Y = YI)',2) ' Those
entries in the transi tion table where Y = Y are circ led to indica te a stable condition. An uncir­
cled entry represents an unstable state.

Now consider the effect of a change in the input variab le. The square for .r = 0 and y = 00
in the transition table shows that f = 00 . Since f represents the next value of y. this is a sta­
ble condi tion, If .r change s from 0 to I while y = 00 . the circuit changes the value of Yto 01.
This represe nts a temporary unstable condition, becau se Y is not equal 10 the present value of
j-, What happens next is that as soon as the signal propagates to make Y = 01 , the feedback
path in the circuit causes a change in y to 01. Thi s change is manifested in the transition table
by a transition from the first row (y = 00) to the seco nd row, where y = 01. Now that y = Y,
the circuit reaches a stable con dition with an input of .r = I. In general. if a change in the
input takes the circ uit to an unstable Slate. the value of y will change (while that of .r remain..
the same) until it reaches a Mable (circled) state. Using this type of analysis for the remaining
square s of the trans ition table. we find that the circuit repeats the sequence of states 00 , 01. I I.
10 when the input repeatedly alternate s between 0 and I.

Note the difference between a synchrorccs and an asynchronous sequential circuit. In a syn­
chronous system. me present state is totally specified by the flip-flop values and dues not change
if the input changes while the clock pulse is inactive, In an asynchronous circuit. the internal
state can change immediately after a change in the input, Because of this rapid change, il is some­
times convenient to combine the internal stateith the input value together and call it the 10101

state of the circuit. The circuit whose transit ion table is shown in Fig. 9.3(c) has four stable total
!itate~)u,:!.t = 000.01 1. 110. and 101-and four unstable total states-OO I. OIO. II I. and 100.

The transition table of asynchronous sequential ci rcuit.. is similar to the state table used for
synchronous circuits. If we regard the secondary var iables as the present state and the exci­
tation variables as the next state . we obtain the state table sho w n in Table 9.1. Th is table pro­
vides the same information as the transition tab le. There is one restriction that applies to the

Table 9 .1
State Table for the Circuit of Fig, 9.1

Neat State
Present
State K· 0 K = 1

0 0 0 0 0 1
0 I I I 0 I
I 0 0 0 I 0
I I I I I 0

420 Chapter 9 Asynchronous Seq uent ial logic

asynchronous case. but not the synchronous case : In the asynchronous transition table. there
usually is at least one next-state entry that is the same as the present-state value in each row.
Otherwise. ali the total states in that row will be unstable.

The procedure for obtaining a transition table from the circu it diagram of an asynchronous
sequential circuit is as follows:

1. Determine all feedback loops in the circu it.

2. Designate the output of eac h feedback loop with variable Y; and its corresponding input
with jy for i = 1. 2•... • k, where k is the number of feedback loops in the circuit.

3. Derive the Boolean functions of all Y's as a function of the external inputs and the .'"'!C>.

4. Plot each Yfunction in a map. using the y variables for the rows and the external inputs
for the columns.

S. Combine all the maps into one table showing the value of Y = Y1Y2 ••• Yi inside each
square.

6. Circle those values of Y in each square that are equal to the value of .'" = .'"l~ · · · .'"i in the
same row.

Once the transition table is available. the behavior of the circuit can be ana lyzed by observing
the stale transition as a funct ion of changes in the input variables.

Flow Table

During the design of asynchronous sequential circuits. it is more convenient to name the states
by letter symbols without making specific reference to their binary values. Such a table is
called aflow table and is similar to a transition table. except that the internal states are sym­
bolized with letters rather than binary number s. The flow table also includes the output values
of the circuit for each stable state.

Examples of flow tables are shown in Fig. 9.4. The one in Fig. 9.4(a) has four states. des­
ignated by the letters a. b. c. and d. It reduces to the transition table of Fig. 9.3(c) if we assign

x
y 0 I

" 0 b

b c 0
, 0 d

d a 0
(a) Four states with

one input

fIGUR£ 9.4
Examples of flow tables

XlX1
00 01 11 10

" 0 0 0 0 0 0 b .O

b " . 0 " . 0 0 1 0 0

(b) Two states with two
inputs and one output

Section 9.2 Analysis Procedure 421

the following binary values to the stares: a = 00. b = 0 I. c = II . and d = 10. The table of
Fig. 9.4(a) is called a primiti ve now table because it has only one stable state in each row.
Figure 9.4(b) shows a now table with more than one stable ..tale in the same row. It has two
states. a andb: two inputs. '\" I and xs and one output. z. The binary value of the output vari­
able is indicated inside the square next 10 the state symbol and i..separated from the state sym­
bol by a comma. From the flow table. we observe the follow ing behavior of the circuit: If
'\" I = O. the circuit is in state a. If XI goes to I while x~ is O. the circuit goes to state b. With
inputs x lx 2 = II . the circuit may beeither in state a or in stale b. If it is in state a. the output
is O. and if it is in state b. the output is I. State b hi. maintained if the inputs change from 10 to
I I. The circuit stays in state a if the inputs change from 0 1to I I. Remember that in fundamental
mode two input variables cannot change simultaneously: therefore. we do not allow a change
of inputs from 00 to 11.

In order to obtain the circuit described by a now table . it is necessary to assign a distinct bi­
nary value to each state. Such an assignment converts the flow table into a transition table from
which we can deri ve the logic diagram. This is illustrated in Fig. 9.5 for the flow table of
Fig. 9.4(b). We assign binary 0 to state a and binary I to state b. The result is the transition table
of Fig. 9.5(a). The output map shown in Fig. 9.5(b) is obtained directly from the output values
in the now table. The excitation function Yand the output function z are simplified by means
of the two maps. The logic diagram of the circuit is shown in rig . 9.5(c).

XIX2r 00 0 1 II 10

0 0 0 0 1

1 0 0 0 0
(a) Transitio n tabl e:

y • .l:1.l: ' l '" .l:LV

XIX ls 0:1 01 II 10

0 0 0 0 0

1 0 0 1 0

(b) :\tap for output
: -.l: IXl'·

,
<, - t-+ --,- - - -{;;:;;7,;;\
<, - +-....-r>~---i ,'s'V

,
L- -'

y

(c) logic di a~am

FIGURE 9 .5
Derivation of • drtult specified by the now table of FJg. 9.-4(b)

422 Cha pter 9 Asynchronous Sequential Logic

This example demonstrates the procedure for obtaining the log ic diagram from a given flow
table . Doin g that, how ever. is not always so simple. Thereare several difficulties associated \lrri th
thebinary stat e assign ment andwith theoutput assigned to the unstable states . Theseprob lems
are discussed in detail next.

Race Conditions

A race condition is said to exi st in an asynchronous seq uential circuit when (\\'0 or more bi­
nary state varia bles change value in response to a change in an input variable. Whe n unequal
de lays are encountered. a race condition may cause the stale variables to change in an unpre­
dictable manner. For example. if the state variables must change from 00 to II . the difference
in delays may cause the first variable to change sooner lhan the second, with the result that the
state variables change in seq uence from 00 to 10 and the n 10 II . If the second variable changes
sooner than the first. the Slate variables will change from 00 toOl and then to 11. Thus. the order
by which the state variables change may not beknow n in advance. If the final stable state that
the circuit reaches doe s not depend on the order in wh ich the state variables change. the race
is called a noncritical race. If it is possible to end up in two or more di fferent stable stares. de­
pending on the orde r in whic h the sta te varia bles change. the n the race is a critical race . For
prope r operation. criti cal races must be avoided.

The two examples in Fig . 9 .6 illustrate noncritical races. We sian with the total stable sta te
JIY2x "" (XX) and change the input from 0 10 I. The slate variables must then change from 00
to I I. which defines a race condition. The tran sitions listed under each table sho w three pos­
sible ways that the state variables may change. Either they can change simultan eou sly from 00
to I I. or they may change in sequence from 00 to 01 and then to I I. or they may change in \C ­

quence from 00 to 10 and then to II . In all cases. the final stable sta le is the same. so the race
is noncritical. In (a). the final total state is YIY2x "" III . and in (b). it is all .

,
~, 0 I

00 e II

01 0
I I 01

10 II

r
,

~, 0 I

00 e 11

01 11

11 (0
10 11

,

(I) Possible trlnsiliom;

00 - 11
00 _01 - 11
00 -10 - 11

(b) Possible trlUlsilions:

00 - 11 - 01
00 -01
00 -10 -11 - 01

moURE 9.6
Examples of noo crttial races

Section 9.2 Analysis Procedure 423

.r
1)'2 0 1

00 @ 11

01 11

11 (0
10 @

,.r,y, 0 1

00 @ 11

01 ®
11 (0
10 @

,

(a] Pcssihlc transition s:

00 -- 11
00 __ 01

00 -- 10

(b) Possible transitio ns:

00 --11
00 - 01-11
00 __ 10

FIGURE 9 .7
Examples of critical races

The transition tables of Fig. 9.7 illustrate critica l races . Here again. we start with the tota l
stable state YIY2X = 000 and change the input from 0 to I . The state variables must then change
from 00 to 11. If they change simultaneously. the fina l total stab le state is I l l . In the transi­
tion table of part (a), if, becau se of unequal propagation delay . Yzchanges to 1 before Y1doe s,
then the circuit goes to the total stable state 01\ and remains there . If. however, Y1 changes
first. the internal state becomes 10 and the circuit will remain in the stable total stale 101.
Hence, the race is critical because the circu it goes to different stab le states, depending on the
order in which the state variables change. The transition table of Fig. 9 .7(b) illustrates another
critical race, in which two possible transitions result in one final total state, but the third pos­
sible transition goes to a different total state.

Races may be avoided by making a proper binary assignment to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at any one time when a state transition occurs in the flow table. The subject of race-free
state assignmen t is discussed in Section 9.6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change . When a circuit goes thro ugh a unique sequence of unstable states,
it is said to have a cycle. Fig. 9.8 illustrates the occu rrence of cycles. Again, we start with
}' IY2 = 00 and change the input from 0 to I . The transition table of part (a) gives a unique se­
quence that terminates in a total stable state JO J. The table in (b) shows that eve n though the
state variables change from 00 to 11. the cycle provides a unique transition from 00 to 0 1 and
then to I I. Care must be taken when using a cycle that terminates with a stable state. If a cycle
doe s nor terminate with a stable state, the c ircuit will keep go ing from one unstable state to an­
other, making the entire circuit unstable. Th is phenomenon is demonstrated in Fig. 9.8(c) and
also in the next example.

424 Chapter 9 Asynchronou s Sequential logic

y~, < 0 1

00 e 01

01 11

11 10

10 G

y ~, < 0 1

00 e 01

01 11

11 (0
10 G

y 1)"2 <
0 1

00 e 01

01 11

11 10

10 01

(a) Slate transition:
00_ 01_ 11_ 10

FIe.URE 9 .8
Examples of cycles

(b) Stale transition:

00- 01- 11

(c) Unstable

r Ol- l 1- 1O-

Stability Considerations

Because of the feedback connection that exists in asynchronous sequential circuits, care must
be taken to ensure that the circuit does not become unstable. An unstable condition will cause
the circuit to oscillate between unstable states. The transition-table method of analysis can be
useful in detecting the occurrence of instability.

Consider, for example , the circuit of Fig. 9.9(a). The excitation function is

r = (Xly) 'X2 = (xl + Y')X 2 = xlx2 + X2.V'

<,
(a) Logic diagram

X IX :
y 00 01 11 10

0 0 1 1 0
1 0 0) 0 0

(b) Transilion tabl e

FIGURE 9 .9
Example of an un stable circuit

Section 9.3 Circuits with latches 425

The transition (able for the circuit is shown in Fig. 9.9(b). Those values of Ywhich are equal to
). are circled and represent stable states. Uncircled entries ind icate unstable conditions. Note
that column I I has no stable stales. This means that with input X IX2 fixed at I I. the values of Y
and y are never the same. If y = O. then Y = I. which causes a transition to the second row of
the table. with y = 1 and Y =O. This in tum causes a transition back to the first row. with the
result that the state variable alternates betwee n 0 and I indefinitely, as long as the input is II .

The insta bility co ndition can be detec ted directly fro m the logic d iagram . Let
Xl = I , Xl = I. and y = 1. Then the ou tput of the NAND gate is equal to 0 , and the output
of the AND gate is equal to 0, making Yequal to O. with the result that Y #- y. Now if y = O.
the output of the NAND gate is 1 and the output of the AND gate is 1. making Y eq ual 10 I.
with the result tha t Y #- y. If it is assumed that each gate has a propagation delay of 5 ns (in­
cluding transmission over the wires). we will find that Ywill be 0 for 10 ns and I for the next
10 ns. Th is will result in a square- wave waveform with a period of 20 ns. The freque ncy of os­
ci llation is the reciprocal of the period and is equal to 50 MHz. Unle ss one is designi ng a
square-wave generator. the instability that may occur in asynchronous sequential circuits is
undesirable and must be avoided.

9 .3 CIRCUITS WITH LATCHES

Historically. asynchronou s circuits were known and used before synchronous circuit s were de­
veloped. The first practical digital circuits were constructed with relays . which are more adapt­
able to asynchronous operations. For this reason . the traditional method of asynchronous circuit
co nfiguration has been with components that are connected to form one or more feed back
loop s. When digital circuits are co nstructed with electronic compone nts. it is convenie nt to
emp loy the SR latch (introduced in Sect ion 5.3) as a memory element. The use of SR latches
in asynchronous sequential ci rcuits prod uces an orderly pattern in the logic diagrams. with the
memory e lements clearly visible . In this section. we analyze the operation of the SR latch.
using the technique introduced in the previous section. We then show a procedure for imple­
menting asynchronous seq uential circuits using SR latches.

5R Latch

The SR latch is a digital circuit with two inputs 5 and R and two cross-coupled NOR gates or
two cross-coupled NAND gates. The cross-co upled NOR gate circuit is shown in Fig. 9.10. This
circuit and its trut h table are taken from Fig. 5.3. In orde r to analyze the circ uit by the transi­
tion-table method. it is first redra.....n in Fig. 9. IO(c) to see the feedback: path from the output
of gate I to the input of gate 2. The output Q is equivalent to lhe excitation variable Yand the
secondary variable y, The Boolean function for the output is

Y = [(5 + r) ' + RI' ~ (5 + y)R' = SR' + R'y

Plotting Yas in Fig. 9. IO(d). we obtain the transitio n table for tbe circuit.
We can now inve stigat e the behavior of the SR latch from the tran sition table. The state

with S R = 10 is a stable stale because Y = Y = I ; likewise. the state with SR = 0 1 is a sta ­
ble state. because Y = Y = O. With S R = 10. the output Q = Y = I and the latch is said

426 Chapter 9 Asynch ronous Sequential Logic

R
Q

s R Q Q'

I 0 I 0
0 0 I 0 (After SR - 10)
0 I 0 I
0 0 0 I (Aher SR - 01)

S
Q' I I 0 0

(a) Cross-coupled circui t (b) Trutb table

R- - - - --\
,-{'f!;/ >o----r-- y • Q

s

(e) Circuu shO\\i ng feedback

FIGURE 9 .10
SR latch with NOR g ates

SR
y 00 01 II 10

0 0 0 0 I

I 8 0 0 8
Y - SR' '1- R'y
Y - S +R'y 'fohcn SR : O

(d) Trilnsition ta ble

to be set. Changing 5 to 0 leaves the circui t in the set state . With SR "" OJ . the output
Q "" Y = 0 and the latch is said 10 be reset. A ch ange of R back to 0 lea ves the circuit in
the reset stare. These conditions are also listed in the trut h table. The circuit exhibits some
difficu lty when be th Sand R are eq ual 10 I . From the tru th table . we see that both Q and Q'
are equa l to O. a condition that viola tes the req uirement that these IWO outputs be the co m­
plement of each other. Moreover, from the transition table. we note thai going from 5R ::: 1t
to SR = 00 produ ce" an unpredictable result. If 5 goes to 0 fir st. the output remains at O.
bu t if R goe s to 0 first. the output goes to I. In norm al operation. we must make sure that
ls are not applied 10 both the 5 and R inputs simultaneo usly. Thi s condition can be ex­
pressed by the Boolean function 5 R = O. which states that the ANDing of 5 and R must al­
ways result in a O.

Coming back to the excitation function. we note that when we OR the Boolean expression
5R' with 5R. the result is the single variable S:

S R' + SR = S(R' + R) = S

From this. we infer tha t SR' = S when SR = O. The refore. the excitation function deri ved
previous ly, namely.

y = 5R' + R'y

Section 9.3 Circuits with l atches 427

can be expressed in Fig. 9.1O(d) as the reduce d excitation fu nction

y =S + R'y when SR =0

To analyze a circuit with an SR latc h. we must first check that the Boo lean condition S R "" 0
holds at all times . We then use the reduced excitation func tion 10 analyze the circui t. However,
if it is found that both S and R can be equal to 1 at the same time. then it is necessary to usc
the original excitation func tio n.

The analysis of the SR latch with :'Il'ASD gates is carried out in Fig. 9.I I . The NAND latch
operates wi th both inputs nonnaJly at I. unless the sta te of the latch has to be changed . The ap­
plication of 0 to R causes the out put Q to go to O. thus putting the latch in the rese t state. After
the R input returns to I, a change of S to 0 causes a change to the set state. Th e condition to be
avoided here is tha t both Sand R not be 0 simultaneously. Thi s cond ition is satisfied when
S ' R ' ~ O. The exci tation function for the ci rcuit in Fig . 9.1ICc) is

Y - [S(Ry)']' = S' + Ry

Comparing this with the exci tation function of the NOR latch. we note that S has been rep laced
with S' and R' with R. Hence, the input variables for the NAND latch require the comple­
mented values of those used in the NOR latch . For this reason. the NAND latch is sometimes
referred to as an S'R' latch (o r S- R latc h).

5
Q

S R Q Q'

1 0 0 1
I 1 0 1 IAfter SR • 10)
0 1 I 0
1 1 1 0 IAfterSR - 01)

R
Q' 0 0 I 1

la) Cross-coup led circun Ib)Truth table

(c) Circui t $howing feedback

FIGURE 9.11
SR latch with NAND gates

SR
Y 00 01 II 10

0 1 I G G
1 0) 0) 0) 0

Cd) Translboa table

428 Chapter 9 Asynchron ous Seq uential logic

Analysis Example

Asynchronous sequential circuits can be constructed with the use of 5R latches with or with­
out external feedback paths . Of course . there is always a feedback loop within the latch itself
Th e analysis of a circ uit with latches will be demonstrated by means of a specific example
from which it will be poss ible to generalize the proced ural steps necessary to analyze other. sim­
ilar ci rcuits.

Th e circu it sho wn in Fig. 9 .12 has two 5R latches with outputs Y. and Y2 . There are two in­
pUI S. X I and X2. and two external feedback loops giving rise to the seco ndary varia bles. J l and
Y2' Note that this circ uit rese mbles a conventional seq uential circuit wit h latches behaving like
flip-Oops without clock pulses. The analysis of the ci rcuit requ ires that we firs t obtain the
Boolean function.. fo r the 5 and R inputs in each latch :

5t = XI >':!

Rl = x jx2
52 = .tt_t2

R2 = xiy!

We then check whether the condition SR = 0 is satisfied to ensure proper operation of the circuit :

51 Rt = XI.\i xlxi = 0

S2 R2 = XtX2X2Yl =0

5,

Yl
R,

---+- - - - y,

"-L':::======t
FIGURE 9 .12
Exam ple of a circuit with SR latches

5,

Section 9.3 Circuits with Latches 429

"'1"'2
" , 00 01 11 10

00 @J @ 01 @J

01 @ @ 11 11

11 00 @ @ 10

10 00 @ 11 ®
FIGURE 9.1 3
Transition t ab le for the circ uit of Fig . 9.12

The result is 0 becau se xIx! - X2 X2 =O.
The next step is to derive the transition tab le of the circuit. Remember that the transition table

specifies the value of Yas a funct ion of y and .r. The exci ta tion functions are derived from the
relation Y = S + R'y (see Figu re 9 . I Hd» and are

Y\ = 5 , + RjYI = x IY2 + (XI + X2))'\ = XIJ'2 + .ttY, + XV"

Y2 = 52 + R2>~ = x ,x2 + (X2 +)'ih~ = XlX2 + X2Y2 + YiY2

We now deve lop a compos ite map for Y = Y, Y2. The)' variables are assigned to the rows in the
map. and the x variables are assigned to the columns . as shown in Fig. 9.1), The Boolean func ­
tions Y, and Y2. as just expressed. are used to plot the composite ma p for Y. Theentries of Yin
each row that have the same value as that given to }' arecirc led and represent stable states . in­
ves tigati ng the transition table. we deduce that the circuit is stable. There is a cri tical race con­
dition when the circuit is initially in total state)'1Y2XIX2 = 1101(Y1Y2 = 11) and X2 changes
from I to O (Y\ Y2 = (0). If Y\ changes to 0 before Y2• the circuit goes to total state 0 100 instead
of 0000. However, with approx imat ely eq ual delays in the gates and latches. this undesirabl e
situation is not likely to occur.

Theprocedure for analyzing an asy nchronous seq uential circuit with 5R latche s can be sum­
marized as follows:

I. Label eac h latch output with Y; and its exte rnal feed back pa th (if any) with Yi for
i = 1. 2, k.

2. Derive the Boolean functions for the 5; and Ri inputs in each latch.

3. Check whether S R =- 0 for each NOR latch or whether 5 ' R' = 0 for eac h NAND latch.
If either of these conditions is nOI satisfied. there is a possibility that the circuit may not
operate properly.

4. Eva luate Y = 5 + R'y for eac h NOR latch or Y = 5' + Ry (or each NAND latch .

S. Ccosrucra map. with the i s repm;enti ng the lOYr'Sand the ..t inp..u~ the colwnns.

6. Plot the value of Y = Y,Y2•· . Yt in the map.
7. Circle all stable Slates such that Y = y. 11K: res ulti ng map is thenthe transition table .

430 Chapter 9 Asynchronous Sequential Logic

latch beltatlon Table

The transit ion table of the SR latch is useful for analysis andfor defining tbe operation of the
latch. It specifies the excitation variable Y when the secondary variable y and the inputs S and
Rare known . During the impleme ntation process. the transi tion table of the circuit is available
andwe wish to find the values ofSand R. For this reason. we need a table that lists the required
input s S and R for each of the possible transition s from y to Y. Such a list is called an ~:ccitatjon

table.
The excitati on table of the SR latch is shown in Fig. 9 . 1 ~(b) . The first two columns list the

four possible transitions from y to Y. Th e next ('0110 colu mns spec ify the req uired input values
that will result in the specified transition. For example. in order to provide a tran sition from
J = 0 to Y = I. it is necessary to ensure that input S "" I and input R = O. Th is is shown in
the second row of the transition table .

The required inpu t conditions fo r each of the four tran sitio ns in the exc itation table can be
deri ved directly from the larch transition table of Fig . 9 .IO<d) after removing the unstable con­
dition S R = I I. For e xample. the transition table shows that in order to change from J ... 0 to
Y = O. SR can beeitherOOorO I . Thi s means that S must be I and R may beeither 0 or I. There­
fore. the first row in the excitation table show s S =0 and R = X. where X is a do n't-care
condition signifying ei ther a 0 or a I.

Impleme ntat ion Example

A sequential circu it with SR larches is implemented through a procedure for obtaining tM logi c
diagram from a given transition table. The procedure requires that we determine the Boolean
functions for the S and R inputs of each latch. The logic diagram is then obtained by dra wing
the SR latches and the logic gates that implement the S andR functions . To demonstrate the pro­
cedure. we will repe at the implementation example o f Fig. 9 .5. The' output circuit remains the
same and will nor be repeated again.

The transition table from Fig. 9.5(a) is duplicated in Fig. 9.1~a). From the infonnation
given in the transition tab le and from the latch excitation table conditions in Fig . 9.I~b). we
can obtain the map" for the Sand R inputs of the latch. as shown in Fig . 9. I~C) and Cd). For
example. the square in the second row and third column ()'X IXl = II I) in Fig. 9.I~a) re­
quires a transit ion from y = I to Y = I. The excitation table specifies S = X. R = 0 for uus
cha nge. Therefore. the corresponding square in the S map is marked with an X and the o ne in
the R map with a O. All other squares are filled with values in a similar manner. The maps are
then used to derive the simplified Boolean functions

""d R =.t j

Th e logic diagram consis ts of an SR latch and the gate s required to implement the S and R
Boolean funct ions . The circuit is as shown in Fig. 9.14<e) when a l'OR latch is used . With a
NAND latch. we mu..t use the complemented value s for S andR:

and R .. ;"1

This circuit is shown in Fig. 9.14(0.
Thegeneral procedure for implementing a circuit with SR latches from a given transition table

can now be summarized as follow s:

Section 9.3 Circuits with Latches 431

XIX 2
Y 00 01 11 10

0 0 0 0 1

1 0 0 CD CD
(a) Transition table

Y "' X 1X ' 2 + XV '

y y 5 R

0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 1

(b) Latch excita tion tab le

X lX 2

Y 00 01 11 10

0 0 0 0 ~1:~
1 0 0 X ;Ix;!

X1X2

Y 00 01 11 10

0 ~it t~l X 0

1 111~: -~lB 0 0

(d) Map for R '" x ')

R

R

(f) Circuit with NAND latch(e) Circuit with NO R latch

FIGURE 9 .14
Derivation of a latch circuit from a t ramitlon table

1. Given a transition table that specifies the exci tation function Y = Y1Y2• • •ft. derive a
pair of maps for 5 i and Ri for each i = I. 2• . .. • k, This is done by using the co nditio ns
specified in the latch excitation table of Fig. 9.14(b).

2. Derive the simplified Boolean functions for each 5 j and Ri• Care must be taken not to
make 51and RI equal to 1 in the same mintenn square.

3. Draw the logic diagram. using k latches together with the gates required to generate the 5
and R Boolean functions. For NOR latches. use the 5 and R Boolean functions obtained in
step 2. For NAND latches. use the complemented values ot those obtained in step 2.

Another useful example of latch implementation is found in Section 9.7.

432 Chapter 9 Asynchron ous SequentJa lloglc

De bounce Circuit

Input binary information in a digital system can be generated manually by means of mechan­
ical switches. One position of the switch provides a voltage equivalent to logic I. and the other
position provides a second voltage equivelent ro logic O. Mechanical switches are also used to
start. stop. or reset the digital system. In testing digital circuits in the laboratory. the input sig­
nals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the other. the switch contact vibrates or
bounces several times before coming to a final rest. In a typical switch. me contact bounce
may take several milliseconds to die out, causing the signal to oscillate between I and 0 be­
cause the switch contact is vibrating.

A debounce circuit is a circuit which removes the series of pulses mat result from a contact
bounce and produces a single smooth transition of the binary signal from 0 to I or from 1 to
O. One such circuit consists of a single-pole. double-throw switch connected to an SR latch. as
shown in Fig. 9.15. The center contact is connected to ground that provides a signal equiva­
lent to logic O. When one of the two contacts. A or B. is not connected to ground through the
switch. it behaves like a logic- I signal. A resistor is sometimes connected from each contact
to a fixed voltage to provide a firm logic-l signal. When the switch is thrown from position A
to position B and back. the outputs of the latch produce a single pulse as shown. negative for
Q and positive for Q'. The switch is usually a push button whose contact rests in position A.
When the push button is depressed. it goes to position B. and when released. it returns to po­
sition A.

The operation of me debc unce circuit is as follows: When the switch rests in position A. we
have the condition 5 :::: O. R =) and Q = I. Q' = O. (See Fig. 9.I I(b l.) When the switch is
moved to position B. the ground connection causes R to go to O. while 5 becomes a 1 because
contact A is open. This condition in turn causes output Q to go to 0 and Q' [0 go to I . After the
switch makes an initial contact with B. it bounces several times. but for proper operation. we
must assume that it does no! bounce back far enough to reach point A. The output of the latch
will be unaffected by the contact bounce because Q' remains I (and Q remains 0) whether R
is equal to 0 (contact with ground) or equal [0 I (no contact with ground). When the switch re­
turns to position A. 5 becomes 0 and Q returns to 1. The output again will exhibit a smooth tran­
sition. even if there is a contact bounce in position A.

s
Q
~A

r:)
~R , Q'-e-

Ground A _ 8 . A _

FIGURE 9 .15
Debounce circuit

Section 9.4 Design Procedure 433

9.4 DESIGN PROCEDUR E

The design of an asynchronou s sequential circuit starts from the statement of the problem and
culminates in a logic diagram . There are a number of design steps that must be carried out in
order to minimize the complexity of the circuit and to produce a stable circuit without critical
races. Briefly, the design steps are as follows: A primitive flow table is obtained from the de­
sign specifications. The flow table is then reduced to a minimum number of states. Next, the
states are given a binary assignment from which we obtain the transition table. Finally, from
the transition table, we derive the logic diagram as a combinational circuit with feedback or as
a circui t with SR latches.

The design process will be demonstrated by going through a specific example. Once this ex­
ample is mastered. it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures. and these
are discussed in greater detail in the sections that follow.

Design Example

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out­
put Q. Binary information present at the D input is transferred to the Qoutput when G is equal
to I. The Q output will follow the D input as long as G = 1. When G goes to 0, the information
that was present at the D input at the time the transition occurred is retained at the Qoutput. The
gated latch is a memory element that accepts the value of D when G = I and retains this value
after G goes to 0. Once G = 0, a change in D does not change the value of the output Q.

Primitive Flow Table

As defined previously. a primiti ve flow table is a flow table with only one stable total state in
each row. Remember that a total stale consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi­
ble total states in the system. This is shown in Table 9.2 for the gated latch. Each row in the
table specifies a total state, which consists of a letter designation for the internal state and a

Table 9 .2
Gated-latch Total States

Inputs Output

Stat e 0 G Q Comments

a 0 1 0 D =Q because G = I
b 1 1 1 D = Q becauseG = I
c 0 0 0 After stale a or d
d 1 0 0 After state c
e 1 0 1 After state b orf
f 0 0 1 After stale ~

434 Chapter 9 Asynchron ous Seq uentia l Log ic

possible input combination for D and G. The output Q is also shown for each total state. We
start with the IWO total states that have G = I . From the design specifications. we know that
Q :::: Oif DG :::: 0 1 and Q:::: 1 if DG :::: II . becauseDmust be equal to Q when G :::: I. We
assign these conditions to states a and b. When G goes to O. the output depends on the last
value of D. Thus. if the transition of DG is from 0 I to 00 to 10. then Q must remain 0 because
D is0 at the time of the transition from I to 0 in G. If the transition of DG is from I I to 10 to
00, then Q must remain I. This infonnation results in six different total states, as shown in the
table. NOIe thai simultaneous transitions of two input variables, such as from 0 1 to 10 or from
II to 00, are not allowed in fundamental-mode operation.

The primitive flow table for the gated latch is shown in Fig. 9.16. It has one row for each
state and one column for each input combination. First. we fill in one square in each row be­
longing to the stable state in that row. These entries are determined from Table 9.2. For exam­
ple. Slate Q is stable and the output is 0 when the input is 0 I. This infonnation is entered into
the flow table in the first row and second column. Similarly. the other five stable stales to­
gether with their output are entered into the corresponding input columns.

Next. we note that since both inputs are nor allowed to change simultaneously. we can enter
dash marks in each row that differs in two or more variables from the input variables associ­
ated with the stable state. For example, the first row in the flow table shows a stable state with
an input of 01. Since only one input can change at any given time. it can change to 00 or 11.
but not to 10. Therefore. we enter two dashes in the 10 column of row Q. This will eventually
result in a don' t-care condition for the next state and output in this square. Following the same
procedure, we fill in a second square in each row of the primitive flow table.

Next, it is necessary to find values for two more squares in each row. Thecomments listed
in Table 9.2 may help in deriving the necessary infonn ation. For example. state C' is associated
with input 00 and is reached after a change in input from state Q or d.Tberefore. an unstable state

00
Inputs DG
01 11 10

FI(i,URE. 9 .16
Primitive flow table

b

c•:;;
~ d

,

!

' ,- G ,O b , - - ,-

- , - ' ,- G), I < , -

@,O ' ,- - ,- d , -

" - - , - b , - @,O

!, - - ,- b , - @,I

CD , I , ,- - - < , -

Section 9.4 Design Procedure 435

c is shown in column 00 and rows a and d in lhe flow lable. The output is. marked with a da..h
10 indicate a don 't-care condition. The interpretation of this situation is tha i if the circuit is in
Mablestate a and the input changes from 011000. the circuit first goes to an unstable ne xt state
c. which changes the present-slate value from a to c. causing a trans ition to the third row and
first col umn of the table. The unstable state values for the other square s are determined in a
similar manner. All outputs associat ed with unstabl e states are marked with a dash 10 indicate
don 't -care conditions. The assignment of actual values to the outputs is discussed further . after
the design example is completed .

Reduction of the Primitive Flow Table

The primitive flow table has only one stable ...tare in each row. The tab le can be reduced 10 a
smaller number of rows if two or more stable states are placed in the same row. The grouping of
stable states from separate rows into one com mon row is called merging. Merging a number of
stable states in the same row means that the binary state variable ultimately assigned to the merged
row will not change when the input variable changes . This is beca use. in a primitive flow table.
the stale variable changes every time the input change s, but in a reduced flow table, a change of
input will not cause a change in the state variab le if the next stable state is in the same row.

A formal procedure for reduc ing a flow table is given in Section 9.5. In order to complete
the design example in the current section without going through the fonnal procedure. we will
apply the merging process by using a simplified version of the merging rules. Two or more rows
in the primitive flow table can be merged into one row if there are noncon flicting stales and
o utputs in each of the col umns. Whene ve r o ne state sy mbol and do n't -care entries are e n­
countered in the same column, the state is listed in the merged row. Moreover. if the stale is
circ led in one of the rows. it is also circled in the merged row. The output value is included with
each stable slate in the merged row. Becau se the merged stales have the same output. the state
cannot be distinguished on the basis of the output.

We now apply these rules to the primitive flow table of Fig. 9.16. To see how this is do ne.
the primitive flow table is separated into two parts of three rows each . as shown in Fig. 9.17(0).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the fou r columns. The first column shows state c in all the rows and 0 or a dash for
the output. Since a da...h represents a don ' t-care condition, it can beassociated with any state or
outp ut. The two da shes in the first column can be taken to be 0 output to make all three rows
identical to a stable state c with a 0 output. Th e second column shows that the dashes can beas­
signed to correspond to a stable state a with a 0 output. Note that if a state is circled in one of
the rows, it is also circ led in the merged row. Similarly. the third column can be merged into an
unstable state b with a don' t-care output, and the fourth column can bemerged into stable state
d and a 0 output. Thus, the three rows a, c. and d can be merged into one row with three stable
states and one unstable stale, as shown in the first row of Fig. 9.17(b). 1be second row of the
reduced table results from the mergi ng of rows b, e, andfof the peim iaveflow table. In this ex­
amp le. there are two ways that the reduced tab le can bedrawn. Fint., the letter symbo ls for the
states can be retained 10 show the relationship between the reduced and primitive flow tables.
Alternatively. because the t'A-'0 tables have the same output. we can assign a common letter sym­
bolto all of the stable states of the merged rows. Thu s, states c andd are replaced by state a,and
states r andfare replaced by stale b. Both alternatives are shown in Fig. 9 .17(b) .

436 Chapter 9 Asynchronou s Sequential l ogic

DG
00 01 11 10

a , ,- 0 ° ' ,- - , -

c 0 ,0 ' ,- - - d, -

d " - -, - ., - 0. 0

DG
00 01 11 10

b - , - 0 , - 0 .1 ~.-

e
~ ~ ! ,- - , - b , - 0 1

! Q) l 0 , - - , - ~ , -

(a) Sta tes that are candida tes for merg ing

"~
" .,

DG
00 01 11 10

c d 0 ° 0 ° ' ,- 0. °
"[<Z" ' ,- 0 ,10 1

DG
00 01 11 10

•
, 0 ° 0 ° ' ,- 0 °

"•".0 ,1 , , - 0 ·10 .1

(b) Reduced table (two alte rnatives)

FIGURE 9 ,17
Redu ction of the primitive flow table

Transit ion Table and Logic Diagram

In order to obtain the circuit described by the reduced flow table, it is necessary to assign
a distinct binary value to each state. This assignment converts the flow table into a transi­
tion table. In the general case, a binary state assignment must be made to ensure that the cir­
cuit will be free of critical races. The state-ass ignment problem in asynchronous sequential
circuits and ways to solve it are discussed in Section 9.6. Fortunately, there can be no crit­
ical races in a two-row flow table; therefore, we can finish the design of the gated latch
prior to studying that section. Assigning 0 to sta te a and I to state b in the reduced flow table
of Fig. 9.17(b), we obtain the transition table of Fig. 9.18(a). The transition table is, in ef­
fect, a map for the excitation variable Y. The simplified Boolean function for Y is then ob­
tained from the map as

Y = DC + C'y

There are two don' t-care outputs in the final reduced flow table. If we assign values to the our­
put as shown in Fig. 9.18(b), it is possible to make output Q identical to the map of the exci­
tation function Y. Alternatively, i f we replace the don' t-care by I when J = I and DC ::: 01,
the map reduces to Q ::: Y. If we assign the other possible values to the don't -care outputs. we
can make output Q equal to y. In either case, the logic diagram of the gated latch is as shown
in Fig. 9.19.

OG, 00 01 11 10

0 0 0 I '0' 1'-- 0
-

lfJ Ii;J)~
'<§f§.:

I 0
~":'$:'-
~'"''!J :~.,.,;:

(a) Y =-DG.;.G·y

Section 9.4 Design Procedure 437

OG, 00 01 11 10

0 0 0 0 0

1 ID,;1l JW~1 i)) 1;/,
U. L'i!""co;

oic - Y

FIGURE 9. 18
Transition table and output map for gated latch

O- - --- - G ?

,

Q

FIGURE 9 .19
Gated-latch logic diagram

The diagram can also be implemented by an SR latch. Using the procedure outlined in
Section 9.3, we first obtain the Boolean functions for S and R, as shown in Fig. 9.20(a). The
logicdiagram with NAND gates (see Fig. 5.4) is shown in Fig. 9.20(b). Note that the gated latch
is a level-sensitive D-latch, introduced in Section 5.3 and Fig. 5.6.

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associated with them. The un­
stable states have unspecified output entries designated by a dash. The output values for the
unstable states must be chosen so that no momentary false outputs occur when the circuit
switches between stable states. This means that if an output variable is not supposed to
change as the result of a transition. then an unstable state that is a transient state between
two stable states must have the same output value as the stable slates. Consider. for exam­
ple, the flow table of Fig. 9.21(a). A transition from stable stale a 10 stable state b goes
through the unstable state b. If the output assigned to the unstable state b is a I. then a mo­
mentary short pulse willappear on the output as the circuit shifts from an output of 0 in state
a to an output of I for the unstable b and back to 0 when the circuit reaches stable slate b.
Thus, the output corresponding to unstable stale b must be specified as 0 to avoid a mo­
mentary false output.

438 Chapter 9 Asynchron ous Sequential logic

0 0 II" 0

x 0 IIxi x

x ~ 0 X

0 u 0 0

,
o

00
DG

01 11

(1)5. DO

10 ,
o

00
DG

01 II

R -D'O

10

<a) Maps for 5 and R

G-+---i

R

(b) Logic diagram

fiGURE 9 .20
Circuit with SR latch

o

•
c

d

(9.0 ..-
< .- @.o

0 ' d . -

o . - Q). I

0 0

X 0

, 1

X 1

(I) flow table

fiGURE 9,21
Assign ing output values to unstable states

(b) OUIPUI assignment

If an output variable is 10 change value as a result of a change in state. tben this variable is as­
signed a don ' t-care condition. For exem ple.tbe transition from stable state b 10stable state c in
Fig. 9.21(a) changes the output from 0 10 1. If a 0 is entered as the output "aloe for the unstable
state c, then the chan ge in the outpu t variable will not take place unti llhe end o f the transition. If
a 1 is entered. the change will take place at the stan of the transition, Since it makes no difference

Section 9,5 Reduction of State and Flow Tables 439

when the change in output occurs, we place a don't-care entry for the output associa ted with un­
stable state c. Fig. 9.21(b) shows the output assignment for the flow table, demonstrating the four
possible combinations of changes in output that can occur. The procedure for making the assign­
ment to outputs associated with unstable states can be summarized as follows:

1. Assign a 0 to an output variable associ ated with an unstable state which is a transient state
betw een two stab le sta tes that have a 0 in the corresponding output variable.

2. Assign a I to an output variable associ ated with an unstab le state which is a transie nt state
betw een two stable states that have a I in the corresponding output variable .

3. Assign a don ' t-care condition to an output varia ble associated with an unstab le state
which is a tran sient state between two stable states that have diffe rent value s (0 and I,
or I and 0) in the corresponding output variable .

Summary of Design Procedure

The design of asynchronous sequential circuits ca n be carried o ut by using the procedure il ­
lustrated in the prev ious example. Some of the design steps need further elaboration and are
explained in upcomin g sections. The procedural steps are as follo ws:

t. Obtain a primiti ve flow table from the given de sign specifications. This is the mos t
difficult pan of the design , because it is necessary to use intuition and expe rience to
arri ve at the correc t interpretation of the probl em specifications.

2. Reduce the flow table by merging rows in the primitive flow tab le. A forma l procedure
for merging rows in the flow table is give n in Section 9.5.

3, Assign binary state variables to each row of the reduced flow table to obtain the trans i­
tion tab le. The state-ass ignment procedure that el iminate s any possible critical race s is
given in Sec tion 9.6 .

4, Assign output value s to the dashes associ ated with the unstable states to obtain the out­
put maps. Thi s procedure was explained previously.

S, Simplify the Boolean functions of the excitation and output variables and draw the logic
diagram, as shown in Section 9.2. The logic diagram can be drawn with SR latches, as
shown in Secti on 9 .3 and also at the end of Secti on 9.7.

9 . 5 REDUCTION OF STATE AND FLOW TABLES

The procedure for redu cing the number of internal states in an asynchronous sequential circ uit
resembles the procedur e that is used for synchronous circuits. An algorithm for the state re­
duction of a completely specified state table was given in Secti on 5 .7. We will review this al­
gorithm and apply it to a state-reduction method that uses an implica tion table. The algorithm
and [he implication table will then bemodified to cove r the state reduction of incompletely spec­
ified state table s. The modified algorithm will be used to explain the procedure for reducing
the flow table of asynchronous seq uential circuits.

440 Chapter 9 Asynchron ous Seq uential Log ic

Tab le 9. 3
Stote Table ta Demamtrate Equivalent States

Next State Out put
Prese nt
State x = 0 x = I ... = 0 x = I

a c b 0 I
b d a 0 I
c a d I 0
d b d I 0

Implica tion Table and Implied State.

The state-reduction procedure for completely specified state tables is based on an algorithm that
combines two slates in a slate table into one. as long as they can be shown to be equivalent.
Two states are equ ivalent if. for each possible input. they give exactly the same output and go
to the same next states or to equ ivalent next states"Table 6.6 shows an example of equ ivalen t
states that have the same next states and outputs for each combination of inputs. There are oc­
casions when a pair of states do not have the same next states. but. nonetheless. go 10equ iva­
lent next states. Consider. for example. the state table shown in Table 9.3. The present states a
and b have the same output for the same input. Their next states are c and d for .r = 0 and b
and a for .r = I . If we can show that the pair of states (c. d) are equivalent, then the parr of states
(a , b) will also beequivalent, beca use they will have the same or equivalent next sta tes. When
this relationship exists. we say that (a. b) imply (c, d) in the sense that if a and b are equiva­
lent then r and d have to be equivalent. Similarly, from the last two rows of Table 9.3 . we find
that the pair of stales (c, d) implies the pair of states (a, b). The characteristic of equivalent states
is that if (a . b) imply (c, d) and (c , d) imply (a , b), then both pairs of states are eq uivalent: that
is, a and b are equivalent, and so are c and d. As a consequence. the four rows of Table 9.3 can
be reduced to two TOW S by combining a and b into one state and c and d into a second state.

The check ing of each pair of states for possible equivalence in a table with a large number
of states ca n be done systematically by means of an implicatio n table, which is a chan that
consists of squares. one for every possible pair of states, that provide spaces for listing any
possible implied states. By judicious use of the table, it is possible to determine all pairs of equiv­
alent states. The Slate table of Table 9.4 will be used to illustrate this procedure. The implica­
tion table is shown in Fig. 9.22. On the left side along the vertical are listed all the states defined
in the state table except the first. and across the bottom horizontally are listed all the states ex­
cept the last. The result is a display of all possible combinations of two stares. with a square
placed in the intersection of a row and a column where the two states can be tested for equ iv­
alence. Two states having different outputs for the same input are not eq uivalent.

Two states Ihat are nOI equivalent are marked with a cross [X] in the corresponding square.
whereas their equivalence is recorded with a check mark (\'). Some of the squares have entries
of implied states that must be investigated further to determine whether they are equivalent. The
step-by-step proced ure of filling in the squares is as follows: First. we place a cross in any
square corresponding to a pair of states whose outputs are not equal for every input. In this case,

Section 9.5 Reduction of State and Flow Tables 441

Table 9 .4
State Table to Be Reduced

Next State Output
Present

St a t e x = 0 x = 1 x = 0 x = 1

a d b 0 0
b e a 0 0
c , f 0 1
d a d 1 0
e a d 1 0
f c b 0 0, a e 1 0

b

r

d

e

f

,

~

d , eJ

x x

x x x

x x x /

C, d x c, e x x x x. , b

x x x d , e J d , e J x l

FIGURE 9.22
Implication table

b c d , r

state c has a different output than any other slate, so a cross is placed in the two squares of row
c and the four squares of column c. There are nine other squares in this catego ry in the impli­
cation table.

Next, we enter in the remaining squares the pairs of states that are implied by the pair of states
repre senting the squares. We do that starting from the top square in the left co lumn and going
down and then proceeding with the next column to the right. From the state table , we see that
pair (a, b) implies (d, e), so (d, e) is recorded in the square defined by column a and row b. We
proceed in this manner until the entire table is completed. Note that states (d. e) are eq uivalent
because they go to the same next state and have the same output. Therefore, a check mark is
recorded in the square defined by column d and row e, indicating that the two states are equiv­
alent and independent of any impl ied pair.

442 Chapter 9 Asynchronous Sequential l ogic

The next step is to make success ive passes throug h the table to determine hethe r any ad­
dit ional squares should be marked with a cross. A square in the table is crossed OUI if it con­
rains atleast one implied pair thai is not equivalent . For example. the ~uare defined b)"a and
f is marked with a cross next 10 C". d because the pair rc, tf) defines a square thai contain.. a
cross. Thi s procedure is repeated until no additi onal squares can be crossed 001. Finally. all
the squares that have no crosses are recorded with check mark s.Tbese squares defme pairs of
equivalent states. In this example. the equivalent Mates are

(a. b) (d. t) (d. g) (to. go)

We now combine pairs of states into larger groups of equi valent stales. The libt three pairs
can be combined into a set of rbree equivalent states (d. e, g) becau se each one of the states in
the group is equivalent to the other two. The final partition of the states consists of the equi v­
alent states found from the implication table. together w ith all the remaining states in the state
table thai are not equivalent to any other state. Th is group consi sts of

(a, b) (e) (d. e. g) (j)

Thus. Table 9.4 can be reduced from seven slates to four. one for each member of the preced­
ing partit ion. The reduce d state table is obtained by replacing state b by a and slates e and g
by d and is sbown in Table 9.5,

Me rg ing of the Flow Table

There are occasions when the state table for a sequential circuit is incompletely specified" This
happens when certain combinations of inputs or inpu t sequences never occur because of ex­
temal or internal con straints, In such a case. the next sta tes and output" thai should have oc­
curred if all inputs were possible are never attained and are regarded as don 'Hare co nditions .
Although synchronous sequential circuits may sometimes be represented by incompletely spec­
ified state tables. our interest here is with a.synchronous sequential circuits. for w hich the prim ­
itive flow table h always incompletely specified.

Incompletely spec ified states can be combined to reduce the number of state.. in the flow

table. Such stares cannot becalled equi valen t because the formal de finition of equiv alence reo
quire !'> tha t all OUIPUIS and next ..rates be specified for all inputs. Instead. two incompletely
specified slates that can be co mbined are said to be C"ompatible , Two Mates are compatible if.

Table 9 .5
Reductd Stott TobIt

Next State Output
Present
State ... = 0 x = 1 ... = 0 , = 1

a d a 0 0, d f 0 I
d a d I 0
f c a 0 0

Section 9.5 Reductio n of State and Flow Tables 443

00 01 II 10

.;

.; d ,/'x

.; d , /'x .;

c,f X .; d , e x:
X

c,f X

c ,f X .; d , /' x .;X c,f X

a

b

c

d

,

f

c , » 0 0 b , - - , -

- - ,,- (El I " -

8 0 ', - - , - d , -

' ,- - , - b, - @) o

f ,- - - b , - 0 1

0 1 ' ,- - ,- , , -

(a) Primitive flow ta ble

b

c

d

,

f

ab c d

(b) Implication table

,

f iGURE 9 ,2 J
Flow and implication tables

(or each possible input. they have the same output whenever it is speci fied and their next states
are compatible whe never they are specified. A ll don ' t-care conditions marked with dashes have
no effect in the search (or compatible states . as they represent unspecified conditions .

The process that must beapplied in order to find a suitable gro up of co mpa tibles (or the pur-
pose of merging a flow tab le can be di vided into three steps:

1. Determine all com patible pairs by using the implication table.

2. Find the maximal compatibles with the use of a merge r diagram.

3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibles is then used to merge the row s of the flow tab le. We will
now proceed to show and ex plain the three procedural steps. using the primitive flow ta ble
from the design example in the pre vious section.

Co mpati ble Pairs

The procedure for finding compatible pairs is illustrated in Fig. 9.23. Theprimitive flow table in (a)
is the same as Fig. 9.16. The entries in each square represent the next state andoutput Thedashes
represent the unspec ified states or outputs. The implication table is used to fmdcompatible States.
j ust as it is used to find equivalent stales in the co mplete ly specified case. Theonly difference is that,
when co mparing rows, we are at libe rty to adjust the dashes to fit any des ired condi tion .

Two states are co mpatible if, in every column of the co rres ponding rows in the flow table.
there are ide ntical or compatib le sta tes and if there is no conflict in the outp ut val ues. For ex­
ample. row s a and b in the flow table are found to be compatible. but rows a endjwill be com­
patible only if c and j'are co mpatible . However, rows c and j'are not compatible, because they

444 Chapt er 9 Asynchron ous Sequ ential Logic

have different outputs in the first column. This information is recorded in the implication table .
A check mark designates a square whose pair of states arecompatible . Those states which are
norco mpatible are marked with a cross. The remaining squares are recorded with the implied
pairs that need further investigation.

Oncethe initial imp lication table has been filled, it is scanned again to crossout the squares
whose impl ied states are not compatible. The remaining squares that contain chec k marksde­
fine the compatible pairs. In the example of Fig. 9 .23. the compatible pairs are

(a . b) (a. c) (a. <!) (b. c) (b.1l (c. <!) (c .1l

Maximal Compatibles

Having found all the compatible pairs. the next step is to find larger sets of states that are com­
patible. The maximal compatible is a group of compatibles that contains all the possible com­
binations of compatible states. The maximal compatible can beobtainedfrom a merger diagram.
as shown in Fig. 9.24. The merger diagram is a graph in which each state is represented by a
dot placed along the circumference of a circle. Lines are drawn between any two correspon­
ding dots that fonn a compatible pair. All possible co mpatibles can beobtained from the merg­
er diagram by observing the geometrical patterns in which states areconnected to each other.
An isolated dot represents a state that is not compatible with any other state. A line represents
a compatible pair. A triangle constitutes a compatible with three states . An a-state compatible
is represented in the merger diagram by an a-sided polygon with all its diagonals connected.

The merger diagram of Fig. 9.24{a) is obtained from the list of compatible pain:derived from
the implication table of Fig. 9.23. There are seven stra ight lines connecting the dots. one for
each compatible pair . The lines fonn a geometrical pattern consisting of two triangles con­
necting (a. c. d) and (b. ~.j) anda line (a. b). The maximal co mpatibles are

(a. b) (a. c. <!) (b. c.1l

•

,j-- - --t---'I;-----:"'.

,

d

(a) Maximal rompaliblc:
(d. b) (d . C. d) (b.t."

FI(j,URE9 .24
Merger diagram s

g

•

,
(b) Maximal eompatible:

(II , b,t."(b , c.lt) (c. d) (I)

Sectio n 9.5 Reduct ion of State and Flow Tables 445

Figure 9.24(b) shows the merger diagram of an eight-state flow table. The geometrical pat­
terns are a rectangle with its two diagonal s connected to form the four-state compatible (a . b.
e. f) . a triangle (b. c. h). a line (c. dl. and a single state g that is not compatib le with any other
state. The maximal compatibles are

(a, b, ' ,f) (b, c. h)(c', d) (g)

The maximal compatible set can be used to merge th.e flow table by assigning one row in the
reduced table 10each member of the set. However. quite often the maximal compatibles do not
necessarily constitute the set of compatibles that is minimal. In many cases. it is possible 10find
a smaller collec tion of compatib les that will satisfy the condition for merging rows.

Closed-Covering Conditio n

The condit ion that must be satisfi ed for merging rows is that the set of chosen compatibles
must cover all the states and must be closed. The set will cover all the states if it includes all
the states of th.e original state table. The closure condition is satisfied if there are no implied
states or if the implied states are included with.inthe set. A closed set of compatibles that cov­
ers all the states is called a closed covering. The closed-covering condition will be explained
by means of two example s.

Consider th.e maximal compatib les from Fig. 9.24(a). If we remove (a. b). we are left with
a set of two compat ibles:

(a. c, d) (b. e.f)

All six states from the flow table in Fig. 9.23 are included in th.is set. Thus. the set satisfies the
covering condition. There are no implied states for (a. c); (a. d) ; (c. d) : (b. e); (b, f) ; and (e, f),
as is seen from the implication table of Fig. 9.23(b), so the closure condition is also satisfied.
Therefore, the primitive flow table can be merged into two rows, one for each of the compat­
ibles. The detailed construction of the reduced table for this particular example was done in th.e
previous section and is shown in Fig. 9. I7(b).

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9.25(a). The compatible pairs derived from the implica tion table are

(a. b) (a . d) (b, c) (c, d) (c, e) (d. e)

From the merger diagram of Fig. 9.25(b). we determin e the maximal compatibles:

(a, b) (a. d) (b. c) (c , d, e)

If we choose the two compatibles

(a, b) (c. d. e)

then the set will cover all five states of the original table. The closure condition can bechecked
by means of a closure table, as shown in Fig. 9.25(c). The implied pairs listed for each com­
patible are taken directly from the implication table. The implied pair of states for (a, b) is (b,
c) . But (b, c) is not included in the chosen set of (a , b) (c. d. e). so this set of compatibles is not
closed. A set of compatibles that will satisfy the closed-eovering condition is

(a, d) (b. c) (c. d. e)

446 Chapter 9 Asynchron ous Sequential Logic

,-----
b . c }

x d. e}

b.c } x a , d}

x x I b.dl

b

c

d

,
a b c d

b

(a) Implication table (b) Merger diagram

Compatibles (a. b) (a, d) (b, c) (c. d. t)

Implied states (b. c) (b. cJ (d ,e) (a, d)

(b. c)

(c) Closure table

FIGURE 9 .25
Choosing a set of compatibles

The set is covered because it contains all five states. Note that the same stale can be repeated
more than once. The closure condition is satisfied because the implied states are (b. c) (d. e)
and (a , dl . which are included in the set. The original flow table (not shown here) can be re­
duced from five rows 10 three rows by merging rows a and d. b and c, and c. d. and e. Note also
that an alternative satisfactory choice of closed-covered compatibles would be (a, b) (b. c)
(d. e). In general, there may be more than one possible way of merging rows when reducing a
primitive flow table.

9 . 6 RACE -FREE STATE ASSIGNMENT

Once a reduced flow table has been derived for an asynchronous sequential circuit. the next step
in the design is to assign binary variables 10each stable state. This assignment results in the
transformation of the flow table into its equivalent transition table. The primary objective in
choosing a proper binary state assignment is the prevention of critical races. The problem of
critical races was discussed in Section 9.2 in conjunction with Fig. 9.7.

Section 9.6 Race-Free State Assignment 447

Crit ical races can be avoided by making a binary state ass ignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow tab le. To ac­
complish this objective, it is nece ssary that states betw een which transitions occ ur be given ad­
jacent assignments. Two binary value s are said to be adjacent if they differ in only one variable.
For example. 010 and a l l are adjacent because they diffe r only in the third bit .

In order to ensure that a transit ion table has no critical races, it is necessary to test each pas·
sible transi tion between two stable states and verify that the binary state variables change one
at a time. Th is is a tedious proce ss, especially when there are many row s and columns in the
table. To simplify matters. we will explain the procedure of binary sta te assignment by goi ng
through examp les with only three and four row s in the flow table . These examples will demon­
strate the general procedure that must be followed to ensure a race-free state assignment. The
procedure can then be applied to flow table s with any number of row s and columns.

Three-Row Flow·Table Example

The assignment of a single binary variable to a flow table with two rows does not impose critical
race problems . A flow table with three rows require s an assignment of two binary variables. The as­
signment of binary values to the stable slates may cause critical races if it is not done properly. Con­
sider, for example, the reduced flow table of Fig. 9.26{a). The outputs have been omitted from the
table for simplicity. Inspection of row a reveals that there is a transition from state a to state b in col­
umn 0 1 and from state a to state c in column 11. This information is transferred into a transition di­
agram, as shown in Fig. 9.26(b). The directed lines from a to b and from a to c represent the two
transitions just mentio ned. Similarly, the transitions from the other two rows are represented by di­
rectedlines in the diagram, which isa pictorial representation of all required transitions between rows.

To avoid critical races, we must find a binary state assignme nt such that only one binary vari­
able changes during each state transition. An attempt to find such an assignment is shown in
the transition diagram . State a is assigned binary 00, and state c is assigned binary 11. Thi s as­
signme nt will ca use a critical race during the tra nsition from a to c becau se there are two
changes in the binary state variables and the transition from a to c ma y occur directly or pass
through b. Note that the tran sition from c to a also causes a race condition. bUI it is noncritical
because the transition does not pass throu gh other states.

8 b c 8
" (0 (0 c

a (0 (0 (0

b - 01

c - 11

" - 001000

b

,

(a) F10w table (b) Transition diagram

FI" URE 9 .26
Three-row flow-table example

448 Chap te r 9 Asynchronou s Sequential Logic

00 01 11 10

a

b

c

d

8 b d 8
a (0 (0 c

d 8 8 8
, - c -

a = 00

d = 10

b = 01

c= ll

(a) Flow table

FIGURE 9.27
Flow tabl e with an extra row

(b) Transition diagram

A race-free assignment can be obtained if we add an extra row to the flow table. The use of
a fourth row does not increase the number of binary state variables, but it allows the formation
of cycles between two stable states. Consider the modified flow table in Fig. 9.27. The first three
rows represent the same conditions as the original three-row table. The fourth row, labeled d.
is assigned the binary value 10. which is adjacent to both a and c. The transition from a to c
must now go through d. with the resuh that the binary variables change from a = 00. to
d = 10, to c = I I, thus avoiding a critical race. This is accomplished by changing row a. col­
umn 11. to d and row d, column I I, to c. Similarly, the transi tion from c to a is shown to go
through unstab le state d even though column 00 repre sents a noncritical race .

The transition table corresponding to the flow table with the indicated binary state assign ­
ment is shown in Fig. 9.28. The two dashes in row d represe nt unspecified states that ca n be
considered don't-care conditions. However, care must be taken not to assign 10 to these squares,
in order to avoid the possibility of an unwanted stable state being established in the fourth row.

00 01 11 10

c '" 11

® 01 10 @
00 6) 0) 11

10 G (0 C0
00 - 11 -

FIGURE 9.28
Transition ta ble

Section 9 .6 Race-Free State Assignment 449

10

b (0 d (0
0) d 8 a

8 a b 8
c (2) (2) c

,

b

c

d

00 01 II

d

b

c

(a) Flow table (h) Transition diagram

FIGURE 9 .29
Four-row flow-tab le example

This example demonstrates the use of an extra row in the flow table for the purpose of
achieving a race-free assignment. The ex tra row is not assigned to any specific stable stale, but
instead is used to convert a critical race into a cycle that goes through adjacent transitions be­
tween two stable states. Sometimes, just one extra row may not be sufficient to prevent criti­
cal races, and it may be necessary to add two or more ext ra rows in the flow table. This
possibility is demonstrated in the next example .

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although a race-free
assignment is sometimes possible with only two binary state variables, in many cases the re­
quirement of extra rows to avoid critical races willdicta te the use of threebinary state variables.
Consider, for example, the flow table and its corresponding transition diagram shown in Fig. 9.29.
If there were no transi tions in the diagonal direction (from b to d or from c to a), it would be
possible to find an adjace nt assignment for the remaining four transitions. With one or two di­
agona l transitions, there is no way of assigning two binary variables that satisfy the adjacency
requirement. Therefore, at least three binary state variables are needed.

Figure 9.30 shows a state assignment map that is suitable for any four-row flow table.
States a, b. c. and d are the orig inal states. and e.I, and g are extra state s. States placed in
adjacent squares in the map will have adjacent ass ignments. State b is assigned binary 00 1
and is adjace nt to the other three original states. The transition from Q to d must be directed
through the extra stale e to produce a cycle so that only one binary variable changes at a time.
Similarly, the transition from c to Q is directed through g. and the transition from d to c
goe s through f. By using the assignment given by the map. the (our-row table can be ex­
panded 10 a seven-row table that is free of critical races. as shown in Fig. 9.3 1. Note that
alth ough the flow table has seven rows. there are only four sta ble states . The uncircled
states in the three ex tra rows are there merely to provide a race-free tran sition between the
stable states.

450 Chapter 9 Asynchronou s Sequ ential Logic

)'lYz

~oo 01 11 10 I
O ~, • c I ,
1 , d f

(I) Bin.ary uMltIlIDCUI

FIGURE 9.30
Choosing edr. rows for the flow table

• .001

•
,=OlD

d _t OI /"' 111 ,,_ Oil

(til Tran~tion diavam

00 01 11 10

000 - ,

OOI - b

011 - t:

010 -,

110 -

111 -/

tOI - d

IOO -e

b 0 , 0
0 d 0 ,

(0 s • (0
- , - -

- - - -

, - - c

f 0 0 f

- - d -

FIGURE 9 .31
Sta te assignment to modified flow table

This example demonstrates a possible way of selecti ng extra rows in a flow table in order
to achieve a race-free assignment.A stare-essignmenrmap similarto the oneused in Fig.9.30(a)
can be helpful in most case s. Sometimes we can take advantage of unspec ified entries in the
flow table . Instead of adding rows to the table. we may be able 10 eliminate critical races by
directing some of the state transitions through the don't-cere entries . The actual ass ignment
is done by trial and error. unti l a satisfactory assignme nt is found thai resolves all critical
races.

Section 9.6 Race-Free Sta te Assignment 451

Multiple-Row Method

The method for making race-free stale assignments by adding extra rows in the flow table, as
demonstrated in the previous two examples. is sometimes referred to as the shared-row method.
A second method. called the multiple-rowmethod. is not as efficient, but is easier to apply. In mul­
tiple-row assignment. each state in the original now table is replaced by two or more combinations
of slate variables. The state-assignment map of Fig. 9.32(a) shows a multiple-row assignment that
can beused with any four-row now table.There are two binary state variables for each stable state,
each variable being thelogical complement of the other. For example, the original slate a is replaced
with two equivalent states a \ = <XJO and a 2 = I l l. The output values, not shown here. must be
the same in 0 \ and 0 2' Note that a l is adjacent to bl. C2' and d ., and 0 2 is adjace nt to c r- b2• and
d2, and. similarly. each state is adjace nt to three slates with different letter designations. The be­
havior of thecircuit is the same whether the internal state is a I 01"0 2, and so on for the other states.

Figure 9.32(b) shows the multiple -row ass ignment for the original flow table of Fig. 9.29(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows bl and b2. and stable state b is entered in columns 00 and 11
in both rows hi and b2. After all the stable states have been entered , the unstable states are
filled in by reference to the assignment specified in the map of pan (a) . In choosing the next
state for a given present state, a state that is adjacent to the present state is selected from the
map . In the origina l table, the next states ofb are a and d for inputs 10 and 0 I. respectively. In
the expanded table . the next slates of b l are a I and d2, because these are the states adjacent to
b\ . Similarly. the next states of~ are 0 2 and db because they are adjacent to b2.

00 01 11 10

,
., b, <, d,

<, d, ., b,

b , 6) d, 6)
b, 6) d, 6)
(0 d, (0 .,

(0 d, (0 .,

G) ., b , G)
G) ., b, G)
<, 8 8 <,

<, 8 8 <,

no = b1

101 - d1

100 - Cl
10

Yl YJ

01 1100,
o

(a) Binary assignment (b) F10w table

FIGURE 9 ,3 2
Multiple-row assignment

452 Cha pte r 9 Asynchronous Sequential Logic

In the mult iple-row ass ignment, the change from one stable state 10 another will always
cause a change of only one binary state variable. Each stable stale has IWObinary assignments
with exactly the same output. AI any given time, only one of the assignments is in use. For ex ­
ample, if we sian with state a I and input 01 and then change the input to 11. 0 1. 00 . and back
10 0 1, the seque nce of internal states will be a l. d l , C! . and a2. Although the circuit starts in stale
a I and termin ates in state a2. as far as the input-output relationship is concerned. the two stares
a I and e a are equivalent to stale a of the original flow table.

9 . 7 HAZARDS

In designing asynchro nous sequential circuits, care must be taken to conform with certain re­
strictions and precautions 10 ensure that the circ uits operate proper ly. The circui t must beop­
erated in funda mental mode with only one input changing at any time and must be free of
cri tical races. In addit ion , there is one more phenomenon. called a hazard, thai may cause the
circuit to malfunction . Hazards are unwanted switching transients thai may appear at the out­
pUI of a circ uit because different paths exhibit different propagation delays. Hazard s occur in
combinational circuits, where they may cause a temporary false output value. When they occur
in asynchronous sequential circuits. hazards may result in a transiti on 10 a wrong stable stare.
It is there fore necessary 10 check for possible hazard s and determine whether they can cau se
improper operations. If so, then steps must be taken to eliminate their effect.

Hazards In Combinational Circuits

A hazard is a condition in which a change in a single variable produces a momentary change
in output when no change in output should occur. The circuit of Fig. 9 .33(a) depicts the oc­
currence of a hazard. Assume that all three inpu ts are initially equal to I . This causes the out­
put of gate I 10 be I , that of gate 2 to be O. and that of the circuit 10 be 1. Now consider a
change in x 2 from I to O. Then the output of gale I changes 10 0 and that of gate 2 changes to
I, leaving the output at I. However, the output may momentari ly go 10 0 if the propagation delay
through the inverter is taken into consideration. The delay in the inverter may cause the OUI­
put of gate I to change to 0 before the output of gale 2 changes to I . In that case. both inputs

"

(a) Al'<D-QR circuit

fiGURE 9.:n
Circuits with hazards

y

(b) NAND circuit

y

Section 9.7 Hazards 4S3

of gate 3 are mom entari ly eq ual to O. ca using the ou tput to go to 0 for the short time during
which the input signal from X2 is delayed while it is pro pagating through the Inverter circuit.

Thecircuit of Fig. 9.33(b) is a NA.'\'D implementation of the Boolean function in Fig. 9.33<b).
and it has a hazard for the same reason . Beca use gates I and 2 are NA..'\ID gates. their outputs
are the complement of the outputs o f the correspo nding AND gates. When X2 changes from I
to O. both inputs of gate 3 may beequal to I. causing the output to prod uce a momentary change
to 0 when it should have stayed at I.

The two circuits shown in Fig. 9.33 implemem the Boolean function in sum-of-produc ts form :

Y "" X jX2 + xix)

Thi s type of implementation may cause the output to go to 0 when it should remain a I. If, how­
eve r, the circuit is implemented instead in product-of-sums fonn (see Section 3.5). name ly.

Y - (Xl + Xi)(X2 + X))

then the output may momentarily go to I when it shou ld remain O. Th e first case is referred to
as static J-haza rd and the seco nd case as static tl-hazard. A third type of hazard , known as
dynam ic hazard, causes the output to change thre e or more times when it should change fro m
I to 0 or from 0 to 1. Figure 9,34 illu strates the three type s of hazard s. When a circ uit is im­
plemented in sum-of-products fonn withAND-OR gates o r with NAND gates . the removal of
static l-h azard guarantees that no static O-hazards or dynamic hazard s will occ ur.

A hazard can bedetected by inspection of the map of the part icular circuit. To illustrate. con­
sider the map in Fig . 9 .35(a). which is a plot of the (unction implemented in Fig. 9 .33 . The
change in X2 from I 100 moves the circuit from mimenn I I I to mimerm 101. lbe hazard exi sts
because the change in input results in a differe nt prod uct term cove ring the two minrerms.

:1f
Ca) Sialic t ·hazard (b) Sialico-haurd (c) D ynamic baurd

FIGURE9 .34
Types of hazard s

",",
10110100,

I

I I I ~"'i.~ I I

o
"

10110100,
I&1'tj~!~

I ~\ii ~!;,.)Jess

o
"

FIGURE 9 .3 5
Maps illustrating a hazard and its removal

454 Chapter 9 Asynchronous Sequential Logic

FIC.URE 9 .36
Hazard-free circuit

Minterm 111 is covered by the product term implemented in gate I of Fig. 9.3 3. and minterm
101 is covered by the product term implemented in gate 2. Whenever the circuit must move from
one product term to another. there is a possibility of a momen tary interval when neither term
is equal to l , giving rise to an undesirable 0 output.

The remedy for eliminating a hazard is to enclose the two mmterms in question with anothe r
product term that overlaps both groupings . Thi s situation is shown in the map of Fig. 9.35(b).
where the two minterm s that cause the hazard are combined into one product term. The haz­
ard-free circuit obtained by such a configuration is shown in Fig. 9.36. The extra gate in the
circuit generates the product term XIX) . In general, hazard s in combinational circuits can be re­
moved by cove ring any two minterms that may produce a hazard with a product term common
to both. The removal of hazards requires the addition of redundant gates to the circuit.

Hazards In Sequential Circuits

In normal combinational-circuit design assoc iated with synchronous sequential circui ts. baz­
ard s are of no concern, since momentary erroneo us signals are not general ly trou bleso me .
However. if a momentary incorrect signal is fed back in an async hronous sequential circ uit. it
may cause the circuit to go to the wrong stable state. Th is situation is illustra ted in Fig . 9 .37.
If the circuit is in total stable state)' x l x2 = II t and input X2 changes from I to u. the next total
stable stale should be 110. However. because of the hazard. output Y may go to 0 momentarily.
If this false signal feeds back into gate 2 before the output of the inverter goes to I. the output
of gale 2 will remain at 0 and the circuit will switch to the incorrect total stable stale 0 10. This
malfunction can be eliminated by add ing an extra gate , as is done in Fig. 9 .36.

Imple mentat ion with SR Latches

Another way to avoid static hazards in asynchronous sequential circuits is 10 implement the cir­
cu it with SR latches. A momen tary 0 signal applied to the S or R inputs of a NOR latch will have
no effect on the state of the circuit. Similarly. a mom entary I signal app lied to the S and R in­
puts of a NAN D latch will have no effect on the state of the latch . In Fig . 9 .33(b), we observed

Sectio n 9,7 Hazards 455

" -4--{)o- '-_r--..

1

~=:f-:>--r Y - X1 X2 + X'21

(a) logic diagram

10110100

~1g.,;~..;S

~ t~w ~1"
,

~ ~!i'sssc

,
o

10110100

(0 (0 1 (0
1 C0 0 C0 C0

1

o

(b) Transitiontable (c) Map for Y

FIGURE 9 ,)7
Hazard In a n asynchro no us sequ e ntia l circuit

that a two-level sum-of-products expression implemented withNA~'D gate s may have a static
I-hazard if both inputs of gate 3 go to I, changing the output from I to 0 momen tarily. But if
gale 3 is part of a latch , the momentary I signal will have no effect on the output, becau se a
third input to the gate will come fro m the complemented side of the latch that will be eq ual to
oand thus maintain the out put at I. To clarify wha t was just said, consider a NAND SR latch
with the following Boolean function s for S and R:

S = AB + C D

R = A'C

Since this is a NAN D latch, we must apply the complemented values to the inputs:

5 - (AB + CD)' - (AB)'(CD)'
R ~ (A'C)'

This implementation is show n in Fig. 9.38(a) . S is generated with IWO NAND gates and one
AN D gate. The Boolean funct ion for o utput Q is

Q ~ (Q'S)' ~ IQ' (AB)'(CD)'l '

Thi s function is generated in Fig. 9.38(b) with two levels of NAND galeS.lfoutput Q is equal
to I. then Q' is equal to O. If two of the three inputs go momenwily to I, the NAND gate as­
soc iated with output Q will remain at I because Q' is maintained ill O.

Figure 9.38(b) shows a typical circuit that can be used to consuuct asynchronous sequen­
tial ci rcu its. The two NAND gates forming the latch normally haveIWo inputs. However, if the

456 Chapter 9 Asynchronous Sequential logic

c
A '==~~-----==10---+---- Q'

A - - -!hijp;;
8 - - i"C'''V

('1

cA '==jj#~-----==1~---+---- Q '

('1

FIGURE 9.38
Latch implementat ion

5 or R func tion s contain two or more product terms when ex pressed as a sum of produ cts , then
the corresponding NAND gate of the SR latch will have three or more inpu ts . Thu s. the two
term s in the original sum-of-prod ucts expression for5 are AD and CD. and eac h is imp leme nted
wi th a NAND gate whose output is applied to the input of the NAND latch . In thi s way, each
slate variab le requires a two- leve l circuit of NAND gate s. The first leve l cons ists of NM 'D gales
that implement eac h product term in the origin al Bool ean expression of S and R. The second
leve l form s the cross -coupled connectio n of the SR latch with inputs that come from the out­
puts of each NAND gate in the first level.

Essential Hazards

Thus far , we have co nsidered what are known as static and dynamic hazards . Another type of
hazard that may occur in asy nchronous sequential circuits is ca lled an essential hazard. Th is
type of hazard is caused by uneq ual delays along two or more paths that originate from the sam e
input. An excessive delay through an inve rter circuit in compariso n to the del ay associ ated

Sectio n 9 .8 De sig n Exa mple 457

with the feedback path may cause such a hazard. Essential haza rds cannot be corrected by
adding redund ant gates as in static hazards. The problem thai they impose can be corrected by
adjusting the amoun t of delay in the affec ted path. To avoid essential hazards. each feedback
loop must be handled with individual care to ensure that the delay in the feedback path is long
enough compare d with delays of other signals that originate from the input terminals. Thi s
problem tends to be specialized, as it depend s on the particu lar circuit used and the size of the
dela ys that are encountered in its vario us paths.

9. 8 DESIGN EXA MPLE

We are now in a position to examine a complete design example of an asynchronous sequen­
tial circuit. Thi s example may serve as a refe rence for the design of other, similar circuits. We
will demonstrate the method of design by followi ng the recommended procedural steps listed
at the end of Section 9.4 and repeated next. After stating the design specifications.

1. Deri ve a primit ive flow table.

2. Reduce the flow table by merging the rows.

3. Make a race-free binary state assignment.

4. Obtain the transition table and output map.

5. Obtain the logic diagram , using SR latches.

Design Specifications

It is necessary to design a negative-edge- triggered T flip-flop. The circuit has two inputs, T (tog­
gle) and C (clock) , and one output, Q.The output state is complemented i f T = 1 and the clock
C changes from I 100 (negative-edge triggering). Otherwise, under any other input condition,
the output Qrem ains unchan ged . Although this ci rcuit can beused as a flip-flop in clocked se­
que ntial circuits , the internal design of the flip-fl op (as is the case with all other flip-flops) is
an asynchronous problem.

Primitive Flow Table

Th e derivation of the primitive flow table can be facili tated if we n est derive a table that
lists all possible total states in the circuit. Thi s tab le is sho wn in Table 9.6 . We start with
the inpu t cond ition TC = I I and assign to it sta te a. Th e ci rcuit goes to stale b and the out­
put Q is complemented from °to I when C changes fro m I to 0 while T remains a 1. An ­
othe r cha nge in the output occu rs when the circuit goes fro m state c to sta te d. In thi s case,
T = I. C changes from I to 0 , and the output Q is comple men ted from 1 to O. The other
four states in the tabl e do not change the output, because T is equal to O. If Q is initially
0 , it stays at 0 , and if it is initiall y at I, it stays at I, even though the c lock input changes .
Th is ana lysis ide ntifies six total sta tes. Note that simultaneous transition s of tw o input
vari ables, such as that fro m 0 1 to 10, ace not incl uded, as they violate the conditio n for fun ­
da mental-mode operation.

458 Chapter 9 Asynchron ous Sequ ential Log ic

Table 9 .6
Specificotlon of Toto l Sta te.s

Inputs Output

State T C Q Comments

a I I o Initial outp ut is 0
b I o I After state a
c I I I Initial output is I
J I o o After state c, o o o After state d orf
I o I o After state e or 0

g o o I After state b or h
h o I I After state g or c

00

TC
01 II 10

FIGURE 9.39
Primitive flow table

a

b

d

,

I

s

h

- ,- 1 ,- @,. b , -

g , - - ,- c , - 0 ,1

- ,- h ,- 0 ,1 d , -

c , - -, - , , - @ ,o

0 ,0 1 ,- - - d , -

' ,- CD,O , , - - , -

G), I h , - - - b , -

g, - @,1 c , - - ,-

The primit ive flow table is shown in Fig. 9.39. The infonnation for the table can be ob­
tained d irectly from the cond ition s listed in Table 9.6. First. in each row, we fill in one square
belonging to the stable state in that row, as listed in the table. Then we enter dashes in those
squares whose input differs by two variables from the input correspond ing to the Mable state.
Finally, we identify the unstable conditions by utilizing the information listed under the com­
ments in Table 9 .6.

Sect ion 9.8 Design Exam ple 459

b

c

d

,

f

,
h

a . c x

x b , dx

b .dx X a, C X

b . d X
e , g x t , h x /b , dx

J e ,gx t ,h X / /a, C X a , C X

t, h x / b ,dx
e, g X X e, g X
b , d x t ,« X

t, h x
/

j d ,ex e , g X
X /1a , C X c ,f x t.h x

FIGURE 9 .40
Im plicat io n table

Merging of the Flow Table

b c d e f g

The rows in the primiti ve flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9.40. The squares that contain
check mark s define the co mpatible pairs:

~n~~~~~~~~~n~n~~

The maximal compatibles are obtained fro m the merger diagram shown in Fig. 9.41. The
geometrical patterns that are recognized in the diagram consist of two triang les and two straight
lines. The maximal compatible set is

(a,n (b, g, h) (c, h) (d, "n
In this particular example, the minimal collec tion of compatibles is also the max imal comper­
ible set. Note that the closed condition is satisfied because the set includes aU the original eight
states listed in the primitive flow table, although states h and!are repeated 1be covering con-­
dition is also satisfied, because al l the compatible pairs have no implied stares, as can be seen
from the implication tab le.

The reduced flow table is show n in Fig. 9 .42. The tableshownin part (a) mthe figure re­
tains the origi nal state symbols, but merges thecorresponding rows. For eumpIe. 5WeS a and
f are com patible and are merged into one row that mains the ariginalletter ymboIs or the
states. Similarly, the other three com patible sets of states are used to merge theflow rabIe into
four rows , retai ning the eight ori ginal letter symbols. lbe 0Iher altenwive ror drawing the
merged flow table is show n in part (b) of the figure. Here, we assign a common letter symbol

460 Chapter 9 Asynchron ous Sequential Logic

•

,

b

d

c

00

, .- <D o0 0 ' .-
0 .1 0 .1 '. - 0 1

, . 1 0 .1 0 ' d . -

0 .0 (]j.o -.- 0 .0

d .- 0 00 00 ·-

0. 10 1 ' .- 0. 1

b .- 0 ' 0 ' d.-

0 00. 0 -.- 0. 0

FIGURE 9 .41
Merger diag ram

e. f

b.g. h

C, "

d, ~, f

FIGURE 9.42
Red uced flow table

TC
01 11

(.)

10

,

-
b

c

d

00

TC
01 11

(0)

10

to all the stable states in each merged row. Thus, the symbol/is replaced by a. g and h are re­
placed by b. and similarly for the other two rows. The second alternative shows clearly a four­
state flow table with only four leiter symbols for the states.

State Assignment and Transition Table

The next step in the design is to find a race-free binary assignment for the four stable states in
the reduced flow table. In order to find a suitable adjacent assignment. we draw the transition
diagram. as shown in Fig. 9.43. For this example . it is possible to obtain a suitable adjacent as­
signment without the need of ex tra states. because there are no diagonal lines in the transition
diagram.

a '= 00

d ~ 10

fiGURE 9 .43
Transition diagram

Section 9.8 Design Example 461

b '= 01

C'"' 11

00
TC

01 11 10 00
TC

01 11 10

a » 00

b = 01

C = 11

d = 10

10 ® @ 01

@ @ II @
01 ® ® 10

® ® 00 ®
(a) Transit ion table

Y1Y1

00

01

II

10

0 0 0 X

1 1 1 1

1 1 1 X

0 0 0 0

(b) Output map Q - Y2

fiGURE 9 .44
Transition table and output map

Substituting the binary assignment indicated in the tran sitio n diagram into the reduced flow
tab le, we obtai n the transi tion table shown in Fig. 9.44. The output map is oblained from the
reduced flow table. The das hes in the output section are assigned values according 10 the rules
esta blished in Sect ion 9 .4 .

logic Diagram

The circ uit to bedesigned has two state variables, Y.andYlo andODe output. Q.The output map
in Fig . 9.44 shows tha t Q is equal to the state variable Y2-1be impkmentation ofthe circuit re­
quires two SR latches, one for each state variable. 1be maps for inpuIs S and R oflbr: two latches
are shown in Fig. 9.45. The maps are obtained from the informatiOll given in the transition
tab le by using the conditions spec ified in the latch excitation IabJc5bown in Fig.. 9 .14(b). The
simplified Boolean functions are listed under each map.

462 Chapter 9 Asynchronous Sequent ial logic

(a) Sj = Y2TC +y'2 rC'

w 0 0 0

0 0 r~ 0

0 X ~: X

fl X 0 X

01

11

10

00

TC
01 II 10

TC

00 01 11 10
M

00 X

01 X

11 0

10 0 0 0

(b) RI -Yl rC'+y'l TC

0 0 0 r!
X X X ~
X X X 0

0 0 0 0

X X X 0

0 0 0 0 I
0 0 0 " I

X X X /!/~'
li,I"

y,y,

00

01

11

10

00

TC
01 11

(C) S2 - Y'1TC'

10
M

00

01

11

10

00

TC

01 11

(d) R1- Yl TC

10

FIGURE 9 .45
Maps for latch Inputs

The logic diagram of me circuit is shown in Fig. 9.46. Here we use two NAND latches with
two or three inputs in each gate. This implementation is according to me pattern established in
Section 9.7 in conjunction with Fig. 9.38(b). The Sand R input functions requ ire six NAND
gates for their implementation.

The examp le just presented illustrates the complexity involved in designing asynchronous
sequential circuits. It was necessary to go through 10 diagrams in order to obtain the final cir­
cuit diagram. Although most digital circuits are synchronous, there are occas ions when one
has to deal with asynchronous behavior. The basic properti es presented in this chapter are es­
sential to a full understanding of the internal behavior of digital circuits.

Problems 463

T

c

r-,

"
~

"- ~' V;
"

~ ~
Y,

=-"-

~ Y',
~~l~~ !!J!:l'r

ss

'It};~? -
~= Y,

--~?!;!:}:
Y',

;tJ%'J;j ..:.:.,:.-....

Q

FIGURE 9.46
l ogic diagram of negat lve-edge-triggered Tflip-flop

PROBLEMS

Answers to problems marked with e appear at the end ofme book.

9 .1 (a) Explain the difference:between asynchronous and synchrooous scqumtial cin:uils.
(b) Define fundamental-mode: operation.
(c) Explain the: differenc e: between stable: and unstable stares.
(d) What is the difference between an internal state and a wu.I stale?

9 .2* Derive the transition table for the asynchronous sequential circuitshown in Fig. P9.2. Dc:tc:mlinc: the
sequence of internal states YlY2for !he following sequc:ncc ofinpJIs x,x2: 00. 10. 11,01. II . 10.00.

464 Chapter 9 Asynch ronous Sequential l ogi c

" --" -C>o-----f~~

" ----,- t-- - - --'- -f'; ,

Y,

Y,

FIGURE P9 .2

9 .3 An asynchronous sequential circuit is described by the excitation function

Y = XIX2+ (Xt + Xl»'
and the output function

Z=J
(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(c) Obtain a two-state flow table.
(d)· Describe in words the behavior of the circuit.

9 .4 An asynchronous sequential circui t has two internal states and one output. The two excitation
functions and one output function describing the circuit are, respectively.

Y1 = x lx2 + XI)' 2 + Xl}'1

Y2 = x2 + X\Yt)'2 + xiYt

Z = x 2 +)' 1

(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(c)· Obtain a flow table for the circuit.

9 .S Convert the flow table of Fig. P9.5 into a transition table by assigning the following binary val­
ues [0 the states: a = 00, b = I I. and c = 0 1.
(a) Assign values to the extra fourth state to avoid critical races.
(b) Assign outputs to the don' t-care states to avoid momentary false outputs .
(c)· Derive the logic diagram of the c ircuit.

9 .6 Investigate the transition table of Fig. 1'9.6, and determine all race conditions and whether they
are critical or noncritical. Determine also whether there are any cycles.

9 .7 Analyze the SR latch with control ShOWDin Fig. 5.5. Obtain the transition table. and show that
the circuit is unstable when all three inputs are equal 10 I.

9 .8 Modify the diagram of Fig. 5.5(a) 10 convert it into a JK type of latch by inserting two feedback
connections from the outputs to the inputs. Show that the circuit is unstable when J '" K '" I
while the control input C remains in the I state.

00 01 II 10

Probl em s 465

FIGURE P9.S

b

c

0 .0 b . - , .- 0 .1

..- 0. 0 0 .0 ' .-

..- b . - 0 ' 0. 0

00 01 II 10

FIGURE P9.6

01

II

10

10 @ II 10

e 00 10 10

01 00 (0 (0
II ~I ® ®

9 .9 For the asynchronous sequential circuit shown in Fig. 1'9.9,
(a) derive the Boolean functions for the outputs of the two SR larches Y1and Y2' Note mat the S

input of the second latch is xIJi.
(b) derive the transition table and OUlpUl map of the c ircuit.

r --iC:><>--,..-- - - - - - - - - - ,
Y,

" - -f::><>-- - - - - - - - - - - - --'

FIC.URE P9.9

466 Chapter 9 Asynchronous Sequential Logic

9 .10* Implement the circuit defined in Problem 9.3 with a NOR SR latch. Repeal with a :"OAXD SR
latch.

9 .11 Implement the circuit defined in Problem 9.4 with NA~'D SR latches.

9 .12 Obtain a primitive flow table for a circuit with two inputs, Xl and X2. and two outputs. ':: \ and '::2,
that satisfy the following four conditions:
(a) When X I.t2 ::: 00, the output is l1l2 :: 00.
(b) When x l ::: I and x 2 changes fromn ro I, the outpul is l l l 2 = 01 .

(c) When X2 = I and X l changes from 0 10 I, the output is ll:::2 = 10.
(d) Otherwise, the output does not change.

9 .13· Atraffic light is installed at aj unctionof a railroad anda road. The light iscontrolled by {\\"Oswitch­
es in the rails placed I mile apart on either side of tile junction. As....'itch is turned onhen the train
is over it and is turnedoff otherwise. The traffic light changes fromgreen (logic 0) to red (logic 1)
when the beginning of the train is I mile from the junction. The light changesback to green when
the endof the train is I mile away from the junction. Assume that the length of the trainis less than
2 miles.
(a) Obtain a primitive flow table for the circuit.
(b) Show thar the flow table can be reduced 10 four rows.

9.14 It is necessary to design an asynchronous sequential circuit with two inputs. Xl and X 2' and one
output. z. Initially, both inputs and output are equal 100. When Xl or X 2 becomes I. ::: becomes 1.
When the second input also becomes I, the output changes 10 O. The output stays at 0 until the
circuit goes back to the initial state.
(a) Obtain II primitive flow table for the circuit. and show that it can be reduced to the flo\\ table

shown in Fig. 1'9.14.
(b) Complete the design of the circuit.

00 01 11 10

FIGURE P9.14

b

0 ,00 1 ' ,- 0 1

.,- @,o @ ,o @,o

9.15 Assign output values to the don't-care states in the flow tables of Fig. 1'9.15 in such a way as 10

avoid transient output pulses.

9.16 Using the implication-table method, show that the stale table listed in Table 5.7 cannot be re­
duced any further,

9 .17 Reduce the number of states in the state table listed in Problem 5.12. Use an implication table.

9 .18· Merge each of lhe primitive flow tables shown in Fig. P9.18. Proceed as follows:

00

0 0 b .- - .- d .-

'.- 0 1 0 1 ,. -

b . - - - b.- 0 0

e- 0 1 , .- 0 1

0 0 b . - b. - 0 0

.. - 0 0 0 1 c , »:

b . - d . - 0 1 0 1 1

0 0 0 ' '.- e ,-I

•
b

c

d

FIGURl P9.15

01

1')

11 10

•
b

c

d

00

00

01

01

1b)

11

11

Problems 467

10

10

00

0 0 b.- - .- ..-
..- 0 0 '. - - -

- .- d .- 0 0 '.-
'.- 0 1 - - - .-

' .- - - 1.- 0 0

- .- , .- (D o ' .-
..- 0 0 -.- - .-

' .- -.- - .- 0 0

•

b

c

d

•

I

r

h

FIGUR(" .18

01

(.)

11 10

•

b

,

d

•

I

,
•
i

•

0 1 1.- - .- ·.-
<,- - - j . - 0 0

0 0 d. - - - b .-

'.- 0 0 , .- - .-
..- -.- ,.- 0 1

' .- (D I , .- - .-

- - d. - 0 0 ·.-

0 0 d. - - .- ·.-
-.- I. - (D l b. -

..- -.- 1.1 @ O

(b)

468 Chapter 9 Asynchronou s Sequentia l l ogic

(a) Find all companb le pain by means of an implication table.
(b) Find lhe maximal co mpatibles by means of a mefJ!:er diagram,
Ic) Find a rnimmaJ set of compatibles that covers all the~ and is closed.

9 .19 la) Dbtain a binat), slate: assignmenl for the reduced now table st.o.o. n in Fig. 1'9.19 ..-\\{" d em­
il:al race co nditions.

Ib) Obtain Ih~ I~ic diag ram of !he circun, using l"Al"D latc hes and !al~s.

9 .20'" Find a critical race-free slat~ ass ignme nt for lhe red uced now table: shu.... n in Fig . 1'9.1:0.

00 01 11 10

FIGURE P9.19

o

b

<

d

0 ° 0 1 b , - d, -

0 ,- 0 " 0 " c -

0 , - - , - d, _ 0 °
0 , - 0 ,- 0 1 0 1

00 01 11 10

FIGURE P9.20

o

b

,

d

,

f

<3 d <3 <

0 G G d

d (0 b (0

0 0 , 0
f c (0 c I

(I) b 0 (I)

Referen ces 469

9 .21 Co nsider the reduced flow table shown in Fig. P9.l l .
fa) Obta in the transition diagram. and show that three state variables are needed for a race-free

binary slate assignment.
(b) Obtain the expanded flow table, using the multiple -row method of assig nment a, speci fied

in Fig. 9.32(a).

00 01 11

FIGURE P9.21

a

c

d

(0 c (0 d

a (0 c 8
(0 (0 (0 "
0 b u 0

9.22* Find a circuitthat has no Static hazards and implements the Boo lean function

F(A, 8 . C, D) = ~(O, 2, 6. 7, 8. 10. 12)

9 ,23· Draw the logic diagram of the produc t-of-sums express ion

Y = (Xl + .1.'2)(.1.': + xJ)

Shuw that there is a static If-hazard when xl and .1.'3 are equal to 0 and x 2 goes from 0 to I . Find
a way to remove the hazard by adding one more OR gate .

9 ,24 The Boolean functions for the inputs of an SR latch are

S = .t\ x~x~ + xlx:,tJ

R '" Xl ,t ~ + X~.t l

Obtain the circui t diagram, using a minimum number of NAI'IlD gates.

9 .25 Complete the design of the circuit specified in Problem 9.13.

REFERENCES

1. BREEDING. K. J. 1989 . Digital Design Fundamentals. Engle wood Cliffs.NJ: Preence-Han.

2 . FRIF.D.'oI.-\I\, A. D. 1986. Fundamentals of Logic Design and Swilching TMo~: Rockville, MD :

Computer Science Press.

470 Chapter 9 Asynchronous Sequential Logic

3. Hiu. . F. J.•and G. R. PETERsoN. 1981. Introduction to Switching Theory and lngical Design. 3d ed.
New York: John Wiley.

4 . KOHAVI. Z. 1978. Switching and Automata Theory, 2d ed. New York: ~tcGraw-Hill .

5. MCCLUSKEY. E. J. 1986. lngic Design Principles. Englewood Cliffs. r-;J: Prentice-Hall.

6 . SELso~. V. P.. H. T. NAGLE. J. D. IRWI:". and B. D. CARROLL. 1995. Digital lngic CircuttsAnaly­

sis and Design. Upper Saddle River. NJ: Prentice Hall.
7 . U:"GER. S. H. 1969. Asynchronous Sequent ial SWitching Circuits. New Yorl;: John Wiley.

Chapter 10

Digital Integrated Circuits

10 .1 INTRODUCTION

The integrated circuit (lC) and the digital logic families were introduced in Section 2.9. This
chapter presents the electronic circuits in each Iedigital logic family and analyzes their elec ­
trical operation. A basic knowledge of electrical circuits is assumed.

The Ie dig itallogic families to be considered here are

RTL
DTL
TTL
ECL
MOS
CMOS

Re sistor-transistor logic
Diode-transistor logic
Transistor-transistor logic
Emitter-coupled logic
Metal -oxide semiconductor
Complementary metal-oxide semiconductor

The first two, RTL and DTL. have only historical significance. since they are DO longer used
in the de sign of digital sys tems . RTL was the first commercial family to have been used ex­
tensively. It is included here because it represents a useful starting point for explaining the
basic operation of digital gates. DTL circui ts have been replaced by TIL In fact, TIl. is a
modification of the DTL gate. The operation of the TI1.. gate will be easier 10 undersund after
the DTL gate is analyzed. TI1.. , ECl, and CMOS have a large numbc:rofSSI circuits, as well
as MSl, lSI, and VLSI components.

The basic circuit in each Iedigital logic famil y is a NAND or NOR gate. This basic circuit is
the primary building block from which all other, morecompudigi!al(l'.'O'COlSucobtained.
Each IC logic family has a data book that lists all the integrated cin::uits iDIbat family. The dif­
ferences in the logic functions available from each family are DOt 10 mucbiDtbc: functions that

471

472 Chapter 10 Digi ta l Integ rated Circuits

they achieve as in the specific electrical characteristics of the basic gate from which the circuit
is constructed.

NAND and KOR gates are usually defined by the Boolean functions that they implement
in terms of binary variables. In analyzing them as electronic circuits. it is neces'illry to inves­
tigate their input-output relationships in terms of two voltage levels: a IIigh level. designated
by H. and a law level, designated by L. As mentioned in Section 2.8. the assignment of binary
1 to H results in a positive logic system and the assignment of binary 1 to L results in a nega­
tive logic system. The truth table, in terms of H and L, of a positive-logic r-;' t\..-...;" D gate is she n
in Fig. 10.1. We notice that the output of the gate is high as long as one or more inputs are low.
The output is low only when both inputs are high. The behavior of a positive-logic NA-SD
gate in terms of high and low signals can be stated as follows:

If any input of a NAND gate is low. the output is high.

If all inputs of a NAND gate are high. the output is low.

The corresponding truth table for a positive-logic :-':OR gate is shown in Fig. 10.2. The output
of the NOR gate is low when one or more inputs are high. The output is high when both inputs
are low. The behavior of a positive-logic NOR gate, in terms of high and low signals. can be
stated as follows:

If any input of a NOR gate is high. the output is low.

If all inputs of a NOR gate are low, the outpu t is high.

These statements for NAND and NOR gates must be remembe red. because they will be u...ed
during the analysis of the electronic gates in this chapter,

Inputs Output

., y z

I. L II
I. II 1/
1/ L II
1/ II L

FIGUR£ 10.1
Positive-log ic NAND gate

Inputs Output

r j' z

I. L 1/
I. 1/ L
1/ L L
1/ 1/ L

FIGUR£ 10.2
Positive-log ic NOR gate

10 .2

Section 10.2 Specia l Characterist ics 473

A bipolur junrtion rrensts ror (B lT) can be either an npll or a pup junction transistor. in con­
rrast. the fi eld-effect transistor (FET) is said to be unipolar. The operation of a bipolar tran­
sistor dep end s on the now of two types of carriers: electrons and holes. The opera tion of a
unipolar transistor depends on the flow of only one type of majority carrier, which may be elec­
trons (in an n-channel transistor) or holes (in a p-channel transistor). The first four digita l
logic families listed at the beginning of the chapter-c-Rf' L, DTl, TTL, and ECl - use bipo­
lar transistors. The last two families- MOS and CMOS--employ a type of unipolar transis­
tor ca lled a meral-oxide -serniconductor field-effe ct transistor. abbrevia ted MOSFET. or MOS
for short.

In this chapter. we first introduce the most common characteristics by which the digi tal
logic families are co mpared. We then desc ribe the properties of the bipolar transistor and an­
alyze the basic gates in the bipolar logic families. Finally. we explain the operation of the MOS
transistor and introduce the basic gates of its two logic families.

SPECIAL CHARACTERISTICS

The charac teris tics of Ie digital logic famili es are usually compared by analyzing the circuit
of the basic gate in each family. The most important parameters that are evaluated and com­
pared are fan-out , power dissipation, propagation delay, and noise margin. We first explain the
properties of these parameters and then use them to compare the Ie logic families.

The fan-out of a gate specifies the number of standard loads that can be conne cted to the out­
put of the gate without degrading its norma l operation . A standard load is usually defined as
the amount of current needed by an inpu t of anoth er gale in the same logic famil y. Some­
time s the term loading is used instead of fan-out. The term is derived from the fact that the
outp ut of a gate can supply a limit ed amount of current. abo ve which it ceases to operate
properly and is said 10 be overloaded. The output of a gate is usually connected to the inputs
of other gates. Each input requir es a certain amount of current from the gate output, so thai
each additional connection adds to the load of the gate. l oading rules are sometimes speci­
fied for a family of digi tal ci rcuits. These rules give the maximum amount of loadin g allowed
for each output of each circuit in the family. Exceed ing the specified maximum load may
cause a malfunction because the circuit cannot supply the power demanded of it by its loads.
The fan-out is the maximum number of inputs that ca n be co nnected to the output of a ga le
and is expre ssed by a number.

The fan-out is calculated from the amount of current avai lable in the output of a gate and
the amount of current needed in each input of a gale. Consider the cooncdions sOOwn in Fig. 10.3.
The outpu t of one gate is connected to one or more inputs ofotherpres.1be OUtpul of thegale
is in the high-voltage level in Fig. 1O.3(a). It provides a current source IOH co all thegate in­
puts connected to it. Each gale input requires a current lIN for proper operation_Similarly, the
output of the gate is in the low -voltage level in Fig. 1O.3(b). It provides a current sink IOL for
all the gate inputs connected to it. Each gale input supplies a currenll,L_'The fan--oul: of me gale

474 Chapter 10 Digital Integrate d Circuits

10 •-

J,.-
To other

inputs

(a) High -level output

I"

To other
inputs

(b) Low-level output

FIGURll0.J
Fan-cut computation

is calculated from the ratio IOH1IlH or IodIn , whichever is smaller. For example. the standard
TIL gates have the following values for the currents:

IOH = 400 p.A

I lH = 40 p.A

IOL = 16 mA

In = I.6 mA

The two ratios give the same number in this case :

c4"OO,-,,,,,A:.: = 16 rnA = 10
40 p.A 1.6 rnA

Therefore. the fan-out of standard TIL is 10. Thi s means thai the output of a TIL Bate can be
connected 10 no more than 10 inputs of other gates in the same logic family. Otherwise. the gale
may not be able to drive or sink the amount of current needed from the inputs that are connected
10 it.

Pow e r Dissipation

Every electronic circuit requires a cert ain amount of power to operate. The power dissipation
is a parameter expressed in milliwatts (mW) and represents the amount of power needed by the
gate. The number that represents this parameter does not include the power delive red from an­
other gale; rather. it represents the power delivered 10 the gate from the power supply. An Ie

with four gates will require. from its power supply, four times the power dissipated in each gate.

Section 10.2 Specia l Characteristics 475

The amount of power that is dissipated in a gate is calculated from the supply voltage Vee
and the current Icc that is drawn by the circuit. The power is the product Vee x l ee. The cur­
rent drain from the power supply depends on the logic state of the gate. The current drawn
from the power supply when the output of the gate is in the high-v oltage level is termed ICCH'

When the output is in the low-voltage level , the current is tccc The average current is

I ()
lCCH + ICCL

cc avg = 2

and is used to calculate the average power dissipation:

PD(avg) = lcd avg) x Vce

For example, a standard TTL NAND gate uses a supply voltage Vcc of 5 V and has current
drain s ICCH = I rnA and ICCL = 3 rnA. The average current is (3 + l)/2 = 2 rnA. The av­
erage power dissipation is 5 x 2 = 10 mW. An Ie that has four NAN D gates dissipates a
total of 10 x 4 = 40 mW. In a typical digital system, there will be many ICs. and the power
required by each one must be considered. The total power diss ipation in the system is the sum
total of the power diss ipated in all the ICs.

Propagation Delay

The propa gation delay of a gate is the average transi tion-delay time for the signal to propagate
from input to output when the binary input signal changes in value. The signals through a gate
take a certain amount of time to propagate from the inputs to the outpu t. Th is interval of time
is defined as the propagation delay of the gate. Propagation delay is meas ured in nanoseconds
(ns); I ns is equal to 10- 9 second.

The signals that travel from the inputs of a digita l circuit to its output s pass thro ugh a se­
ries of gates. The sum of the propagation delays through the gates is the tota l delay of the cir­
cuit. When speed of operation is important, each gate must have a short propagation delay and
the digital circuit must have a minimum number of gates between inputs and outputs.

The average propagation delay time of a gate is calculated from the inpu t and output wave­
forms, as shown in Fig . lOA. The signal-delay time between the input and the output when the
output changes from the high to the low leve l is referred to as rnn- Similarly, when the out­
put goes from the low to the high level , the dela y is tPLH ' It is customary to measure the time
between the 50 percen t point on the input and output transitions. In general. the two delays are
not the same, and both will vary with loading co nditions. Tbe average propagaUoo-delay time
is calculated as the average of the two delays.

As an example. the delays for a standard TfL gate are t,.HL = 7 ns and t,.LH = II us.
These quantitie s are give n in the TfL data book. and are measured with. load resiswx::e of
400 ohms and a load capacitance of 15 pF.1be average propagatioD delay 01 theTIl. pte is
(11 + 7)/2 ~ 9 ns.

Under certain conditions. it is more imponam to know" the mnjnvmdelly timI: ata gate rather
than the average value. The TILdata book lists the foUowiDg ",Allin _ prnpIgJ'ion delays for a
standard NAND gate: tPHL = 15 ns andInn = 22 ns.. Wbcn spccdofq:cr isaitical. it is
necessary to take into account the maximum delay to ensure properopec 01the circuiL

476 Chapter 10 Digital Integrated Circuits

Input

Output

1/
/

'\
I\.

"1\.'-- _
___ I Time

1/
/

- If'LH ~

FIGURE 10.4
Measurement of propaga t ion delay

The input signals in most digital circuits are applied simultaneously to more than one gate.
All the gates that are connected to external inputs const itute the first logic leve l o f the circuit.
Ga tes that recei ve at least one input from an output of a firs t-le....el gate are considered to be
in the seco nd logic level. and similarly for the third and higher logic levels. Th e total propa­
gation delay of the circuit is eq ual to the propagat io n dela y of a gate times the number of
logic levels in the circu it. Thus, a reduction in the number of logic levels results in a red uc­
tion in signal delay and faster circ uits. The reduction in the propagation delay in ci rcuits may
be more important than the reduction in the total number of gale s if speed of operation is a
major factor.

Noise Margin

Spurious electrical signals fro m indu strial and other sources ca n induce undesirable voltages
on the con necting wires between logic circu its. These unwanted sig nals are re ferred to as
notse. There are two types of noise. DC noise is caused by a drift in the voltage levels of a
signal. AC noise is a random pulse that may be created by other switching signals. Th us. noise
is a term used to denote an undesirable signal that is superimposed upo n the norm al operat­
ing signal. The noise ma rgin is the maximum noise voltage added to an input signal of a dig­
ital circuit that doe s nOI ca use an undesirab le change in the ci rcuit 's output. The ab ility of
ci rcuits to operate reliably in an environment with noise is import ant in many applications.
Noise margin is expressed in vo lts and represents the maximum noise signal that can be tol­
erated by the gate.

The noise margin is ca lculated from knowledge of the voltage signal availab le in the out­
put o f {he ga te and {he voltage signal required in the input of the gate . Figure 10.5 illustrates
the signals used in computing the noise margin. Pan (a) shows the range of out put voltages that
can occ ur in a typica l gale. Any voltage in the gate output between Vee and VOH is considered
10be the high-level state, and any voltage between 0 and VOL in the gate output is considered to
be the low-leve l slate. Voltage s betwee n VOL and VOH are indeterm inate and do nOI appear

Section 10.3 Bipolar -Transistor Characteristics 477

High-state
noise margin

(b) Inpu t voltage range

j

Low -stal l:
noise margin

==="""0
(a) Output voltage ra nge

FIGURE 10.5
Signals for eva luat ing noise margin

under normal operating conditions. excep t d uring transition between the two levels . The co r­
responding two volt age ran ges tha t are recog nized by the input of the gate are indica ted in
Fig . 1O.5(b). In order to compensate fo r any noise signal. the circuit must be designed so that
V/L is greater than VOL and V/H is less than VOH ' The no ise margin is the difference VOH - V'H

or V/L - VOL, wh ichever is smaller.
As illustrated in Fig. 10.5, VOL is the maximum voltage that the output can be in the low-level

state. The circuit can tolerate any noise signal that is less than the no ise margin (ViI. - Vod be­
cause the input will recognize the signal as being in the low-level state . Any signal greater than
VOL plus the noise -margin figure will send the input voltage into the indetermi nate range. which
may cause an error in the output of the gate. In a similar fashion , a negauve-volrage noise greater
than VOH - VI H will send the input voltage into the indeterm inate range.

The parameters fo r the noise margin in a standard TT L NAN D gate are VOH = 2.4 V,
VOL = 0.4 V, VI H = 2 V. and VI I. = 0.8 V. The high-stale noise marg in is 2.4 - 2 = 0.4 V,
and the low-state noise margin is 0.8 - 0.4 = 0.4 V. In this case. beth values are the same.

10 . 3 B I PO LAR -T RA N SI ST O R C HAR A CT ERI STICS

This section reviews the bipolar transistor as app lied 10digital cin:uib.. "Ihc iofoIlcwioI. peesemed
will be used in the analysis of the basic circuit in the four bipolar logic: farnilieL As mentioned
earlier, bipolar tran sistors may beof the npn or pnp type. MOft'O¥'er". (bey~ coosttul.Ud e ither
with germanium or silicon semiconductor material. Bipolar Ie baiiIii1us. bowe\rcr. are made
with silicon and are usually of the npn type.

478 Chapter 10 Digital Integrated Circuits

The bas ic data needed in the analysis of digital circuits may be obtained by inspection of
the typical characteristic curves of a common-emitter npn silicon transistor, shown in Fig. 10.6.
The circuit in (a) is a simple inverter with two resistors and a transistor. The curre nt marked
Ie flows through resistor Rc and the collector of the transistor. Curren! Is flows through resistor
RB and the base of the transistor. The emitter is connected to ground. and its current
1£ = Ie + te- The supply voltage is between Vee and ground. The input is between V; and
ground, and the output is between Vo and ground .

We have assumed positive directions for the currents as indicated. These are the directions
in which the currents normally flow in an npn transistor. Collector and base currents (Ie and
IB' respectively) are positive when they flow into the transistor. Emitter current IE is positive
when it flows out of the transistor. as indicated by the arrow in the emitter terminal. The sym­
bol Ve£ stands for the voltage drop from collector to emitter and is always positive. Corre­
spondingly. VB£ is the voltage drop across the base-to-emitter junction. This junction is forward
biased when VB£ is positive and reverse biased when Vs£ is negative.

lc ~ Re

C v,
1.-
R. B

II,

I.
(rnA)

0.6 0.7

(a) Common emitter inverter circuit

I ,
(rnA)

_ _ ---0.6
Vee "...
R, ~ OO

I I.-~,--_- 0.4
1 1.-_~,-0.4

1I::====':s;:::~I~'~'~IO.2 rnAr: Vc£ (V)

(b) Transistor-base characteristic

fiGURE 10.6
SlIleon npn t ransistor cha racteristics

(c) Transistor-collector characteristic

Sect ion 10.3 Bipolar-Transistor Characteristics 479

The base-emitter graphical characteris tic is shown in Fig. 1O.6(b). which is a plot of VBE ver­
sus lB' If the base-emitter vol tage is less than 0 .6 Y, the transisto r is said to be cut off and no
base current flows . Whe n the base-emitter junction is forward biased with a voltage greater than
0 .6 V. the tran sistor condu cts and Ie starts rising very fas t wherea s VBEchanges very little . The
voltage VBE across a conducting transistor seldom exceeds 0.8 V.

The graphical collector-emitter characteris tics . toge ther with the load line , are shown in
Fig. 1O.6(c). When VBE is less than 0.6 V, the transistor is cut off with IB = 0, and a negligi ­
ble current flow s in the collector. The collector-to-emitter circuit then behaves like an open cir­
cuit. With lc =°the dro p across Re is 0 and Vo = vee-The output is then sa id to be pulled
up. In the active reg ion , collec tor voltage VCE may be anywhere from abo ut 0.8 V up to Vec.
Collector current Ie in this region can beca lculated to beapproximately equal to 18 hFE, where
hF£ is a transistor parameter called the de currelllgain. "The maximum collector curre nt depends
not on IB' but rather on the external circuit connected to the collector. This is because VeE is
always positive and its lowest possible value is av. For example, in the inverter shown, the max­
imum tc is obtained by making VeE = 0, to ob tain lc = Vee!Re.

The parameter h FE varies widely over the operatin g range of the transistor. but still, it is use­
fu l to employ an average value for the purpose of analysis. In a typica l operat ing range. hFE

is about 50. but under certain conditions it could be as low as 20 . It must be realized that the
base current IB may be increased to any desirab le value, but the collector current Ie is limi ted
by ex ternal circuit parameters . As a consequence. a situation can be reached in which hFEIB
is greater than tc. lfthi s condition ex ists , then the tran sistor is said to be in the saturation re­
gion . Thu s, the condition for saturation is determined from the re lationship

I
E

:2:: Ics

h"

where tcs is the maximum collec tor curre nt flowing during saturation. VeE is not exac tly ze ro
in the saturation region. but is normally about 0.2 V. In this condi tion. Vo = V8E = 0.2 V and
the output is said to bepulled down.

The basic data needed for ana lyzing bipolar-transistor digita l circuits are listed in Table 10.1.
In the cutoff region, VEE is less than 0.6 V. VCE is conside red to be an open circuit, and both
currents are negligible. In the active region, VEE is about 0.7 V, VeE may vary over a wide
range , and Ic can becalculated as a function of lB' In the saturation region. VBE hardl y changes,
but Vee drops to 0.2 V. The base current mu st be large enough to satisfy the inequality listed.
To simplify the analysis. we will ass ume that VBE = 0.7 V if the transistor is conducting.
wheth er in the active or saturation region.

Tab le 10.1
Typical npn Siffcon Tronsbtor Paronwten

Regi on

Cutoff
Active
Saturation

< 0.6
0.6-0 .7
0.7-0.8

Open circuit
> 0.8
02

Current leI.tIonshlp

J. z 1c"" O
Ie = Ia,EI.

I. :i!:: laIA'E

480 Chapter 10 Digi tal Integrated Circui ts

Digita l circu its may be analyzed by means of the followin g prescribed procedure : For each
tra nsistor in the circuit. determine whether its VBE is less than 0.6 V. If so. then the trans istor
is cut off and the collector-to-emitter circuit is considere d an ope n ci rcuit. If \ 'BE is greater
than 0.6 V. the tran sistor may be in the acti ve or saturation region. Calculate the base curre nt.
assuming that VBE = 0.7 V. Next. ca lculate the maximum possible value of collector current
Ics- assuming that VCE = 0.2 V. These calculations will be in terms of vol tages applied and
resistor values. Then. if the base current is large enough that 18 ~ IcslhFE• we infer that the
tran sistor is in the saturation region with VCE = 0.2 V. However. if the base current is smaller
and the preceding relat ion ship is not satisfied. the tran sistor is in the active region and we
recalculate co llector curre nt lc. using the equation tc = hFEI8.

To demon strate with an example. consider the inverter circ uit of Fig. 1O.6I'a) with the fol­
lowing parameters:

Re = I kO

RB = 22 kO

liFE = 50

Vee = 5 V (voltage supply)

H = 5 V (high-level voltage)

L = 0.2 V (low-level voltage)

With input voltage Yj = L =0.2 V. we have VHE -c 0 .6 V and the transistor is CUI off. The
collector-emitter circuit behav es like an open ci rcuit . so output voltage Vo =5 V = H .

With input vo ltage Yj = H = 5 V. we infer that VSf: > 0.6 V. Assuming that V8e = 0.7.
we ca lculate the base curre nt:

V; - V8 E
18 = =

RB

5 - 0.7
22 kO = 0.195 rnA

The maximum collector current. assuming that Vei: = 0.2 V. is

Vee - Vee
tcs = =

Re
5 - 0.2

I to = 4.8 mA

0.195 =

We then check for saturation. using the condition

tcs 4.8
18 e h

FE
= 50 = 0.096 mA

whereupon we find that the inequality is sati sfied. since 0.195 > 0.096. We conclude that the
transistor is saturated and output voltage Vo = VCE = 0.2 V = L. Thus. the ci rcuit behaves as
an inverter.

The proced ure just described will be used extensively during the analysis of the ci rcuits in
the sec tions that follo w. We will perform a quathanve analysis-that is. an analysis that does
not involve the specific numerical eq uations. A quantitative analysis and specific calculations
will be left as exercises in the "Problems" section at the end of the chapter.

There are occasions when no! only tran sistors. but also diodes. are used in digital circuits.
An Ie diod e is usually co nstructed from a tra nsistor with its collecto r connect ed 10 [he base .
as shown in Fig. 1O.7(a). The graphic symbol employe d for a diode is show n in Fig. 1O.7(b).
Th e diode behaves essentially like the base-emit ter junct ion of a transistor. Its graphical

Section 10.4 RTl a nd OTl Circuit s 481

(a) Transistor adapted for
U~ a~ a diode

10 + ~ 02

V.
(b) Diode graphic symbol

'.(rnA)

0.6 0.7

(c) Diod e characte ristic

10.4

FIGURE 10.7
smcc n diode symbol and charact erist ic

characteri st ic. shown in Fig. 10.7(c), is similar 10 the base-emiucr characteristic of a transis­
tor. We ca n then co nclude that a diode is o ff and nonconducting whe n its forward vo ltage
Vo is less than 0.6 V. When the diode conducts. curre m lo flow s in the di rection show n in
Fig. 1O.7(b) and Vo stays at about 0.7 V. One must always pro vide an ext erna l resistor to
lim it the current in a co nd uct ing diod e. since its voltage re ma ins fairly constant at a fract ion
of a \ '011.

RTl AND DTl CIRCUITS

Rn Basic Gate

The basic circuit of the RTL digita l logic fam ily is the NO R gate shown in Fig. 10.8. Each
input is assoc iated with one resistor and one transistor. The collectors of the tran sistors are tied
together at the output. The voltage levels for the circu it are 0 .2 V for the low leve l and from I
10 3.6 V for the high level.

The analysis ofthc RFlcgate is simple and follows the procedure outlined in the previous sec­
tio n. If any input of the RTL gate is high, the corresponding uan..,istor- is driven into saturation
and the output goes low, regard less of the states of theother transistors, If al l inpulSare low at
0.2 V, all transistors are cut off because VSE < D,6 V and the 0lllJU of the circuil goes high.
approaching the value of the supply vo ltage Vee,This con firms lhec:ondilionsSUledin Fig. 10,2
for the NO R gale. Note that the noise margin for low signal input is 0.6 - D.2 = D.4 V.

The fan-out o f the RTL gate is limited by a high OUtpul voltage. A5 die output is loaded
with inputs of other gates. more current is consumed by the load.. 1bi:sCWICIIl must flow through
the &W-U resistor. A simple calculation (see Problem 10.2) shows _if"FE drops to 20. the
output voltage drops to about I V when the fan-out is S.Any \IOItage below 1 V in theoutpul

482 Chapter 10 Digital Inte gra ted Circuits

Vcc - 3.6V

640 0

r--------+------,.~y . (A. B· C)'

450 0 4500

FIGURE 10.8
Basic RTL NOR gate

may not drive the next transistor into saturation as requ ired. The power dissipation of the RTL
gate is about 12 mw and the propagation delay averages 25 ns.

DTL Basic Gates

The basic circuit in the OTL digital logic family is the NAND gate shown in Fig. 10.9. Each
input is associated with one diode. The diodes and the 5·kO resistor fonn an AXO gate. The
transistor serves as a current amplifier while inverting the digital signal. The two voltage lev­
els are 0.2 V for the low level and between 4 and 5 V for the high level.

The analysis of the DTL gate should conform to the conditions listed in Fig. 10.1 for the
NAND gate. If any input of the gale is low at 0.2 V. the corresponding input diode conducts

Y - (A BC)'

n
I

2k

S kO
~

D I D2
V Q IP

"'SkO
B

A

C

FIGURE 10.9
Basic OTL NAND gate

Section 10.4 RTL and OTL Circuits 483

current through Vee and the 5-kfl resistor into the input node . The voltage at point P is equal
10 the input voltage of 0.2 V plus a diode drop of 0.7 V, for a total of 0.9 V. In order for the tran­
siste r to start conducting, the voltage at point P must overcome (i.e., be at least as high as) a
I· VBEdrop in QJ plus two diode drops across DI and D2, or 3 X 0.6 = 1.8 V. Since the volt­
age at P is maintained at 0.9 V by the input conducting diode. the transistor is cut off with no
drop across the 2-kO resistor. and the output voltage is high at 5 V.

If all input s of the gate are high , the transistor is driven into the saturation region . The
voltage at P now is equal to VBE plus the two diode drops acro ss DI and D2, or
0.7 X 3 = 2.1 V. Since all inputs are high at 5 V and since Vp = 2.1 V, the input diodes are
reverse biased and off. The base current is equal to the difference of the current s flowing in the
IWO 5·k n resistors and is sufficient to drive the transistor into saturation. (See Problem 10.3.)
With the transistor saturated, the output drops to Va = 0.2 V, which is the low level for the
gate .

The power dissipation of a DIL gate is about 12 mW and the propagation delay averages
30 ns. The noise margin is about I V and a fan-out as high as 8 is possible . The fan-out of the
DIL gale is limited by the maximum current that can flow in the collector of the saturated
transistor. (See Problem 10.4.)

The fan-out of a DTL gate may be increased by replacing one of the diodes in the base cir­
cuit with a transistor, as shown in Fig. 10.10. Transistor Ql is mainta ined in the active region
when output transistor Q2 is saturated. As a consequence, the modified circuit can supply a
larger amounl of base current to the output transistor, which can now draw a larger amount of
collector current before it goes out of saturation . Part of the collector current comes from the
conducting diodes in the loading gates when Q2 is saturated. Thus, an increase in the allow ­
able saturated current in the collector allows more loads to be connected to the output, increasing
the fan-out capability of the gale .

Vee = 5 V

Y - (ASq '

n
1.6 kl1

H

H O

""QI
'-"

mt-..:
~

"0

.!.

B

A

c

FIGURE 10.10
Mod ifi ed OTL gate

484 Chapter 10 Dig ital Integra ted Circuits

1 0 . S TRANSISTOR-TRANSIST OR LO G IC

The original basic transistor- transistor logic (TIL) gute was a slight improvement over the
DTL gate. As TIL technology progressed. improvements were added to the point where this
logic family became widely used in the design of digital systems. Today. ~10S and C~IOS

logic. which will be discussed in Sections 10.7 and 10.8. are the dominant technologies in
VLSI circuits.

There are several subfamilies or series of the TTL technology. The names and character­
istics of eight TIL series appear in Table 10.2. Commercial TIL ICs have a number deslgna­
tion that starts with 74 and follows with a suffix that identifies the series. Examples are 740·t
74S86. and 74ALS161. Fan-out . power dissipation. and propagation delay were defined in
Section 10.2. The speed-power product is an important parameter used in comparing the var­
ious TIL series. The product of the propagation delay and power dissipation. the speed-power
product is measured in picojoules (pJ). A low value for this parameter is desirable. because it
indicates that a given propagation delay can beachieved without excessive power dissipation.
and vice versa.

The standard TIL gate was the first version in the TIL family. This basic gate v. as then de­
signed with different resistor values to produce gates with lower power dissipation or with
higher speed. The propagation delay of a transistor circuit that goes into saturation depends
mostly on two factors: storage time and RC time constants. Reducing the storage time de­
creases the propagation delay. Reducing resistor values in the circuit reduces the RC time con­
stants and decreases the propagation delay. Of course. the trade-off is higher power dissipation.
because lower resistances draw more current from the power supply. The speed of the gate is
inversely proportional to the propagation delay.

In the low-power TIL gate. the resistor values are higher than in the standard gate in order
to reduce the power dissipation. but the propagation delay is increased. In the high-speed TTL
gate. resistor values are lowered to reduce the propagation delay. but the power dissipation is
increased. The Schottky TTL gate was the next improvement in the technology. The effect of
the Schottky transistor is to remove the storage time delay by preventing the transistor from

Tabl e 10 .2
TTLSeries and Their Characteristics

Fan- Power Dissipatio n Propagation Speed-Power
TTLSeries Name Prefix out (mW) Delay (n$) Product (pJ)

Standard U 10 I. 9 90
Low power 74L ,. I 33 _~3

High speed U " ,. n 6 132

Schottky 745 ,. 19 3 57
Low -power Schottky 7~LS ,. 2 9.' 19
Advanced Schottky 7" AS 40 I. 1.5 "Advanced low-power

Schollky 7~ALS ,. 1 4 4

F~l U F ,. 4 3 "

Section 10.5 Transistor-Transistor l ogic 485

going into saturat ion. This series increases the speed of operation of the circuit without an ex­
cessive increase in power dissipa tion. The low-power Scho ttky TTL sacrifices some speed for
reduced power dissipation . It is equal to the standard TTL in propagation delay, but has only
one-fifth the power dissipat ion. Further innovations led to the deve lopment of the advance d
Schottky series, which provides an improvement in propagation delay over the Schottky series
and also lowers the power dissipation. The advanced low-power Schottky has the lowest
speed- power product and is the most efficient series. The fast TTL family is the best choice
for high-speed designs.

All TTL series are available in S81components and in more complex forms. such as MSI
and LSI components. The differences in the TTL series are not in the digital logic that they per­
form, but rather in the internal construction of the basic NAND gale. In any case, TTL gates
in all the available series come in three different types of output configuration:

1. Open -collecto r output

2. Totem-pole output

3. Three-state output

These three types of outputs are considered next, in conju nction with the circuit description of
the basic TTL gate.

Open-Collector Output Gate

The basic TIL gate shown in Fig. 10.11 is a modified circuit of the D'Tt.gate. The multiple emit­
ters in transistor QI are connected to the inputs, Most of the time, these emitte rs behave like
the input diodes in the DTL gate, since they form a pn junction with their common base. The
base-collector junction of QJ acts as another pI! junction diod e corresponding to D J in the

4 kH

FIGURE 10.11
Open-coll ector TTL NAND gate

1.6 en

Q2

1til

r--~Y

QJ

486 Chapter 10 Digital Integrated Circuits

DTL gate. (See Fig. 10.9.) Transistor Q2 repl aces the second diode. D2. in the DTL gale. The
output of the TTL gate is taken from the open coll ector of Q3. A resistor connected to l ec
must be inserted externally to the Ie package for the output to "pull up" to the high voltage level
when Q3 is off; otherwise. the O\Itput acts as an open circuit. Tbe reason for not provi ding the
resistor internally will be discussed later.

The two voltage levels of the TTL gate are 0.2 V for the low le vel andfrom ~ ,~ to 5 v for
the high level. The basic circuit is a ~AND ga te, If any input is low. the corre sponding
base-emitter junction in QJ is forward biased. The voltage at the base of QJ is equal to the input
voltage of 0.2 V plu~ a VHE drop of 0.7. or 0.9 V, In order for Q3 to start conducting. the path
from QJ to Q3 must overcome a potenti al of one diode drop in the base-collector pn junct ion
of QJ and two VBEdrops in Q2 andQ3. or 3 x 0"6 = 1.8 V. Since the base of QI is maintained
at 0.9 V by the input signal. the output transistor ca nnot conduct and is cut off. The ou tput
le vel will be high if an external resistor is connected between the output and vee(or an ope n
circu it if a resistor is not used).

If all inputs are high. both Q2 and Q3 co nduct and saturate. The base voltage of QJ is
equal to the volt age across its base-collector pn j unction plus IWO VHE drops in Q2 and QJ.
or about 0.7 x 3 = 2.1 V. Since all inputs are high and greate r than 2.4 V. the base-emitter
jun ctions of Q1 are all reverse biased. When output transistor QJ saturat es (provided that it
has a current path). the output voltage goes low to 0.2 V. This co nfirms the conditions of a
NAND operation .

In the analysis presented thus far. we said that the base-collector junction of QJ acts like
a pn diode junction . This is true in the steady -state condition. However. duri ng the turnoff
transition. Ql does exhibit transistor action. resulting in a reducti on in propagation delay .
When all inputs are hig h and then one of the inputs Is brought to a low level. both Q2 and
Q3 start turn ing off. At this time. the co llector j unction of QJ is reverse biased and the e mit­
ter is forward biased. so transistor QJ goes momentarily into the act ive region. The collec­
tor current of Q J comes from the base of Q2 and qu ickly removes the excess charge sto red
in Q2 during its previous saturation state. Th is causes a reduction in the storage time of the
circuit compared with that of the DTL type of input. The result is a reduction in the turno ff
time of the gate.

The open-collector TTL gate will opera te without the external resistor when connected to
inputs of other TTL gales. although this kind of operat ion is not recommended because of the
low noise immunity encou ntered. Without an external resistor. the output of the gate w ill be an
open circuit when QJ is off. An open circu it 10an input of a lTLgate behaves as ifit has a high­
level input (but a small amount of noise can change this to a low level)"wh en Q3 conducts,
its co llecto r will have a current path supplied by the input of the loading gate through Vee. the
4-k. 0 resistor. and the forward-biased base-emitter junction "

Open -collector gales are used in three major applications: driving a lamp or relay. perform­
ing wired logic. and constructing a common-bus system. An open-collector output can drive a
lamp placed in its output through a limiting resistor. When the output is low. the saturated tran ­
sistor QJ forms a path for the current thai turns the lamp on. Whe n the output transistor is off.
the lamp turns off because there is no path for the current.

If the outputs of several open-collector TTL gates are tied together with a single external re­
sistor. a \l.ired-A~'D logic is performed Remember that a positi ve-logic A.\'D function gives

Section 10.S Transistor-Transistor Logic 487

;==[¥l~»--+-o y

(a) Physical connection

A-~+---,
B --t~

c- - =='
D-~'r---'
(b) Wired-logic graphic symbol

y

FIGURE 10.12
Wired-ANDof tw o cpen-ccuector (oc) gates, y ", (AS+ CD)'

a high level only if all variables are high: otherwise. the function is low. With the outputs of
open-collector gate s connected together. the common output is high only when all output tran­
sistors are off (or high). If an output trans isto r conduct s. it forces the output into the low state.

The wired log ic performed with open-co llector TIL gat es is depicted in Fig . 10.12. The
physical wiring in (a) show s how the outputs must be connected to a common resistor. The
graph ic symbol for such a connection is demonstrated in (b). The AND function formed by con­
necting the two outputs toge ther is called a wired -AND function. The AND gate is drawn with
the lines goin g through the center of the gate , to distinguish it from a conventional gate . The
wired·AND gate is not a physica l gate. but only a symbol to des ignate the function obtained
from the indic ated connection. The Boolean function obtained from the circuit of Fig. 10.12 is
the AND ope ration between the outputs of the two NAND gate s:

y ~ (AB)" (CD)' ~ (AB + CD)'

The second expression is preferred, since it shows an operation commonly referred to as an
AND-OR-INVERT function. (See Section 3.8.)

Open -collector gates can be tied together to form a common bus. At any time, all gale outputs
tied to the bus. except one . must be maintained in their high state. The selected gate may be in
either the high or low state. depending on whether we want 10 trans mit a l or a 0 on the bus.
Control circui ts must be used to select the particular gate thai drives the bus at any given time .

Figure 10.13 demonstrates the connection of four sources tied 10 a common bus line. Each
of the four inputs drive s an open-collec tor inverter, and the outputs of the inveners are tied to­
gether to form a single bus line. The figure shows that three of the inputs are 0, producing a I.
or high level , on the bus. The founh input, 14 , can now transmit information through thecom­
mon-bu s line into inverte r 5. Remem ber that an AND operation is peafuultd in thewired logic.
If /4 = 1, the output of gate 4 is 0 and the wired-AND operation produces a O. If 4 = 0. the
output of gate 4 is 1 and the wired-AND operation produces a 1. 1bus. if aU otbe.- outputs are
maintained at 1, the selected gale can transmi t its value Ihrougb the bus. TIle value uaesmir­
ted is the complement of 14• but inverter 5 at the receiving end can easily invert thi s signal
aga in to make Y = h.

488 Chap ter 10 Digital Integrated Circuits

v~

f ,
o
~·I

o
I

Bus line s v

FIGURE 10 .13
Open -collector gates forming a common bus line

Totem-Pole Output

The output impedance of a gate is normally a resistive plus a capacitive load. The capacitive
load consists of the capacitance of the output transistor. the capacitance of the fan-out gates.
and any stray wiring capacitance. When the output changes from the low to the high state. the
output transistor of the gate goes from saturation to cutoff and the total load capacitance C
charges exponentially from the low to the high voltage level with a time constant equal to RC
For the open-collector gate. R is the external resistor marked RL. For a typical operating value
of C = 15 pF and RL = 4 kU. the propagation delay of a TTL open-collector gate during the
turnoff time is 35 ns. With an acti~'e pull -up circuit replacing the pas..ive pull-up resistor RL•
the propagation delay is reduced to 10 ns. This configuration. shown in Fig. 10.14. is called a
totem-po le output because transistor Q4 "s its" upon Q3.

The TIL gate with the totem-pole output is the same a" the open-collector gate. except for
the output transistor Q4 and the diode DJ . When the output Y is in the low state. Q2 and Q3
are drive n into saturation as in the open-collector gate. The voltage in the collector of Q2 is
VSE(Q3) + Va (Q2). or 0.7 + 0.2 = 0.9 V. The output Y = VcdQ3) = o. :! V. Transistor
Q4 is cut off because its base must beone VB£ drop plus one diode drop. or 2 x 0.6 = 1.2 V.
to start conducting. Since the collector of Q2 is connected to the base of Q4. the latter' s volt­
age is only 0.9 V instead of the required 1.2 V. so Q4 is cut off. The reason for placing the
diode in the circuit is to provide a diode drop in the output path and thus ensure that Q4 is cut
off when Q3 is saturated.

When the output changes to the high state because one of the inputs drop.. to the low state,
transistors Q2 and Q3 go into cutoff. However. the output remains momentarily low because
the voltages across the load capacitance cannot change instantaneously. As soon as Q2 turns
off. Q4 conducts. because its base is connected to veethrough the 1.6-1.: 0 resistor. The cur­
rent needed to charge the load capacitance causes Q4 to saturate momentarily. and the output

Section 10.5 Transistor-Transistor l ogic 489

Vee = 5 V

4 en
1.6 en Don

Q'

Ql
Q2

1 »n

D1

Q3

y

FIGURE 10.14
TTLgate with totem-pole output

voltage rises with a time constant Re. But R in thi s case is equal to 130 n,plu s the saturation
resistance of Q-I, plus the resistance of the d iode, for a total of approximately 150n. Thi s
value of R is much smaller than the passive pull-up resistance used in the open-collector cir­
cuit. As a conseq uence, the trans itio n from the low to high level is much fas ter.

As the capacitive load charges. the output voltage rises and the current in Q4 dec reases.
bringing the tran sistor into the active region. Thu s, in contrast to the other transistors, Q4 is in
the active region when Q4 is in a steady -state condition. The fina l value of the output voltage
is then 5 V, minu s a V8£ drop in Q4. minu s a diode drop in DJ to about 3.6 V. Transistor Q3 goes
into cutoff very fast, but durin g the initial transition time. bot h Q3 and Q4 are on and a peak cur­
rent is drawn from the po wer supp ly. Thi s current sp ike generates noise in the power-supp ly dis­
tribut ion sys tem. Wh en the change of slate is frequent. the transient-current spikes increase the
power-supply current requirement and the average power dissipation o f the circuit increases.

The wired-logic connection is nOI allowed with tote m-pole ou tput circuits. When two totem
poles are wired togethe r. with the outp ut of one ga le high and the output of the second gate low,
the excessive amount of current drawn can produce enou gh heat 10damage the transistors in the
circ uit. (See Problem 10.7.) Some TTL gates are constructed 10 widasland theamounl ofcurrenl
that 110wsunder th is condition. In any case, lhe collector curren l in the low gale may be high
enough to move the transistor into the active region and produce aD outpul voltagegrcaIa' Ihan
0.8 V in the wired connection. This voltage is not a valWj binary signal forTl1. pIeS.

Schottky TTL Gate

As mentioned before , a reduction in storage time results in a redu::Iioa .in Pop8Iaf'ion delay.
Thi s is because the tim e needed for a trans isto r to come OUI of saIUtlItioD delaysIhe switching

490 Chapter 10 Digital Integrated Circuits

of the transistor from the on condition to the off condition. Saturation can be eliminated by plac­
ing a Schottky diode between the base and collector of each saturated transistor in the circuit.
The Schottky diode is formed by the junction of a metal and semiconductor, in contrast to a con­
ventional diode, which is formed by the junction of p-type and n-type semicond uctor material.
The voltage across a conducting Schottky diode is only 0.4 V. co mpared with 0.7 V in a con­
ventional diode. The presence of a Schottky d iode between the base and collector prevents the
transistor from going into saturation.The resulting transistor is called a Schotrky transistor. The
use of Schottky transistors in a TILdecreases the propagation delay without sacrificing power
dissipation.

The Schottky TTL gate is shown in Fig. 10.15. Note the speci al symbol used for the
Schottky transistors and diodes. The diagram shows all transistors except Q-l to be of the
Schottk y type. An exception is made for Q4, since it does not saturate. but stays in the active
region . Note also that resistor values have been reduced in order to decrease the propagation
delay further.

In addition to using Schottky transistors and lower resistor values, the circuit of Fig. 10.15 in­
cludes other modifications not available in the standard gate of Fig. 10.14.Two new transistors.
Q5 and Q6, have been added, and Schottky diodes are inserted between each input terminal and
ground. There is no diode in the totem-pole circuit. However. the new combination of Q5 and Q4
still gives the two VBE drops necessary to prevent Q4 from conducting when the outpu t is low.
This combination constitutes a double emitte r-follower called a Darlington pair. The Darlington

so o
900 0

2.8kfl:

~Q5
r-Q'

'"rQ1

3.5 en
OJ f-o

-~

QJ

500 0
2500

~
...L

FIGURE 10 .15
Schottky TILgate

Section 10.5 Transistor-Transistor logic 49 1

pair provides a very high current gain and extremely low resistance, exactly what is needed duro
ing the low-to-high swing of the output, resulting in a decrease in propa gation delay.

Th e diodes in each input shown in the circuit help clamp any ringing that may occur in the
input lines. Under transient switch ing conditions, signal lines appear inductive ; this, along with
stray capacitance, causes signal s to oscillate, or "ring." Whe n the output of a gate switches
from the high to the low state, the ringing waveform at the input may have excurs ions as grea t
as 2-3 V below grou nd, depending on the line length . The diodes connected to ground help
clamp this ringing, since they conduc t as soon as the negative voltage exceeds 0.4 V. Whe n the
negative excursion is limited, the positive swing is also reduced. Clamp diodes have been so
successful in limiting line effects that all versions of TTL gates use them.

The emitter resistor Q2 in Fig. lO.14 has been replaced in Fig. lO.15 by a circuit consisting
of transistor Q6 and two resis tors. Th e effect of thi s circ uit is to reduce the turnoff current
spikes discussed previously. The analys is of such a circuit, whose operation helps to reduce the
propagation time of the gate, is too involved to present in this brief discu ssion.

Three-State Gate

As mentioned ear lier, the outp uts of two Tl'L gates with totem-pole structures cann ot be con­
nected together as in open-collector outputs. There is, however, a special type of totem-pole gate
that allows the wired connection of outputs for the purpose of forming a common-bus system.
When a totem-pole output TTL gate has thi s property, it is called a three-stare gate.

A three -sta te gate exhi bits three outp ut states: (1) a low-leve l state when the lower tran sis­
tor in the totem pole is on and the upper transistor is off, (2) a high -level state when the upper
transistor in the totem pole is on and the lower transistor is off, and (3) a third state when both
transistors in the totem pole are off. The third state is an open-circ uit, or high-impedance, state
that allows a direct wire connec tion of many outputs to a common line. Three-state gates elim­
inate the need for open-collector gates in bus configurations.

Figure lO.16(a) shows the graphic symbol of a three-state buffer gate. When the control
input C is high , the gate is enabled and behaves like a normal buffer, with the output equal to
the input binary value . When the control input is low, the output is an open circuit, which gives
a high impedance (the third state) regardless of the value of input A. Some three-state gates pro­
duce a high -impedance state whe n the control input is high. Thi s is shown symbolically in
Fig. 1O.l6(b), where we have two small circle s, one for the inverter output and the other to
indicate that the gate is enabled when C is low.

The circuit diagram of the three-state inverter is shown in Fig . IO.I 6(c). Transistors 06.
Q7, and Q8 associated with the control input form a circ uit similar 10 theopeo-collector gate .
Transistors Q1- Q5. associated with the data input, form a tote m-pole TI1.. circuiL The two
circuits are connected together through diode D1. As in an opeo<oUc:c:cor- circuit. transistor
Q8 turns off when the control inpu t at Cis in the low-level state.1biI prnaltS diode DI from
conducting. In addition. the emitter in Q1 connected to Q8 bas DOcft'dunion path. Under this
condition, transistor Q8 has no effect on the operation of thegareandthe outpul ill Ydepends
only on the data input at A.

When the control input is high. transistor Q8 turns on and the CUItt:DI flowing from Vee
through diode D1 causes transistor Q8 to satura te. The voltage Illbc base 01 05 is nowequal

492 Chapter 10 Digital Integrated Circuits

Y =A if C "'high
A ------{>----- Yh igh impedance
~ if C - low

C
(a) Three-stale buffer gate

Y "'A · if C = lo....
A~ Y high impedance

if C = high
C

(b) Thr ee-state inverter galt'

Contro l
input C

Data
input

A

10,
I,;

Q'
I-..:

I Qf\ fQ]
I,; f"Q.l

"'-

Df ...L
-

Q6 f"Q 7

"08h."
1.':

-J,.

,.

(e) Circuit diagram for the three-stale Inverter of (h)

FI(i,URE 10.16
Three-state TTL gate

10.6

Section 10.6 Emitter-Coup led Logic 493

to the voltage acro ss the saturated tran sistor. Q8. plus one diode drop . or 0 .9 V. Th is voltage
turns off Q5 and Q4. since it is less than two VBE drops. At the same time . the low input to one
of the emitter s of Ql forces trans istor Q3 (and Q2) to tum off. Th us. both Q3 and Q4 in the
totem po le are turned off. and the output of the circuit behav es like an open circu it with a very
high output impedance .

A three-state bus is created by wiring several three -state outputs togethe r. At any given time,
only one control input is enabled while all other outpu ts are in the high-impedance state. The
single gate not in a high- impedance state can transmit binary information through the common
bus. Extreme care must be taken that all except one of the output s be in the third state; other­
wise, we have the undesirable condition of having two active totem-pole output s connected
together.

An impo rtant feat ure of most thre e-state gate s is that the output enable delay is longer than
the output disab le delay. If a control circuit enables one gate and disab les another at the same
time . the disabled gate ente rs the high-impedance state before the other gate is enabled. Th is
eliminates the situation of both gates being active at the same time.

There is a very small leakag e current associated with the high-impedance conditio n in a
three -state gate. Nevertheless. this current is so small that as many as 100 three-state outputs
can be co nnected together to form a common-bus line .

EMITTER -COUPLED LOGIC

Emitter-coupled logic (ECL) is a nonsaturated digital logic fami ly. Since transistors do not set­
urate. it is possible to achieve propa gation delays as low as 1-2 ns. This logic family has the
lowest propagation delay of any family and is used mostly in systems requiring very high speed
operation. Its noise immunity and power dissipation . however . are the worst of all the logic fam­
ilies available.

A typical basic circuit of the EeL family is shown in Fig. 10.17. The outputs provi de both
the OR and NOR functions. Each input is connected to the base of a transistor. The two volt­
age levels are abo ut - 0.8 V for the high state and abo ut - 1.8 V for the lo w state. The circuit
consists of a differential amplifier. a temperature- and voltage-compe nsated bias network. and
an emitter-follower output. The em itter outputs require a pull-down resistor for current to flow.
This is obtai ned fro m the input resistor Rp of another similar gate or from an ex ternal resistor
connected to a negative voltage supply.

The internal tempe rature- and voltage -compensated bias circuit supplies a reference volt ­
age to the differential ampl ifier. Bias voltage Vss is set at - 1.3 V, which is me midpoint of me
signal's logic swing. The diodes in the voltage divider.fogetber with Q6. provide a circuit that
maintain s a constant VBs value despite changes in temperature or supply voltage. Any one of
the power supply inputs could be used as grou nd. However, the use of the Vccnode as ground
and VEE at - 5.2 V results in the best noise immunity.

If any input in the ECL gate is high. the corresponding transistor is tumed OIl and Q5 is
turned off . An input of - 0.8 V causes the tran sistor lOconduetand places -1.6 V OIl the emit­
ters of all of the transistors. (The VB£ drop in EeL transistors is0.8 V.) Since VBB = - 1.3 V,
the base voltage of Q5 is only 0.3 V more positive man itsemittet. Q5 is cut off because its VBE

494 Chapter 10 Digital Integrated Circuits

Differential input amplifier

Internal
temperature
and voltage­
compensated
bias netwo rk

Emi tter­
follo....er
OUtputs

:-';OR
output

OR
outpu t

Vee l - O:-iD

i
Vee: . GND

r
e+-

Rn
245 0 970 n v.:

R" ~Q8
2200

I
Q7

<161--
1~l ~2 ~3 ~4 Q'j-1

,A V ,IIB = ,
- 1.3V

r-r- r-t- r-t- r-r-
R, R, R, R, R, 6.1n 4.98 kn

so en SOl O SO kH 50kO 779 n

A B c D VEE "" - S.2V

FIGURE 10.17
Basic ECl gate

vol tage needs at least 0.6 V to stan conducting. The current in resistor Rc: flows into the base
of Q8 (provided that there is a load resistor). This current is so small that on ly a negligible
voltage drop occurs across Rcz- The OR output of the gate is one VBE drop below ground. or
- 0.8 V. which is the high stale. The current flowing through RCI and the conducting transis­
tor causes a drop of abo ut 1 V below ground. (See Prob lem 10.9 .) The l'\OR output is one VBE
drop below this level. or - 1.8 V. which is the low stale.

If all inputs are at the low leve l, all input transistors tum off and Q5 conducts. The voltage
in the common-emitte r node is one VBE drop below VBB, or - 2.1 V. Since the base of each input
is at a low level of - 1.8 V. each base-emitter junction has only 0 .3 V and all input transistors
are cut off. RCl dra ws current thro ugh Q5 that results in a vo ltage drop of about I V, making
the OR output one VBE drop below this. at -1.8 V. or the low leve l. The current in RCl is neg­
ligible. and the NOR OUtpUI is o ne VBE drop below ground, at - 0.8 V. or the high level. This
analysis verifies the OR and NOR operatio ns of the circuit.

The propagation delay of the Ee L gale is 2 ns and the power dissipation is 25 mw, giv ing
a speed-power product of 50. which is about the same as that for the Schottky TIL. The noise

Section 10.7 Metal-Oxide Semiconductor 495

(A + B)' ... (C + D J'=

[(A + BltC + D)I'

+i4-- - - (A T B)(C + D)

A

B -L:...~-.

c- G*- -+_ ...J
D

A-~ ,;",_ (A ..,. By NOR

B (A + B) OR

(a) Single gate (b) Wired combination of two gates

fiGURE 10.18
Graphic symbol and wi red combinatio n of ECL gates

marg in is about 0.3 V and is not as good as that in the TTL gate. High fan-out is possible in
the ECl gate because of the high input impedance of the differential amplifier and the low
output impedan ce of the emitter-follower. Because of the extreme high speed of the signals.
external wires act like transmission lines. Except for very sha lt wires of a few centimeters.
ECl outputs must use coaxia l cables with a resistor termination to reduce line reflections.

The gra phic symbol for the ECl gate shown in Fig. 10 .18(a). 'TWo outputs are ava ilable: one
for the NOR function and the other for the OR function. The outputs of two or more ECL gate s
can be connected togeth er to form wired logic. As shown in Fig. 1O.18(b), an external wired
connection of two NO R outputs produces a wired-OR function. An internal wired connection
of two OR outputs is em ployed in some Eel ICs to produce a wired-AND (sometimes called
dot-AN D) logic. This property may be utili zed when ECL gales are used to form the
OR- AND- INVE RT and the OR-AND functions.

10 .7 METAL -OXIDE SEMICONDUCTOR

The field-effect tra nsistor (FET) is a unipo lar transistor. since its operation depends on the
flow of only one type of carrie r. Th ere are two types ofFETs: the junction field-effec t transis­
tor (JPET) and the metal-oxide semiconductor (Ma S). Th e fanner is used in linear circuits
and the latter in digital circuits. MaS tran sistors can be fabricated in less area than bipolar
transistors.

The basic structure of the MOS transistor is shown in Fig . 10.19. 1bep-channel MOS con­
sists of a lightly doped substrate of a-type silicon material . Two regions are heavily doped by
diffusion with p- type impurities to fonn the source and drain. 1be region between the two~

type sections serves as the channel. Th e gale is a metal plate separated from thedwmeI by an
insulated dielectric of silicon dioxide . A negative voltage (with respect to tbe subsuaIe) 81 the
gate terminal causes an induced electric field in the channe l thatattraetsp-eype carriers (ho&es)
from the substrate . As the magnitude of the negative voltage on the pte iD:reases, the region
below the gale accumulates more positive carriers. the oonduaivity increases. and C\lI'ttnl can
now from source to drain. provided that a voltage difference is mainlaioed between these two
terminal s.

496 Chapter 10 Digital Integrated Circuits

{alp-channel

FIGURE 10.19
Basic st ruct ure of MOS transistor

(b) u-channel

There are four ba-le types of ~fOS structures. The channel can be p or 11 type. depending
on whether the majo rity carriers are holes or elect rons. The mode of operation ca n be en­
hancement or depletion. dependin g on the state of the channel region at zero gate voltage . If
the channel is initially doped light ly with p-type impurity (in which case it is ca lled a diffused
channels . a conducting channel exists at zero gate voltage and the device is said to operate in
the deplet ion mode. In this mode. current flows unless the channel is depleted by an applied
gate fte ld. lfthe region beneath the gale is lefl initia lly uncharged . a channel must be induced
by the gale field before current can flow. Thus. the channel current is enhanced by the gate volt­
age. and such a device is said to operate in the enhancement mode.

The source is the terminal through which the majo rity carriers enter the device. The drain
is the termi nal through which the majo rity carriers leave Ihe device . In a n-channe l MOS. the
source terminal is connected to the substrate and a negative voltage is applied to the drain
terminal. Whe n the ga le m ilage is above a thresho ld voltage Vr (abo ut - 2 V). no c urrent
flow s in the channel and the drain -to-source path is like an open circu it. When the gate volt­
age is sufficiently negative below VT• a channel is formed andp-type carriers flow from source
10 drain. p-Iype ca rriers are positive and correspond to a posit ive current flow from source 10

drain.
In the u-channe! f\.I OS. the source terminal is co nnected to the substrate and a positive \ 011 ·

age is applied to the drain terminal. Whe n the gale voltage is below the thre..hold voltage Vr
(about 2 V). no current flows in the channel. When the gate voltage is sufficiently positive
above Vr to fonn the channel, a- type carriers flo from source 10 drain. n-type carriers are
negat ive and correspond to a positive current flow from drain to source. The threshold voltage
may vary from I 104 V, depending on the particular process used.

The graphic symbols for the MOS transistors are shown in Fig. 10.20. The symbol for the
enhancement type is the one with the broken-line connection between source and drain . In this
symbol. the substrate can be identified and is shown connected to the source. An alternative sym­
bol omits the substrate. and instead an arro is placed in the source termin al 10 show the di­
rection ofpositivecu rrent flow (from source to drain in the p-channel MOS and from drain to
source in the II-channel MOS).

Because of the symmetrical construction of source and drain . the tl.l0S transistor can be
operated as a bilateral device. Although normally opera ted so that carriers flow from source to
drain. there are circumstances when ir is convenient 10 allow carriers to flow from drain to
source. (See Proble m 10.12.)

Sec tion 10.7 Metal-Oxide Semicondu ctor 497

drain

.-J
~alC --1 q sub!.tra te

W"=

D

G-<
s

drain

.-J
~a te --1 1--- sub!.lralc

'I
source

D

G-<
s

(a) p -channe l

fiGURE 10.20
Sym bols fo r MOS transistors

(b) e-channel

One advantage of the MOS device is that it ca n beused nOI only as a transistor, but as a re­
sistor as well. A res istor is ob tained from the MOS by permanently biasing the gate terminal
for conduction. The ratio of the source-drain voltage to the channel current then determine s the
value of the res istance . Different res istor values may heconstructed during manufacturing by
tixing the channellength and width of the MOS device.

Three logic circuits using MOS devices are shown in Fig. 10.21. For an a-c hannel MOS,
the supply voltage Vnn is positive (about 5 V). to allow positive curr ent flow from drain to
source. The IWO voltage levels are a function of the threshold voltage Vr .The low level is any­
where from zero to Vr • and the high level ranges from VT ttl Vnn. The n-chan nel gates usually
employ positive logic. Thep-channel ~10S circuit..U~ a negative voltage for Vnl). 10 allow pus­
itive current flow from source 10 drain. The IWO voltage levels are both negative abo ve and
below the negative threshold voltage Vr . n-chan ne l gales usually e mploy negati ve logic.

r - -"-----r-- Y - (Ao + Bf

Y = (A B)'

\ ' OD

I

y - A '

[aj Inverter (b) SAND piC (c) NOR11*

FIGURE 10.21
n-<hannel MOS logic circuits

498 Chapter 10 Digital Integrated Circuits

The inverter circuit shown in Fig. 1O.21(a) uses two MOS devices. QJ acts as the load reo
sistor and Q2 as the active device. The load-resistor MOS has its gate connected to VDD• thus
maintaining it in the conduction stale. When the input voltage is low (below Vr). Q2 turns off.
Since QJ is always on. the output voltage is about VDD. When the input voltage is high (above
Vr). Q2tums on. Current flows from VDD through the load resistor QJ and into Q 2. The geom­
etry of the two MOS devices must be such that the resistance of Q2 . when conducting. is much
less than the resistance of QJ to maintain the outp ut Yat a voltage below Vr .

The NAl\' D gate shown in Fig. 10.21(b) uses transistors in series. Inputs A and B must both
be high for all trans istors to conduct and cause the output to go low. If either input is low. the
corresponding transistor is turned off and the output is high. Again. the series resistance formed
by the two active MOS devices must be much less than the resistance of the load-resistor ~10S.

The NOR gate shown in Fig. 1O.2Hc) uses transistors in parallel. If either input is high. the cor­
responding transistor conducts and the output is low. If all inputs are low, all active transist ors
are off and the outp ut is high.

10 . 8 COM PLEM ENTARY MOS

Com plementary MOS (CMOS) circuit s take adva ntage of the fact thai both n-channe l and
p -channel devices can befabricated on the same substrate. CMOS circuits cons ist of both types
of MOS devices . interconnected to form logic functions. The basic circuit is the inverter, which
consis ts of one p-channel transistor and one n-channel transistor. as shown in Fig. 1O.22(a).
The source terminal of the p-c hannel device is at VDD• and the source terminal of the a-channel
device is at ground. The value of VDD may beanywhere from +3 to +18 V.Tbetwo voltage lev­
els are av for the low level and VDD for the high level (typically. 5 V).

To understand the operati on of the inverter, we must review the behavior of the MOS tran-
sistor from the previous section:

1. The a-channel MOS conducts when its gate-to-source voltage is positive.

2. The n-channel MOS conducts when its gale-to-source voltage is negative .

3. Either type of dev ice is turned off if its gate-to-source voltage is zero.

Now consider the operation of the inverter. When the input is low. both gates are at zero po­
tential. The input Is at - VDD relative to the source of the p-channel device and at 0 V relative
to the source of the a-channel device. The result is that the p..channel device is turned on and
the a-channel device is turned off. Under these conditions. there is a low-impedance path from
VDD to the outpu t and a very high impedance path from output to ground. Therefore. the out­
put voltage approaches the high level VDD under normal loading co nditions. When the input is
high. both gates are at VDD and the situation is reversed: The p..channel device is off and the
a-c hannel device i ~ on. The result is that the output approaches the low level of 0 V.

Two other CMOS basic gates are shown in Fig. 10.22. A two-i nput NAND gate consists
of two p- type units in parallel and two e-type units in series. as shown in Fig. 10.22(b). If all
inputs are high. both p-channel transistors tum off and both a-channel transistors tum on. The
output has a low impedance to ground and produces a low state. If any input is low. the as­
sociated a -channe l transistor is turned off and the assoc iated p-channel transistor is turned

Section 10.8 Com plementary MOS 499

v.,

1

P

A

A Y - A'

n

B

~

(I) Inverter

rl ~ r F•.J

"~

,
,-

I

(b) toOAND Ille

y .. (A B)"

A o--r----~

~-+---~---.---Q y .. (A + 8)'

(e) S O R p ie

FJ(oURE 10.22
CMOS logic c1n::uih

500 Cha pter 10 Digita l Integrated Circuits

on . The output is coupled to VOl) and goe s 10the high state. Multiple-input NAK D gates may
be formed by placing equal numbers of p-type and »-type transistors in para llel and serie s. re­
spectively. in an arrangement similar to that shown in Fig. 1O.22(b J.

A two-input NOR gate consists of two »-type units in parallel and two p -type unit, in se­
ries. as shown in Fig. 1O.22(c) . When all input s are low. both n-c hannel units are on and both
a-chan nel units are off. The outpu t is co upled to VD D and goes to the high srare. If any input is
high. the associated p-c hanncl transistor is turned off and the associated n-ch annel transistor
turns on . co nnecting the output to ground and causing a low-level output.

MOS transistors can be co nside red to be electronic switches that either con duct or are
open. As an example. the CMOS inverter can be visualized as consisting of two switches as
shown in Fig. 1O.23(al . Applying a low voltage 10the input causes the upper switch (p) to dose.
supplying a high voltage to the output. Applying a high voltage to the input ca uses the lower
switch (n) 10close. connecting the output to ground. Thu s. the output VOIle is the co mplement
of the input Vi", Commercial applications often use other graphic symbols for ~10S transis­
tors to emphasize the logica l behavior of the switches. The arrows showing the direction of
current flow are omitted. Instead. the gate input of the p- chann eltrd.nsistor is draw n with an
inversion bubble on the gate terminal to show that it is enabled wilh a low vokage. The in­
verter ci rcuit is redrawn with these symbols in Fig. 1O.23(b). A logic 0 in the input causes the
upper transistor to conduc t. making the output logic I. A log ic I in the input enables the lower
transisto r. making the output logic O.

CMOS Characteristics

When a CMOS logic circuit is in a static state. its power dissipation is very low. This is because
at least one transistor is always off in the path between the power supply and ground when the
state of the circuit is not changing. As a result. a typical CMOS gate has static power dissipa­
tion on the order of 0.0 1mw.However. when the circuit is changing state at the rate of I MHz.
the power dissipation increases to abou t J rnw, and at In MHz it is about 5 mW.

V tJtJ .. 5 V

I
v"-[r- v~,

1
{a}Switch model

FIGURE 10.2 3
CMOS inverter

(b) logical model

, 0 . 9

Section 10.9 CMOS Transm ission Gate Circuits 501

C!\lOS logic is usually speci fied for a sing le power-supply operatio n ove r a voltage range
from 3 to 18 V with a typical vocvalue of 5 V. Operati ng CMOS at a larger power-supply
voltage reduces the propa gatio n delay lime and improves the noise margin. but the powe r dis­
sipat ion is increased . The propagat ion dela y time with VlJD = 5 V ranges from 5 to 20 ns.
depending o n the type of CMOS used . Th e noise marg in is usually abo ut 40 percent of the
power supply volt age . Th e fan-out of CMOS gates is abo ut 30 when they are operated at a
frequency of I MH z. The fan-ou t decreases with an increase in the freq uency of operatio n
of the ga tes.

There are several series of the CMOS digital logic family. The 74C series are pin and func­
tion compatible with TTL devices havin g the same number. For e xample. C~IOS IC type
740)4 has six inverters with the same pin configuration as TIL type 7404. The high-speed
C!\toS 74IJC series is an improvement over the 74C series. with a tenfo ld increase in switch­
ing speed. The 74HCT series is electrically compatible with TIL ICs.Thi ... means that circuits
in this series can he conne cted to inp uts and outputs of TTL le s without the need of additional
interfaci ng circuits. Newer versions of CMOS are the high-speed series 74VHC and its TIL­
compatible version 74VHCT.

The CMOS fabrication process is simpler than that of TIl.. and pro vides a greater packing
densit y. Thu s. more circuits can beplaced on a given area of silicon at a reduced cost per func­
tion . This property. together with the low power dissipation of CMOS ci rcuits. good noise im­
munity. and reasonable propagation delay, makes CMO S the most popular standard as a digital
logic famil y.

CMOS TRANSMISSION GATE CIRCUITS

A special CMOS circuit that is not avai lable in the other digital logic families is the transmission

gale.Th e transmission gate is essentially an electronic switch that is controlled by an input logic
level. It is used 10 simplify the construction of various digital components when fabricated
with CMOS technology.

Figure 10.24(3) sho ws the basic ci rcuit of the transmission gate. Whereas a CMOS in­
verter consists of a p-c hanne l transistor connec ted in series with an n-channel transistor, a
transmission gate is fonned by one a -channe l and one p-chan nel MOS transistor connected
in parallel.

The e-channel substrate is connected to ground and the p-channel substra te is connected to

VOl). When the N gate is at Vl)/J and the P gate is at ground. both trans istors condoct and there
is a closed path betwee n input X and output Y. When the N gate is at ground and me P gate is
at VDl). both tra nsistors are off and there is an open circuit besweea X aDd Y. Figure IO.24(b)
shows the block diagram of the transm ission gate . Note that the IenIJiaI oi lbep-cbaorrl gale

is marked with the negation symbol. Figure IO.24(c) demonstnIIea thebebaYiorof theswitcb
in terms of po..iti....e-togic assignment with ¥oo equivelent tc logic 1_~ c:qaivalClllllO
logic O.

Th e transmission gate is usually connected 10 an inverter, • sbowa .. .fi&.. 10.2.5. This
type of arran gement is referred to as a bilateral switch: 'The coattoI input Cis ((JIW'IC'1I'(I di­
rect ly 10 the n-chunnel gate and its inverse to the p-channel gale. Wheu C = I. the swi1dt is

S02 Chapter 10 Digital Integrated Circuits

y

p

(b)

TGx - ---jy

T
r

(.)

-'"
...l..

x~

Closed switch

x~y
."I-I
p- o

Open switch

x~L:>....-y
N - O
P - l

«)

FleUR! 10.2"
Transmission gate (TG)

c ~

v

x - TG f--- y

FIGURE 10.25
Bilate ral switch

closed. producing a path between X and Y. When C = O. the switch is open . disconnecting
the path between X and Y.

Various circuits can be constructed that use the transmission gale. To demonstrate its use­
fulness as a component in the CMOS family. we will show three examples.

The exclusive-OR gate can beconstructed with two transmission gates and rwc Inverters.
as shown in Fig. 10.26. Input A co ntrols the paths in the trans mission gales and input B is

Section 10.9 CMOS Transmission Gate Circuits S03

A B TG1 TG2 Y

A

8

j
TGJ ' i·

'. "i>t~
~

v -
•cc"!,\;'{i)).. ~"-S""·-'···

~ ~1,1i1~V
~f~'"·~-::if!4.~'h,'i!.

FIGURE 10.26
Exclusive-ORconst ructed with transmission gates

y
o
o
I
I

o close
1 close
1 "P"
o open

"P" 0
"P" I
close 1
close 0

connected to output Y through the gales. When input A is equal to O. trans mission gate TGI
is closed and output Y is equal to input B. When input A is equal to I . TG2 is closed and our­
put Y is equal to the com plement of input B. This resu lts in the exclusive-OR truth tab le. as
indicated in Fig. 10.26.

Anothe r circui t that can be constructed with transmission gales is the multiplexer. A four­
to-one-line multiplexer implemented with trans mission gates is shown in Fig. 10.27. The TG
circuit provides a transmission path between its horizontal input and output lines when the two
vertical control inputs have the value of I in the uncircled term inal and 0 in the circled termi ­
nal. With an opposite polari ty in the co ntrol inputs. the path disco nnects and the circuit be­
haves like an open switch. The two selection inputs. SI and So- control the transmissi on path
in the TG circuits. Inside each box is marked the condition for the transmission gate switch to
be closed. Thus. if So = 0 and SI =O. there is a closed path from input 10 to output Ythrou gh
the two TGs marked with So ". 0 and SI = O. The other three inputs art disconoected from the
output by one of the other TG circuits.

The level-sen sitive D flip- flop co mmo nly referred to as the gated D latch can be coe­
struc ted with transmission ga tes. as shown in Fig. 10.28. The C input coouols lWO tn.ns­
mission gates TG. When C - I. the TO co nnected to input D has acJo.ed pMh 8Dd theone
co nnected to output Q has an open path . This co nfiguratioa prodDca .. eqaivalc8l cirarit
from input D through two inverters to ou tput Q. Thus. the 0UIpal fcJrI)ows die data inpIt as
long as C remains active . When C switches to O. the fmt TG diN ' -dll iDpu& D from die
circuit and the seco nd TG produces a closed path benwcen dI£ two iIIft11cn • die output.

504 Chapter 10 Dig it al In teg ra t e d Circuits

s,

s,

I ,

I ,

v
r-,
v

..~ .
«~TG~~,
(~ -- 0),

,

&' ra
'~J~,:?)

:,~~r~
I' .

~

jfiflJ1jj
I. TGr%
(5,;" 0);;

fJlJi/fRiill
:iJf;JISII, '.ro
g~7~~)0'

"·'t· ~', .' '
~:%:""''--",'lt;!r:,/. _Ta e-,'Ilt,
'(S "'1)";'
IfJlf4i*

,.

FIGURE 10.27
Multiplexer w ith t ransmiuion gates

Th us. the va lue that was present at input D at the lime that C went from I 100 is re tained at
the Qo utput.

A master- slave D llip-flop can be constructed with two circuits of the type shown in Fig. IO.!8.
The first circ uit is the master and the second is the slave. Thus, a ma..rer- slave 0 flip-flop can be
constructed with four transmission gates and six inverters.

Sect ion 10.10 Switch-l evel Modeling with HOl 505

c - -r- -----.--- - - - - --,

TG f----.--+----1~-~-Q'

!;'f- - - - 4-- Q

10 ,10

FIGURE 10.28
Gat ed D latch wit h transmission gates

SWITCH ·LEVEL MODELING WITH HDL

C~lOS is the dornlnant d igitallogjc family used with integrated circuits. By definition. C:-AOS~
is a comp lementary connection of an NMOS and a PMOS transistor. ~OS transistors can be
considered to be electronic switches that either conduct or are open. By specifying the con­
nections among MOS switches. the des igner can describe a digital circuit constructed with
CMOS. This type of description is called switch-level modeling in Veri log HDL.

The IWO types of MOS switches are specified in Verilog HOL with the keywords nmos and
pmos. They are instantia ted by specifying the three terminals of the transistor. as shown in
Fig. 10.20:

nmos (drain. source , ga te);
pmos (drain, source , gale);

Switches are considered 10 beprimitives. so the use of an instance name is op tiona l.
The connections to a power source (VOD) and 10 ground mU~1 be specified when MQS cir­

cuits are designed. PO\I,er and ground are defined with the keywords suppl}"l and supplyu.They
are specified. for example. with the following statements:

supply 1 PWR;
supplyO GRO;

Sources of type supplyI are equivalent 10 VOD and have a value of logic I. Sources of type

supplyn are equivalent to ground connection and have a value of logic O.
The descr iption of the CMOS inverter of Fig. 1O.22(a) is shown in HDLExample 10.1. The

input. the outp ut. and the IWO supply sources are dec lared first, Tbe module instantiates a
p~tOS and an NMOS transisto r. The outpu t Y is common to both transistors at their drai n ter­
minals. The input is also common to both transistors at their gate terminals. Tbe source: termi­
nal of the PMOS transistor is connected to PWR and the source terminal of the NMOS transistor
is connected to GRD.

S06 Chapter 10 Digita l Integrated Circuits

HDL Exam ple 10.1

1/ CMOS inverter of Fig. 10.22(a)
module inverter (Y. A);
Input A;
output Y;
supply1 PWR;
supplyO GRD;
pmos (Y, PWR, A);
nmos (Y, GRD, A);

endmodule

1/(Drain, source, gale)
1/(Drain, source. gate)

1/terminal between two nmos
1/source connected to Vdd
1/parallel connection
1/ serial connection
/I source connected to ground

The second module. set forth in HOL Example 10.2. describes the two-input C~(OS ~A;-';O

circuit of Fig. IO.22(b). There are two PMOS transistors connected in parallel, with their source
terminals connected 10 PWR. There are also two NMOS transistors connected in series and with
a common terminal WI . The drain of the first~OS is connected 10 the output. and the source
of the second ;-..IMOS is connected to GRD.

HDL Exam ple 10.2

fI CMOS two-input NAND of Fig. 10.22(b)
modu le NAND2 (Y, A, B);
Input A, B;
output Y;
supp ly1 PWR;
supplyO GRD;
wire W1;
pmos (Y, PWR, A);
pmos (Y, PWR, B):
nmos (Y, W1, A);
nmos (W1, GRD, B);

endmod ule

Transmission Gate

The transmission gale is instantiated in Verilog HOL with the keyword cmos. II has an output .
an input. and two control signals. as shown in Fig. 10.24. It is referred to as a cmos switch. The
relevant code is as follows:

cmos (output. input. ncontrot, pcontrol); /I general description

cmos (Y, X, N, P): 1/ transmission gate of Fig. 10.24(b)

Normall y. ncontrol and pcontrol are the comp lement of each other. The cmos switch does nOI
need power sources, since VDD and ground are co nnected to the substrates of the MOS transis­
tors.Transmission gates are useful for building multiplexers and flip-flops with CMOS circuits.

Section 10,10 Switch-Level Modeling with HDL 507

HDL Example 10.3 describes a circuit with cmos switches. The exclusive-OR circuit of
Fig. 10.26 has two transmission gates and two inverters. The two inverters are instantiated
within the module describing a CMOS inverter. The two cmos switches are instantiated with­
out an instance name, since they are primitives in the language. A test module is included to
test the circuit's operation. Applying all possible comb inations of the two inputs, the result of
the simulator verifies the operation of the exclus ive-OR circuit. The output of the simulation
is as follows:

HDL Exam ple 10.3

A =O
A = O
A = l

A =l

8 =0

8 = 1

8 = 0

B =l

Y = O
Y = l
Y =l
Y = 0

IICMOS XOR with CMOS switches , Fig. 10.26

module CMOS_XOR (A, B, Y);
Input A, B;
ou tput Y;
wire A_b, B_b;
II instantiate inverter
inverte r vt (A_b, A);
inverte r v2 (B_b, B);
II instantiate cmos switch
cmos (Y, B, A_b, A);
cmos (Y, B_b, A, A_b);

e ndmodule
If CMOS inverter Fig. 10-22(a)
module inverter (Y, A);

Input A;
output Y;
supply1 PWR;
supplyO GND ;
pmos (Y, PWR, A);
nmos (Y, GND , A);

e ndmo dule
II Stimulus to test CMOS_XOR
module tesC CMOS_XOR;

reg A,S;
wlre Y;
IIlnstant iate CMOS_XOR
CMOS_XOR X1 (A, B, Y);
II Apply truth table
Initial

beg in

lI(output, input, ncontrol, pcontrol)

II(Drain, source , gate)
I/(Drain. source, ga te)

508 Chapter 10 Digital Integrat ed Circuits

A = l 'bO; B = l 'bO;
#5 A = l'bO; B = l 'bl ;
#5 A = 1'bl ; B = l 'bO;
#5 A = t'b t : B = l 'bl ;

end
f{ Display results
Initial
$monltor (A =%b B= %b Y =%b~ , A, B, V);

endmodule

P RO BLEM S

Answers to problems marked w ith * appear at the end of the book.

10.1 * Following are the specifications for the Schottky TfL 74SOO quadruple lwo-inpur N'A:'\O gate' :

Paramet er

Vee
ICCH

tea.
VOH
Vo,
Vm

V"
10 H

toe
hH
I"
t PLH

trn t:

Nam e

Supply voltage
High-level supply current (four gates)
Low-level supply current (four gates)
High-level output voltage (min)
Low-level output voltage (max)
High-level input voltage (min)
Low-level input voltage (max)

High-leve l output current (max)
Low-level output current (max)
High-level input current (max)

Low-level input current (max)
Low-to-high delay
High-to-low delay

Value

5 V
lO rnA
20 rnA
2.7 V
0.5 V
2 V
0.8 V

I rnA
20 rnA
0.05 rnA
2 rnA

J ",,,

Calculate the fan-out, power dissipation. propagation delay, and noise margin of the Schottky

NAND gate.

10.24' (a) Determine the high-level OUlP UI voltage of the RTL gale (or a fan-out of 5.
(b) Determine the minimum input voltage required to drive an RTL transistor to saturation

when hn = 20.
(c) From the results in parts (a) and (b), determi ne the noise margin oflhe Rr t. gmew hen the

input is high and the fan-out is 5.

10.]* Show that the output transistor of the on. gate of Fig. 10.9 goes into saueauon when all in­
PUI, are high. Assume that hn = 20.

10.4*

10.5*

10.6

10.7

10.8

10.9*

10.10*

10.1 1

10.12

Problems 509

Connect the output Yof the OTL gate shown in Fig. I0.9 to N inputs of other, similar gates. As­
sume that the output transistor is saturated and its base curre nt is 0.44 mAo Let h FE = 20.
(a) Calculate the current in the 2-kn resistor.
(b) Calculate the current coming from each input con nected to the gate.
(c) Calcu late the total collec tor current in the output transistor as a function of N.
(d) Find the value ofN that will keep the transistor in saturation.
(e) What is the fan-out of the gate?

Let all inputs in the ope n-col lector TTL gate of Fig. I0.11 be in the high state of 3 V.
(a) Determine the voltages in the base. collector. and emitter of all transis tors in the circuit.
(b) Determin e the minimum hFE of Q2 which ensures that this transistor saturates.
(c) Calculate the base current of Q3 .
(d) Assume that the minimum liFEof Q3 is 6. 18. What is the maxim um current that ca n be tol­

erated in the collector to ensure saturation of Q3?
(e) What is the minimum value of RL that ca n be tolerated to ensure saturation of Q3?

(a) Using the actual output transistors of t.... o ope n-collector TTL gates. show (by means of a
truth table) that . when connected together III an external resi stor and Vee, the wired con­
nection produces an AKO function.

(b) Prove that two ope n-collector TTL inverters. when connected together. produce the NOR
function.

It was stated in Section 10.5 that totem-pole uutputs should not be tied together to fonn wired logic.
To see why this is prohibitive. connect two such circuits together and let the output of one gate be
in the high state and the output of the other gate be in the low state. Show that the load current
(which is the sum of the base and collector currents of the saturated transistor Q-I in Fig. 10.14) is
about 32 mAoCompare this value with the recommended load current in the high state of 0.4 mA.

For the following conditions, list the transistors that are off and the transistors that are con­
ducting in the three-state TTL gate of Fig. 1O.16(c} (for Ql and Q6. it is necessary to list the
slates in the base-emitter and base--collector junctions separately):
(a) when C is low and A is low.
(b) when C is low and A is high.
(c) when C is high.

Wh at is the stale of the output in each case?

(a) Calculate the emitter current te across R£ in the ECL gate of Fig. 10. 17 when atleas..t one
input is high at -0.8 V.

(b) Calculate the same current when all inputs are low at - 1.8 v.
(c) Now assume that le = te. Calc ulate ibe voltage drop across the co llecto r resistor in eac h

case and show that it is about I V. as required.

Calculate the noise margin of the Eel gale.

Using the NOR outputs of two ECL gates. show that, whenCOlIlOCfed IOgelber 10 aD e1ICIDaI
resister and a negative supply voltage, the wired connection prodDccs ..OR r-:tioL

The MOS transistor is bilateral (i.e.. curre nt may flow from alM'Ce 10draia or from. draillllO
source). On the basis of this property, derive a circu illb.al impIcmmIs Ibe Be:-*- r..aioa

Y = (AS + CD + AED + CEB)'

using six MOS transistors.

510 Chapter 10 Digital Integrated ClrculU

10.13 (a) Show the circuit of a four-input NAA'U gate using CMOS transistors.
(b) Repeal for a four-input NOR gate.

10.14 Construct an exclusive-NOR circuit wilh IWO inverters and two transmission gates.

10.15 Construct an eight-to-one-line multiplexer using transmission gates and inverters.

10.16 Draw the logic diagram of a master-s teve D flip-flop using transmission gates and tnveeers.

10.17 Write a test bench that will te st the NA.'lDcircu itof HDLExample 10.2. The simulation should
verify the truth table of the gate.

RE FE REN C ES

1. ClLETIl. M. D. 1999. Modeling. Symhesis. and Rapid Protot)'ping with Verilog HDL Upper Sed-

dIe River. NJ: Prentice Hall.
2 . CMOS Logic Data Book. 1994. Dallas: Texas Instruments.
3. HODGES. D.A. 2003.Analysis and Design ofDigital Integrated Cirruits. New York: ~lcGra~ ·Hill .

4 . TOCCI. R. J.. and N. S. WIDMER. 2004. Digital Systems: Principles and Applications. 9th ed.
Upper Saddle River. NJ: Prentice Hall.

S. The TTL Logic Data Book . 1988. Dallas: Texas Instruments.
6 . WAKERLY. J. F. 2006. Digital Design: Princ iples and Practices. 4th ed . Upper Saddle River, S f:

Prentice Hall.
7. WESTE. X. E.. and K. EsHRAGHlA.'l . 2005. Principles ofCMOS VLSI Design: A S)'slem Perspec­

tive, 2d ed. Reading. MA: Addison-Wesley.

Chapter 11

Laboratory Experiments
with Standard ICs and FPGAs

11. 1 INTRODUCTION TO EXPERIMENTS

This chapter presents 18 laboratory experiments in digital circuits and logic design. The ex­
periments give the student using this book hands-on experience. Th e dig ital circuits can be
constructed by using standard integrated circu its (lCs) mounted on breadboards that are easi­
ly assemb led in the laboratory. The experiments are ordered according to the materia l pre­
sented in the book. The last section consists of a number of supplements with suggestions for
using the Verilog HDL to simulate and verify the functionality of the digital circuits presented
in the experiments. If an FPG A prororyplng board is available , the experiments can be imple­
mented in an FPGA as an alternative to standard ICs.

A logie braadbosrd cuitahlc for performing the arparimsntc muct have the following
equipment:

1. Light -emitting diode (LED) indicator lamps.

2. Toggle switches to provide logic-t and logic -Osignals.

3. Pulsers with push buttons and debo unce circuits to gene rate single pulses.

4. A clock-pulse gene rator with at least two frequencies: a low frequency of about 1 pulse
per second to observe slow change s in dig ital signals and a higher freq uency for ob­
serving waveforms in an oscillo scope .

S. A power supply of 5 V.

6. Socket strips for mounting the lCs.

7. Solid hookup wires and a pair of wire strippers for cutting the wires .

Digital logic trainers that include the required equipment are available fro m several manu ­
facturers. A digital logic trainer contains LED lamps. togg le switches. pulsers, a variable clock.

511

5 12 Chapter 11 Laboratory Experiments

a power supply. and IC socket strips. Some experiments may req uire add itional switches . lam ps.
or IC soc ket strips. Extended breadboards with more soldertess soc kets and plug-in switche s
and lamps may be needed.

Addi tional equipment required is a dual-trace osci lloscope (for Experimen ts I. 2. 8. and
IS). a logic probe to be used for debugging. and a number o f ICs. The rc s req uired for the ex­
periments arc of the TIL or CM05 series 7400.

Th e integrated ci rcuits to be used in the experi ments can be classified as small-scale inte­
gration (5 51) or med ium-sc ale integrat ion (M5l) ci rcuits. 551circuits co ntain indiv idual gates
or flip-flops. and MSI circuits perform spec ific digital functions. Theeight SSI gate ICs needed
for the experiments- two- input NAND. NOR. A"1). OR. and XOR gates. inverters. and three­
input and four-input NAND gates-are shown in Fig. 11.1. The pin assignments for the gates
are indicated in the d iagram. The pins are numbered from I to 14. Pin number l -l- is marked
Vee. and pin number 7 is marked GND (ground). These are the supply te rminals.hich must
be con nected to a powe r supply of 5 V for proper ope ration of the ci rcuit. Each IC is recog­
nized by its identification num ber, for example. the two- input NAND gates are found inside
the IC whose number is 7400.

Detailed description s of the MSI circ uits can be found in data book s pub lished by the man­
ufacturers. The best way to acquire experience with a commercia l MSI circuit is to study its
description in a data boo k that prov ides complete informat ion on the intern al. extern al. and
electrica l characterist ics of integra ted circuits. Various semiconductor companies pub lish data
books for the 7400 series. The MSI ci rcuits that are needed for the experiments are introduced
and explained when they are used for the first time . Th e operation of the circu it is explained
by referring to similar circuits in pre vious chapters. The information given in this chapter about
the MSI ci rcuits should be sufficient for performi ng the experiments adequately. Nevertheless.
reference to a data hook will always be preferable. as il gives more detailed description of the
ci rcuits.

We will now demonstrate the method of presentat ion of MSI circ uits adopted here . To il­
lustrate. we introduce the ripple counter IC. type 7493. Thi s IC is used in Experiment I and in
subseque nt experime nts to generate a seq uence o f binary numbers for verifying the operation
of combinational circuits.

The information about the 7493 IC that is found in a data book is shown in Figs. 11 .2(a) and
(b). Part (a) shows a diagra m of the intemallogie circuit and its connection to external pins. All
inputs and outputs are given symbolic letters and assigned to pin numbers. Pan <b) shows the
physical layout of the IC. together with its la -pin ass ignment 10 signal names. Some of the pin..
are not used by the circuit and are marked as NC (no connection). The IC is inserted into a socket.
and wires are connected to the various pins through the socket terminals. When draw ing schemat­
ic diagrams in this chapter, we will show the Ie in block diagram form. as in Fig. 11.2(c) . The
IC number (here . 7493) is written inside the block . All input terminals are placed on the left of
the block and all output terminal s on the right. The letter symbols of the signals. such as A. Rl ,
and QA. are written inside the block. andthe corresponding pin numbers. such as 14.2. and 12.
are written along the externa l lines. Vee and GND are the powe r terminals connected to pins 5
and 10. The size o f the block may vary to accommodate all input and OUtput terminals. Inputs
or output s may somet imes beplaced on the top or the bottom of the block for convenience.

The operation of the circuit is similar to the ripple counter shown in Fig. 6.8(a) with an asyn­
chronous cle ar to each flip-flop. When input Rl or R2 or both are equal to logic 0 (ground). all
asynchronous clears are equal to I and are disabled . To clear al l four flip-flops to O. the output

Section 11.1 Introduction to Experim ents 5 13

2-input NAND
7400

2-inpUI NO R
7402

2-input A !"O D
7408

Inverters
741\4

3-input NAND
7410

-t-input NAND
7420

2-inpUlO R
7432

2-inpul XOR
7486

FIGURE 11 .1
Digital gates in Ie packages with Identification numbers and pin assignments

514 Chapter 11 laboratory Experlmenu

Input A 14

Input 8 1

7493

(tI) Physicallayout (NC; no connection)

R1 2
R1 3

QD

(a) Internal circuit diagram

FIGURE. 11 .2
Ie type 7493 ripp le counter

14

2

3

s

10

(c) Scbematic diagram

12

,
8

11

of the NAN D gate must be equal to O. This is accomplished by having both inputs RJ and R2
at logic I (about 5 V). Note that the J and K inputs show no connection s. II is characteristic of
TfL circuits that an input terminal with no external connections has the effect of producing a
signal equivalent to log ic t. Note also that output QA is nOI connected to input B internally.

Section 11.1 Introduction to Experiments 515

The 749 3 IC can operate as a three-bit counter using input B and flip-flops QB, QC, and QD.
It can operate as a four-bit counter using input A if output QA is connected to input B. There­
fore , 10 operate the circ uit as a four-bi t counter, it is necessary to have an external connec tion
between pin 12 and pin 1. The reset inputs, RJ and R2, at pins 2 and 3, respectively, must be
grounded. Pins 5 and 10 mu st be connec ted to a 5-V power supply. The input pulses mu st be
app lied to input A at pin 14. and the four flip -flop outputs of the counter are taken from QA.
QB. QC, and QD at pins 12, 9, 8. and 11, respectively, with QA being the least significa nt bit.

Figure 11.2(c) demonstrat es the way that all MSI circ uits will be symbolized graphically in
this chapter. Only a block diagram similar to the one shown in thi s fig ure will be given for
each Ie.Th e lette r symbols for the inputs and output s in the IC block diagram will be accord­
ing to the symbols used in the data book. The ope ration of the circui t will be explained with
reference to logic diagrams from pre vio us chapters. The operation of the circuit will be spec­
ified by means of a troth tab le or a function table.

Oth er possible grap hic symbols for the ICs are presented in Chap ter 12. These are standard
graphic symbols appro ved by the Institute of Electrical and Electronics Eng ineers and are given
in IEEE Standard 91-1984. The standard graphi c symbols for SSI gates have recta ngular shapes ,
as shown in Fig. 12. 1. The stan dard graphic symbol for the 7493 IC is shown in Fig. 12.13. This
symbol can be substi tuted in place of the one shown in Fig. 11.2(c). The standard graphic sym­
bo ls of the other ICs that are needed to run the experiments are presented in Chapter 12. They
can beused to draw schematic diagrams of the logic circu its if the standard symbols are preferred .

Table 11.1 lists the ICs that are needed for the experiments, toge ther with the number s of
the figures in which they are pre sented in this chapter. In addition. the table lists the numbers
of the figures in Chapte r 12 in which the equivalent standard graphic symbo ls are drawn.

Tab le 11 .1
IntegratedCircuits Requirl!d for the Experiments

Graphic Symbol

IC Number

7447
7474
7476
7483
7493

74151
74155
74157
74 16 1
74 189
74 194
74 195

7730
72555

Description

Various gales
BCD-to-seven.segmenl decoder
Dual D-type flip-flops
Dual JK-type flip-flops
Four-bit binary adder
Four-bit ripple counter
8 X I multiplexer
3 x 8 decoder
Quadruple 2 x I multiplexers
Four-bit synchronous counter
16 x 4 random-access memory
Bidirectional shift register
Four-bit shift register
Seven-segment LED display
Timer (same as 555)

In Chapter 11

Fig. 11.1
Fig. 11.8
Fig. ll.l 3
Fig. 11.1 2
Fig. 11.1 0
Fig . 11 .2
Fig. 11.9
Fig. 11.7
Fig. 11.17
Fig. 11.15
Fig . 11.18
Fig . 11.19
Fig. 11.16
Fig. 11 .8
Fig. 11.21

In Chapter 12

Fig. 12.1

Fig. 12.9(b)
Fig. 12.9(a)
Fig. 12.2
Fig. 12.13
Fig. 12.7(a)
Fig. 12.6
Fig. 12.7(b)
Fig. 12.14
Fig. 12.15
Fig. 12.12
Fig. 12.1 1

516 Chapter 11 labo rato ry Experiments

The next 18 sections present 18 hard ware experiments requiring the use of digital integrated
circ uits. Sec tion 11.20 outlines HDL simulation experiments requiring a Verilog HDL compiler
and simulator.

1 1 . 2 EXPERI M ENT 1 : BINARY AND DEC IMAL
NUMB ERS

Thi s experime nt dem onstrates the count seq uence of binary num bers and the binary -coded
decimal (BCD) representation. It serves as an introduct ion to the breadboard used in the lab­
oratory and acquaints the student with the cathode-ray osc illoscope. Reference material from
the text that may be useful to know while perfonning the experiment can be found in Section
1.2. on binary numbers. and Sec tion 1.7, o n BC D numbers.

Binary Count

IC type 7493 consists of four flip -flops. as shown in Fig. 11 .2. They can be connec ted to count
in binary or in BCD . Co nnec t the Ie to operate as a four-bit binary cou nter by wiring the ex­
temal terrninals, as shown in Fig . 11 .3. Thi s is done by connecting a wire from pin 12 (output
QA) to pin I (input B). Input A at pin 14 is connected to a purser tha t provides single pulses.
The two reset inputs, RJ and R2, are connected to ground. The four outputs go to four indica­
tor lamps. with the low-order bit of the counter from QA connec ted to the rightmost indicator
lamp . Do not forget to supply 5 V and ground to the Ie. All connections should be made with
the power supply in the off position .

Tumthe power on and obse rve the four indicator lam ps. The four-bit number in the output
is incremented by I for every pulse generated in the push-burton pulser. Thecount goes to binary

10
"-----1

FIGURE 11 .1
Bina ry co unter

Section 11.2 Experiment 1: Binary and Decimal Numbers 517

15 and then back to O. Disconnect the input of the counter at pin 14 from the pulser, and con­
nect it to a clock generator that produces a train of pulses at a low frequency of about I pulse
per second. This will provide an automatic binary count. Note that the binary counter will be used
in subsequent experiments to provide the input binary signals for testing combinational circuits.

Oscilloscope Display

Increase the frequency of the dock to 10 kHz or higher and connect its output to an oscilloscope.
Observe the d ock output on the oscilloscope and sketch its waveform. Using a dual-trace oscil­
loscope. connect the output of QA to one channel and the output of the clock to the second chan­
nel.Note that the output of QA is complemented eve!), time the clock pulse goes through a negative
transition from I to O. Note also that the dock frequency at the output of me first flip-flop is one­
half that of the input d ock frequency. Each flip-flop in tum divides its incoming frequency by 2.
The four-bit counter divides me incoming frequency by 16at output QD. Obtain a timing diagram
showing me relationship of the dock to the four outputs of the counter. Make sure that you include
at least 16 d ock cycles. The way to proceed with a dual-trace oscilloscope is as follows: First,
observe the dock pulses and QA. and record their timing waveforms. Then repeat by observing
and recording the waveforms of QA together with QB, followed by the waveforms of QB with
QCand then QC with QD. Your final result should be a diagram showing the relationship of thc
clock to the four outputs in one composite diagram having at least 16 clock cycles.

BCD Count

The BCD representation uses the binary numbers from ooסס to 1001to represent the coded dec­
imal digits from 0 to 9. IC type 7493 can be operated as a BCD counter by making the exter­
nal connections shown in Fig. 11 .4. Outputs Q8 and QDare connected to the two reset inputs,

10

FIGURE 11 .4
BCD counte r

518 Chapter 11 Laboratory ExperimenU

RJ and R2. When both RJ and R2 are equal to I, all four cells in the counter clear to 0 irre­
spective of the input pulse. The counter starts from 0, and every input pulse increments it by
I until it reaches the count of 1001. The next pulse changes the ouput to 1010. making QS and
QD equal to 1. This momentary output cannot be sustained, because the four cells immediately
clear to O. with the result that the output goes to OOסס . Thus, the pulse after the count of 1001
changes the output to ,OOסס producing a BCD cou nt.

Connect the IC to operate as a BCD counter. Connect the input to a pulser and the four Out ­

puts to indicator lamps. Verify that the count goes from ooסס to 1001.
Disconnect the input from the pulser and connect it to a clock generator. Observe the clock

waveform and the four outpu ts on the oscilloscope . Obtain an accurate timing diagram sho w­
ing the relationship betwee n the cloc k and the four outputs. Make sure to include at least 10
clock cycles in the oscilloscope display and in the composite timi ng diagram.

Output Pattern

When the cou nt pulses into the BCD co unter are continuou s, the coun ter keeps repeating the
sequence from ooסס to 1001 and back to .OOסס Th is mean s that each bit in the four outp uts
prod uces a fixed pattern of I 's and O's that is repeated every 10 pulses. These patterns can be
predicted from a list of the binary numbers from ooסס to 1001. The list will show that output
QA. being the least significant bit , prod uces a pattern of al ternate I 's and O's. Output QD.
being the most significant bit, produces a pattern of eight D's followed by two t 's. Obtain the
pattern for the other two outputs and then check all four patterns on the oscilloscope . This is
done with a dua l-trace oscilloscope by displaying the clock pulses in one channel and one of
the output waveforms in the other channel. The pattern of I 's and Il's for the corresponding
outpu t is obtained by obse rving the output levels at the vert ical positions where the pulses
change from I to O.

Other Counts

Ie type 7493 can be connected to count from 0 to a variety of fina l counts. This is done by con­
necting one or two outputs to the reset inputs, RJ and R2. Thus, if RJ is connected to QA in­
stead of to QS in Fig. 11.4, the resulting co unt will be from ooסס to 1000, which is 1 less than
1001 (QD = I and QA = 1).

Utilizing your knowledge of how RJ and R2 affect the final count, connect the 7493 IC to
count from ooסס to the following final counts:

(a) 0 101

(h) 0 111

(c) lOll

Connect each circu it and verify its count sequence by applying pulses from the pulser and
observi ng the output count in the indicator lamps. If the initial count starts with a value greater
than the final cou nt, keep applyi ng input pulses until the output clears to O.

11.3

Sectio n 11.3 Expe rime nt 2: Dig ital logic Gates 519

EX PERI ME N T 2 : DIGITAL LOGIC G ATES

In this expe riment. you will investigate the logic behav ior of vario us IC gates:

7400 quadruple two-input NAl\'D gates

7402 quadruple two-input NOR gates

7404 hex inverte rs

7408 quadruple two-input AN D gates

7432 quadruple two-input OR ga tes

7486 quadruple two-input XOR gates

The pin assignments to the various gates are shown in Fig. 11.1. "Quadruple" means that
there are four gates within the package. The digita l logic gates and thei r characteristics are dis­
cussed in Section 2.8. A :"lASD implementation is discussed in Section 3.7.

Truth Table.

Use one gate from each IC listed and obtain the truth table of the gate. The truth table is ob­
tained by connecting the inputs of the gale to switches and the output to an indicato r lamp.
Compare you r results with the truth tables listed in Fig. 2.5.

Waveforms

For each gate listed, obtain the input-output waveform of the gate. The waveforms are to be
observed in the osci lloscope. Use the two low-order outputs of a binary cou nter (Fig . 11 .3) to
provide the inputs to the gate. As an example. the circuit and waveforms for the NAND gate
are illus trated in Fig. 11 .5. The oscilloscope display will repeat this waveform . but you shou ld
record only the nonrepetitive portion.

Propagation Delay

Connect the six inverters inside the 7404 IC in cascade. The output will be the same as the
input. except that it will be delayed by the time it takes the signal to propagate through all six
inverters. Apply clock pulses to the input of the first inverter. Using the oscilloscope, determine

Input
pUIW5 F

QA~

F~
flC;URE 11.5
Waveforms fo r NAND gate

520 Chapter 11 l aboratory Experiments

the delay from the input to the output of the sixth inverter during the upswin g of the pulse and
again d uring the downswin g. Thi s is done with a dual -trace oscillo scope: by applying the input
clock pulses to one of the channels and the output of the sixth inverter to the second channel.
Set the time-base knob to the low est time-per-division setting. The rise or fall time o f the two
pulses should appear on the screen. Divide the total delay by 6 to obtain an average propaga­
tion delay per inve rter.

Universal NAND Gate

Using a single 7400 IC, co nnect a ci rcuit that produces

(a) an inverter.

(b) a two-input AND.

(c) a two-input OR .

(d) a two-inpu t NOR.

(e) a two-input XOR. (See Fig. 3.32.)

In each case, verify your circuit by checking its truth table.

NAND Circuit

Using a single 7400 Ie , construct a ci rcuit with NAND gates that implements the Boo lean
funct ion

F = AB + CD

1. Draw the ci rcuit d iagram .

2, Obta in the truth table fo r F as a function of the fou r inputs.

3. Connect the ci rcuit and verify the truth table.

4. Record the patterns of l's and D's for F as inputs A. B. C, and D go from binary 0 to
binary 15.

5, Co nnect the four outputs of the binary counter shown in Fig. 11.3 to the four inputs of the
NAND circuit. Connec t the input clock pulses from the counter to one channel of a dual­
trace osc illoscope and output F to the other channel. Ob serve and record the l 's and D's
pattern of F after each clock pulse. and compare it with the pattern recorded in step 4.

1 1. 4 EXPE RIMENT 3 : SIMPLIFIC ATION
O F BOO LEAN FUN CTI ON S

This experiment demonstrates the relationship between a Boolean function and the corresponding
logic diagram . The Boolean functions are simplified by using the map method, as discussed in
Chapter 3. The logic diagrams are to bedraw n with NAND gates , as explained in Sect ion 3.7.

Section 11.4 Experiment 3: Simplification of Boolean Funct ions 521

The gate ICs to be used for the logic diagrams must be those from Fig. 11 .1 which contain
the following NAND gates:

7400 two-input NAND

7404 inverter (one-input NAND)

74 10 three-input NAND

7420 four-input NAND

If an input to a NAND gate is not used, it should not be left open, but instead should be con­
nected to another input that is used. For example, if the circuit needs an inverter and there is
an extra two-input gate available in a 7400 IC, then both inputs of the gate are to beconnected
together to form a single input for an inverter.

Logic Diagram

This part of the experi ment starts with a given logic diagram from which we proceed to
apply simplification procedures to reduce the number of gates and. possibly, the number of
ICs. The logic diagram shown in Fig. 11.6 requi res two ICs- a 7400 and a 74 10. Note that
the inverters for inputs .r, y, and z are obtained from the remain ing three gates in the 7400
Ie. If the inverters were taken from a 7404 Ie , the circuit would have required three 1Cs. Note

y

~

QJ-

t~l:i~; i;;'~}~~>'-

tji!t;;>

~

1Wl
~

ii

F

FIGURE 11 .6
logic diagram for Experiment 3

522 Chapter 11 Laboratory Experiments

also that, in dr awing SS I ci rcuits, the gates are not enclosed in blocks as is do ne with MSI
circuits.

Assign pin num bers to all inputs and OUIPUts of the gates. and connect the circuit with the
.r, y, and z inputs going to three switches and the output F to an indicator lamp. Test the circuit
by obtaining its truth tab le.

Obtain the Boo lean function of the circui t and simplify it. using the map method. Construct
the simplified circui t without disconnecting the original circui t. Test both circuits by applying
ide ntical inputs 10 each and observ ing the separate outputs. Show that. for each of the eight
possible input co mbinatio ns, the two circuits have identical outputs. This will prove that the
simplified circuit behaves exactly like the original circuit.

Boolean functions

Cons ider two Boolean funct ion s in sum-o f-minterm s form :

F,(A. B. C. D) = (0. 1.4.5. 8. 9.10. 12. 13)

F, (A . B. C. D) = (3. 5. 7. 8.10. 11 . 13. 15)

Simplify these functions by means of maps. Obtain a composite logic diagram with four inputs,
A, B, C. and D, and two outputs, F, and F2. Implement the two funct ions together, using a min­
imum nu mber of NAND ICs. Do not duplicate the same gale if the corresponding term is
needed for both functions. Use any extra gates in existing ICs for inverters when possible .
Connect the circu it and check its operation. The truth table for F]and F2obtained from the cir­
cuit should conform with the mlnterms listed .

Complement

Plot the following Boolean funct ion in a map:

F = A'D + BD + B'C + AB'D

Combine the I 's in the map to obtain the simplified functio n fo r F in sum-of-p rod uct s
fonn. The n co mb ine the D's in the map to o bta in the simpli fied fun ction for F' , also in
sum-o f-prod ucts form. Im plem ent bo th F and F' with NAND gates, and connect the two
circuits to the same input switches. but to separate output ind icator lamps. Ob tain the truth
tab le o f each circuit in the laboratory and sho w that they are the complements of each
other.

1 1. 5 EX PERIM EN T 4 : COMBINATI ONAL CIRCUIT S

In this experiment , you will design. construct, and tes t four comb inational logic circuits. The
first two circu its arc to be constructed wi th NA."'U> gate s, the third with XOR gate s, and the
fourth with a decoder and NAND gates. Reference to a pari ty generator can be found in Section
3.9. Implementation with a decoder is discussed in Section 4.9 .

Section 11.5 Experiment 4: Combinational Circuits 523

Design Example

Design a combinational circuit with four inputs- A, B, C, and D-and one output. F. F is to
be equ al to 1 when A = I, prov ided that B = O. or when B = 1, provided that either C or D
is also equal to 1. Otherwi se, the outp ut is to be equ al to O.

1. Obtain the truth table of the circuit.

2. Simpli fy the output function.

3. Draw the logic diagram of the circuit, using NAND gates with a minimum number of
ICs.

4. Construc t the circuit and test it fo r proper operation by verifying the given conditio ns.

Majority logic

A majority logic is a digital circuit whos e output is equal to 1 if the majority of the inputs are
I 'soThe output is 0 otherwise. De sign and test a three-input majority circ uit using NAND gates
with a minimum number of lCs.

Panty Generator

Design , construc t, and test a circuit that generates an even parity bit from four message bits .
Use XOR gates. Adding one more XOR gate , expand the circu it so that it generates an odd par­
ity bit also.

Decoder Implementation

A combinational circu it has three inputs-c-r . y. and z-c-and three outputs-F), F2, and F3. Th e
simplified Boolean functions for the circuit are

F[= xz + x')" ::'

F2 = x'y + xy'z'

F3 = xy + x'y'Z

Implement and test the combinational circ uit , using a 74155 decoder Ie and external NAND
gates.

The block diagram of the decoder and its truth tab le are show n in Fig . 11.7. The 74155 can
be connec ted as a dual 2 x 4 decoder or as a single 3 x 8 decoder. Whena 3 x 8 decoder is
desired. inputs Cl and C2. as well as inputs GI and G2. must beconnected lOgdhtt.as shown
in the block diagram. Th e fun ction of the circuit is similar to that illUSb"aled in Pig. 4 .18. G is
the enabl e input and must be equ al to 0 for proper operation. 1bc cigbtoutpulS are IabeIod
with symbo ls given in the data book . The 74 155 uses NAND gares. with the result thai: these­
lected output goes to 0 while all oth er outputs remain at I. 'The impIemc:otalioo with the de­
coder is as shown in Fig . 4 .21. except that theOR gates must berqUccd witbextcmal NAND
gates when the 74 155 is used.

524 Chapter 11 l aboratory Exper iments

8-----'-1
A---"'-1

G - -"--'''-j (

Truth table

9

10

11

12

7

6

,

1 1. 6

Inputs O utpu ts

G C B A 2'" 2YI 2Y2 2Y3 1'" 1Y1 In 1>'3

1 X X X 1 I 1 1 1 1 I 1
0 0 0 0 0 I 1 1 1 1 I 1
0 0 0 1 1 0 1 1 1 1 I 1
0 0 1 0 1 I 0 1 I 1 I 1
0 0 1 1 1 1 1 0 I 1 I 1
0 1 0 0 1 I 1 1 0 1 I 1
0 1 0 1 1 1 1 1 I 0 I 1
0 1 1 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1 I 0

FIGURE 11 .7
IC type 74155 connected as a 3 x 8 decoder

EXPERIME NT 5: CODE CONVERTERS

The conversion from one binary code to anomer is common in digital systems. In this experi­
ment. you will de sign and construct three co mbinational-circuit converters. Code convers ion
is discussed in Section 4.4 .

Gray Code to Binary

Design a combinational ci rcuit with four inputs and four outputs that converts a four-bit Gray
code number (Table 1.6) into the equivalent four-bit binary number. Implement the circuit with
exclusive-Ole gates. (Th is can bedone with one 7486 Ie.) Connect the circuit to four switches
and four indicator lamps. and check for proper opera tion.

Sect ion 11.6 Experiment 5: Code Conve rters 525

9 's Complementer

Design a combinational circ uit with four input lines that represe nt a decimal digit in BCD and
four output lines that generate the 9's complement of the input digit. Provide a fifth outpu t that
detects an error in the input BCD number. This output should beequal to logic I when the four
inputs have one of the unused combinations of the BCD code . Use any of the gates listed in
Fig. 11.1. but minimize the total number of rc s used.

Seven-Segment Display

A seven-segment indicator is used to display any one of the decimal digits 0 through 9. Usually,the
decimal digit is available in BCD. A BCD-to-seven-segment decoder accepts a decimal digit in
BCD and generates (he corresponding seven-segment code, as is shown pictorially in Problem 4.9.

Figure 11.8 shows the connections necessary between the decoder and the display. The 7447
IC is a BCD-to-seven·segment decoder/driver that has four inputs for the BCD digit. Input D
is the most significant and input A the least significant. The four-bit BCD digit is converted to
a seven-segment code with outputs a through g. The outputs of the 7447 are applied to the in­
puts of the 7730 (or equivalent) seven-segment display. This IC contains the seve n light-emit­
ting diode (LED) segments on top of the package . The input at pin 14 is the common anode
(CA) for all the LEOs. A 47-U resistor to Vee is needed in order to supply the proper current
to the selected LED segments. Other equivalent seven-segment display le s may have additional
anode terminals and may req uire different resistor values.

Construct the circuit shown in Fig. 11.8. Apply the four-bit BCD digits through four switches.
and observe the decimal display from 0 to 9. Inputs 1010 through I I II have no meaning in BCD.

16
47 n

13 I '

12 13

11 10

10 8, 7

is 2

I . 11

8

FIGURE 11 .8
BCD-to -seven -segment decoder (7447) and seven.segment display (7730)

526 Chapter 11 l aborat ory Experiments

Depending on the decode r. these values may cause either a blank or a meaningless panem to be
displayed. Observe and record the output patterns of the six unused input combinations.

1 1. 7 EXPERIMENT 6 : DESIGN
W ITH MULTIPLEXERS

In this experiment . you will design a combinational circuit and imp leme nt it with multiplexers.
as explained in Section 4.11. The multiplexer 10 be used is Ie type 74151. sho.....n in Fig. 11.9.
The internal construction of the 74 151 is similar to the diagram shown in Fig. 4 .25. except that

Data
Inputs

8

7

4

J

2
5

Output Y

15 6 w.. y '

14

IJ

12

Select inputs

Fu nction table

Strobe Select Out put

S C B A Y

I X X X 0
0 0 0 0 DO
0 0 0 1 0 1
0 0 1 0 02
0 0 1 1 OJ
0 1 0 0 0 4
0 1 0 1 OS
0 1 1 0 D6
0 1 1 1 07

fiGURE 11.9
Ie type 74151 38 x 1 mctuprexer

Section 11.8 Experiment 7: Adders and Subtractors 527

there are eight inputs instead of four. The eight inputs are designated DO through D7.The three
selection lines-C, B, and A- select the particular input to be multiplexed and applied to the out­
put. A strobe controlS acts as an enable signal. The function table specifies the value of output
Y as a function of the selection lines. Output W is the complement of Y. For proper operation,
the strobe input S must be connected to ground.

Design Specifications

A small corporation has 10 shares of stock, and each share entitles its owner to one vote at a
stockholder's meeting. The 10 shares of stock are owned by four people as follows:

Mr. W: I share

Mr. X: 2 shares

Mr. Y: 3 shares

Mrs. Z: 4 shares

Each of these persons has a switch 10close when voting yes and to open when voting no for
his or her shares.

It is necessary to design a circuit that displays the total number of share s that vote yes
for each measure. Use a seven-segment display and a decode r, as shown in Fig. 11.8, to
display the required number. If all shares vote no for a measure , the display should be blank.
(Note that binary input 15 into the 7447 blanks out all seven segments.) If 10 shares vote
yes for a measure. the display should show O. Otherwise, the display shows a decimal num­
ber equ al to the number of shares tha i vote yes. Use four 74 151 multiplexers to design the
combinational circuit that converts the inputs from the stock owners ' switches into the BCD
digit for the 7447 . Do not use 5 V for logic I . Use the output of an inverter whose input is
grounded.

11.8 EXPERIMENT 7: ADDERS AND SU8TRACTORS

In this experiment, you will construct and test various adder and subtracter circuits. The sub­
tractor circuit is then used to compare the relative magnitudes oftwo numbers. Adders are dis­
cussed in Section 4.3. Subtraction with 2's complement is explained in Section 1.6. A four-bit
parallel adder-subtracte r is shown in Fig. 4.13, and the comparison of two numbers is ex­
plained in Section 4.8.

Half Adder

Design, construct, and test a half-adder circuit using one XOR gate and two NAND gates.

Full Adder

Design, construct. and test a full-adder circuit using two 1Cs, 7486 and 7400 .

528 Chapter 11 Laboratory Experime nts

\'
16 Vrr

B, "I C4

M

",
BJ

54,
2AJ ,.

t
82 ,m •8 52
A2

II 9
81 51I.
A /

13

I;j% GND

I"
FIGURE 11 .10
IC type 7483 four-blt binary adder

Paralle l Adder

Ie type 7~83 is a four-bit binary parallel adder. The pin a...sjgnment is shown in Fig. 11.10. The
2 four-bit input binary numbers are Al throughA4 andBl through 84. The four-bit sum is oo­
tained from 5 1 through 54 . CO is the input carry and C4 theou tput carry.

Test the four -bit binary adder 7483 by connecting the power supply and ground term i­
nals. Then connect the four A input s to a fixed binary number. such as 1001. and the B in­
puts and the input carry to five toggle switches. The five outputs are applied to indic ator
lamps. Perform the addition of a few binary numbers and chec k that the outpu t sum and out­
put carry give the proper values. Show that when the input carry is equal to I , it adds I 10 the
outp ut sum.

Adder- Subtractor

Two binary numbers can be subtracted by taking the 2·s co mplement of the subtrahend and
adding it to the minuend. The 2's complement can be obtained by laki ng the t ' s complement
and addi ng I. To perform A - B, we co mplement the four bits of B_add them to the four bits
of A, and add I through the input carry. This is done ~ shown in Fig. 11.11 . The four XOR gates
complement the bits of B when the mode select M = I (beca use x G7 I = .t') and leave thebilS
of B unchan ged when M '" 0 (because x eo = x). Thus. when the mode select JI is equal to
I. the input caIT)"CO is equal to 1 and the sum outpu t isA plus the 2' s complement of 8 . Whe n
,\/ is eq ual to O. the input carry is equal to 0 and the sum ge nerates A + B.

Section 11.8 Experiment 7: Adders and Subtractors S29

Data input
A

Data input
B

Mode select M - --- - - ------'

r''---- Output carry

15

2

Data output
6 5

M : Ofor add
M • I for subtract

FIGURE 11,11
Fo ur-b it adder-subtractor

Connect the adder-subtracter circuit and test it for proper operation. Connect the four A inputs
to a fixed binary number lOCH and the B inputs to switches. Perform the following operations and
record the values of the output sum and the output carr y C4:

9 +5 9 -5
9 + 9 9 -9
9 + 15 9 - 15

Show that during addition, the output carry is equal to I when the sum exceeds 15. Also, show
that whe n A ~ B. the subtrac tio n operation gives the correct answer, A - B, and the output
carry C4 is equal to I, but when A < B, the subtraction gives the 2's complement of B - A
and the output carry is equal to O.

Magnitude Comparator

The com parison of two numbers is an operation that de termines whetbe.- one number is greater
than , equal to, or less than the othe r number. Two numbers. A and B. can be compared by first
subtracting A - B as is done in Fig. 11.11. If the ourpor in S is equal 10zero. lheo A = B. The
output carry from C4 determines the relative magnitudes of the nunir:n: WhenC4 "" I. A ;;:: B:
whenC4 = a, A < B; and when C4 = l and S '# 0,.14 > B.

530 Chapter 11 La boratory Experiments

It is necessary to supplement the subtracter circuit of Fig. 11.11 to provide the comp arison
logic. This is done with a combinational circuit that has five inputs-51 thro ugh 54 and C4­
and three outputs, designated by x, y, and z, so that

y = I

z = I

if A = B

if A < 8

if A > B

(S =00(0)

(C4 = 0)

(C4 = land S * 00(0)

1 1. 9

SR Latch

D Lat ch

The co mbinational circuit can be impleme nted with the 7404 and 7408 ICs.
Construct the comparator circuit and test its operation . Use at least two sets of numbers for

A and B to check each of the outputs .r. y, and z.

EXPERIMENT 8 : FLIP -FLOPS

In this experiment. you will construct, test, and investigate the operation of various latches and
flip-flops. The internal construction of latches and flip-flops can be found in Sections 5.3 and 5.4.

Construct an SR latch with two cross-coup led NAND gates. Connect the two inputs to switches
and the two outputs to indicator lamps . Set the two switches to logic I , and then momentari ly
tum each switch separately to the logic-Opositio n and back to I . Obtain the function table of
the circuit.

Construct a D latch with four NAND gates (only one 7400 Ie) and verify its function table.

Master- Slave Fllp~Flop

Co nnect a master- slave D flip-flop using two D latches and an inverter. Connect the D input
to a switch and the clock input to a pulser. Connect the output of the master latch to one indi­
cator lamp and the output of the slave latch 10 anothe r indicator lamp. Set the value of the input
to the compleme nt value of the output. Press the push button in the pulser and then release it
to produ ce a sing le pu lse. Observe that the maste r changes when the pulse goes positive and
the slave follows the change when the pulse goes negative. Press the push button again a few
times while observing the two ind icator lamp s. Explain the transfer sequence from input to
master and from master to slave.

Disconn ect the clock input from the pulser and connect it to a cloc k generator. Connect the
complement output of the flip-flop to the D input. This causes the flip-flop to becom plemented
with each clock pulse. Using a dual-trace osc illosco pe, observe the waveforms of the cloc k and
the master and slave outputs. Verify that the dela y between the master and the slave outputs is
equal to the positive half of the clock cycle . Obtain a timing d iagram showing the relat ionship
between the clock waveform and the master and slave outputs.

Sect ion 11.9 Experiment 8: Fli p-Flops 531

Edge·Triggered Fllp.Flop

Construct a V-type positive-edge-triggered flip-flop using six XA......n gates. Connect the clock
input to a pulser, the V input to a toggle switch, and the output Q to an indicator lamp. Set the
value of D to the complement of Q. Show that the flip-flop output changes only in response to a
positive transition of the clock pulse. Verify that the output does not change when the clock input
is logic 1. when the clock goes through a negative transition, or when the clock input is logic O.
Continue changing the D input to correspond to the complement of the Q output at all times.

Disconnect the input from the pulser and connect it 10 the clock generator. Connect the com­
plement output Q' to the D input. This causes the output to be complemented with each posi­
tive transition of the clock pulse. Using a dual-trace oscilloscope. observe and record the timing
relationship between the input clock and the output Q. Show that the output changes in re­
sponse to a positive edge transition.

Ie Fllp.Flops

IC type 7476 consists of two JK master- slave flip-flops with preset and clear. The pin assign­
ment for each flip-flop is shown in Fig. 11.12. The function table specifies the circuit' s opera­
tion. The first three entries in the table specify the operation of the asynchronous preset and

2

4 PR .·i·- 15
J '~W:;:~

eK ,
16 14

K Q'
'" CLR

3

7

Vee . pin S
GND = pin 13

s

Function table

InpUIS Outputs

Preset Cle ar Clock J K Q Q'

0 1 X X X 1 0
1 0 X X X 0 1
0 0 X X X 1 1

1 1 SL 0 0 No c:hanIe
1 1 SL 0 1 0 1
1 1 SL 1 0 1 0
1 1 SL 1 1 Togle

FIGURE 11 .12
Ie type 7476 dualjKmaster-slave flip-flops

532 Cha pter 11 Labora to ry Experiments

10

2 5 12 PR 9

3 1\ Vce = pin I ~

6
GND = pin 7,

Function table

Inputs Outputs

Preset D ea r Clock n Q Q'

0 I X X 1 0
1 0 X X 0 I
0 0 X X 1 1

1 1 t 0 0 1
1 1 t 1 1 0
1 1 0 X No change

FIGURE 11.13
Ie type 7474 dual D posltlve-edge.triggered flip-flops

clear inputs. These inputs behave like a NAN D SR latch and are independent of the clock or the
J and K inputs. (The X's indicate don't-care conditions.) The last four entries in the function table
specify the operation of the clock with both the preset and clear inputs maintained atlogic I .The
cloc k value is shown as a single pulse. The positive transition of the pulse changes the master
flip-flop. and the negative transition changes the slave flip-flop as well as the outp ut of the cir­
cuit With J := K := O. the output does nor change. The flip-flop toggles. or is compl emented.
when J := K := I . Investigate the operation of one 74.76 tlip-flop and verify its function table.

Ie type 7474 co nsists of two D positive-edge-triggered flip-flops with preset and clear. The
pin assignment is show n in Fig . 11.13. The function table speci fies the preset and clear oper­
ations and the clock's operation. The clock is shown with an upward arrow to indicate that it
is a poshiv e-edge-triggered flip-fl op. Investigate the operation of one of the flip-flops and ver­
ify its function table.

1 1. 10 EXPER I ME NT 9 : SEQUENTIAL CIRCUITS

In this experiment, yo u will design. construct. and test three synchronous seq uential circuits.
Use Ie type 7476 (Fig. 11.12) or 7474 (Fig , 11.13), Choose any type of gate thai will minimize
the total number of ICs. The design of synchronous seq uential circuits is covered in Section 5.7.

Sectio n 11.10 Experime nt 9: Sequentia l Circuits S33

II

I "

I,.
01

~
I /I

00 0,,'1

Oil

FIGURE 11 .14
State diagram for Experiment 9

Up-Down Counter with Enable

Design . construct. and test a two-bit counter that co unts up or down. An enable input E deter­
mine s whether the counter i.. on or off. If E = O. the counter is disabled and rema ins at its
presen t count even tho ugh clock pulses are applied to the flip-Oops. If E = I. the counter is
enabled and a second input. x, determines the direction of the count. If .t = I. the circuit counts
upward with the sequence 00. 01.10. I I. and the count repeats. If .r = 0, the circuit counts
downward with the sequence I I, 10,01. 00, and the count repeats . 00 not use Eto disable the
clock. Design the sequential c ircuit with E and r as inpu ts .

State Diagram

Design. cc nsuu ct. and test a seq uential circuit whose state diagram is shown in Fig . I J.1 ~ .

Desi gnate the two flip-flops a..A and B. the input av .r , and the outpu t as J.
Connect the output afthe lea..t significant flip-flop B to the inpu t x, and predict the sequence

o f states and output tha t will occur with the application of clock pulses. Verify the Mate Iran­
cition and output by testing the circuit.

Design of Counter

Design, construct, and test a counter that goes thro ugh the follow ing seq uence o f binary slates:
O. I, 2, 3. 6, 7, 10, II , 12, 13, 14, 15, and back to 0 to repeal . NOie lha1 binary states 4 , 5, 8.
and 9 are not used. The counter must be self-starting; that is, if theciralit starts from any one
of the four inval id states , the coo n! pulses must transfer the circuit 10ODe o f the valid states to
continue the count correctly.

Check the ci rcu it's operation for the required COOn! seqUCSJCC.. Verify that the counter is
se lf-s tarti ng. Thi s ls done by initial izing me circuit to each uouscdIlaIe by IDCUI of the pre­
se t and clear inpu ts and then apply ing pulses to see whdhe:r theCOWlleI" reacbc:s one of the
val id states.

534 Chapter 11 laboratory Experiments

11. 11 EXPERI MENT 10 : COUNTERS

In this experiment. you will construct and test various ripple and synchronous counter circuits.
Ripple counters are discussed in Section 6.3 and synchronous counters are covered in Section 6..,1. .

Ripple Counter

Construct a four-bit binary ripple counter using two 7476 ICs (Fig. 11.12). Connec t all asyn ­
chronous clear and preset inputs 10 logic I . Connect the count-pulse input to a pulser and check
the counter for proper operation.

Modify the counter so that it will count downward instead of upward. Check that each input
pulse decrements the counter by I .

Synchronous Counter

Construct a synchronous four-bit binary count er and check its operation . Use two 7-l76ICs and
one 7408 tc ,

Decimal Counter

Design a synchronous BCD counter that counts from 0000 to 1001 . Use two 7476 ICs and one
7408 Ie. Test the counter for the proper sequence . Determine whether the counter is self­
starti ng. This is done by initializing the cou nter to each of the six unused states by means of
the preset and clear inputs. The application of pulses will transfer the counter 10one of the valid
states if the co unter is self-starting.

Binary Counter with Para llel load

IC type 74161 is a four-bit synchronous binary counter with paraIlelload and asynchronous
clear. The Internallogic is similar to thai of the circuit shown in Fig. 6.14. The pin assignments
10 the inputs and outputs are shown in Fig. 11.15. When the load signal is enabled. the four data
inputs are Iransferred into four internal flip-flops. QA through QD. with QD being the most sig­
nificant bit. There are IWOco unt-enable inputs called P and T. Both must be equ al to I for the
co unter to ope rate . The function table is similar to Table 6.6 . with one except ion : The load
input in the 7416 1 is enabled when equal to O. To load the input da ta, the clear input must be
equal 10 I and the load inpu t must be equal to O. The two count inputs have don' t-care condi­
tions and may beequal to either 1 or O. The internal flip-flops trigger on the positive transition
of the clock pulse. The circ uit functions as a counter when me load input is equal to I and both
count Inputs P and T are equal to I. If either P or T goes to O. me output does nOI change. The
carry-c ut output is equal to I when all four data outputs are equal 10 I . Perform an experiment
to verify the operation of the 74 161 Ie according 10the function table .

Show how the 7416 1 IC. togethe r with a two-input NAN D gate. can be made to operate
as a sync hronous BCD counter thai counts from 0000 to 1001. 00 not use the clear input.
Use the NAI"'D gate to detect the count of 1001. which then causes all O's 10 be loaded into
the co unter.

11. 12

Sec tion 11.12 Experiment 11: Shift Registers 535

I..
3

Vee

A CIA
14,

Dati B ClB
13 Dm

inputs
,

C 12 outpuU

6 QC
D II

La., , ,.., ...- , _~...",.....-. s.e,....
L '- ' 74161 _.~

7 is
P COUT Carry out

Count
10

T

a~k
2

CK

Clear

Function table

Clear a~k Loo' Coun t Function

0 X X X aur OUlpllU 100
1 7 0 X Loa d inpul dill
1 7 1 1 Count to nU l binary value
1 7 1 0 x c change in outp ut

fiGURE 11.15
Ie type 74161 binary counte r w ith parallel load

EXPERIMENT 11 : SHIFT REGISTERS

In thi s experiment. you will investigate the operation of shift registers .The Ie to beused is the
74195 shift regi ster with parallel load . Shift register s are explained in Section 6.2.

rc Shift Register

Ie type74 195 is a four-bit shift reg ister with parallel load and asynchronous clear.1be pin as­
signments to the inputs and outputs are shown in Fig. 11.16. 1be single 00DIr0I IiDe Iabded
SHILD (shiftlload) determines the synchronous operation oCtile rqisaer. Wbea$HIW - 0.
the control input is in the load mode and the four da ta inpubi are lmDIfemd iDIothe four in­
ternal flip-flops. QA throu gh QD. When SHILD "" I, theCDDtrol iDp:Ilis iDlhe shift IOOde IDd
the informatio n in the register is shifted right from QA mw.d QU. '11lIe IG'iaI. • iaIo QA
during the shift is determined from the J andIt inputs. The two"-beIane like theJ mel
the complement of K of a JK flip- flop. When both J and Kan: eqal to 0. flip-tkIp QA. is

536 Chapter 11 Laborat ory Experiments

Clear

10
Clock

9 is
Shift!load

2 "Serial { Data
inputs J Il OUlP UIS, 12

s 11
Data Complement of QD
inputs 6

7

Function ta ble

Shift! Serial
Clear load Oock J R input Function

0 X X X X X Asynchronous clear
1 X 0 X X X So change in output
1 0 , X X X Load inpu t data
1 1 , 0 0 0 Shifl from QA toward QD . QA = 0
1 1 r 1 1 1 Shift from QA toward QD. QA ,. I

fiGURE 11.16
Ie type 74195 shift regist er wit h parallel load

cleared to 0 after the ..hift. If both inputs are eq ual to I. QA is se t to I after the ~hifl . The other
IWO condi tions fo r the J and K inp uts provide a complement or no change in the output of flip­
flop QA after the shift.

The function table fo r the 74 195 shows the mode of operation of the register. When the clear
input goes to O. the four flip-flops clear to 0 asynchronously-e-ther is. without the need of a clock .
Synchronous ope rations are affected by a positi ve transition of the clock. To load the input data.
SHlW must beequal toO and a positive cloc k-pulse transition must occ ur. To shift right. SHILD
must beequal to I. The J and K inputs must be connected together to fonn the serial input .

Perform an experiment thai will verify the operation of the 74 195 IC. Show thai it perfo rms
all the ope rations lis ted in the function table. Inclu de in you r funct ion table the two conditions
for l iZ == 0 I and 10.

Section 11.12 Expe riment 11: Shift Reg isters 537

Ring Counter

A ring counter is a circular shift register with the signal from the serial output QD going into
the serial input. Connect the J and K input together to form the serial input. Use the load con­
dition to preset the ring counter to an initial value of 1000. Rotate the single bit with the shift
condition and check the state of the register after each clock pulse.

A switch-tail ring counter uses the comp lement output of QD for the serial input. Preset the
switch-tail ring counter to IXlOO and predict the sequence of states that will result from shift­
ing. Verify your predict ion by observing the state sequence after each shift.

Feedback Shift Register

A feedback shift register is a shift register whose serial input is connected to some function of
selected register outputs. Connect a feedback shift register whose serial input is the exclusive­
OR of outputs QC and QD. Predict the sequence of states of the register. starting from state 1000.
Verify your prediction by observing the state sequence after each clock pulse.

Bidirectional Shift Register

The 74 195 IC can shift only right from QA toward QU. II is possible to COTI\'en the register to
a bidirectional shift register by using the load mode 10 obtain a shift-left operation (from QD
toward QA). This is accomplished by connecting the output of each flip-flop to the input of the
flip-flop on its left and using the load mode of the SH/LD input as a shift-left control. Input D
becomes the serial input for the shift-left operation.

Connect the 74 195 as a bidirectional shift register (without parallelload). Connect the se­
rial input for shift rigju to a toggle switch. Construct the shift left as a ring counter by connecting
the serial output QA to the serial input D. Clear the register and then check its operation by shift­
ing a single I from the serial input switch. Shift right three more times and insert D's from the
serial input switch. Then rotate left with the shift-left (load) control. The single I should remain
visible while shifting.

Bidirectional Shift Register with Parallel Load

The 74195 IC can be converted to a bidirectional shift register with parallel load in conjunc­
tion with a multiplexer circuit. We will use IC type 74 157 for this purpose. The 74 157 is a
quadrup le two-to-one-line multiplexer whose intemallogic is shown in Fig. 4.26. The pin as­
signments to the inputs and outputs of the 74157 are shown in Fig. 11.17. Note that the enable
input is called a strobe in the 74 157.

Construct a bidirect ional shift register with parallelload using the 74 195 register and the
74157 multiplexer. The circuit should be able to perform the following operauons:

1. Asynchronous clear

2. Shift right

3. Shift left

-t. Parallel load

S. Synchronous clear

538 Chapter 11 Laboratory Experiments

D."
outputs

II,
2 Vee

1

Al,
A2

11 AJ 4
14 VI

A4 7
Y2

9, YJ
BI

741S7 12, Y4
Bl

10
B'

IJ

IfJ/tI
,

ct I S£L

" STB
GND

1
8

Dala
inputs

A

Sele

Dala
inputs

B

Strebe

Function table

SlrobC' Seket Data OUlpulS Y

I X
o 0
o I

A DO's
Selectdata inpuu A
Seleet dlla inputs B

fiGURE 11.17
IC type 74157 qu adruple 2 x 1 multiplexen

Deri ve a tab le for the five operations as a function of the clear. clock. and SHIUJ inputs of the
74 195 and the strobe and selec t inputs of the 74 157. Connec t the c ircuit and verify you r func­
tion tab le. Use the parallel-load condition to provide an initial value (0 the register. and con­
nect the serial outputs to the serial inputs of both shifts in order not to lose the binary infonnation
whi le shifting.

1 1. 13 EXPERI M EN T 12: SERIAL ADDITION

In this experiment . you will construct and test a serial adder-subtrac tor circuit- Serial add ition
of two binary numbers can be done by means of shift registers anda full adder. as explained
in Sec tion 6.2.

Sect ion 11.14 Experiment 13: Memory Unit 539

Serial Adder

Starting from the diagram of Fig. 6.6, design and construct a four-bi t serial adder using the
follow ing re s: 74195 (two), 7408, 7486, and 7476. Provide a facility for regis ter B to accept
parallel data from four toggle switches, and connect its serial input to ground so that D's are
shifted into register B during the addition. Provide a toggle switch to clear the regist ers and the
flip-flop. Another switch will be neede d to specify whether register B is to accept paralle l data
or is to be shifted during the addi tion.

Testing the Adder

To test your serial adder, perform the binary add ition 5 + 6 + 15 = 26. This is done by first
clearing the registers and the carry flip-flop . Parallel load the binary value 0101 into register
B. Apply four pulses to add B to A seriall y, and check that the result in A is 0101 . (Note that
clock pulses for the 7476 must be as shown in Fig. 11.12.) Parallel load 01 10 into B and add
it to A serially. Check that A has the proper sum. Parallel load 111 1 into B and add to A. Check
that the value inA is 1010 and that the carry flip-flop is set.

Clear the regis ters and flip-flop and try a few other numbers to verify that your serial adder
is functioning properly.

Serial Adder-Subtractor

If we follow the procedure used in Section 6.2 for the design of a seria l subtractor (that sub­
tracts A - B), we will find that the output difference is the same as the output sum. but that
the input to the J and K of the borrow flip-flop needs the com plement of QD (available in the
74195). Using the other two XOR gates from the 7486, convert the serial adder to a serial
adder-subtracter with a mode control M . When M = 0, the circuit adds A + B. When M = I,
the circuit subtracts A - B and the flip-flop holds the borrow instead of the carry.

Test the adder part of the circuit by repeati ng the operations recommended to ensure that the
modification did not change the operation. Test the serial subtractor part by performing the
subtraction 15 - 4 - 5 - 13 = - 7. Binary 15 can be transferred to register A by first clear­
ing it to 0 and adding 15 from B. Check the intermediate results during the subtraction . Note
that - 7 will appear as the 2's complement of7 with a borrow of 1 in the flip-flop.

1 1.14

tc RAM

EX PERI M EN T 13 : M EMOR Y UNI T

In this experi ment. you will investigate the behavior of a random-access memory (RAM) unit
and its storage capabili ty. The RAM will be used to simulate a read-only memory (ROM). The
ROM simulator will then beused to implement combinational circuits. as explained in Section
7.5. The memory unit is discussed in Sections 7.2 and 7.3.

Ie type 74 189 is a 16 X 4 random-access memory. The internal logic is similar to me circuit
shown in Fig. 7.6 for a 4 X 4 RAM. The pin assignments lOW iDpuIsaodourpw IRIhown in
Fig. 11.18. The four address inputs select I of 16 words in me memory. lbe.least significanl. bit

S40 Chapter 11 laboratory Experiments

4
01

,
Data

6 7
DZ

inputs 10
Data

9
03 outputs

12 II
0'

I
A.

is
Address A,
inputs 14

A,
13

A j

Chip select
,

CS
3

Write enable - - - IVE
GND

8

Function table

cs WE Operation Data outputs

o
o
I

o
I
X

Write
Read
Disable

Higb impedance
Complement of selected word
High impedance

fiGURE 11 .18
Ie type 74189 16 x 4 RAM

of the address is A and the most significant is A)-TIle chip select (CS) input must be equ al to O (0

enable thc mcmory. lf CS is equal to I. the memory is disabled andall four outputs arc in a high­
impedance stare. The write enable (WE) input determines thetype of operation. as indicated in the
function table. The write ope ration is perfonncd when lVE :: O. This operation isa transfer of thc
binary number from the da ta inputs into the se lected word in memory. TIle read operation is per­
formed when \V E = I. This operation transfers the complemented value stored in the selected word
into the output da ta lines. The memory has three-stare outputs to facilitate memol)' expansion.

Test ing the RAM

Si nce the outputs o f the 74 189 produce the co mplementedalucs. we need to insert four in­
vertcrs to change the outputs to their norm al value. The RAM can be tested after making the

Section 11.15 Experiment 14: Lamp Handball 541

following connections: Co nnect the address inputs to a binary co unter using the 74 93 IC
(show n in Fig . 11.3). Co nnec t the four data inputs to toggle switc hes and the data outputs to
four 7404 inverte rs. Pro vide four indicator lamps for the address and four more for the out­
puts of the inve rters. Connect input CS to ground and WE to a togg le switch (or a pulser that
provides a negative pulse). Store a few words into the memory, and then read them to verify
that the write and read operations are func tioning proper ly. You must be careful when using
the WE swi tch. Always leave the It/E input in the read mode, unless you want to write into
memory. The proper way to write is first to set the address in the co unter and the inpu ts in the
four toggle switches. Then. store the word in mem ory, flip the WE switch to the write posi ­
tion and return it to the read position. Be careful not to change the address or the inputs when
WE is in the write mode .

ROM Simulator

A ROM simulator is obtaine d from a RAM operated in the read mode only. The pattern of l's
and O's is first entered into the simulating RA~ by placing the unit momentarily in the write
mode. Simulation is achieved by placing the unit in the read mode and tak ing the address lines
as inputs to the ROM. The ROM can then be used to implement any combinationa l circuit.

Impleme nt a combi nat iona l circu it usi ng the ROM simula tor that co nverts a four-bit bi nary
number to its equivalent Gray code as defined in Table 1.6. This is done as follows: Obtain the
tru th table of the code converter. Store the truth table into the 74189 memory by setting the
address inputs to the binary value and the data inputs to the corresponding Gray code value .
After all 16 entries of the table are'ritten into memory, the ROM simu lator is set by perma­
nentl y con necting the WE line to logic I. Check the code converter by applying the inputs to
the address lines and verify ing the correct outputs in the data output lines.

Memory Expansion

Expand the memory unit to a 32 X 4 RAJ\.1 using two 74 189 ICs. Use the CS inpu ts to select
between the two ICs. Note that since the data outp uts are three-stated , you can tie pairs of ter­
minals together to obta in a logic OR operat ion between the two ICs. Test yo ur ci rcu it by using
it as a ROM simulator that adds a three-bit number to a two-bit number to produce a four-bit
sum. For ex amp le, if the input of the ROM is 10 110. then the output is calc ula ted to be
101 + 10 = aI ll . (The firs t three bits of the input represent 5. the las t two bits represent 2,
and the output sum is binary 7.) Use the counter to provide fou r bits of the address and a switch
for the fifth bit of the address.

11. 15 EXPERIMENT 14: LAMP HANDBALL

In this experiment, you will construct an elec tronic game of handball. using a single light 10

simulate the moving ball. The experiment demonseates the application ofa bidirectional shih
registe r with parallel load. It also shows the operation of theasyocbrooous inputs of ni p-flops.
We will first introd uce an IC that is needed for the experimenl aDd Ihen present the logic dia­
gram of the simu lated lamp handball game.

542 Chapter 11 laboratory Experiments

tc Type 74194

This is a four-bit bidirectional shift register with parallel load. The internallogic is similar to
that shown in Fig. 6.7. The pin assignments to the inputs and outputs are shown in Fig. 11 .19.
The two mode-control inputs determine the type of opera tion. as specified in the function table.

log ic Diagram

The logic diagram of the electronic lamp handball game is shown in Fig. 11.20. It consi sts of
two 74 1941Cs. a dual D flip-flop 7474 1C. and three gate ICs: the 7400 , 7404 . and 7~8. The
ball is simulated by a moving light that is shifted left or right thro ugh the bidirectional shift
register. The rate at which the light moves is determined by the frequency of the clock . The

2

3 is
A QA

4 14
Data, 13 out puts

6 12

10

9

11

Serial input ---'
for shift left

Clear---~ '(:L

Serial input _
for shilt righl

Parallel data
inputs

Clock-- -j

~f~e controll
mputs ~

Function table

Mod,
Clear Clock 51 so Function

0 X X X Clear outputs to 0
I t 0 0 :"0 change in output
I t 0 I Shift right in the direction from

QA to QD. SIR to QA

r 0 Shift left in the direction from
QD to QA . SIL 10 QD, Parallel-load input data

FIGURE 11.19
Ie typ e 74194 bidirectional shift register with pa rallel load

Section 11.15 Experiment 14: Lamp Handball 543

eLK ---------1C-- - --j- - - --j- - - - + -.J

Reset

FIGURE 11.20
Lamp handball logic diagram

544 Chapter 11 laboratory Experiments

circ uit is first initialized with the reset switch. The swrt switch starts the game by placing me
ball (an ind icator lamp) at the extreme right. The player must press the pulser push button to
start the ball moving to the left. The single light shifts to the left until it reaches the leftmost
position (the wall), at which time the ball returns to the playe r by reversing the direction of shift
of the moving light. When the light is again at the rightmo st position. the player must press the
pulser again to reverse the direction of shift. If the player presses the pulser too soon or too late.
the ball disappears and the light goes off. The game can be restarted by turning the start switc h
on and then off. The start switch must be open (logic I) during the game.

Circuit Analysis

Prior to co nnecting the circu it. analyze the logic diagram to ensure that you understand how
the circuit operates. In particular. try to answer the followi ng questions:

I . What is the function of me reset switch?

2. How does the light in the rightmost position co me on when the start switch is grounded?
Why is it neces<,ary 10 place the start switch in the logtc -t position before the game
starts?

3. What happens to the two mode-control inputs. S1 and SO. once me ball is set in motion?

4. What happe ns to the mode-contro l inputs and to the ball if the pulser is pressed while the
ball is mov ing 10the left? What happens if the ball is moving to the right. but has not yet
reached the rightmost position?

S. If the ball has returned 10the rightmost position. but the putser has not yet been pressed.
what is the state of the mode-control inputs if the pulser is pressed? What happens if it
is not pressed?

Playing the Game

Wire the circuit of Fig. 11.20. Test the circuit for proper operation by playing the game . Note
that the pulse r must provide a positive-edge transition and that both the reset and start switches
must be open (i.e.• must be in the logic- ! state) durin g the game. Start with a low clock rate.
and increase the cloc k frequency to make the handball ga me more challenging.

Counting the Number of Losses

Design a cir cuit that keeps score of the number of tim es the player loses while play ing the
ga me. Use a ncn -ro-seven-segmem decoder and a sev en-segment display. as in Fig. 11.8.
to display the cou nt from a through 9. Counting is do ne with e ither the 7493 as a ripple
decimal counter o r the 74 16 1 and a NAN D gate as a synchronous decimal counter. The dis­
play should show 0 when the circuit is reset. Every time the ba ll d isappe ars and the light
goes off. the disp lay should increase by I . If the lig ht stays on durin g the play. the numbe r
in the d isplay should not c hange. The fina l design should be an au tomatic sco ring circuit.
with [he decimal d isplay incremented automaticall y each time the playe r loses when the
light d isappear s.

Section 11.16 Experiment 15: Cleek-Pulse Generator 545

Lamp Ping.Pong™

Mod ify the circuit of Fig. 11.20 so as to obtain a lam p Ping-Pong game. Two players can par­
ticipate in this game. with each player havi ng his or her own pulser, Th e player with the right
pulser returns the ball when it is in the extreme right position. and the player with the left pulser
returns the ball when it is in the extrem e left positio n. The only modi fication required for the
Ping-Pong game is a second pulser and a change of a few wires.

With a second start circui t. the game can be made to start by eithe r one of the two players
(i.e., either one serves) . Thi s addition is optional.

11. 16

IC nmer

EXPERIMENT 1 S: CLOCK-PULS E GENERATOR

In this experiment, you will use an Ie timer unit and connect it to produce clock pulses at a given
frequency. The circuit req uires the connection of two extern al resistor s and two externa l ca­
pacirors. The cathode -ray osci lloscope is used to observe the waveforms and measure the fre­
quency of the pulses.

Ie rype 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig. 11.21.
(The resis tors . RA and RB, and the two capacitors are not part of the IC,) The circuit consists
of two voltage comparators. a flip- flop , and an internal transis tor. The voltage division from
Vee = 5 V through the three intern al resi stors to gro und prod uces 1and 1of Vee (3.3 V and
1.7 V, respective ly) into the fixed inp uts of the comparators. When the threshold inp ut at pin
6 goes above 3.3 V, the upper com parator reset s the flip-flop and the output goes low to about
oV. When the trigger input at pin 2 goes below 1.7 V, the lower comparator sets the flip -flo p
and the output goes high to about 5 V. When the output is low, Q' is high and the base-emit­
te r junction of the transistor is forward biased. When the output is high. Q' is low and the tran­
sistor is cut off. (See Section 10.3.) The timer circui t is capable of prod ucing accurate time
delays controlled by an externa l RC ci rcuit. In this exper iment, the Ie timer will be operated
in the asta ble mode to produce cloc k pulses.

Circuit Operation

Figure 11.21 shows the extern al connec tions for astable operation of the circ uit. Capacitor C
charge s through resistors RAand RB when the transistor is cut o ff anddischarges throu gh RB
when the transistor is forw ard biased and conducting . Whe n the dwging vol tage across ca­
paci tor C reac hes 3.3 V, the thres hold input at pin 6 causes the flip-flop 10 R:5t:I and the tran­
sisto r turns on. Whe n the discharging voltage reaches 1.7 V. the lrigger inpul aI pin 2 causes
the flip-flop to set and the transis tor turns off. Thu s. theoutpu lcontinually ahcmates between
two voltage levels at the output of the flip-flop. The OUtpul remains high for a duration equal
to the charge time . Thi s duration is determined fro m the equation

'H = O.693 (R" + RB)C

546 Chapter 11 l aboratory Experiments

Out put

scharge

,V

1 °·01.,
v"

-
8 s Reset 4

R,

6

~ R ,i I--

3
- 5 Q

~2 T '\ 7s-: Di
72555 Timer

R.

GND 1

, C

Trigger

Threshold

Flc;URE 11.21
Ie type 72555 timer connected as a clock-pulse ge ne rator

The output remains low for a duration equal to the discharge time. This duration is determined
from the equation

' L = O.69JRsC

Clock-Pulse Generator

Startingwith a capacitor C of O.(XH /LF,calculate values for RAand RB to produce clock pulses.
as shown in Fig. 11.22. The pulse width is 1 /LSin the low level and repeats at a frequency rare
of 100 kHz (every 10 /Ls). Connect the circuit and check the output in the oscilloscope.

Observe the output across the capacitor C, and record its two levels 10 verify that they are
between the trigger and threshold values.

Section 11.1 7 Experiment 16: Pa rallel Adder and Accum ulato r 547

FIGURE 11 .22
Outp ut waveform for clock generator

Observe the waveform in the collector of the trans istor at pin 7 and record all pertinent in­
formation . Explain the waveform by analyzing the circ uit's action.

Connec t a variable resistor (potentiometer) in series with R... to produce a variable-frequency
pulse generator. The low-level duratio n remains at 1 J.Ls. The frequency should range from 20
to 100 kHz.

Change the low-level pulses to high-level pulses with a 7404 inverter. This will produce pos­
itive pulses of l us with a variable-frequency range.

11 .17 EXPERIMENT 16 : PARALLEL ADDER
AND ACCUMUL ATOR

In this experiment, you will construct a four- bit parallel adder whose sum can be loaded into
a register. The numbers to beadded will be stored in a random-access memory. A set of binary
numbers will be selected from memory and their sum will be accumula ted in the register.

Block Diagram

Use the RAM circuit from the memory experiment of Section 11.14, a four-bit parallel adder,
a four-b it shift register with parallel load. a carry flip-flop, and a multiplexer to construct the
circuit. The block diagram and the ICs to be used are shown in Fig. 11 .23. Information can be
written into RAM from data in four switches or from the four-bit data avai lable in the outputs
of the register. The selection is done by means of a multiplexer. The data in RAM can be added
to the contents of the register and the sum transferred back to the register.

Control of Register

Provide togg le switches to control the 74194 register and the 7476 carry flip-flopas follows:

(a) A LOAD condition transfers the sum to the registe r and the output carry 10 thefli~flop

upon the application of a clock pulse.

(b) A SHIFf conditio n shifts the register right with the carry from thecarry flip-flop trans­
ferred into the leftmost position of the regis ter upon the application of. dock pulse. The
value in the carry flip-flop should not change during the shift.

(c) A NO-CHANGE condition leaves the co ntents of the regisac£ and flip-flop unchanged
even when clock pulses are applied .

548 Cha pter 11 Laboratory Experi me nts

I
r-::-l . """~(S"'ilch)

I
Ad.....

RAM- ecemer -(7493) (7"189) (

I
ln~rten

(7"'"

I
O UIP UI carry 4-l;)il adder

1'%,,'(7483' ~
' om

Cony - Regi$ler
(7476) (74194)

I

Count
[pulser)

FIGURE 11.2)
Blockdiagram of a parallel adder for Experiment 16

Carry Circuit

To conform with the preceding specifications. it is necessary to provide a circuit between the
output carry from the adder and the J andK inputs of the 7~76 flip-flop so thai the OUtput carry
is transferred into the nip-flop (whether it is equal to 0 or I) only when the LOAD condition
is activated and a pulse is applied to the clock.input of the flip-flop. Tbe carry nip-nop should
not change if the LOAD condition is disabled or the SHIFT condition i ~ enabled.

Det a iled Circuit

Draw a detailed diagram showing all the wiring between the ICs. Connect the circuit. and pro­
vide indicator lamps for the outputs of the register and carry nip-fl op and for the address and
output data of the RA\1.

Checking the Circuit

Store the numbers 0 110. 1110. 1101. 0101. and00 11 in RAM and then add them to the regis­
ter one at a time. Stan with a cleared register and flip-flop. Predict the values in the output of
the register and carry after each addition in the following sum. andverify your results:

0110 + 1110 + 1101 + 0101 + 00 11

Section 11.18 Experiment 17: Binary Multiplier 549

Circuit Operation

Clear the register and the carry flip-flop to zero. and store the followi ng four-bit numbers in
RAM in the indicated addresses:

Address
o
3
6
9

12

Content
OlIO
1110
1101
0101
0011

Now perform the following four operations:

I. Add the contents of add res s 0 to the contents of the regis ter. usin g the LOAD
condition.

2. Store the sum from the register into RA!\.t at address I .

3_ Shift right the contents of the register and carry with the SHIFTcondition.

.s. Store the shifted contents of the register at addre ss 2 of RAM.

Check that the contents of [he first three locations in RAM are as follows:

Ad dress..
o
I
2

Contents
0 110
0 110
0011

11. 18

Repeat the foregoing four ope rations for each of the other four binary numbers stored in
RAM. Use addresses 4. 7. 10. and 13 to store the sum from the register in step 2. Usc addresses
5. 8. 1I. and 14 to store the shifted value from the register in step -t. Predi ct what the contents
of RA:\I at addresses 0 through 14 would be. and check to verify your results.

EXPER IMENT 17: BINARY MULTIPLIER

In this ex periment. you will design and construct a c ircuit tha t multipl ies 2 four-bit un­
signed numbers to prod uce an e ight-bit prod uct. An algorithm for multiplying IWO binary
numbers is presented in Section 8.7. The algorithm implemented in th is experiment d iffers
from the one described in Figures 8.14 and 8. 15. by treat ing on ly a four-bit datapath and by
incrementi ng. instead of decrementing. a bit counter.

Block Diagram

The ASMD chan and block diagram of the binary multiplier with those ICs recommended 10

be used are shown in Fig. 11 .24<a) and(b). The mult iplicand. B. is available frcm four switches
instead of a register, The multiplier. Q. is obtained from another secof four switches.The prod-­
uct is displayed with eight indicator lamps. Cou nter P is initialized 100 aDdtheo incremented
after each partial product is formed. When the counter reaches thecount of four. output DoN
becomes I and the multiplication operation term inates.

550 Chapter 11 laboratory Experiments

reset

QIOI I
____ tc;A I <- A -

(a) ASMD chart

FIGURE 11 .24
ASMD chart. block diagram of the datapath, control state diagram, and reg ister
operations of the binary multiplier drcult

Cont ro l of Reg ist e rs

Th e ASMD chart for the binary multiplier in Figure 11.24(a) shows that the three registers and
the carry flip-flop of the datapath unit are controlled with signals toadregs. Incr_PoAluCregs.
and Shift_regs.The external input signals of the con trol unit are clock . resec b (active-low). and
Start; another input to the contro l unit is the internal sta tus signal . Done. which is formed by
the datapath unit to indicate that the counter has reached a count of four. correspo nding to the
number of bits in the multiplier. Load_regs clears the product register (A)and the carry flip-flop
(C) , loads the multiplicand into regi ster B, loads the multiplier into regi ster Q. and clears the
bit counter. tncr.P increments the bit counter concurrently with the acc umulation of a part ial
product. Add_regs adds the multiplicand to A, if the least significant bit of the shifted mul tiplier

Sect ion 11.18 Experiment 17: Binary Multiplier 551

Multiplicand B
(4 switches)

j j j j
Don e - I on count of 4

Counter P
(14161)

Multiplier Q
(4 switches)

Q,

(b) Datapath block program

Done = 1

Start = 0

Starr '"' I
S.Jdle}----,=~-__{S~:wd}_----~_\'._'hifi

Done = 0

(c) Con trol state diagram

State Transition Register Operations Control signal

= IQ

S_idle Initial stale reached by reset action

S_idle S_udd A < = O. C < - O.P <= O L<Wft'"
S_add SJhift P <= P+l I~J'

if (QIOJ) then (A <- A + B. C <- C..) AJJftfl'
S_,hift shift right ICAQI. C <- 0 SJUftftfl'

(d) Register operatioos

FIGURE 11 .24
(Continued)

(Q[D)) is 1. Flip-flop C accommodates a carry that results from_additioo.1be
register CAQ is updated by storing the result of shifting its COIlIeDts ODe bit 10 tbc riPL
Shijcregs shifts CAQ one billa the right, which also clears flip-flop C.

SS2 Chapter 11 laboratory Experiments

The stale diagram for the control unit is shown in fig . 11.2-lfc l. N OIe that it does not sbow
the register operations of the datapath unit or !he output signals thai control the m. That infor­
mation is apparent in Figure 11.24(d). Note thal /ncr_P and Shi/tJt.'gs are generated uncondi ­
tionally in stales S_luM and S.Jhift. respectively, LoadJ t.'gs is generated under the condition
that Stan is asserted conditionally while the state is in S_idlt.'; Addregs is a...sened condition­
ally in S_add if QIOj =I

Multiplicat io n Example

Before co nnecting the ci rcuit. make sure that you understand the opera tion of the multiplier.
To do this. construct a table sim ilar to Table 8.5 . but with 8 == II I1 for the mul tiplicand and
Q == 1011 for the mul tiplier. Along with each comment listed on the left side of the table.
speci fy the state.

Datapath Design

Draw a detailed diagram of the datapath part of the multiplier . showing all iC pin connections.
Ge nerate the four control signals with switches. and use them to pro vide the req uired con trol
operations for the various reg isters . Connect the circuit and check tha i each componen t is func ­
tioning properl y. With the control signals at O. set themultiplicand switches to 11 11 and the mul­
tiplier switches 10 lOl l . ASM:nthe control signals manually by mean s o f the control switches.
as spec ified by the state diagram of Fig. 11.2-lfc). Appl y a single pulse wh ile in each control
state. and observe the outputs of reg isters A andQ and the values in C andP. Compare these
outputs with the numbers in your numerical example to verify that the circuit is functioning
properly. Note that IC type 74161 has master-slave flip-flops . To ope rate it manually. it is nec­
essary thai the single clock pulse be a negative pulse.

De sig n of Control

Design tbe con tro l ci rcuit spec if ied by the state d iagram. You can use any method of control
implementation discussed in Section 8.8.

Choose the meth od that minimizes the number of ICs . Veri fy the operation of the co ntrol
circ uit prior to its connec tion 10 the dat apath uni t.

Checking the Multiplier

Co nnect the outp uts of the control circuit to the datapath unit. and verify the total circuit op­
eratio n by repealing the steps of multiplying 1111 by 1011. The single cloc k pulses ..hould
now sequence the control states as well. (Remove the manual switches.j The stan signal (Start)
can be genera ted with a switch thai is on while the control is in stale S_idle.

Ge nerate the start signal (Stan) with a pulser or any other shon pulse. and operate the mul­
tiplie r with co ntinuou.. cloc k pulses from a clock generator. Pressing the pclser for Stan should
initiate the multiplicat ion opera tion. andupon its completion. the product should be displayed
in the A andQ reg isters . Note thai the multiplication will be repeated as long as signal Stan is
enabled. .\ Iake sure that Stan goes back 10 O.Tbenset the switches 10two other four-bit numbers

Sect ion 11.20 Verilog HDL Simulation Experiments 55]

and press Stan again. The new product should appear at the outputs. Repeat the mult iplication
of a few numbers to verify the operation of the circuit.

11. 19 EXPERIMENT 18: ASYNCHRONOUS
SEQUENTIAL CIRCUITS

In this experime nt, you will analyze and design asynchronous sequential circuits. These types
of circ uits are presented in Chapter 9.

Analysis Example

The analysis of asynchronous sequential circ uits with SR latches is outlined in Section 9.3.
Analyze the circuit of Fig. P9.9 (shown with Problem 9.9) by deriving the transition table and
output map of the circuit. From the transition tabl e and output map. determine (a) what hap­
pens to output Q when input X l is a I irrespective of the value of input Xl, (b) what happens
to output Q when inpu t Xl is a I and X l is eq ual to 0, and (e) what happens to output Q when
both inputs go back to O?

Connect the circu it and show that it operates according 10 the way you analyzed it.

Design Example

The circuit of a positive -edge-triggered Ootype fl ip-flop i<, ..hown in Fig. 5.10. The circuit of
a negati ve-ed ge T-type flip-flop is shown in Fig. 9 .46. Using the six-step procedure recom ­
mended in Sect ion 9.8. design. construct, and test a D-type flip-flop that triggers on both the
positive and negative transitions of the clock . The circ uit has two inputs- D and C-and a
single output. Q.The value of D at the time C changes from 0 to 1 becomes the flip-flop out­
put Q"The output remains unchanged irrespective of the value of D. as long as C rema ins at
I . On the next clock transition. the output is again updated to the value of D when C changes
from I to O. The output then remains unchan ged as long as Cremains at O.

11 .20 VERILOG HDL SIMULATION EXPERIMENTS
AND RAPID PROTOTYPING WITH FPGAS

Field programmable gate arrays (FPGAs) are used by industry to implercer alogic when the sys­
rem is complex, the time-to-market is short. the performance (e.g.• speed) of an FPGA is ac­
ceptable, and the volume of potential sales does not warrant the: iovestmelll in a standard
cell-based ASIC. Circuits can be rapidJy protOlyped into an fl'GA UIinI _ HDL ODceIbe HDL
model is verified. the description i§synthesized andmapped inlo Ihe RGA... fFGA ¥eIkIon po­
vide software tools for synthesizing the HDL description of. circ::mI inIo _ opimirtll'l pie­

leve l description and mappin g (fitting) the resulting oedist inIo Ibe: ItaUCd of tbeir FPGA.
Thi s process avoids the deta iled assembly of ICs thai is mpQm:I lite••.-• ...;•• c:i:mIiI: 011 a
breadboard, and the process involves signifK:alltly bs risk of fIUR..... iI iI e.ier ...
faster to edit an HDLdescription than to re-wire a beactx.:d.

554 Chapter 11 l ab orat ory Experime nts

Most of the hardware experiments outlined in this chapter ca n be supplemented by a cor­
respond ing software procedure using the Verilog hardware description language (HOL). A
Veri log co mpiler and simulator are necessary fOT these supplements . The supplemental ex­
periment s have two levels of engag ement. In the first. the circuits that are specified in the
hands-on laboratory experiments can be described . simulated. and verified using Verilog and
a simulator. In the sec ond. if a suitable FPGA prototyping board is available (e. g.. see
www.d igilent inc.com). the hardware experiments can bedone by synthes izing the Verilog de­
scriptions and implementing the circuits in an FPGA. Where appropriate. the identi ty of the in­
dividual (structural) hardware units (e.g .• a 4-bit counter) can be preserved by encapsulating
them in separate Verilog modules whose internal detai l is described behaviorally or by a mix­
ture of behavioral and structural models.

Prototyplng a circuit with an FPGA requires synthes izing a Verilog descrip tion to produce
a bit stream that can be downloaded to config ure the internal resources (e.g .• (LBS of a
Xilinx FPGA) and co nnect ivity of the FPGA. Three detail s require attention: (1) The pins of
the protoryptng board are co nnected to the pins of the FPGA. and the hardware imp leme n­
tation of the synthesized circuit requ ires that its input and output signals be associated with
the pins of the prototy ping board (this assoc iation is made using the synthesis tool provided by
the vendor of the FPGA (such tools are available free» . (2) FPGA prototyping board s have a
clock generator. but it will be necessary. in some cases. to implement a clock divider (in ver­
Hog) to obtain an internal cloc k whose frequency is suitable for the experiment. and (3) inputs
to an FPGA-based circuit can be made using switches and pushbuttons located on the pmtcryping
board. but it might be necessary to implement a pulser circuit in software to control and ob­
serve the activity of a counter or a state machine (see the supplement to Experiment I).

Sup plem ent to Experiment 1 (Section 11 .2)

The functionality of the counters specified in Experi ment I can be described in Verilog and
synthesized for implementation in an FPGA. Note that the circuit shown in Fig. 11 .3 uses a
push-bunon pulser or a clock to cause the count to increment in a circ uit built with standard
ICs. A software pulser ci rcuit ca n be developed to wor k with a switch on the prototyping
board of an FPGA so that the operation of the counters can be verified by visual inspection.

The software pulser has the ASM chart shown in Fig. 11 .25. where the external input (Pushed)

is obtained from a mechanical switch or pushbutton.This circuit asserts Stan for one cycle of the
cloc k and then waits for the switch 10 be opened (or the pushbutton to be released) to ensure that
each action of the switch or pushbutton will produce only one pulse of Stan. lfthe counter. or a
state machine. is in the reset state (S_idfe) when the switch is closed. the pulse will launch the
activity of the counter or state machine. It will benecessary 10 open theswitch (or release the push­
button) before Stan can be reassened. Using the software pulser will allow each value of the
count to be observed. If necessary. a simple synchronizer circuit can be used with Pushed .

Supplement to Experiment 2 (Section 11 .3)

The vario us logic gates and their propagation delays were introduced in the hardware experi­
ment. In Section 3.10. a simple circuit with gate delays was investigated. As an introd uction

Section 11.20 Verilog HDL Simulation Experiments SSS

resec b

FIGURE 11.25
Pulser circuit for FPGA implementation of Experiment 1

to the laboratory Verilog progra m, compile the circu it described in HDL Example 3.3 and lhen
run the simulator to verify the waveforms shown in Fig. 3.38.

Assign the following delays to the excl usive-OR circuit shown in Fig. 3.32(a): 10 ns for an
inv erter, 20 ns for an AND gate, and 30 ns for an OR gate. Th e input of the ci rcuit goes fro m
xy = 00 to xy = 0 1.

(a) Determi ne the signals at the output of each gate from t = 0 to t = 50 ns.

(b) Wri te the HDL description of the circ uit including the delays.

(c) Write a stimulus mod ule (simi lar to HDL Example 3.3) and simulate the circ uit to verify
the answer in part (a).

(d) Implement the circuit with an FPGA and test its operation.

Supplement to Experiment 4 (Section 11.5)

The operation of a combinational ci rcui t is verified by checking the outpUl andcomparing it
with the truth table for the circuit. HDL Example 4.10 (Section 4.12) dcmomtnJes !be pr0ce­

dure for obtaining the truth table of a combinational circuit by simnlarinl it.

(a) In order to get acquainted with this procedure . compile andsbmw HDL Example 4.10
and check the output truth table.

556 Chapter 11 Laboratory Experiments

(b) In Experiment ~ . you designed a majori ty logic ci rcuit. Write the HDL gate-le vel de­
scription of the majo rity logic circuit together with a stimulus for displaying the truth table.
Compile and simulate the ci rcuit and check the output respo nse.

(c) Implement the majority log ic circuit units an FPG A and test its operation.

Sup pleme nt to Expe riment 5 (Section 11.6)

Th is experiment deals with code conversion. A BCD-to-excess-3 convener was desig ned in
Section ~.4. Use the res ult of the design 10 check it with an HDL simulator.

(a) Write an HDL gate- level description of the circuit shown in Fig. ~.4 .

(bJ Write a dataflow description using the Boolean expressions listed in Fig . ~.3 .

(c) Write an HDL behavioral descript io n of a BCD -to-excess-3 converter,

(d) Write a test bench to simulate and test the BCD-to-excess-3 convener circui t in order to
verify the truth table . Check all three circuits.

(e) Implement the behavioral descriptio n with an FPGA and test the ope ration of the circuit.

Supp le ment to Experiment 7 (Section 11 .8)

A four-bit adder-subtracte r is developed in this experi ment. An adder- subtracte r circu it is also
developed in Section ~ .5 .

(a) Write the HDL behavioral description of the 748 3 four-bit adder.

(b) Write a behavioral descript ion of the adder- subtracte r ci rcuit shown in Fig. 11.11.

(c) Write the HDL hierarchical description of the four-bit adder-subtracter shown in Fig. 4 .13
(incl ud ing V). Th is can be done by instantiating a modi fied version of the four-bit adder
described in HDL Example 4.2 (Section 4.12).

(d) Write an HDL test bench to simulate and test the circ uits of part (c). Check and verify
the values that cause an o verflow with V = I.

(e) Implement the circuit of part (c) with an FPGA and test its operation.

Sup pleme nt t o Expe riment 8 (Section 11 .9)

The edge-triggered D nip-flop 7474 is shown in Fig. 11 .13. The flip-flop has asynchronous pre­
set and clear inputs.

(a) Write an HDL behavioral description of the 7474 D flip-flop, using only the Qoutput.
(Note that when Preset = 0 , Qgoes to I, and when Preset = I and Clear = 0, Q goes
to O. Thu s, Preset takes precedence ove r Ctear. v

(b) Write an HDL behavioral descri ption of the 7474 D flip- flop, using both outpu ts. Label
the second output Q_lIot, and note that this is not always the complement of Q. (When
Preset = Clear = 0, both Q and Q_IIot go to I.)

Section 11.20 Verilog HDL Simulation Experiments 557

Supplement to Experiment 9 (Sect io n 11 .10)

In this hardware experime nt you are asked to design and test a sequential circuit whose state
diagr am is given by Fig. 11.14. Thi s is a Mealy model seq uential c ircu it similar to the one
described in HDL Example 5.5 (Sec tion 5 .6).

(a) Write the HDL de~ripl ion of the state diagram of Fig . 11.14 .

(b) Write the HDL struc tura l description of the seq uential circuit obta ined from the desi gn.
(This is similar to HDL Exam ple 5.7 in Section 5.6.)

(c) Figure 11.24<c) (Sect ion 11.18) shows a contro l ..tate diagram. Write the HDL descrip­
tion of the state diagram . usin g the one-hot binary ass ignment (see Table 5.9 in Section
5.7) and four out puts-To- T I, T2- and T3. where To asserts if the state is 4'bOOO l , T I as­
serts if the sta te is 4'bOO 10. etc.

(d) Write a behavioral mod el of the datapath unit. and verifythat the interconnected control
unit and datapa tb unit operate correctly.

(e) Implement the integrat ed circuit with an FPGA and test its operation.

Supplement to Experiment 10 (Sectio n 11 .11)

The synchronous counter with panallelload Ie type 7416 1 is shown in Fig. 11.15. This circu it is
similar to the one described in HDL Example 6.3 (Section 6.61, with two exceptions: The load input
is enabled when equal to O. and there are two inputs (P and n that comrol the count Write the HDL
description of the 74 16 1 Ie. Implement the counter with an FPGA andtest its operation.

Supplement to Experiment 11 (Sect io n 11 .12)

A bid irecti ona l shift register ilh parallel load is designed in this experiment by using the
74195 and 74 157 IC type...

(a) Write the HDL de!>Cription of the 74 195 shift reg!..rer, Assume that inputs} andK are con­

nected together to form the se rial input .

Ibj Wri te the HDL description o f the 74 157 mult iplexer.

(c) Obtain the HDL de scription of the four-bit bidirectional shift reg ister that has been de­
signed in thi..experiment. (l) Write the struc tural descript ion by instantiating the two ICs
and specifying their interco nnec tion, and (2) write the behavioral description of thecir­
cult. using the function table tha t is derived in this design experiment.

(d) Implement the circuit with an FPGA and test its operation.

Supplemenl lo Experlmenl13 (Sectio n 11 .14)

This ex perime nt investigates the ope ration of a ranoom-eccess memory (RAM). 1be WIly a
memory is described in HDL is explaired in Section 7.2 in oonjuncrion wiJ:b HDLEnqlk 7.1.

(a) Write the HDl description o f IC type 74 189 RAM . r.hown in Fig. 11.18.

558 Chapter 11 l aborato ry Experiments

(b) Test the operation of the memory by writing a stimulus program that stores binary 3 in
address 0 and binary I in address 14. Then read the stored numbers from the two addresses
to check whether the number s were stored correctly.

(c) Implement the RAM with an FPGA and test its operation.

Supplem ent to experiment 14 (Section 11 .15)

(a) Write the HDL behavioral descrip tion of the 74194 bidirectional shift register with par­
allel load shown in Fig. 11.19.

(b) Implement the shift register with an FPGA and test its operation.

Supple ment to Experiment 16 (Section 11 .17)

A parallel adder with an accumulator register and a memory unit is shown in the block dia­
gram of Fig. 11 .23. Write the structural description of the circuit specified b)' the block
diagram. The HDL structural descript ion of this circuit can be obtained by instantiating the
various components. An example of a structural description of a design can be found in HDL
Example 8.4 in Section 8.6. First. it is necessary to write the behavioral description of each
component. Use counter 74 161 instead of7493. and substitute the D flip-flop 7474 instead
of the JK flip-flop 7476. The block diagram of the various components can befound from the
list in Table 11.1. Write a test bench for each model. and then write a test bench to verify the
entire design. Implement the circuit with an FPGA and test its operation.

Supp leme nt to experim ent 17 (Sect ion 11 .18)

The block diagram of a four-bit binary multiplier is shown in Fig. 11.24. The multiplier can be
described in one of IW O ways: (1) by using the register transfer level statements listed in part
(b) of the figure or (2) by using the block diagram shown in part (a) of the figure. The de­
scription of the multiplier in terms of the register transfer level (RTL) format is carried out in
HDL Example 8.5 (Section 8.7).

(a) Use the integrated circuit components specified in the block diagram to write the HDL
structural descript ion of the binary multiplier. The structural description is obtained by
using me module description of each component and then instantiating all the components
to show how they are interconnected. (See Section 8.5 for an example.) The HDL de­
scriptions of the components may be available from the solutions to previous experi­
ments. The 7483 is described with a solution to Experiment 7(a). the 747.- with
Experiment 8(a). the 7416 1 with Experiment 10. and the 74 194 with Experiment 14.
The descript ion of the control is available from a solution to Experiment 9(c). Be sure
to verify each structural unit before attempting toerify tbe multiplier.

(b) Implement the binary multip lier with an FPGA. Use the pulser described in the supple­
ment to Experimenl I.

Chapter 12

Standard Graphic Symbols

1 2 .1 RECTANGULAR ·SHA PE S YMBOLS

Digital compo nents such as gates, decoders, multiplexers. and regis ters are available com­
mercially in integrated circuitsandareclassifiedas SSI or MSI circuits. Standard graphicsym­
bols have been developed for these and othe r compo nents so that the user can recog nize each
function from the uniqu e grap hic symbol assigned 10 it. This standard, known as ANS lIIEEE
Std . 91- 1984. has been approved by industry, government, and profess ional organizations and
is consistent with international standards.

The standard uses a rectangular-shape outline to represent each particular logic functio n.
Within the o utline. there is a general qualifying symbol de noting the logical operation per­
fanned by the unit. For example. the general qualifying symbo l for a multiplexer is MUX . The
size of the outline is arbitrary and can be either a square or a rectangular shape with an arb i­
trary length-width ratio. Input lines. are placed on the left andoutput linesare placed on theright
If the d irection of signal flow ilO reversed . it must be indicated by arrows.

The rectangular-shape graphic symbo ls for 551gates are shown in Fig. 12.1. The qualifying
symbo l for the AND gate is the ampersand (&). The OR gate has thequalifyin g symbollhat des­
ignates greater than or equal to 1. indicating that at least one input must beactive for theoutput
to be active . The symbol for the buffer gale is I. showing thatonly one input is presenL 'Ibeex­
clusive-Og symbol designates the fact that only one input must beactiw: fortbcOUlpUllo be ec­
tive . The inclusion of the logic negati on small circle in the ooq:u (n n a ts tbc plleIlo tbdr
complement values. Although the rectangular-sha:pe symbols fIXIbe plleI at: Icc••,.u.",t,d, die

standard also recognizes the distincti ve-sbape symbols for the&*S IbowD. ia Pia- 2.5_
An example of an M51 standard graphic symbol is the four-bil pIDIIcI.&Ir:r abowa in

Fig. 12.2. Th e qualifying symbol for an adderis the Greek te.r I.. The ...l'ClIldien far
the arithmetic operands are P and Q.The bit-grouping symbols . die two Iypa 01 iapIb mil

559

S60 Chapter 12 Standard Graphic Symbols

& -,

Al"D OR

-

Buffer

-

XOR

& ~I -,
- p--

NAl"D NOR Inverter Xl"OR

FIGURE 12.1
Rectangular·sha~ graphic symbols for gates

I.
,

AI

A2
8

A7
7 • 51

6
52M

8 1
II 2

53
7 "82 51,

87
16

"'
CI

13
CI CO " CO

FIGURE 12.2
Standard graphic symbol for a four-bit parallel adder, Ie type 7483

the sum output are the decimal eq uivalents of the weig hts ot tne bits to the power of 2. Thus.
the input labeled 3 corre sponds to the value of 2J

"" 8. The input carry is designated by CJ
and the output carry by CO. When the digital component represented by the outl ine is also a
commercial integra ted circuit. it is customary to write the IC pin number along each input and
output. Thus. IC typo: 7~83 if> a four-bit adder with loo k-ahead carry. It is enclosed in a pack ­
age with 16 pins. The pin numbers for the nine inputs and five outputs are shown in Fig. 12.2.
Theother two pins are for the power supply.

Section 12.1 Rectangu lar-Shape Symbols 561

Before introducing the gra phic symbols of oth er compo nents. it is necessary 10 review some
term inology. As mentioned in Section 2.8. a pos itive-logic system defines the more positive o f
two signal leve ls (des ignated by H) as logic I and the more negative signal level (designated
by L) as log ic O. Negative logic ass umes the oppos ite assignment . A third alterna tive is to em­
ploy a mixed-logic convention. where the signals art considered entirely in tenns of their H
and L values. At any point in the circui t. the user is allo wed to define the logic polarity by as­
signing logi c I to either the H or L signal. The mixed- logic notation uses a small right-angle ­
triangle gra phic symbol to designate a negative-logic polari ty at any input or output terminal.
(See Fig. 2. HXO.)

Integrated -circuit manufactu rers specify the operation of integrated circuits in term s of H
and L signals"When an input or outpu t ls considered in terms ot pos irlve logic. it is de fined a..
actin' high. When it is considered in term s of ne gative logic . it is defined as active tow.
Active-low inputs or ou tputs are recog nized by the presence of the sma ll-triang le polarity­
indicator symbol. When positive logic is used excl usive ly throughout the entire system. the
small-triangle polarity symbo l is equivalent 10 the small circ le that designate s negation , In this
book , we have assume d positive logic througho ut and employed the small circle when draw­
ing logic diagrams, When an input or output line doe s not includ e the small circle , we define
it to be ac tive if it is logic I. An input or output that include s the small- circle symbol is con­
sidered act ive if it is in the logic-Ostate. However. we will usc the small-triangle polarity sym­
bol to indicate active-low asvignr nent in all draw ings that repre sent standard diagrams. Th is will
conform with integrated-circuit da ta books. where the po larity symbol is usually employed"Note
that the bottom four gates in Fig. 12.1 could have been drawn wit h a small triangle in the out­
put lines instead of a small circle.

Another example of a graphic sym bol for an MSI circ uit is shown in Fig. 12.3. Th is is a
z-to-a-Hne decoder represen ting one-half o f Ie type 74 155. Inputs are on the left and outputs
on the right. The identifying symbol X/y indicates that the circuit converts from eode X to code
Y. Data inputs A and B are a.....igned binary weights I and2 equi valent to tJand 21• respectively.
The outputs are ass igned numbers from 0 10 3. corresponding to outputs Do through D). re­
specti vely. The decode r has one active- low inpu t £ 1and one ac tive-high input £~ . These two
inp uts go through an internal A="O gale to e nable the decoder. The output of the A."'lD gale is
labeled EN (enable) and is activated whe n E1 i.. at a low-level stale and £2at a high -level state.

13 XIY
A 7

3 • 00
B 2 • DI

2
,

D22
E1 •• m
E2

FIGURE 12.)

Standard graphi< \ymbol for a 2-to-4-line dec:od« (~elK tn- 741SS)

S62 Chapter 12 Standard Graphic Symbols

12 . 2 QUALIFY I NG SYMBOLS

The IEEE standard graphic symbo ls for logic funct ions provide a list of qualifying symbols to
be used in conjunction with the outli ne . A qualifying symbo l is added to the basic outline to
designate the overall logic characteristics of the element or the physical characteristics of an
input or o utput . Table 12.1 lists some of the general qu alifying symbols specified in the Stan­

dard. A general qual ifying symbol defi nes the basic func tion performed by the device repre­
sented in the diagram. II is. placed near the top center position of the rectangular-shape outline.
The general quali fying S) mbols for the gates, decoder. and adder were shown in previous di­
agrams. Tbe other symbols are self-explanatory and will be U~ later in d iagrams represent­
ing the corresponding dig ital elements.

Table 12.1
Gtntro' Quon~ng Symbok

Symbol

&
~ I

1
= 1

"2k + I
XJY

.\IUX
D.\llJX

~
n

CO.\fP
ALU
SRG
ClR

RClR
ROM
RA.\I

De scrip ti o n

AND gate or function
OR ga le or function
Buffer gate or inverter
Exclusbe-Og gale or function
Even function or even parity element
Odd function or rod parity element
Coder. decoder. or code converter
Multiplexer
Demultiplexer
Add«
Multiplier
Magn itU<k comparator
Arithmetic logic unit
Shift register
Counte-r
Ripple ccc nrer
Read-only memory
Randorn-acce -,.. memory

Some of the qualifying symbols associated with inputs andoutputs are shown in Fig. 1:':.4. Sym­
bols associa ted with inputs are placed on the left side of the column labeled symbol. Symbol s as­
sociated with outputs are placed on the right side of the column. Th e active-low input or output
symbol is the polarity indicator. As mentioned previously, it i~ equ ivalent to the logic negation
when positive logic ilo assumed. The dynamic input is associated with the clock input in flip-flop
circuits. It indicates that the input if, active on a transition from a low-to-high-level signal. The
three-Slateoutput hn.. a third high-impedance stale. which has no logic significance. When the cir­
cuit is enabled. the output is in the normaJ 0 or 1 logic ..tate. but when the circui t i ~ disabled the
three-state output is in a high-impedance stale. This state is equivalent to an open circuit.

The open-co llector o utput has one state that exhibi ts a high-impedance co ndi tion. An
externally connec ted resistor is some times required in order to produce the~r 10Eic leve l,

Symbol

---"{ }-
--{ }-

----E

------G.K, R, S.or T

Section 12.2 Qualifying Symbols 563

Description

Active -lew input or output

Logic negation inp ut or output

Dynamic indicato r input

Th ree-state output (see Fig. 10.16)

Open-collector outp ut (see Fig. 10.12)

Outpu t with special amplification

Enable input

Data input to a storage element

Flip-flop inputs

Shift right

Shift left

Counrup

Ccunrdcwe

CT-l]--- CoolcDb of rq;illct equall!!!!U! LS

FIGURE 12.4
Qualifying symbols associated with Inputs and outputs

564 Chapter 12 Standard Graphic Symbols

The diamond-shape symbol may have a bar on top (for high type) or on the bottom (for low
type). The high or low type specifies the logic level when the output is not in the high- impedan ce
state. For e xample, TTL-type integrated c ircuits have special outputs called open-collector
outputs. These outputs are recog nized by a diamond-shape symbo l with a bar under it. Thi s in­
d icates that the output can be either in a high-impedance state or in 3 le w-level state. When used
as part of a distributi on function. two or more open-collector NAND gates when con nected to
a common resistor perform a positive-logic AND function or a negative- logic OR function .

Th e output with special amplification is used in gales that provide speci al driving capabil­
ities. Such gates are employed in components such as clock dri vers or bus-oriented transmit­
ters. The EN symbo l designates an enable input. II has the effect of enabling all outputs whe n
it is active. When the input marked with EN is inactive. all outputs are d isabled. The symbols
for flip-nap inputs have the usual meaning. The D input is also associated with other storage
eleme nts such as memory input.

Th e symbols for shift right and shift left are arro ws pointing to the right or the left. respec­
tively. The symbol s for count-up and count-down counters are the plus and minus symbols. re­
spectively. An output designated by CT = 15 will be active when the contents of the register
reach the binary count of 15. When non standard information is shown inside the outline. it is
enclosed in square brackets [like this].

, 2 .3 DEPENDENCY N O TA TI O N

The most important aspect of the standard logic symbols is the dependency notation. Depe n­
dency notation is used to provide the means of denoting the relationship between differen t in­
puts or outputs without actually showing all the elements and interconnections bet.....een them.
We will first demonstrate the dependency notation with an example of the A:-..'D dependency
and then define all the other symbols associated with this notation .

The AND dependency is represented with the letter G followed by a number. Any input or out­
put in a diagra m that is labeled with the number associated w ithG is considered to be A:-.lDedith
it. For example. if one input in the diagram has the label G I and another input is labeled with the
number I. then the two inputs labeled G I and I are considered to be A!\TIed together internally,

An example of A.'JD dependency is shown in Fig. 12.5. In (a). we have a portion ofagraphic
symbol with two AND dependency labels. G I and G 2. There are two inputs labeled with the
number I and one input labeled with the num ber 2. The eq uiva lent interpretation is shown in
part (b) of the figure. Input X associated with G I is considered to be ANDed with inputs A and
B. which are labe led with a 1. Similar ly, input Y is ANDed with input C to conform with the
depen dency betwee n G 2 and 2.

Th e standard de fines 10 other depe ndencies. Each dependency is denoted by a letter sym­
bol (except EN). The leiter appears at the input or output and is followed by a number. Each
input or output affected by that depe ndency is labe led with that same number. The II depend­
encies and their co rrespond ing letter designatio n are as follows:

G Denotes an AND (gate) relationship

V Denotes an OR relationship

Section 12.3 Dependency Notation S6S

x

x---I
y - --I

A-- - I
8 - - - !.l
c - - --l

(a' Block with G l and G2

fiGURE 12.5
Example of G (AND) dependency

y

A

8

c

'&1wI" ~f- -'!!
'iii

'-"" -k
b~
.-~~ I--
~1:i
::.~~

IF.'
:l~:,. ;: I--:-~~
~~-,. ' .:::-~~~

(hi Equ ivalent interpreeatjon

N Denotes a negate (exclusive -OR) relat ionship

EN Specifies an enable action

C Identifies a contro l dependency

S Speci fic!'> a set ting action

R Specifies a reset ting action

.\I Identifies a mode dependency

A Identifies an address dependency

Z Indicates an interna l interconnection

X Indicates a controlled tra nsmission

The V and N dependencie s are used to denote the Boolean relalion..c;hips of OR and exclu­
sive -OR similar to the G that denotes the Boolean AND. 'Ibe EN dep:ndeucy is simiJ.lOthe
qual ifying symbo l EN except: that a number fol lows it (for example.EN2)_O&Iy dIIe ouquts
marked with thai numberare disabled .."hen the input as.socialed with EN is a::tive.

The control dependency C is used to identify a clock mp.•• -.::pw IIriaI demmI mel 10 in­
dicate which input is controlled by it. 1be set S and reser R depra". ics are...t Ilo IpCCify in­
ternal logic states of an SR flip-Ilop. TheC. S. andRdepmdencielareeqai"erl ioSectioo 125

566 Chapter 12 Standard Graphic Symbols

in conjunction with the fl ip-flop circuit. The mode M dependency is used to identify inputs that
select the mode of operat ion of the unit. The mode dependency is presented in Section 12.6 in
conjunction with registe rs and counters. The address A dependency is used to identify the addre ss
input of a memory. It is introduced in Section 12.8 in conjunction with the memory unit.

The Z depe ndency is used 10 indicate interconn ectio ns inside the unit. It signifies the ex is­
tence of internal logic connections between inputs. outputs. internal inputs. and internal out­
puts. in any combination. The X dependenc y is used to ind icate the controll ed transmission path
in a CMOS transmission gate.

1 2 .4 SYMBOLS FOR C O M BI NAT IO NAL ELEMENTS

The examples in this section and the rest of this chapter illustrate the use of the standard in repre­
senting various digital components with graphic symbo ls.The examples demonstrate actual com­
mercial integrated circuits with the pin numbers included in the inputs <>nd outpul-~ . MO!<t of the ICs
presented in this chapter are included with the suggested experiments outlined in Chapter JJ.

The graphic symbo ls for the adder and decoder were shown in Section 12.2. Ie type 74 155
can beco nnected as a 3 X 8 decoder. as shown in Fig. 12.6. (The truth table of this decode r is
shown in Fig. 11 .7.) There are two C and two G inputs in the Ie. Each pair must be connected
togethe r as shown in the d iagram. 1be enable input is active when in the low-leve l state. The
outputs are all active low. The inputs are assigned binary weights 1. 2. and 4. eq uiva lent to 2".
2 '. and 22• respectively. The outputs are assigned numbers from 0to 7. The sum ofrhe weigh ts
of the inputs dete rmine s the output that is active . Thu s. if the two input lines with weights 1
and 4 are activa ted. the total we ight is I + 4 = 5 and output 5 is act ivated. Of course. the EN
input must beactivated for any output to be active.

The decode r is a special case of a more general component referred to as a coder. A coder is a
device that receives an input binary code on a number of inputs and produces a different binary code
on a number of outputs. Instead of using !he qualifying symbol X/Y.1he coder can bespecified by

9
DO

A 10
01

B 11
0 2

C 12
0 '

7
D4

• 0'G ,
D.

4
0 7

FIGURE 12.6
IC type 74155 connecte d as a 3 x 8 decoder

Section 12.4 Symbols for Combi nationa l Elements S67

the code name. For example. the 3-to-8· line decoder of Fig. 12.6 can be symbolized with the name
BIN/OCT since the circuit converts a 3·bit binary number into 8 octal values, 0 through 7.

Before showing the graphic symbol for the multiplexer. it is necessary to show a variation
of the AND depe ndency. The AND depe ndency is sometimes represented by a shorthand no·
tation like G ~. This symbol stands for eight AND dependency symbols from 0 to 7 as follows:

G~G J .G~G1G~G~G~G7

At any given time, only one out of the eight AND gates ca n be active . The active AND gate is
determined from the inputs associated with the G symbol. These inputs are marked with weights
equal to the powers of 2. For the eight AND gates just listed . the weights are O. I, and 2, cor­
responding to the numbers 2°, 21

• and 21• respectively. The AND gate that is active at any given
time is determined from the sum of the weights of the active inputs. Thus, if inputs 0 and 2 are
active, then the AND gate that is active has the number 2° + 22 "" 5. Thi s makes G 5 active
and the other seven AND gates inactive.

The standard graphic symbol for a 8 X I multiplexer is shown in Fig. 12.7(a). The quali­
fying symbol MUX identitie s the device as a multiplexer. The symbols inside the block are part
of the standard notation. but the symbols marked outside are user-defined symbols. The func­
tion table of the 74 1551 Ie can be found in Fig. 11.9. The AND dependency is marked with
G ~ and is associa ted with the inputs enclo sed in brackets. These inputs have weights of 0, I,

15

7

9

•A l
2

8 1
3

A 2
,

8 2
6

A3 11

83 10

I .
A'

8'
13

Select ---'----<

5

6

(a) tc type 74151 8 x 1 MUX
(b) Ie type 741$7qu.cb",1 x 1 MUX

FIGURE 12.7
Graphic symbols for multiplexers

568 Chapter 12 Sta nda rd Graphic Symbols

and 2. They are actually what we have called the selection inputs. The eight data inputs are
marked with numbers from 0 to 7. The net weight of the active inputs associated with the 0
symbol specifies the number in the data input that is active. For example, if selecuon inpul~

CBA = I10. then inputs I and 2 associated with G are active. This gives a numerical value for
the AND dependency of 2~ + 21 =6. which makes 06 active. Since 06 is ANDed with data
input number 6. it makes this input active. Thus. the output will be equal to data input D6 pro­
vided that the enable input is active.

Fig.12.7(b) represents the quadruple 2 X I multiplexer Ie type 74157 whose function table
is listed in Fig. 11.17. The enable and selection inputs are common to all four multiplexers.
This is indicated in the standard notation by the indented box at the top of the diagram. which
represents a commoll control block. The inputs to a common control block control all lower
sections of the diagram. The common enable input EN is acuve when in the low-level state.
The AND dependency. 0 I. determines which input is active in each multiplexer section. When
G I = O. the A inputs marked with I are active. When 0 1 = I. the B inputs marked with 1
are active. The active inputs are applied to the corresponding outputs if EN is acuve. Note that
the input symbols I and I are marked in the upper section only instead of repeating them in
each section.

, 2 . 5 5YMBOLS FOR FLlp·FLOP5

The standard graphic symbols for different types of flip-flops are shown in Fig. 12.8. A flip-­
flop is represented by a rectangular-shaped block with inputs on the left and outputs. on the right.
One output designates the normal state of the flip-flop and the other output with a small-circle
negation symbol (or polarity indicator) designates the complement output. The graphic sym­
bols distinguish between three types of flip-flops: the D latch. whose internal construction is
shown in Fig. 6.5: the master- slave flip-flop. shown in Fig. 6.9; and the edge-triggered Ilip­
ftop. introduced in Fig. 6.12. The graphic symbol for the D latch or D flip-Flop has inputs D
and C indicated inside the block. The graphic symbol for the JK nip-flop has inputs J. K . and
C inside. The notation C I. I D. I J. and 1K are examples of control dependency. The input in
C I controls input I n in a D flip-flop and inputs IJ and I K in a J K flip-flop.

The D latch has no other symbols besides the I D and C I inputs. The edge-triggered flip-­
flop has an arrowhead-shaped symbol in front of the control dependency C 1 to designate a
dynamic input. The dynamic indicator symbol denotes thai the Hip-flop responds to the po..­
Itive-edge transition of the input cloc k pulses. A small circle outside the block along the
dynamic indicator designates :I. nega tive-edge transition for triggerin g the flip -flop. The
master- slave is considered to be a pulse-triggered flip-flop and is indicated as such with an
upside-down L symbol in front of the outputs. This is to show that the output signal change'>
on the falling edge of the pulse. Note that the master- slave flip-flop is drawn without the dy­
namic indicator.

Flip-flops available in integrated-circuit packages provide specia l input s for setting and
resetting the nip-flop asynchronously. These inputs are usually called direct set and direct reset.
They affect the output on the negeue level of the signal without the need of a clock . The
graphic symbol ofa master- slave JK flip-flop with direct set and reset is shown in Fig. 12.9/31.

-~ 1D

-~Cl

Dlatch

u

- --{> C1

-~IK

Positive-edge-triggered
lK flip-flop

II .,
CI

I K .,
Master-slave lK flip-flop

Section 12.5 Symbols fo r Flip-F lop s 569

-~ 1D

- --{> C1

Positive-edge-tri ggered
D nip-flop

l ~ __
.-.. -

- ---9> CI
.,~

----j IK

Negative-edge-triggered
lKflip-flop

ID .,
C1

.,
Master -slave D flip-flop

f iGURE 12.8
Standa rd graphic symbols for flip-flops

2
S

4 ., 15
U

I
CI

16 14
l K .,

3
R

4

3

2

s

•

(a) On e-half 7476 l K flip-flop

fiGURE 12.9
IC flip-flops wit h d irect set and rese t

(b) One--hatf 7414 D ftiIHIop

570 Ch a pte r 12 Standard Gra p hic Symbols

The notations C I. I J . and I K represent control dependency. showing that the clock input at
C I controls input!'> I J and I K. S and Rhave no I in front of the leiters and. therefore. they are
not controlled by the clock at C I. The S and R Inputs have a small circ le along the input line!'>
to indicate that they are active when in the logic-O level. The function table for the 7476 flip­
flop is shown in Fig. 11. 12.

The graphi c symbol for a positive-edge-triggered D flip-flop with direct set and reset is
shown in Fig. 12.9(b). The positive-edge transition of the clock ar input C I controls input I D.
The Sand R inputs are independent of the clock . This is IC type 7474. whose function table is
listed in Fig. 11.1 3.

12 . 6 SYMBO LS FOR REG ISTE RS

The standard graphic symbol for a register is equivalent to the symbol used for a group of flip­
flops with a common clock input. Fig. 12.10 shows the standard graphic symbol of IC type
74175. consisting of four D flip-flops with common clock and clear inputs. The clock input C I
and the clear input R appear in the common control block. The inputs to the common control
block are connected to each of the elements in the lower sections of the diagram. The notation
C I is the control dependency that controls all the I D inputs. Thus. each flip-flop i!'> triggered

Clear --''-''>oj
9

4

,

12

13

FIC;URE 12.10
Graphic symbol for a four-bit reg ister, Ie type 74175

2

3

7

6

10

II

is

14

Section 12.6 Symbols for Registers S71

by the common clock input. The dynamic input symbol assoc iated with C 1 indicates that the
flip-flops are triggered on the positive edge of the input clock. The co mmon R input resets all
flip-flops when its input is at a low-level state. The I D symbol is placed only once in the upper
section instead of repeating it in each section. The complement outputs of the flip-flops in this
diagram are marked with the polarity symbol rather than the negation symbol.

The standard graphic symbol for a shift register with parallel load is shown in Fig. 12.11.
This is IC type 74195 , whose function table can be found in Fig . 11 .16. The qualifying sym­
bol for a shift register is SRG followed by a number that designates the number of stages. Thus,
SRG 4 denotes a four-bit shift register. The common control block has two mode depende ncies,
M I and M 2. for the shift and load ope rations. respect ively. Note that the IC has a single input
labeled SH/ LD (shift/load), which is split into two lines to show the two modes. M I is active
when the SH /LD input is high and M 2 is active when the SH/ LD input is low. M 2 is recog­
nized as active low from the polarity indicator along its input line. Note the convention in this
symbology: We must recognize that a single input actually exists in pin 9, but it is split into two
parts in order to assign to it the two modes, M I and M 2. The control dependency C 3 is for
the clock input. The dynam ic symbol along the C 3 input indicates that the flip-flops trigger on
the positive edge of the clock. The symbol / 1 _ following C3 indicates that the register shifts
to the right or in the dow nward directio n when mode M I is active.

The four sections below the common control block represent the four flip-flop s. Flip-flop
QA has three inputs: Two are associated with the serial (shift) operation and one with the

Clear

Cloc k

9

10

J
2 :~~!l}~l{!f1~~:
3 15

K fJK':ffY,~·.;~I'.wt" QA' .,.,,.'.,,ll!iJ'
4 ·..·..·,~jl' t '~0

A 2.3D -!~ W :? ,IJ,i'/ "
s 14

B QB

C
, 13

QC

12
QD

D
7 11

/!Il

FIGURE 12 .11
Graphic symbol for a shift reg ister with pIIr.KeIIoM1" IC type 74195

572 Chap ter 12 Standard Graphic Symbols

parallel (load) operation. The serial input label I . 3J indicates that the J input of flip-flop QA
is active when M I (shift) is active and C3 goes through a positive clock transition. The other
serial input with label I. 3K has a polarity symbol in its input line corresponding to the com­
plement of inpul K in a J K f lip-flop. The third input of QA and the Inputs of the other flip-Oops
are for the paralle l input data. Each input is denoted by the label z.3D. The 2 is for M 2 <load).
and 3 is for the clock C3. If the input in pin number 9 is in the low level. M I is active. and a
positive transition of the clock at C 3 causes a parallel transfer from the four inputs. A through
D. into the four flip-flops. QA through QD. Note thai the parallel input is labeled only in the
first and second sections. It is assumed to be in the other two sections below.

Figure 12. 12 show!'> the graphic symbol for the bidirectional shift register with parallelload.
Ie type 74 19~ . The function table for this Ie is listed in Fig. 11 .19. The common control block
shows an R input for reseulng all flip-Oops to 0 asynchronously. The mode select has two in­
puts and the modc dependency M may take binary values from 0 to 3. This is indicated by the
symbol M ~ . which stands for M O. M I, M 2. M 3. and is similar to the notation for the G de­
pendency in multiplexers. The symbol associated with the clock is

C4/ 1 -+ /2 _

C 4 is the control dependency for the clock. The / 1 -+ symbol indicates that the register shifts
right (down in this case) when the mode is M I (SISO=01). The /2 _ symbol indicates thai
the register shifts left (up in this case) when the mode is M2(SISO = 10).The right and left di­
rections are obtained when the page is turned 90 degrees counterclockwise.

Seri al input
2

"3 QA
A

4
3; 4D

14
R QR

C
s

3. 4D , 13
QC

D
6

7 12
QDSeriat inp ut

Clear --'-""{R

II

9

10

FIc;.URE 12.12

Graphic symbo l for a bidirectional shift register with parallelload, Ie type 74194

12.7

Section 12.7 Symbo ls for Counter s 573

The sections below the common control block represent the fou r fup-flops. The first flip­
flop has a se rial input for shift right, denoted by I. -ID (mode JI I. clock C 4. input D).The la,st
flip-flop has a serial input for shift left . denoted by 2. -ID (mode ,H 2. clock C 4. input D). All
four flip-fl ops have a parallel input denoted by the labe l 3. 4 D (mode M 3. clock C 4. input D).
Thus. M 3 (SISO = It) is for parallel load. The remaining mode,\10 (SISo = 00) has no ef­
fec t on the outputs because it is not included in the input labe ls.

SYMBOLS FOR COUNTERS

The standard graphic symbo l ofa binary ripple counter is shown in Fig. 12.13. The qual ifying
..ymbo l for a ripple cou nter is RCTR . The designation DIV 2 stands for me divide-by-z circuit
that is obtained from the single flip-flop QA. Th e DIV g desig nation is for the divide-by-S
counter obtained from the other three fl ip-flops. Th e diagram represents Ie type 7493. whose
internal circuit diagram is shown in Fig. 11.2. The common co ntrol block has an internal AN D
gate. with inp uts R I and R 2. When both of these inpu ts arc equal to I , the content of the
counter goes to zero. Th is is ind icated by me symbol CT = O. Since the count input doe s not
go to the cloc k inp uts of all flip-flops, it has no C I label and. instead. the symbo l + is used to
indicate a cou nt-up ope ration. The dynamic symbol next to the + togetherwith the polarity sym­
bol along me Input line signify that the count is affected with a negati ve-edge transit ion o f me
input signal. The bit grouping from 0 10 2 in the output represents values for the weights to the
power of 2. Thu s. 0 repre sents the value o f 2° = 1 and 2 represents the val ue 22 =4.

The standard graphic symbol for the four -bit counter with parallel load . Ie type 74 16 1. is
shown in Fig. 1 2 . 1 ~ . Thequalifying symbol for a synchro nous cou nter is CT R fo llowed by the
symbol Dl\' 16 (divide by 16), which gives the cycle length of the counter. There is a single

8 1

8 2

A

B

BaR

2 ,~~, ~~: CT -- O.;:;..

~ Ac
:,.,.'

I I
,, ~

DIV2
12

+

I~ DI""

'T
9

+ '''. (

cd" •
Ii II

QA

QB

QC

QD

moURE 12.13
Graphic symbol for ripple counter, Ie type 7491

IS

14

13

12

II

FIGURE 12.14
Graphic Symbol fo r 4-81t Binary Counter with Parallel Load, Ie Type 74161

load input at pin 9 that is split into the two modes. M I and M 2. M I is act ive when the load
input at pin 9 is low and M2 is active when the load input at pin 9 is high. M 1 is recognized
as active low from the polarity ind icator along its input line. The count-e nable inputs use the
G depe ndencies. G 3 b associated with the T input and G 4 with the P input of the count en­
able . The label associated with the clock is

e 5j2. 3. 4 +

This means that the circuit counts up (the + symbo l) whe n M 2. G 3. and G 4 are acuve
(load = I, ENT = I, and ENP = I) and the cloc k in C 5 goes through a pos itive transition .
This condition is specified in the function table of the 74 16 1 listed in Fig. 11.15. The parallel
inputs have the label I. 5 D. meaning that the D inputs are active when M I is active (load = 0)
and the clock goe s through a positive tran sition. The output carry is designated by the label

3CT = 15

This is interpreted to mean that the output carry is active (equal to I) ifC3 is active (ENT = I)
and the content (CT) of the counter is IS (binary 111 1). Note that the outputs have an inverted
L symbol. indicating that all the flip-flops are of the master- slave type . The polari ty symbol
in the C 5 input designates an inverted pulse for the input clock. This mean s that the master is
triggered on the negative transition of the clock pulse and the slave changes stal e on the
positive transition. Thu s, the OUtpUI changes on the positive tran sition of the clock pulse . It
should be noted that Ie type 74LS 161 (low-power Scbonky version) has positive-edge-triggered
flip-flops.

12 .8

Section 12.8 Symbol for RAM 575

SYMBOL FOR RAM

The standard graphic symbol for the random-access memory (RAM) 74 189 is shown in
Fig. 12.15. The numbers 16 X a that follow the qualifying symbol RAM designate rhe num­
ber of words and the number of bits per word. The common control block is shown with four
address lines and two control inputs. Each bit of the word is shown in a separate section with
an input and output data line. The address dependency A if> used to identify the address inputs
of the memory. Data inputs and outputs affected by the address are labeled with lhe leiter A.
The bit grouping from 0 through 3 provides the binary address that ranges from A0 through
A 15. The invetted triangle signifies three-state outputs. The polarity symbol specifies the in­
version of the outputs.

The operation of the memory is specified by means of the dependency notation. The
RAM graphic symbol uses four dependencies: A (address), G (AND), EN (enable), and C
(control). Input G I is to be considered ANDed with l E N and IC 2 because G I has a 1
after the letter G and the other two have a 1 in their label. The EN dependency is used to
identify an enable input that cont rols the data outputs. The dependency C 2 controls the
inputs as indicated by the 2D label. Thus, for a write operation, we have the G I and IC 2
dependency (CS ;;: 0), the C 2 and 2D dependency (WE ;;: 0), and [he A dependency,
which specifies the binary address in the four address inputs. For a read operation, we have
the G land lEN dependencies (CS == 0, WE ::= 1) and the A dependency for the outputs.
The interpretation of these dependencies results in the operation of the memory as listed in
the function table of Fig. 11.18.

AO - --'----j

A I

A2

A3

cs ---'--D./
WE - --4-1

,
1

9

II

FIGURE 12,15
Graphic symbol for 16 x 4 RAM, Ie type 74189

576 Chapter 12 5tanda rd Gra phic 5ymbols

PR O BLEM S

12.1 Figure 11.1 shows various small-scale integration circuits with pin assignment. Using lhis in­
formation. draw the rectangular-shaped graphic symbols for the 7400. 7$. and 7486 1Cs.

(b) Active high and active low.

(d) Dynam ic indicator.

12.2 Define the following in your own words:

(a) Positive and negative logic.

(c) Polarity indicator.

(e) Dependency notation.

12.3 Show an example of a graphic symbol that has the three Boolean dependencies--G. \ ' . and .v .
Draw the equivalent interpretation.

12.4 Draw the graphic symbol of a BCD-to-decimal decoder. This is similar to a decoder with 4 in­
puts and 10 outputs.

12.5 Draw the graphic symbol for a binary-to-octal decoder with three enable inputs. E I. E 2. and
E3. The circuit is enabled if E I - I. E2 = O. and £3 :a 0 (assuming positive logic).

12.6 Draw the graphic symbol of dual e-to- f-Hne multiplexers with common selection inputs and
a separate enable input for each multiplexer.

12.7 Draw the graphic symbol for the following flip-flops:

(a) Negative-edge-triggered D flip-flop. (b) Master- stave RS flip-flop.

(c) Positive-edge-triggered T flip-flop.

12.8 Explain the function of thecommoo control block when used with the srandardgraphic symbols.

12.9 Draw the graphic symbol of a four-bit register with parallclload using the label M I for the
load input and C 2 for the clock.

12.10 Explain all the symbols used in the standard graphic diagram of Fig. 12.12.

12.11 Draw the graphic symbol of an up-dow n synchronous binary counter with mode input (for up
or down) and count-enable input with G dependency. Show the output carries for the up count
and the down count.

12.12 Draw the graphic symbol of a 256 X J RAM . Include the symbol for u uee-a ate outputs.

REFE REN C ES

1. JEEE Standard Gruph ic Symbolsjor Logic Functions (ANSVlEEE Std. 91·1984).1984. New
York: Institute of Electrical and Electronics Engineers.

2 . KAMPEL. I. 1985. A Pract ical lmroducnon to the /ifni ' Logic Symbo ls. Boston: Butterworth.
3 . M ANN. F. A. 1984. Explanatio/l ojHew Logic Symbols. Dallas: Texas Instruments.
4 . The TTL Da/clBook, Volume 1. 1985. Dallas: Texas Instruments.

598 Index

A synchro nous seque ntial circu its (com.)
de signof.415-416
flow table, 420-422
fundamental mode,4 17
halards, 452-457

in combinationa l circuit s, 452-4 54
defined, 452
detection of. 453
cssential, 456-4 57
imple menta tion with SR

latches, 454-4 56
remedy for eliminating.454
in sequen tial circuia,454

implement ation exa mple, 430-4 31
laboratory experi ment, 553
lalch excita tion table, 430
logic diag ram, 436-4 37
prim itive flow table, 433-4 35

reducnon 0[,435-436
race condi tions, 422-424
race-free sta te assignme nt, 446-4 52

four-ro w flow-table example,449-450
multiple-row method, 450--452
three-rowflow-table eu mple,

447-449
reductio n of sta te and flow tables,

".......
closed-covering conditio n, 445-446
cumpatiblc pa irs, 443-444
implicat ion tab le and implied states,

.......a
max imal compatih1es,444-44 5
merging of the flow table, 442-443

S R latcb , 425-4 27, 430-4 31
ana lysis eumple, 428-429
tra nsition table. 430

slability.424-425
transition table. 417-420, 436-43 7
unstable states:

assigning o utp uts to,437-4 39
Asyncbrono us seq uent iallogic. 415-470

B
Base, 3-4
BCD 841,21-22
BCD adde r, 140-142

hlnck d iagra m. 141
BCD add ition , 19-20
BCD (binary-coded decimal) code , 18-19
BCD ripple counters. 256-258

logic d iagram, 257
state diagra m. 256

Be havioral mod eling. 168-170. 207- 210
Bidirect iona l shif t register, 25I , 537,

537- 538
with pa rallelloa d,5 37-S38

Binary ad der. 133-134
Binary adder-subt ractor, l29-139

binary adder, 133-134
binary sube acror. 136-138
carry propagation. 134-136
full adder. 131-133
ha lf add er, 130- 131
ollerflo w, 138-139

Binary and decimal num bers (laboratory
experime nt). 516

BCD cou nt ,517-518
binary coun\. 516-517
countr.,518
oscilloscope display, S17
output pall ern. 5t7- 518

Binary eeu.zs
Binary eoces.i . tt-zs

American Standard Code for
Information Interchange
(ASCII) ,23-2S

BCD 841, 21-22
BCD add ition, 19-20
BCD [binary-coded decimal)

code , 18-19
dec imal arithme tic, 20-21
errc r-derecnn g code. 25
Excess-J cooe.zt-zz
Gray cod e. 22-23
fI-bit binary code, 17- 18
2421 eoae.n-zz
weighted codes, 21

Binary cou ntdo wn co unters, 2S5
Binary counter with parallelload, 262- 265

Clear input. 262-264
CLK input, 264
COlint input, 264
Luad input. 264

Binary coun ters:
defin ed . 253
with parallel load, 534-535

Binary decisio n box. algorithmic stale
machines (AS Ms). 350

Binary digits. I
Binary logic.28-31

defined. 29
logic gates, 30-3 1

Binary mulliplier,1 42-1 43
contr ol sta te diagram for , 376
HD L description ot 382-389

datapalh unit , J82
next-s ta te logic of the co ntrolle r.382

laboratory expe riment. 549-553
block diagram. 549-55O
checking, 552-553
control of registers,55G-552
datapath design. 552

des ign of control circuit . 552
mult iplication nample. 552

parallel mult iplie r, beha'lioral
description of. 388-390

test ing. 384-388
Binary numbe rs. J-5

coolle nion to octal num be rs. 9
signed , 14-17
sum ot 5
unsigned . 14

Binary operato r.36
Binary ripp le cou nters. 2SJ-256

binary counl seq uence, 2S5
defi ned , 253
four -bit.2S4

Binary storage and regiMers. 25-28
Binary stora ge cell. 291-292
Binary subtractor, 136-138
Binary systems, 3--4
Bipolar IC u ansistors.4 n
Bipola r junct ion transistor (BIT), 473
Bipolar t ransistors:

base-e mitte r gra phical
cha raClerislic,479

charaClerislK:s of.4n -48 1
collector and base cu rrents,478
de current gain. 479
graphical collector-emitter

cha racteristics,479
pulled down ou tput ,4 79
pulled out o Ulput.479
satura tion region,47 9

Bits, 1, 4, 28S
Bitwise operalors. 338
Block statement. 112
Blocking as..signme nt~ 209-210. 337
Boote . George. 38
Boolean algebra. 28,38

esscciauve law, 37
axio matic dd ni tion of. 38-39
basic theor ems. 41-4 3
binary ope rator. 36
ClI non ical forms. 48-55

colwersion betl\'ee n, 52-53
dosure. 37
commuteuve Law, 37
de fined. 36. 44
dimibulive law, 37
dua lity,4 1
field. 37- 38
identity element, 37
inllerse. 37
and logic gates, Jl)...31, 36-39
man ipulat ion of. 46-47
maxterms, 48-50

prod uct oU 2

600 Index

Cont rol unit, 345-346
CnnlrolJers,335
Count operat ion regist<: rs, J 34
Cou nters:

loinary countdo wn counten,255
de fined. 242, 253
<.li\ ide- by-N counter. 265
IlDL for . 269-276
Johnson, 268-269
lalou ratory expcriment , 5J3-535

t>i nary counter with par allel
load , 534-535

decim al co unte r, 534
ripple co unter.534
synchro nous counter . 534

ring,267 -268
ripple, 253-258

BCD, 256-2511
t>inary, 253-2.~6

~~ mhol'\, 5n-574

S) nchronOl,I'\,258--264
wah unused stat es, 265-266

Crit ical race,422-423
8\'uid ing, 447
exa mple s of, 423

('ru"point, JOO
Cycle timo:,memory,289
C>'c1es. 423-424
Cyclic behavior,2 07, 343

edge -se nsitive, 344

I>
D thp-Ilops:

adv antage of designin g with, 2211
,m a lysi~ of clock ed sequential circuits

with ,204--206
a n il lysi ~ with , 200-201
cha racte ristic equa tio n. 194
characteristic table. J93-194
as example o f a sequentia l machine,

210-212
D lat ch [transparent latch). 1117- 1811
D"rl i n ~ton pair , 49l)..491
Data sele ctor, 154
Dataflow modeling, 165-1 67
D III<I{' I . 2&1

D <lI<lOur,2&I
Dal apalh unit, 345-346
Data.processing path, 345-346
Dc cur re nt gain. 479
Dcbc unce circuit.ay l
Decade counler. 256
D ecimal adder. 1J9-142

HCO adder , 140-14 2
Decim,ll ari thmetic. 20-2 1

Decima! counte r, 534
Declarat ion, 110
Decoders, I46-14Q.566

comhinationa l loF-ic
impl<'mentat ion. 149

n-to-m_line decoders. 146
three-to-eight-line.Lse

truth table fo r, 147
two-to- rour· line, with e nable input.

147-148
D elay contro l opera to r,2Oll
D eMorgan' , theo re m. 43. 47-48
Dem ultiple xe r.

defi ned. 148
wilh e nable inpu l.147_148

D ependency not at ion. 564-566
D esign:

a~ynchronoWl seq uent ial circu its,
433-U9. 457-463

logic d iagra m. 461--463
muging of the flow table,459-1fl1
primitive flow ta ble,457....58
speciHca tion'\,457
slate assignment. 460-461
t ra,,~i tion la ble, 460-461

combinational circu il$,523
with complex. programmab le logic

device (CPLD) .3 15
with D flip-flops. 228
digilal system'\, J4 5
elec tronic design au tom at ion

(E DA).6S
with Ileld- programmable gat e array

(FPG A) , 3 15
multiplexer s, 390--401

test ing th e ones counter,400-401
one-hot de sign (one flip-flop pe r state).

.380-382
" ith programmable array logic (PAL).

309.311
race ·fr ee. 40 1-403

software ra ce conditions, 403
register transfe r example. 352-361

algo rithmic-based be havioral
description, 362

be havioral descriptions, 361
control logic, J60-361
co ntroller and datapath hardwar e

de sign, 357-358
datapalh unit . 352
HOL description of. 361- 370
registe r trensfer representation. 351!!
RTL descriptio n, 361-365
seq uence of operalioll'\, 356
state ta l:>le, 358-360

S!Tuctu rai d<:scription. 361. J6t>-370
syste m chan. 353-355
t~ti ng the design descript ion.

",..J«\
timi ng sequence. 355-3S6

at regi sler transfer level (RTL }. I6I .
334--114

syn<:hronous seqeenuellogicJet
top-down. 16 1

De sign entry. 107
De sign proce dure. synchro nous

sequentia l log ic. 225-234
Digita l age , 1
D igital computer.;. 1- 3

general ·pul"Jl'O'oC,2
Digila l integ rate d circu its, 471-5]0

bipol ar transist ors:
base-emitter graphical

characterist ic,479
characte rist ics o f.477-481
colle cto r and ease curresus, .HI!!
de cu rre nt ga in. 479
gra phica l coltector-emiuer

charaC1eristics.. 479
pull ed down output.479
pull ed out output. 479
saturation regio n. 479
types of, 477

CMOS transmi'<'<io n gate cir cuits,
501-.504

bas ic circuit of. !>01
bilateral s" i lch. 501-502
connection to in verter . 501-50.2
udusive-oR gate. construction

of. 502- 503
gated 0 latc h. eonstrucno n

of, 503-504
master -slave 0 flip-flop. construction

of, 504--505
multiplexer co nstruction. 503

complementa ry MOS (C MOS) circuits,
4Q8...501

cba raC1emt~ of. 500-SOI
C MOS digital lope family, SOl
CMOS tra nsmis'<ion ga te c ircuits,

SOI- .504
e xamptes o f, 4~5OO

fa l:>tication pr OCC'S'\, SOl
gra phic symbols, 500
in\"ener.49l!l
two-inpu t :-':O R gate. 5/X1

diodc-s,479--4S0
D TL digital logic fam ily:

analp is of,4tl 2-4S3
fan-out . -llt1

NAND gate,4S2
po ..-er dissipation of 3 DT L gate , 483

emine r-coupled logic (ECL).493-495
basic circuit. 493
defined, 493
exte rnal wired connection of two O R

outputs,.495
graphic s)'mbo l, 495
inte rnal temperature - and vo ltage­

compe nsated bias circuit. 493
internal wired connection of two O R

outputs, 495
pro pagation dela y.494-495

metal-oxide semiconductor (MOS).
495-498

advantage of, 497
basic structure of,495
channel , 495
de ple tion mode . 496
diffused ch.anne\,496
drain, 495
en hllJlcem"nt mode,4%
gate, 495
graphic symbo ls, 4%
rr-channe! MOS, 4%-497
p-channet MOS, 4%-497
sou rc". 495-496
type s ol496

RTL digita l logic family :
analysis of, 481
ren-occaat-asz
NO R gate, 481

s.. itch-level model ing, 505-SOIl
tra nsmission gate, 50l)..507

transis to r-trans istor logie, 484-4 <13
advanced low-powe r Schot tky'Tf'L

gate .485
characteristics (tabl e), 484
rer r-rt. family,485
high-s!X'ed TIL gate. 484--48.5
low-po wer Seho llky TIL. 485
low-po ...'erTIl.. gate, 484
open-collector output gatc .4S5-48!l
original , 484
propagation delay. 484
Seho n kyTTL gate. 4&4-485,489-491
standard. 484
thr ee-s ta te gate,49 1-493
to tem-pole output, 4ll8-4ll9

Digital logic circui ts, 27- 28
Digital logic gates, 57-62

exelusive- O R gate , 59
exte nsion to multiple inputs, 59-61
integrated circuits. 63-<l5

compu ter-aided de sign,64--<l5

digital logic families, 63-64
levels of integration. 63

laboratory experiment. 519--520
NAND circuit,5 20
propagation delay. 5 19-520
truth tables, 519
universal NAI\D gate, 520
wavefonns. 519

NAN D functio n, 59
posit ive and negative logic, 61

Digital logic traine rs, 511-512
Digital sY'ltemr..I- 3

defin ed . 2, 334
logic design of. 345
relanonship between con tro l logic and

data-processing operations in,
345-346

Digital versatile disk (DVD}, 2
Diminished radi x, 10
Diminished radix com plement, 10
Diod cs, 479-480

symbol and cha racteristic.480
Direct (ded icated) inte rcon nect lines. 317
Direct input s. flip-flops. 194-195
Direct reset input, flip-flops. 194
Distributed RAM, 317
Distributive law, 37
Divide-by-N counter, 2b5
Don't -care eonditions,ll6-88
DRAM. See Dynamic RAM (DRA M)
DTL digital logic fami ly:

ana lysis of, 482-483
fan-out ,4113
NAN D gate. 482
power dissipa tion of a DTL gat e, 483

DTL (diode-transistor logic), 471
Du ality,4 1
Du al-trace oscilloscope 512
Dynamic haz ard . 453
Dyn am ic memory. refreshing. 291
Dynamic RAM (DRAM) , 291

address cod ing of, 295

E
ECL (e mitter-coupled logic). 471
Ed ge-sen sit ive cyclic be havior, 344
Edg e-triggered D flip-flop, 199- 191, 531

graphic symbol for, 191
ho ld time , 191
master, 189-190
setup time. 191
slave, 189-190
with three SR latches, 190-191
wtth two D latches and an invert er ,

189-190

Index 601

Electr ically erasable PROM
(EEPRO MJEl p RO Mj,J04

Electronic design automation (EDA) .M
Emitter-coupled logic (EeL), 493-495

bas ic circu it, 493
de fined. 493
exte rnal wired connection o f two OR

output s, 495
gra phic symbol. 495
internaltemperature- and voltage ­

ccrnpensated bias cil'l:uit. 493
intern al wired connection of two O R

outp ul'l.495
propagation de lay, 4<14-495

Enable inpu t. 281l
Encoders, 150-152

octal- to- binary, t ruth table for, 15U
priorit y, 151- 152

endmod ule (key word). 109
Erasable PROM (EPROM }. J04
Error detection sche me. parity bit as, 296
Error detection/correction. 2%-299

Hamming code, 296-298,299
single-e rror conect ion , double-o:rror

detection , 298--299
Error-correcti ng code, 2%
Error-de tecting code, 25
Esse ntial hazards, 456-457
Event contro l operator, 2Ug
Excess-J code, 21-22
Exci tation equations, flip-flo ps, 200
Excitat ion tab le. 229
Exclusive_NOR funcl ion (XNO R) , 57
Exclusive-O R gatc , 59
Exclusive-O R symbol (el), 55
Exclusive-O R (XO R) function, 57,

101-102,104

F
Fan-in, 64
Fan-out, 64, 473-474
Fast TIL family,485
Fault stm ureuon.tos
Feedback shift register,5 37
Feedb ack-free con tinuous assignmen t, 403
Field. 37-38
Fie ld-effect transistor (FE T) ,473, 495
Field -pro gramm able gate array (FPGA) ,

65,284,3 11,31 5,343
design with, 315
logic block, 315
XilinxFPGAs, 3 16
Xilinx Spartan II FPGAs, 323-327
Xillnx Spa rta n XL FPG As,322-323
Xilinx Virtex FPG As, 327- 329

602 Index

Fie jd-prog remma ble logic sequencer
(FPLS).313

Finite state mac hines. Mealy and Moo re
mod els of. 206-207

Firs t-in. first-out regis ter files (FIFOs) ,
320-321

Five-variable map. 8 1-83
Hash memory devices. 304
Aip. f1ops.IR3- IIl4, IRS-11l5, 242

cha racteristic eq uations. 194
char acteristic tahles. 193-1 94
construct io n of. I AA-11!9
defined , IS3
direct inputs. 194- 195
d)'oa mic indicator, 191
edge- tn gge red D flip-f1op. IR9-191
inpu t eq uation... 199-200
l K f1ip·f1ops, l92
lahm atory expe rime nt. 5JO.-532

o lateh, 53O
edge-trigge red f1i p-f1op. 53 1
ic flip-flops. 531-532
master-sl ave f1i p-f1op, 5JO
5H. latch, 530

('peratiun of, 189
operations performed with , 192
as registers, 335
an d signal transition, 189
symhuls, 5&l--570
rnip-n ops, l 92
t iming of the respo nse of. 19l

fl ow tab1e, 4200-422
defined. 420
u amplesof. 420
unwining the logic diagram from . 422
primitive, 421

Flo"chans, 346
for 1001",340-341
(on'.'er loop,340-341
Fou r·bit data_stor age register . 24-1
gour.ro-one-ttee multiple x...n., 153
Four-vari able map, 76-S0

prime implicl nlS,79-RO
FPG A (fid d·prOlUammable gate

array), 284
Full add er, 130, 131-133, 527
Function blocks, 3 15

G
Gate array, 315
Ga te instance. 110
Ga te instantiation. 110
Ga le- level minimiu t ion . 70-121

A!'D-OR-INVE RT (unction . 96
imple mentation, 97-99

defined. 70
don't -care cond itions,ll6-ll8
exclusive-O R (XOR) function . 101-1 02
five-v ariable map, 81-&3
four-vari able map, 76-llO

prime implicants, 79-80
gate delays. 110-1 13
hard war e description language (HDL).

106 - 116
Kamau gh map (K-map). 70-71
map method . 70-71
mu ltile vel NA ND circuits. 92-93
l\AND gate, 89--90
nondege oe ra te fonDS, '17
l\ O R gate, 93-96
odd funetion. I02- I04
O R- A ND-INVERT func tion , 96

impleme nta tion. 98-100
pa rity checker, 104-106
parity generation. 104-106
prod uct-of-sums simplification. 83-S6
three-variable map . n -76
two-leve l imp lementat ion, 90-92
two-variable mill",71-n

Gate-level (stru ct ura l) mod eling.1 5'J
Gi~a (G ,, 4

G ray code, 22- 23

H
Half adde r,IJO.-13I , 527
Hamming cod e, 296-298

mod ified, m
using for dat a words.298

Ha rdware algorithm, 346
Hardwa re descnpuon lan gua ge (HD L).

65, 106-116. 159,315
Boo lean e xpress ions, I 13-1 14
defi ned. 106
de sign e nt ry, 107
as docu mentation language, 107
fault simulation, l OB
logic simulalion. l07
mod ule declaration. 108-1 09
registe r transfer level (RTL) in,

336-345
lo r re gisler.; and coun ters, 269-276
switch-level modeling. S05-508

transmi!iSion gate ,S06-S07
test be nch. 107
timing verificat ion, 107-IOB
use r-de fined primitives. IJ 4-116

Ha rdware signal generalon. 1l2
Hazard s, 452-457

in combinational circuits, 4S2-4$4
de fined , 452

det eclio n 0(453
d)'llam ic. 453
esse ntial. 456-457
impleme ntation "'l th SR latch

4~SO

rem ed y for eliminating. 454
in sequential circuits, 454
static Q-haurd. 453
sta tic l -hazar d. 453

Hexadecimal (hase· 16) num ber
syo;tem.3-4

Hexadecimal numbers. S-9
High impe da nce. 159
High-imped ance Slate , ISO
High-speed TTL tlate, 4A4--lS5
H untingto n. E. V,, 3lI

J
Ie digua l fogic famili....... 471

basic circu its in, 471
bipo lar ju nct io n transistor I BIT). 473
data boo k. 471-472
field-e ffect rranstctor (FET), 473
~AND gal~s. 471-172

J'\OR gates, 471-472
spe cial eh" racteristia.. 473-4n

fan-';lul. 473-474
noise ma rgin. 476-477
powe r di!iSipa lion. 474-17S
propa gation dela)'. 475-176

Identity ele ment , 37
Implicat ion tllble.~l

incomplelely speci fied functions. fl7
Informat io n transfer . be twee n

reg isters.335
Initial bJock. 2111
Inpul equa tions.lJip-fiops. 19lJ.-200
Instarll iat ion . l lO. l liO
Insti tut e o f Elecuunics and Elect rica l

En[tineen (IEEE) .65
intCJff data type. 342
Integrate d circu it RA~1 units. !Il l
Integrated circu its (ICs). 6J-65. 471

eompu te r-aided des i[tn, 64-65
digital logic famiJies. 63-M
k vels o f integ:ratio n.63

Imerconneci resources, 317-318
progTllmma ble. 319

Intra-assignment delaJl. 274
In"e ne. 37

J
n: Oip-f1ops, l 92

analysisof cjocked sequent ial circuits
"lth . 204-206

an at)'5n ..,th. 20I -204
chan a emlic table. 193

.Johmoa cow n cn.. 268-269

.hmctioa field-effect traDsistor
(JFET), 49S

K
Kama ugh map (K-map), 70-71,)43
Keyword!\, 1~109

Kilo (k),4

L
Laboratory e xperiments, 511- 55t1

adde n and subtneton
(uperiment 7), 527

adder--l.ubiraaor (fouI·bil), 528-529
full adder, 527
h.tf adder, 527
magniu»de comparator. 529-5JO
parallel adder, S28

. ynchroDoussequential ciraailS
(n perimenl 18),553

binary.nd decimal numben
(nperiment l).516

BCD counl , S17- 51t1
binary «Iunl.516-517
cou nls-5IB
oscilloscope display. 517
OU tput pan ern. S17- 5IlI

binary multiplier (e xpe n mem 17).
549-55 3

block diagram, 549-SSO
cbeding. S52-553
control of regiMen. SSO-S52
d.ll.Ipa th de~gn. S52
dnip of COIluoi cimnl.SS2
multiplication eu mplo:. S52

Bookan function simphflClltion
(n perilnenl 3) , S2l)...S22

Boolean hmctiom in sum-of-
minterms form. S22

complement. S22
l ale ICt, S21
logic diagram, S21-S22

clock-pulse genera tor (experimenl IS).
S45-547

circuit operation, 545-S46
clock·pu lloe gene t"or ope ra tion.""-,,,
IC tinler,545

code eceve rters (nperimCDt 5),
524-S26

Gray code to equivalenl binary.524
nine" compicmeDter, 52S
le"t'n..egme Dt display. 525- 526

com.b1national circuits (experime nt 4),
522-S2-I

d«oder and lrulb table bIod
diagram. S13-524

decoder imple menta tion , S2.J-S24
design eu mple, S2J
majo ril}'10gic.S2J
par iI}'l ene ralot. 523

counters (ex periment IO),53l-S3S
binary co unter with parallel load.

S34-535
decimal counter , S34
rippl e counter, SJ4
s)1lChrOnOlD counter, SJ4

digi tal lOJic , ates (n pe rimenl 2) .
SI9-S20

NAI"D c:irwit , S20
propaption de lay, SI9-S2O
truth 1lNes.519
univenoal NASD late, 520
.....dorms,SI9

d.igital JoP: tr.ine", SII- SI2
dual -trace O5oCilIosoope, 512
Dip-Oops (n pe riment 8),SJO..-S32

D latch.SJO
edge-trigge red flip-llap , S31
IC flip-flops, 531-S3 2
master- slave nip -nop, 5JO
SR Ietcb. 530

gale lCs needed for. SI2
gra phic Jymbo ls,SIS
IC rvpe 7493 ripple cou nle r, 512

operl tion of, S12-S15
integrated circu its requi red , SIS
lamp handball (experiment 15), 541- 545

cirt'\lil I nalysis. S44
oountin,the num ber 01loan. S44
IC type 74194. 5042
lamp Pinll-Pongtl<,545
logic d.ia,lr.m. 542-54-1
plll.yin, lhe pme, S44

logic brudboa rd 5uillble for
pe rfonning.5 1l

medium-scale in tegration (M51)
circuits. 512

memory uni t (expenm enr 14), 539-S41
IC RAM . S39-54O
memo l'}' expa nsion , 541
RO M simulator. 541
tes tinJ lhe RAM.~S41

lIlultiplexer design (e~perimenI 6),

Su.-S27
specitic:alionl, 527

Jl<Irallel adder . nd '1XUmlllator
(expe n menI 16), 547_549

Index 603

block diagram. 547
C*ITY dmlil. S"8
dleckinllhe circui t, S48
circui t operation , 549
con tro l of register, 547
detailed d.ilgram of circuit.S4ll

sequenlia l circu its (ex pe rime nt 9).
S32-533

cou nter design, 533
sta te diagram, 533
up-<lnwn counte r with enable, 533

serial addition (experimentlz] ,
5Jl1.-539

serial adde r. SJ9
se rial add er-lubllaetor , S39
tcstinlthe adder, SJ9

shift regis ten (n peri menI 1l). 535- 538
bidiretlional shih regisler . S37
bidireclioftll ,h,h regis ter with

parallelload. 537-5J8
feedbKk shi ft regis te r. 537
IC shih registe r, 53S-536
rinl co unte r, S37

small-loCBle integrlt ion (551)
cimJitl, SI 2

Verilog HOI simulatio n experimentli
and rapid prorotyping with
FPGA!\, S53

el pe rimenl I. S54
esperiment 2,5S4-S55
experiment 4, 5S5-556
experiment S, S56
experiment 7, 556
experime nt So S56
experime nt 9,5S7
eapenment IO,SS7
e.perimen! 11.557
experimenl1J, 5S7- S58
expe rimen r H .558
expe rime nl 16.558
expe riment 17, SS8

Lamp ha ndba ll Oaborltoty expe riment),
S41 - 545

circuit analysil, 544
count in. the num be r of losses. 544
IC type 74194. 542
Lamp Ping-Pong" ' , 545
logic diagram, 542- 544
playing the lame, S44

Lar,e-5Cl.1eintegration (LSI) c1ev>ce..63
Latches, 1&4-188

D Iltch (transparent lllch),I87_I88
rewtlil.llo:,HI5
W:nsi:tivity of. 184
set sta le. l lI$

604 Index

Lllche~ (COIl!.)
SN lalCh.1K}.-1lr1
triUier.18l1

Latch -free dnipt..aoJ.....I(l4
Lilerab.,46
load opo:ration. n:p1cn. 24-&. 334
~ic ri n:u iu.,S« Di gital s~ ,"elm

~ic diag ra m:
oN3ining ou tput Book ao fu1lC'1I01l~

from , 12"
of lhn:c-hit biMry rounlCT.2J.I

l ogic gales, 30-31
l ogic ope ra lion" digila l s~"'Stc m\, 336
l o:'l!ic opcratOA,Ve rilog 2001 HO L 339
Logic " pe ra lon. lo r binary "''(lrds., 338
Lo gic simulation. 107
l<' lZ ic simulalon.l22
Logic synthesis,343-345

advantages lOdesigner. 3.&5
M" lllll stateme nt. 3-13
1<>"1,, 3.&3

u '!Z iCllll,pe ralon. Vcri log 2001 HO L. 339
L.II" p state ments, 3.&0-3.& I
Low-power Schou ky TTL .&85
l.I'''' ·pe r TfL gatc."ll"

"~llIllnct ic d ",t . 290--291
:Io1..~itude com para tor , 1"3-1"5 . 529-530

fou r-bit. 145
:lo b,.\(J'l'OJTammin~ 303
M..""er-.!avc f1ip-flop. 530
U n imlll (Oll1pali~ .s..u--.u5

Me..l~ FSM (Mul~' mac hinc),206
Mcal~' model. 2Ofa....207
."(alv_Zero_lHl« tor. 215-216
Med ium·K111e inkllra t)on (MSI)

cin:u it,5 12
:Io k dium'K111e inlev at ioo (:IoISI)

devices. 63
:Io lega l:lo!) . "
.\ l ml. 2SH

'-k m" l)':
;tceess time, 2119
addr<;ss.2116
archi tect ure of. 2RS
com munication betee n the

cn\i ro nme nl and, 285
~c1e t ime, 289
inh:e ra lcd cin:ui l RAM unns, 291
propammahle JoPc de~'ioe (PLD). 28.&
ta nd<.",,·..xeu (RAM) . 28.&
.....quenlial·accru. 290
t~ pesof.290-291

:Io k mo ryttll.29I- 292

:>'k lOtlf)" ch ip. oontrol inpulS k>, :!88
:Io k mol)' C)'cle liming .. avd onm.

2S9- :NO
Me mory dccodin~ 291- 295

aJ<Jro.lomuitipkUng. m-m
eoi ncioknl dcrodiog. 293-2901
inle rnal oons lructioll. 291- 292

:Iole mory depth.:!88
:Iol emory dncriptioo in HD L... 2!lll-2lI9
Me mory enabk.2S1.2lI9
M",mory '>"'Siem. modeof~ of. :NO
Me mory liming. 289
:>.le mory unillo, 28+-287

t>lock diapam.2llS-2ll6
cap;OCity 0 (, W
defined .2tU--2S5
laboratol) ' espenmem, 539-541

rc RAM. 539-5.&0
mernury e apa nsion . 541
RO M simulator.Sal
le. ling the RA M. 540-S41

Ilpcra lion of. 288
rd iabilily 0(, 296
~'lllalile.29 1

"onh. 2S5. 2S7
m,,,, ,,'Ord. 2llll
:Iole fge r diagr arn. 44-&
:Iole lal-oxidc 'lCmiooood UCIOl" (MOSl;

a J\'anUi ge of. "((1
l'>a-\IIC MTVCI ure of. 495
cha nnd. "95
dc:ple lion eooe, 496
diffused channel, "96
<J rain. 495
e nha nceme nt mode. "96
lIale. 495
gra phic , >mbols. "96
n<hannel '-fOS."96-4((1
p<hanoel :Iof OS.496-4((1
source, "9S-496
l~ pc,o(, 496

:Iofelal-oxidc -semicOlldUC1or f>ckl-cffed
Iransistor (MOSFET). 473

:Ioflld ule. 207
rnudule _ en.cl muclule (keyw or d

pair) . 109
M,,<J u1l:d.:<:laralion, HIS_I IO
M<>tlulei.,108-110.217
:Ioh >tlulo-N oounlet . 265
:Iol "or e FSM (Moore machine). 206
:Io1<'OIl: model. 2Q6-.207
:IoIOS. S« Melll-olide 'lCmi.ooDdUl'tor

t!-IOS)
:Iol ullile\ 'el NA:-;D circui u.,92-93
MUltlple· row I1k'lbod. "50-452

Mull ipleKn, 152-158. 313
Book~ functioa implel1k'n ta lion.

15"-156
data Kkctor.l5.I
de fined. IS2
dnip eumple. 3QJ.-.IOO

lesting tbe 0Il0C$ COWl lC!. -11110-401
~p ..-jth. 3'Jt)-I(}1

lamatory expcriJD(:nl. S1O-S27
fou r·lo-ooc-linc.IS3
gT.lphics s}"mbols for.567
imple menling a BooIc an ru.....,1011

. ilh. l56
imple menling a four·inpul fwlCtlOQ

. i lh.157
input condition s, 393
qu adru ple lWO-I()-()ne-line. 155
three-state gates, 156-ISg
l"' O-I()-()oe-line. 152- IS3. 1S3

,
:"lA :'IOD gatc . 89-90
II·bil bina ry~. 17-18

S egatKm(-) opera lllf . 3311
1leIftCt' (kC}.. ord), 209
Scu., I64
Noi~. defined. 476

Soiie rnngin.6-I."7t>-4n
Son~assipmo:nI:s. »>-2 Io.337-33!l

S oncrilical race, 4!2
Sondc~neral e forms..((1
Non\'OUlik lDClDOfl.291
:-OO R gale. 93-96
SOT operalioD. 29
npn I>-re.bipolar U~.alor. "77-478

silicon tranSisl:or p.aramclCn. "79
n -IOom-1iMdecodcn.l -lob
:'IOurnboer-base OOIl:~ en.ions. 5-7

o
Octal number s~"'Sl em. 4

Octal numbe n. roovenioo 10

hexadecimal. 9
Oc tal-to-binary e ncoder.truth lah le tor.

lSO
Odd funct ion. 102-10.&
O ne ·hol al&ignment . 22~m

One-hot dcsign. 3S0-.\82
Open Verilog In lellla t)onal (0\'1). lOll
Open-collector outpul gale.~

ASD-OR-Il\"\."ERT funcI)on . 487
appbeal~.w.

fonning a oommoo bus 1inc..&lO~

!'ol A,...O gale.485
.. -jITd-A....O•.&lO

Opera to r precedence . 43-44
O R gate.conventionaland aTTay logic

diagra ms for, 28S
O R operation, 29
Ou tput equations, nip -flops, 200
Overflow, 138- 139

p

PAL, Stt Progr ammable arra y
logic (PAL)

Parallel adder. SUI
laboralo ry expenmem. 547-54 9

block dilll(ram, 547
carry circu it, 548
cbeck ing Ihe circ uil ,548
drcuit ope ration, 549
cont rol of regisler,54?
detailed diagram of circuit. S4S

Paralle l load:
bidirectional shift register ...-ah,

537-538
bin ary cou nters with, S34-535

Clta, input, 262- 264
CL K inp ut , 264
COUnf input , 264
LtxJd input .264

regislen with, 244-245
Parallel mult iplier, behavioral description

0(,3&1-390
Parallel-load con trol , diift reg iMen, 2St
p....mt'ln [keyword). 213
Parily en. 2S

lIS error detection sche me, 296
Parit y checke r, J04- I06
Pari ty ge ncration. I04-106
Pari ly gene rator. co mbinational

circui ts, 52J
PIP-based interconnec tion. a rcbirectu re

0(3 19-320
PLA ,Sn Progr ammable logic aTTay

(PLA)
PLO, Set Pro grammable logic device

(PLO)
pnp type. bipolar transislor,4 n -t78
~ge (keyword). 209
Positive-edge-lrigge red D flip-flop.

194-t95
Power dissipa lion.64, 474-475
Powers o f two (la ble), 5
Predefined primitives, 110
Preset inpu ts. fiip-flops,I94-195
Prim e implicanls, 79-80
Primit ive flow table, 421, 4$7-458
Primitive gales. 110
Pri mitives, 110

Prior ity encoders, 151-152
fou r-input,IS2
maps for, 15 1
Iruth table for, 151

Proce dural assignments, 337
Prod uct of sum'>, 54

exp ression.9S
simplifica tion, 83-86

Progr amma ble array logic (PAL).
2M-28S. 309-31 I

com me rcial , 309
deli ned , 309
designing wilb , 3W, 311
fuse map for , 311
prog rammi ng table, 309-311

Programmable logic array (PLA), 284.
sos-ooe

de fined , lOS
designing a digila l syslem with, 307
fuse map of, 306,308
implementing a combinationa l circuit

with. 307-308
Internall ogic0(305
progr amm ing table:

genera tion 0 (, 3011
sections o f.306

size of, 307
Program mable logic device (PLO), 65.

284-285 , 30
design with . 3l S

Program mable read-only me mo!)·
(PRO M), 303-304

Programming, 284-UlS
Propagation delay,64. 475-476

digital logic gales (laboratory
experime nt), 519-520

emiller-coupled logic (Ee L).
494-495

Ie digi tal logic families, 475-476
lransisto r-lramiSiOr logic (lTL), 48.4

Q
Quadruple two-to-one- line

mu ltiplexe n, IS5
Qualifying symbo ls, 562-S64
Q ualitat i\'e analys.i'>, 480
Q uan t italive a nalysis, 480

•
Race condit ions, 422....24

critical race. 422-423
avoidi ng. 447
examples o f. 423

cycles, 423-424
no ncri tica l race,422

Index 60S

Race -free design, '*01-403
softwa re race co nditions, 40J

Race-free stal e /Issignmcn t, 446-452
four-row flow-table example, 449-t~
multiple-row mct hod .450-4 52
thrce _ro w flow -table exa mple ,447-449

Radi ~ , 3-4 , 10-11
Radix complement, lO- 11
RAM. Set Rando m-access memory

(RA M)
Ra ndom-access me mory (RA M), 284-291

co mme rcia l, v.'{)rd c,apaci ty 0(292
memory description in HD L, 288-289
memo ry, types of, 21lO-291
symbol for. 574
limingaveforms.289-290
write lind lead ope ra tions,287-21lll

Read cycle. 289
Read input. U S
Read ope ratio n, 2S4
Read-only memory (RO M). 284.299-305

block diagram, 2!19-30n
combina tional circui t

imple me nla lion, 302
com bina tional programmable logic

device (PLO), 304-30S
<Je fined,299
elect rically erasable P RO M

(EE PROM/E2PR O M), 304
erasable PR O M (EPRO:'.I},304
flash memories,304
intemat binary storage of.300
internal operat ion of. 302
mas k progr amming. 303
num be r o f words in, 299
pro grammable read-only memo ry

(PRO M), 300-304
programming. 300-301
tru th tab le.lOt
lype s of. 300-304

RrodWrirt inp ut. 288
Read/wri te signals, 289
Rectangular-shape symbols,559-S61
Reduction opera tors, 3311
ft'l variable, 342
Regisler o per alions, 334
Re gi$ler symbo l'>, 570-572
Register transfe r, 26-28
Register trand e r le vel (RT L),2

algorilbmic sta te mach ines (A SMs),
345-352

desig n eumple, 3S2-361
bina ry multiplier:

control slal e diagram for , 376
HDL de scription of. 382- 38<;1

606 Index

Register tr ansfer level (Rn) (COnt.)

cont inuous assignme nts, 337
COlltrol logie, 376-382
d e~i gn at, 334-414
digita l system re prese nted at, 334
in HDL, 336-345

HDL operators,338-340
logic synt hesis.343-345
loop statements, 340-341

latch-free design. 403-404
multiplexers. design with , 390-40l
notat ion, 334-335
proce dura l assignmen ts. 337-338
race-free des ign, 401-403
seq uent ial bina ry m ultiplier , 31o-376

Register transfer operations, 334. 336
Registers. 26, 242-253, 334, Su also

Register transfer le vel (RT L)
define d, 242, 335
four-bit da ta-s torage register, 244
HDL for. 269-276

ripple couDte r, 274-276
shift register, 269-273
synchro nous counte r, 273-274

loadi ng. 244
with para llel load . 244-245
shift registers. 245-253

defined, 245
serial addition, 248-250
serial inp ut, 246
serial output, 246
seri al tr ansfer, 246-248
simple, 245-246
universal , 250-253

types of, 242-243
updating. 244

Relational operators,Veri log 2001
HD L, 339

""peat loo p, 340
Reset state, latches, 185
Ring countel'1,267-268, 537
Ripple caunters.lS3-258. 534

RCD,2 56-lS8
hinary,253-256
defined.lS3 ,256
HD L for , 274-276

RO :-'l (read-only memory),
Su Read-only memory (ROM)

RTL digi ta l logic family:
analysisof, 481
fall-out, 481-482
NOR gate.48l

RTL (res isto r-tra nsistor logic) , 471

S
Schematic cap ture. 6S
Schematic e ntry. 6S

Schottky tra nsistor.defme d,489
Schott ky lTL gate. 484-485, 489-491

symbol for Scbo nky
transistors/d iodes, 490

Scratchpad mem ories, 321
Sensitivity list, 208
Sequence de tector:

maps for.ll8
state diagram for. ll7
state table ror.zzs

Sequential binary mu ltiplicr, 37G-376
AS MD chllTt.373-376
registe r confi guration. 3n-373

Sequential circuits. 182-184, 415-410
a~ynchronous. l 83

block diagram , 182
hazards in. 454
la boratory expe rime nt. 532-533

coun te r design, 533
state diagram. 533
up-down counte r witb enable,533

synch ro nous. 183
Sequential (or simple) pro gram mable

logic device (SPLD). 311.313
Sequential programm.able devices,

311-329
complex programmable logic de vice

{CPLD), 31I , 313--315
design w itb.315

configurable logic block (CLB), 317
distribute d RAM, 317
enh ance men ts, 320-321
fie ld-programmable gate arr ay

(FPG A). 65, 284.311,315
design with ,315
logic block , 315
Xilinx FrOAs, 316
Xilin x Spartan 11 FrOAs, 323-327
Xilinx Spartan XL FPGAs, 322- 323
Xilinx Virtex FPG As. 327-329

interconnect resources. 317-318
ro block {IO B),320
sequential (or simp le) programmable

logic device (SPLD), 311, 313
Xilinx:

bas ic architect ure,3l6-317
FPG As, 3 16

Sequentia l-access memory, 290
Serial adder, 248. 539

seco nd form of, 250
sta te table for, 2S0

Seri al addit ion, 248-250
laboratory experime nt, 538-539

serial adde r, 539
serial edder-scb n ecror , 539
testing the adde r,539

Ser ial bit stream, 227

Serial input. 246
Serial o utput. 246
Serial transre r. 246-201S
Set,36
Set state,lalches.l85
Sbannon, C. E., 38
Shared-row me thoc!.451
Sbift operation. regisle rs. 3~
Shift ope ra nons.digital system...336
Shift operators,Veri log 2001 HD L. 339
Sbift register , HDL for. 269-273
Shift registers. 245-lS3. 321

bidirectional. 251
clear cOnlrol.251
clock in puI. 251
de fined . 245
laboratory experime nt. 535-538

bidirectional sbift register. 531-538
bidirectional shift register ",iLb

pa rallelload. 537- 538
feedhack shift registe r. 537
Ie shift register. 535--536
riDg counter. 537

parallel-load COntrol. 251
serial adclition ,24S--250
serial input . 246
serial OUtput . 246
serial transfer.246-201S
sbift -left control lSI
shift-right control, 251
simple, 245-246
unidirectional. zn
universal 250-lS3

Sbift -left co ntrol. sbift registers, :!51
Sbift-rigbt control, shift re~ters. 25 1

Signed binary numbers. 14-1 7
ari thmetic addit ion. 16
ari thme tic subtraction. 17

Signed-eomplemen t syste m_14
Signed-magnitude eccvenncn. t­
Simple shift regist ers.245--246
SimplcCircuir-prop_d~', II I - 1 12

Single-e rror correct ion . do uble-error
det ection.29ll-299

Single-pass behavior. 207
Sma ll-scale integra tion (551) circuits. 512
Small-scale integration (SSI) devices. 63
Software race condition...4.03
Spartan chips. 32G-321
Spartan device fami lics..comparison

cbart.324
Spartan de vices. 317
Spartan II FPG As. 323--327

device attributes (table),324
Spartan XL FPGAs. 322- J 23

architecture of, 323
device attributes (table) . J2J

SPLD,St t Sequ entia l (or simple)
programmable logic device (SPLD)

SR latch, 185-187
SRAM, See Stati c RAM (SRA M)
Stab le circuits,424-425
Standard forms:

Boo lean algebra,48-SS
defined ,54
expression of a Boo lean function

e.ss
product of sums, 54
sum of products. 54-55

Standard grap hic symbols. S59-S76
combinat ional element symbols,

566-568
counter symbols,572-574
de pendency notation, 564-566
flip-flop symbols,S68-570
qualifying symbols.562-5 64
RAM symbol, 574
rectangular-sbape symbols. 559-S61
register symbo ls.570-572

State assignment ,22 4-22 5
Stale diagram. 199, 213-217

compared to a state tabl e, 198
reducing. 223--224
for sequence detecto r, 227

Stal e equat ions, 196-19 7
Boolean express ions for , l 97
de fined, l 96-197

Sla te machin e, defined , 346
State reduction, 220-2 23
Sla te table,1 97- 198

binary form of. 225
compared to a sta te diagram , 198
andlK flip-flop inpu ts. 231
reducing. 222-223
sections, 198
for sequence de tector, 228
for thr ee-bit binary counter. 231- 233

Stat e tables. reduction ot.439--441
Static Q.hazard, 453
Static l- haza rd. 453
Static RAM (SRAM), 291
Stor age elements.

defined , 184
flip-flops, 188--195
latches. 184-188

Slim of products.S4-55
Switch-level modeling. 505-508

transmissio n gate, 506-507
Switch mat rices, and CLB architecture.

317-3 19
Switching algebra. 38
Synchr onous counte rs, 25S-264, 534

BCD counter, 260-262
sta te table fo r, 260-262

binary counter , 258-260
four-bit , 259

binary counter with parallel load ,
262-265

Cft ar input, 262-264
CL K inp ut, 264
Caurlt input, 264
Load input, 264

defined. 253
HOL for . 273-274
up-down binary counter, 260

four-bit, 261
Synchron ous RAM (SelectRAM).3 20-32 1
Synchronous seque ntial circui ts, 183, 225
Synchronous sequentia l logic, 182- 241

clock ed sequential circuits, analysis of,
195-207

design procedu re, 225- 234
sequential circu its,182- 184
sta te assignment, 224-225
state reduction , 220-223
stor age elements:

defined , 184
flip-flops, 18S- 195
latches, 184-188

syntheslzable HOL models of
sequential circuits, 207-220

Syndro me, 296
Synthesis. 226
Synthesis tools, 315
Synrhesiza ble HD L models of seq uentia l

circuits, 207- 220
be havioral mod eling. 207- 210
clocked sequential circui ts, structural

descript ion of. 217-220
flip-flops and latches, 210-2 13
stale diagram, l 99

System pr imitives. 114

T
Tfli p-flops.l92

analysis of d ocked sequential circuits
with, 204-206

analysis with , 204-206
charact eristic lab le, 193-194

conditions, l 94
r_Simple_Circuil,.prop_delay, 112
Tape unit , 290
Tera (T), 4
Test access port (TAP) contro ller, 320
Test be nch, 107, 111
Tesl bench mod ule, 218
Thr ee-bit binary counter:

logic diagram of, 234
ma ps for , 234
state diagram of, 233
state table for, 231-233

Index 607

Thr ee-state buffer gate , graphi c symbo l
for, 157

Three -stat e gates, 156-1 58, 491-493
buffer gate, gra phic symbo l of, 491-492
bus. creation of, 493
inverte r , 491-492
output enable delay compare d to

output disable delay, 493
OUtput states,491

Thr ee-to-eigh t-line decoder , 146
truth table for , 147

Thr ee-variabl e map , 72-76
TIme units, 110
TIme-delay de vices, 183
TIming verification , 107-108
TIming waveforms , 289-290
Top-down design, 161
Total state, 419
Totem-pole output. 488-489

defined,488
wired -logic connection, 489

Transfer funct ion , 57
Transfer opera tions, digitalsystems, 336
Transi sto rs,1
Transisto r-transistor logic (TIL):

advan ced low-power Schottk y TIL
gate, 48S

characteris t ics (table) . 484
defined. 471
fast TIL famil y, 4&5
high-spe ed TIL gale, 484-485
low-power Schottk y TIL, 485
low-power TIL gate. 484
ope n-collector output gate, 485-488
original,48 4
propagation delay,484
Scho ttky TIL gale, 484--485,489-491
standard, 484
three-stat e gate, 491-493
tote m-pole outp ut. 488-4S9
TIL gale , opera tion of. 471

Transition diagra m.447
Transi tion equation. See State equations
Transi tion tabl e, 225, 417-420, Ste Stat e

table
of asynchronous sequential circu its.

419-420
Transparent lat ch, 187- 188
Trigger , lalches, l 88
Truth tables, 29
TIL, SeeTransistor-transistor logic (TIL)
2421«ee.n -az
TWo-leve l implementa tion, 90-92
Two-to-four-lin e decod er , with enable

input, 147- 148
Two-to-one-line multiplexers,

152- 153,15 3

608 Index

T.. o-va lued Boo lel n algebrl.,.....,
TIIo o-vlrilble IIlIp.71-12

U
UDPs..StT User-defined primill\e!-

(UDPI)
Cnidirettionll shIh re!-iuen. 2S1
Uni oenalS~D ,llc.520
UDi\-enal mih rrPien. 250-253

fout-bit. 252
Unknown value.l~

UMirne d binl ry numb<:n.. H
Unstabl e circuits. -124-&25
UnuKd slain. 224

cou nters .. ilh. 265-26tl
Updlt inS I register. 2....
User-defined primilive!-{L:D r,. j. I I.... l l b

v
V«lon. l 60
Ventos HDL, I08.15'U'07. 209. 315

memory descripliotl in. 288
operl ton..l65.J3S..J.IO
s.. -ilcb-Ieoel modd inJ. 5OS-5OM

IU~ Slle•.506-SO'1
\ 't T}' Iar,e-ialle ullCJll tioo (\ U I)

"""".....,
\ 'H:DL, I<lU I5
Vtnel. Fl'GAs.Jl7- 329
Vola l ile memory unilS.291

"Wl o'd orms..519
Weipted codes, 21
.. hilt loop. J.lO-3-12
\\-"ued toeic.96

Wor d length. 28S
Word kul>ont.;NO
Worlh. 2S5. !87
" '''" Inpu!.. 2li5
Wrile Clp«ltion.:tU

X
XihlU:

basic a.rdliltCtVf'C. 31b-JI7
Fl'GAs..316
Spertan II f1"QAL~13-J27

Spartan XL fPGAs. 312-J2J
Vi"u fPCiAt. 327-329

X."OR funct ion . 57
XOR function. 57

	intro.pdf
	0.tif
	iii.tif
	iv.tif
	v.tif
	vi.tif
	vii.tif
	ix.tif
	x.tif
	xi.tif
	xii.tif
	xiii.tif
	xiv.tif
	xv.tif

	chapter1.pdf
	1.tif
	2.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif
	9.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	20.tif
	21.tif
	22.tif
	23.tif
	24.tif
	25.tif
	26.tif
	27.tif
	28.tif
	29.tif
	30.tif
	31.tif
	32.tif
	33.tif
	34.tif
	35.tif

	chapter 2.pdf
	36.tif
	37.tif
	38.tif
	39.tif
	40.tif
	41.tif
	42.tif
	43.tif
	44.tif
	45.tif
	46.tif
	47.tif
	48.tif
	49.tif
	50.tif
	51.tif
	52.tif
	53.tif
	54.tif
	55.tif
	56.tif
	57.tif
	58.tif
	59.tif
	60.tif
	61.tif
	62.tif
	63.tif
	64.tif
	65.tif
	66.tif
	67.tif
	68.tif
	69.tif

	chapter 3.pdf
	70.tif
	71.tif
	72.tif
	73.tif
	74.tif
	75.tif
	76.tif
	77.tif
	78.tif
	79.tif
	80.tif
	81.tif
	82.tif
	83.tif
	84.tif
	85.tif
	86.tif
	87.tif
	88.tif
	89.tif
	90.tif
	91.tif
	92.tif
	93.tif
	94.tif
	95.tif
	96.tif
	97.tif
	98.tif
	99.tif
	100.tif
	101.tif
	102.tif
	103.tif
	104.tif
	105.tif
	106.tif
	107.tif
	108.tif
	109.tif
	110.tif
	111.tif
	112.tif
	113.tif
	114.tif
	115.tif
	116.tif
	117.tif
	118.tif
	119.tif
	120.tif
	121.tif

	chapter 4.pdf
	122.tif
	123.tif
	124.tif
	125.tif
	126.tif
	127.tif
	128.tif
	129.tif
	130.tif
	131.tif
	132.tif
	133.tif
	134.tif
	135.tif
	136.tif
	137.tif
	138.tif
	139.tif
	140.tif
	141.tif
	142.tif
	143.tif
	144.tif
	145.tif
	146.tif
	147.tif
	148.tif
	149.tif
	150.tif
	151.tif
	152.tif
	153.tif
	154.tif
	155.tif
	156.tif
	157.tif
	158.tif
	159.tif
	160.tif
	161.tif
	162.tif
	163.tif
	164.tif
	165.tif
	166.tif
	167.tif
	168.tif
	169.tif
	170.tif
	171.tif
	172.tif
	173.tif
	174.tif
	175.tif
	176.tif
	177.tif
	178.tif
	179.tif
	180.tif
	181.tif

	chapter 5.pdf
	182.tif
	183.tif
	184.tif
	185.tif
	186.tif
	187.tif
	188.tif
	189.tif
	190.tif
	191.tif
	192.tif
	193.tif
	194.tif
	195.tif
	196.tif
	197.tif
	198.tif
	199.tif
	200.tif
	201.tif
	202.tif
	203.tif
	204.tif
	205.tif
	206.tif
	207.tif
	208.tif
	209.tif
	210.tif
	211.tif
	212.tif
	213.tif
	214.tif
	215.tif
	216.tif
	217.tif
	218.tif
	219.tif
	220.tif
	221.tif
	222.tif
	223.tif
	224.tif
	225.tif
	226.tif
	227.tif
	228.tif
	229.tif
	230.tif
	231.tif
	232.tif
	233.tif
	234.tif
	235.tif
	236.tif
	237.tif
	238.tif
	239.tif
	240.tif
	241.tif

	chapter 6.pdf
	242.tif
	243.tif
	244.tif
	245.tif
	246.tif
	247.tif
	248.tif
	249.tif
	250.tif
	251.tif
	252.tif
	253.tif
	254.tif
	255.tif
	256.tif
	257.tif
	258.tif
	259.tif
	260.tif
	261.tif
	262.tif
	263.tif
	264.tif
	265.tif
	266.tif
	267.tif
	268.tif
	269.tif
	270.tif
	271.tif
	272.tif
	273.tif
	274.tif
	275.tif
	276.tif
	277.tif
	278.tif
	279.tif
	280.tif
	281.tif
	282.tif
	283.tif

	chapter 7.pdf
	284.tif
	285.tif
	286.tif
	287.tif
	288.tif
	289.tif
	290.tif
	291.tif
	292.tif
	293.tif
	294.tif
	295.tif
	296.tif
	297.tif
	298.tif
	299.tif
	300.tif
	301.tif
	302.tif
	303.tif
	304.tif
	305.tif
	306.tif
	307.tif
	308.tif
	309.tif
	310.tif
	311.tif
	312.tif
	313.tif
	314.tif
	315.tif
	316.tif
	317.tif
	318.tif
	319.tif
	320.tif
	321.tif
	322.tif
	323.tif
	324.tif
	325.tif
	326.tif
	327.tif
	328.tif
	329.tif
	330.tif
	331.tif
	332.tif
	333.tif

	chapter 8.pdf
	334.tif
	335.tif
	336.tif
	337.tif
	338.tif
	339.tif
	340.tif
	341.tif
	342.tif
	343.tif
	344.tif
	345.tif
	346.tif
	347.tif
	348.tif
	349.tif
	350.tif
	351.tif
	352.tif
	353.tif
	354.tif
	355.tif
	356.tif
	357.tif
	358.tif
	359.tif
	360.tif
	361.tif
	362.tif
	363.tif
	364.tif
	365.tif
	366.tif
	367.tif
	368.tif
	369.tif
	370.tif
	371.tif
	372.tif
	373.tif
	374.tif
	375.tif
	376.tif
	377.tif
	378.tif
	379.tif
	380.tif
	381.tif
	382.tif
	383.tif
	384.tif
	385.tif
	386.tif
	387.tif
	388.tif
	389.tif
	390.tif
	391.tif
	392.tif
	393.tif
	394.tif
	395.tif
	396.tif
	397.tif
	398.tif
	399.tif
	400.tif
	401.tif
	402.tif
	403.tif
	404.tif
	405.tif
	406.tif
	407.tif
	408.tif
	409.tif
	410.tif
	411.tif
	412.tif
	413.tif
	414.tif

	chapter 9.pdf
	415.tif
	416.tif
	417.tif
	418.tif
	419.tif
	420.tif
	421.tif
	422.tif
	423.tif
	424.tif
	425.tif
	426.tif
	427.tif
	428.tif
	429.tif
	430.tif
	431.tif
	432.tif
	433.tif
	434.tif
	435.tif
	436.tif
	437.tif
	438.tif
	439.tif
	440.tif
	441.tif
	442.tif
	443.tif
	444.tif
	445.tif
	446.tif
	447.tif
	448.tif
	449.tif
	450.tif
	451.tif
	452.tif
	453.tif
	454.tif
	455.tif
	456.tif
	457.tif
	458.tif
	459.tif
	460.tif
	461.tif
	462.tif
	463.tif
	464.tif
	465.tif
	466.tif
	467.tif
	468.tif
	469.tif
	470.tif

	chapter 10.pdf
	471.tif
	472.tif
	473.tif
	474.tif
	475.tif
	476.tif
	477.tif
	478.tif
	479.tif
	480.tif
	481.tif
	482.tif
	483.tif
	484.tif
	485.tif
	486.tif
	487.tif
	488.tif
	489.tif
	490.tif
	491.tif
	492.tif
	493.tif
	494.tif
	495.tif
	496.tif
	497.tif
	498.tif
	499.tif
	500.tif
	501.tif
	502.tif
	503.tif
	504.tif
	505.tif
	506.tif
	507.tif
	508.tif
	509.tif
	510.tif

	chapter 11.pdf
	511.tif
	512.tif
	513.tif
	514.tif
	515.tif
	516.tif
	517.tif
	518.tif
	519.tif
	520.tif
	521.tif
	522.tif
	523.tif
	524.tif
	525.tif
	526.tif
	527.tif
	528.tif
	529.tif
	530.tif
	531.tif
	532.tif
	533.tif
	534.tif
	535.tif
	536.tif
	537.tif
	538.tif
	539.tif
	540.tif
	541.tif
	542.tif
	543.tif
	544.tif
	545.tif
	546.tif
	547.tif
	548.tif
	549.tif
	550.tif
	551.tif
	552.tif
	553.tif
	554.tif
	555.tif
	556.tif
	557.tif
	558.tif

	chapter 12.pdf
	559.tif
	560.tif
	561.tif
	562.tif
	563.tif
	564.tif
	565.tif
	566.tif
	567.tif
	568.tif
	569.tif
	570.tif
	571.tif
	572.tif
	573.tif
	574.tif
	575.tif
	576.tif

	index.pdf
	598.tif
	600.tif
	601.tif
	602.tif
	603.tif
	604.tif
	605.tif
	606.tif
	607.tif
	608.tif

