Digital Design

FourTH EDITION

M. Morris Mano

Emeritus Professor of Computer Engineering
California State University, Los Angeles

Michael D. Ciletti

Department of Electrical and Computer Engineering
University of Colorado at Colorado Springs

PEARSON
Y

Prentice
all

Upper Saddle River, N 07458

Contents

Preface ix
1 Digital Systems and Binary Numbers 1
1.1 Digital Systems 1
1.2 Binary Numbers 3
1.3 Number-Base Conversions 5
1.4 Octal and Hexadecimal Numbers 8
1.5 Complements 9
1.6 Signed Binary Numbers 14
137 Binary Codes 17
1.8 Binary Storage and Registers 25
1.9 Binary Logic 28
2 Boolean Algebra and Logic Gates 36
2.1 Introduction 36
2.2 Basic Definitions 36
2.3 Axiomatic Definition of Boolean Algebra 38
2.4 Basic Theorems and Properties
of Boolean Algebra 41
2.5 Boolean Functions 44
2.6 Canonical and Standard Forms 48
2.7 Other Logic Operations 55
2.8 Digital Logic Gates 57
29 Integrated Circuits 63

i

iv Contents
3 Gate-Level Minimization 70
3.1 Introduction 70
3.2 The Map Methad 70
3.3 Four-Variable Map 76
34 Five-Variable Map 81
5 Product-of-5ums Simplification 83
36 Don't-Care Conditions 86
3.7 NAND and NOR Implementation 89
3.8 Other Two-Level Implementations 96
3.9 Exclusive-OR Function 101
3.10 Hardware Description Language 106
el Combinational Logic 122
41 Introduction 122
4.2 Combinational Circuits 122
43 Analysis Procedure 123
4.4 Design Procedure 126
4.5 Binary Adder-Subtractor 130
4.6 Decimal Adder 139
4.7 Binary Muitiplier 142
4.8 Magnitude Comparator 144
49 Decoders 146
4.10 Encoders 150
411 Multiplexers 152
4.12 HDL Models of Combinational Circuits 159
5 Synchronous Sequential Logic 182
5.1 Introduction 182
5.2 Sequential Circuits 182
53 Storage Elements: Latches 184
5.4 Storage Elements: Flip-Flops 188
5.5 Analysis of Clocked Sequential Circuits 195
56 Synthesizable HDL Models of Sequential
Circuits 207
5.7 State Reduction and Assignment 221
58 Design Procedure 225
6 Registers and Counters 242
6.1 Registers 242
6.2 Shift Registers 245

Contents v
6.3 Ripple Counters 253
6.4 Synchronous Counters 258
6.5 Other Counters 265
6.6 HDL for Registers and Counters 269
Memory and Programmable Logic 284
71 Introduction 284
7.2 Random-Access Memory 285
7.3 Memory Decoding 291
7.4 Error Detection and Correction 296
7.5 Read-Only Memory 299
7.6 Programmable Logic Array 305
7.7 Programmable Array Logic 309
7.8 Sequential Programmable Devices 3n
Design at the Register
Transfer Level 334
8.1 Intreduction 334
8.2 Register Transfer Level (RTL) Notation 334
83 Register Transfer Level in HDL 336
8.4 Algorithmic State Machines (ASMs) 345
8.5 Design Example 352
8.6 HDL Description of Design Example 361
8.7 Sequential Binary Multiplier 371
8.8 Control Logic 376
8.9 HDL Description of Binary Multiplier 382
8.10 Design with Multiplexers 390
8.1 Race-Free Design 401
8.12 Latch-Free Design 403
8.13 Other Language Features 404
Asynchronous Sequential Logic 415
9.1 Introduction 415
9.2 Analysis Procedure 417
9.3 Circuits with Latches 425
9.4 Design Procedure 433
9.5 Reduction of State and Flow Tables 439
9.6 Race-Free State Assignment 446
9.7 Hazards 452
9.8 Design Example 457

vi Contents
10 Digital Integrated Circuits 471
10.1 Introduction 471
10.2 Special Characteristics 473
10.3 Bipolar-Transistor Characteristics 477
10.4 RTL and DTL Circuits 481
10.5 Transistor-Transistor Logic 484
10.6 Emitter-Coupled Logic 493
10.7 Metal-Oxide Semiconductor 495
10.8 Complementary MOS 498
10.9 CMOS Transmission Gate Circuits 5071
10.10 Switch-Level Modeling with HDL 505
11 Laboratory Experiments
with Standard ICs and FPGAs 511
1.1 Introduction to Experiments 517
1.2 Experiment 1: Binary and Decimal Numbers 516
1.3 Experiment 2: Digital Logic Gates 519
11.4 Experiment 3: Simplification of Boolean
Functions 520
11.5 Experiment 4: Combinational Circuits 522
11.6 Experiment 5: Code Converters 524
1.7 Experiment 6: Design with Multiplexers 526
11.8 Experiment 7: Adders and Subtractors 527
11.9 Experiment 8: Flip-Flops 530
11.10 Experiment 9: Sequential Circuits 532
11.11 Experiment 10: Counters 534
11.12 Experiment 11: Shift Registers 535
11.13 Experiment 12: Serial Addition 538
11.14 Experiment 13: Memory Unit 539
11.15 Experiment 14: Lamp Handball 541
11.16 Experiment 15: Clock-Pulse Generator 545
1.7 Experiment 16: Parallel Adder and
Accumulator 547
11.18 Experiment 17: Binary Multiplier 549
11.19 Experiment 18: Asynchronous Sequential
Circuits 553
11.20 Verilog HDL Simulation Experiments
and Rapid Prototyping with FPGAs 553
12 Standard Graphic Symbols 559
121 Rectangular-Shape Symbols 559
12.2 Qualifying Symbols 562
123 Dependency Notation 564

12.4
1255
126
12.7
12.8

Symbols for Combinational Elements
Symbols for Flip-Flops

Symbols for Registers

Symbols for Counters

Symbol for RAM

Answers to Selected Problems

Index

Contents

566
568
570
573
575

il

577
597

Preface

Digital electronic circuits are the engines of cell phones, MPEG players, digital cameras, com-
puters, data servers, personal digital devices, GPS displays. and many other consumer prod-
ucts that process and use information in a digital format. This book presents a basic treatment
of digital circuits and the fundamental concepts used in their design, It is suitable for use as a
textbook in an introductory course in an electrical engineering, computer engineering, or com-
puter science curriculum,

Each significant advance in industry practice ultimately works its way into the engineering
curriculum. Since the mid-1980's, the use of computer-based design tools has transformed the
electronics industry worldwide, Application specific integrated circuits (ASICs) are designed
today by using a hardware description language (HDL), such as Verilog or VHDL, 1o write
a hehavioral model of the circuit’s functionality, and then synthesizing that description into
a hardware realization in a particular technology, e.g., CMOS integrated circuits or field-
programmable gate arrays (FPGAs). No longer a novelty, these design tools are now readily
available to universities, and are¢ migrating in a strategic way from graduate level curricula
into undergraduate courses. It is clear that HDLs have an essential, significant role in educat-
ing our future engineers. Learning to design with an HDL is as important to today’s students,
we think, as oscilloscopes, breadboards, and logic analyzers were to previous generations of
engineers, 50 this edition of the text adds more weight to the use of hardware description lan-
guages in designing digital circuits,

We note that introducing HDLs in a first course in designing digital circuits is not intend-
ed to replace fundamenial understanding of the building blocks of such circuits or to eliminate
a discussion of manual methods of design. 1t is still essential for a student to understand fow
hardware works. Thus, we retain a thorough treatment of combinational and sequential logic
devices. Manual design practices are presented, and their results are compared with those ob-
tained with a HDL-based paradigm. What we are presenting, however. is a shift in emphasis

X Preface

on how hardware is designed, a shift that, we think, better prepares a student for a career in
today’s industry, where HDL-based design practices are prevalent,

FLEXIBILITY

The sequence of topics in the text can accommodate courses that adhere to traditional, manu-
al-based, treatments of digital design, courses that treat design using an HDL, and courses that
are in transition between or blend the two approaches. Because modern synthesis tools auto-
matically perform logic minimization, Karnaugh maps and related topics in optimization can
be presented at the beginning of a treatment of digital design, or they can be presented after cir-
cuits and their applications are examined, designed. and simulated with an HDL. The text in-
cludes both manual and HDL-based design examples, Our end-of-chapter problems further
facilitate this flexibility by cross-referencing problems that address a traditional manual design
task with a companion problem that uses an HDL to accomplish the task. Additionally, we link
manual and HDL-based approaches by presenting annotated results of simulations in the text,
in answers to selected problems at the end of the text. and in the solutions manual.

WHAT'S NEW?

The previous edition of this text recognized the importance of hardware description languages
in the design of digital circuits, and incorporated new material and examples introducing stu-
dents to the Verilog language, as defined by [EEE Standard 1364-1995. This revision updates
and expands that treatment by:

+ revising HDL-based examples to present the ANSI-C like syntax that was adopted in the
standards IEEE 1364-2001 and [EEE 1364-2005

ensuring that all HDL examples conform o industry-accepted practices for modelling dig-
ital circuits

providing a systematic methodology for designing a datapath controller

presenting selected exercises and solutions to end-of-chapter problems in Verilog 1995
and Verilog 200172005 syntax

introducing an important design tool — the algorithmic state machine and datapath
(ASMD) chart

revising the end-of-chapter problems and expanding the set of problems by including
over 75 additional problems

providing students with fully developed answers to selected problems, including simu-
lation results

providing students with a CD-ROM containing simulator-ready HDL solutions of an-
swers to sclected problems
+ expanding the treatment of programmable logic devices to include FPGAs

.

Preface xi

* revising the solutions manual and web-based materials and ensuring that solutions of
HDL-based exercises conform to industry practices for modelling with an HDL

» discussing and demonstrating the importance of test plans for verifying HDL models of
circuits

= providing instructors with verified, simulator-ready source code and test benches for all
end-of chapter problems

» making all figures, tables, and HDL examples available to instructors for downloading
in PDF format from the publisher

* including with the book a CD-ROM with tutorials and simulators for the TEEE-1995 and
IEEE-2001 Standards of the Verilog language

In addition to the above enhancements, the text incorporates more graphical material (o bet-
ter serve leamers who are oriented toward a graphical medium. Annotated graphical results and

p ions of simulations are pres d to help students understand digital circuits and 10 fa-
cilitate classroom discussions of them. Kamaugh maps are presented with additional graphics.

DESIGN METHODOLOGY

This edition of the text extends the previous edition’s treatment of synchronous finite state ma-
chines by presenting a systematic methodology for designing a state machine to control the data-
path of a digital system. Moreover, the framework in which this material is presented treats the
realistic situation in which the controller uses signals from the datapath. i.e., the system has feed-
back. The methodology is applicable to manual and HDL-based approaches 1o design.

HDL-BASED APPROACH

It is not sufficient for an introduction to HDLs to dwell on language syntax. We present only
those elements of the Verilog language that are matched to the level and scope of this text.
Also, correct syntax does not guarantee that a model meets a functional specification or that
it can be synthesized into physical hardware. We introduce students to a disciplined use of
industry-based practices for writing models 10 ensure that a behavioral description can be syn-
thesized into physical hardware, and that the behavior of the synthesized circuit will match
that of the behavioral description. Failure to follow this discipline can lead to software race con-
ditions in the HDL models of such machines, race conditions in the testbench used to verify
them, and a mismatch between the results of simulating a behavioral model and its synthe-
sized physical counterpart. Similarly. failure 1o abide by industry practices may lead to designs
that simulate correctly, but which have hardware latches that are introduced into the design
aceidentally as a consequence of the modelling style used by the designer. The industry-based
methodology we present leads to race-free and latch-free designs. 1t is important that students
learn and follow industry practices in using HDL models, independent of whether a student’s
curriculum has access to synthesis tools.

xil

Preface

VERIFICATION

In industry, significant effort is expended to verify that the functionality of a circuit is correct. Yet
nol much attention is given to verification in introductory texts on digital design, where the focus
is on design itself, and testing is perhaps viewed as a secondary undenaking. Our experience is
that this view can lead 1o premature declarations that “the circuit works beautifully.” Likewise,
industry gains repeated returns on its investment in an HDL model by ensuring that it is readable,
portable and reusable. We demonstrate naming practices and the use of parameters. We also pro-
vide test benches for all of the solutions and exercises to (1) verify the functionality of the cir-
cuit, (2) underscore the importance of thorough testing, and (3) introduce students to important
concepts, such as self-checking test benches. Advocating and illustrating the development of a
test plan to guide the development of a test bench, we introduce them in the text and expand
them in the solutions manual and in the answers to selected problems at the end of the text.

HDL CONTENT

This edition of the text updates und expands its treatment of the Verilog Hardware Descrip-
tion Language (HDL) and exploits key enhancements available in [EEE Standards 1364-2001
and 1364-2005, We have ensured that all examples in the text and all answers in the solution
manual conform to accepied industry practices for modeling digital hardware. As in the pre-
vious edition. HDL material is inserted in separate sections so it can be covered or skipped
as desired, does not diminish treatment of manual-based design, and does not dictate the se-
quence of presentation. The treatment is at a level suitable for beginning students that are
learning digital circuits and a hardware description language at the same time. The text pre-
pares students to work on significant independent design projects and to suceed in a later
course in computer architecture.

« Digital circuits are introduced in Chapters 1 through 3 with an introduction to Verilog
HDL in Section 3.10.

= Further discussion of modeling with HDLs occurs in Section 4.12 following the study
of combinational circuits.

« Sequential circuits are covered in Chapters 5 and 6 with corresponding HDL examples
in Sections 5.6 and 6.6.

* The HDL description of memory is presented in Section 7.2.

+ The RTL symbols used in Verilog are introduced in Sections 8.3.

= Examples of RTL and structural models in Verilog are provided in Sections 8.6 and 8.9.
Chapter 8 also presents a new, comprehensive treatment of HDL-based design of a data-
path controller,

* Section 10.10 covers switch-level modeling corresponding to CMOS circuits.

+ Section 11.20 supplements the hardware experiments of Chapter 11 with HDL experi-
ments. Now the circuits designed in the laboratory can be checked by modeling them in
Verilog and simulating their behavior. Then they can be synthesized and implemented with
an FPGA on a prototyping board.

Preface xiii

HDL SIMULATORS

The CD-ROM in the back of the book contains the Verilog HDL source code files for the ex-
amples in the book and two simulators provided by SynaptiCAD, The first simulator is
VeriLogger Pro, a traditional Verilog simulator that can be used to simulate the HDL examples
in the book and to verify the solutions of HDL problems. This simulator accepts the syntax of
the TEEE-1995 Standard and will be useful 1o those who have legacy models. As an interac-
tive simulator, Verilogger Extreme, accepts the syntax of IEEE-2001 as well as IEEE- 1995, al-
lowing the designer to simulate and analyze design ideas before a complete simulation model
or schematic is available. This technology is particularly useful for students, because they can
quickly enter Boolean and D flip-flop or latch input equations 1o check equivalency or to ex-
periment with flip-flops and latch designs.

INSTRUCTOR RESOURCES

Instructors can download the following classroom-ready resources from the publisher
(www.prenhall.com/mano):

+ Source code and test benches for all Verilog HDL examples in the rest
« All figures and tables in the text
+ Source code for all HDL models in the solutions manual

A solution manual in typed hardcopy format with graphics. suitable for classroom presen-
tation, will also be provided instructors,

CHAPTER SUMMARY

The following is a brief summary of the topics that are covered in each chapter.

Chapter 1 presents the various binary systems suitable for representing information in dig-
ital systems. The binary number system is explained and binary codes are illustrated. Examples
are given for addition and subtraction of signed binary numbers and decimal numbers in BCD.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correlation be-
tween Boolean expressions and their corresponding logic diagrams. All possible logic opera-
tions for two variables are investigated and from that, the most useful logic gates used in the
design of digital systems are determined. The characteristics of integrated circuit gates are
mentioned in this chapter but a more detailed analysis of there the electronic circuits of the gates
is done in Chapter 10.

Chapter 3 covers the map method for simplifying Boolean expressions, The map method
is also used to simplify digital circuits constructed with AND-OR. NAND. or NOR gates. All
other possible two-level gate circuits are considered and their method of implementation is
explained, Verilog HDL is introduced together with simple gate-level modeling examples.

Chapter 4 outlines the formal procedures for the analysis and design of combinational cir-
cuits. Some basic components used in the design of digital systems, such as adders and code

xiv

Preface

converters, are introduced as design examples. Frequently used digital logic functions such as
parallel adders and subtractors, decoders, encoders, and multiplexers are explained, and their
use in the design of combinational circuits is illustrated. HDL examples are given in the gate-
level, dataflow, and behavioral modeling to show the alternative ways available for describing
combinational circuits in Verilog HDL. The procedure for writing a simple test bench to pro-
vide stimulus to an HDL design is presented.

Chapter 5 outlines the formal procedures for the analysis and design of clocked (synchro-
nous) sequential circuits. The gate structure of several types of flip-flops is presented togeth-
er with a discussion on the difference between level and edge triggering. Specific examples are
used to show the derivation of the state table and state diagram when analyzing a sequential
circuit. A number of design examples are presented with emphasis on sequential circuits that
use D-type flip-flops. Behavioral modeling in Verilog HDL for sequential circuits is explained.
HDL Examples are given to illustrate Mealy and Moore models of sequential circuits,

Chapter 6 deals with various sequential circuits components such as registers, shift registers,
and counters. These digital components are the basic building blocks from which more complex
digital systems are constructed. HDL descriptions of shift registers and counter are presented.

Chapter 7 deals with random access memory (RAM) and programmable logic devices.
Memory decoding and error correction schemes are discussed. Combinational and sequential
programmable devices are presented such as ROMs, PLAs, PALs, CPLDs, and FPGAs.

Chapter 8 deals with the register transfer level (RTL) representation of digital systems.
The algorithmic state machine (ASM) chart is introduced. A number of examples demonstrate
the use of the ASM chart, ASMD chart, RTL representation, and HDL description in the de-
sign of digital systems. The design of a finite state machine to control a datapath is presented
in detail, including the realistic situation in which status signals from the datapath are used by
the state machine that controls it. This chapter is the most important chapter in the book as it
provides the student with a systematic approach to more advanced design projects.

Chapter 9 presents formal procedures for the analysis and design of asynchronous se-
quential circuits, Methods are outlined to show how an asynchronous sequential circuit can be
implemented as a combinational circuit with feedback. An alternate implementation is also de-
scribed that uses SR latches as the storage elements in asynchronous sequential circuits.

Chapter 10 presents the most common integrated circuit digital logic families. The electronic
circuits of the common gate in each family are analyzed using electrical circuit theory. A basic
knowledge of electronic circuits is necessary to fully understand the material in this chapter.
Examples of Verilog switch-level descriptions demonstrate the ability to simulate circuits con-
structed with MOS and CMOS transistors.

Chapter 11 outlines experiments that can be performed in the laboratory with hardware
that is readily available commercially. The operation of the integrated circuits used in the ex-
periments is explained by referring to diagrams of similar components introduced in previous
chapters. Each experiment is presented informally and the student is expected to produce the
circuit diagram and formulate a procedure for checking the operation of the circuit in the lab-
oratory, The last section supplements the experiments with corresponding HDL experiments.
Instead of. or in addition to, the hardware construction, the student can use the Verilog HDL
software provided on the CD-ROM to simulate and verify the design.

Chapter 12 presents the standard graphic symbols for logic functions recommended by
an ANSI/IEEE Standard. These graphic symbols have been developed for SS1 and MSI

Preface XV

components so that the user can recognize each function from the unique graphic symbol
assigned. The chapter shows the standard graphic symbols of the integrated circuits used in
the laboratory experiments, The various digital components that are represented through-
out the book are similar to commercial integrated circuits. However, the text does not men-
tion specific integrated circuits except in Chapters 11 and 12. Doing the suggested
experiments in Chapter 11 while studying the theory presented in the text will enhance the
practical application of digital design.

LAB EXPERIMENTS

The book may be used in a stand-alone course or with a companion lab based on the lab ex-
periments included with the text. The lab experiments can be used in a stund-alone manner too,
and can be accomplished by a traditional approach. with a breadboard and TTL circuits, or with
an HDL/synthesis approach using FPGAs. Today, software for synthesizing an HDL model and
implementing a circuit with an FPGA is available at no cost from vendors of FPGAs. allowing
students to conduct a significant amount of work in their personal environment before using
prototyping boards and other resources in a lab. Circuit boards for rapidly prototyping circuits
with FPGAs are available at nominal cost, and typically include push buttons, switches, and
seven-segment displays, LCDs. keypads and other /O devices. With these resources, students
can work prescribed lab exercises or their own projects and get results immediately.

The operation of the integrated circuits used in the experiments is explained by referring to
diagrams of similar components introduced in previous chapters. Each experiment is present-
ed informally and the student is expected to produce the circuit diagram and formulate a pro-
cedure for verifying the operation of the circuit in the laboratory. The last section supplements
the experiments with corresponding HDL experiments. Instead of, or in addition to, the hard-
ware construction, the student can use the Verilog HDL software provided on the CD-ROM to
simulate and check the design. Synthesis tools can then be used to implement the circuit in an
FPGA on a prototyping board.

Our thanks go to the editorial team at Prentice Hall for committing to this timely revision
of the text. Finally, we are grateful 1o our wives, Sandra and Jerilynn, for encouraging our pur-
suit of this project.

M. MoRrRris MANO
Emeritus Professor of Computer Engineering
California State University, Los Angeles

MICHAEL D. CILETTI
Department of Electrical and Computer Engineering
University of Colorado at Colorado Springs

Chapter 1
Digital Systems and Binary Numbers

L¥

1

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present tech-
nological period as the digital age. Digital systems are used in communication, business trans-
actions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, and
many other commercial, industrial, and scientific enterprises. We have digital telephones, dig-
ital television, digital versatile discs, digital cameras, handheld devices, and, of course, digi-
tal computers, The most striking property of the digital computer is its generality. It can follow
a sequence of instructions, called a program, that operates on given data, The user can specify
and change the program or the data according to the specific need. Because of this flexibility,
general-purpose digital computers can perform a variety of information-processing tasks that
range over a wide spectrum of applications.

One characteristic of digital systems is their ability to represent and manipulate discrete el-
ements of information. Any set that is restricted to a finite number of elements contains dis-
crete information. Examples of discrete sets are the 10 decimal digits, the 26 letters of the
alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early digital computers
were used for numeric computations. In this case, the discrete elements were the digits. From
this application, the term digital computer emerged. Discrete elements of information are rep-
resented in a digital system by physical quantities called signals. Electrical signals such as
voltages and currents are the most common. Electronic devices called transistors predominate
in the circuitry that implements these signals. The signals in most present-day electronic dig-
ital systems use just two discrete values and are therefore said to be binary. A binary digit,
called a bir, has two values: 0 and 1. Discrete elements of information are represented with

groups of bits called binary codes. For example, the decimal digits 0 through 9 are represented
in a digital system with a code of four bits (e.g., the number 7 is represented by O111).

2

Chapter 1 Digital Systems and Binary Numbers

Through various techniques, groups of bits can be made to represent discrete symbols, which
are then used to develop the system in a digital format. Thus, a digital system is a system that
manipulates discrete elements of information represented internally in binary form,

Discrete quantities of information either emerge from the nature of the data being processed
or may be quantized from a continuous process. On the one hand, a payroll schedule is an in-
herently discrete process that contains employee names, social security numbers, weekly
salaries, income taxes, and so on. An employee’s paycheck is processed by means of discrete
data values such as letters of the alphabet (names), digits (salary), and special symbols (such
as $). On the other hand, a research scientist may observe a continuous process, but record
only specific quantities in tabular form. The scientist is thus quantizing continuous data, mak-
ing each number in his or her table a discrete quantity. In many cases, the quantization of a
process can be performed automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a central processing unit, and input—output units.
The memory unit stores programs as well as input, output, and intermediate data. The central
processing unit performs arithmetic and other data-processing operations as specified by the
program. The program and data prepared by a user are transferred into memory by means of
an input device such as a keyboard. An output device, such as a printer, receives the results of
the computations, and the printed results are presented to the user, A digital computer can ac-
commodate many input and output devices. One very useful device is a communication unit
that provides interaction with other users through the Internet. A digital computer is a power-
ful instrument that can perform not only arithmetic computations, but also logical operations.
In addition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmable. By changing the program in
a programmable device, the same underlying hardware can be used for many different appli-
cations. Dramatic cost reductions in digital devices have come about because of advances in
digital integrated circuit technology. As the number of transistors that can be put on a piece of
silicon increases to produce complex functions, the cost per unit decreases and digital devices
can be bought at an increasingly reduced price. Equipment built with digital integrated cir-
cuits can perform at a speed of hundreds of millions of operations per second. Digital systems
can be made to operate with extreme reliability by using error-correcting codes. An example
of this strategy is the digital versatile disk (DVD), in which digital information representing
video, audio, and other data is recorded without the loss of a single item. Digital information
on a DVD is recorded in such a way that, by examining the code in each digital sample before
it is played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of
each digital module, it is necessary to have a basic knowledge of digital circuits and their logi-
cal function. The first seven chapters of this book present the basic tools of digital design, such
as logic gate structures, combinational and sequential circuits, and programmable logic devices.
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal
with asynchronous sequential circuits and the various integrated digital logic families. Chapters
11 and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.

Section 1.2 Binary Numbers 3

A major trend in digital design methodology is the use of a hardware description language
(HDL) to describe and simulate the functionality of a digital circuit. An HDL resembles a pro-
gramming language and is suitable for describing digital circuits in textual form. It is used to
simulate a digital system to verify its operation before hardware is built in. It is also used in
conjunction with logic synthesis tools to automate the design process. Because it is important
that students become familiar with an HDL-based design methodology, HDL descriptions of
digital circuits are presented throughout the hook. While these examples help illustrate the fea-
tures of an HDL, they also demonstrate the best practices used by industry to exploit HDLs.
Ignorance of these practices will lead to cute, but worthless. HDL models that may simulate a
phenomenon. but that cannot be synthesized by design tools. or to models that waste silicon
area or synthesize to hardware that cannot operate correctly.

As previously stated, digital systems manipulate discrete quantities of information that are
represented in binary form, Operands used for calculations may be expressed in the binary
number system, Other discrete elements, including the decimal digits, are represented in binary
codes. Digital circuits, also referred 1o as logic circuits, process data by means of binary logic
elements (logic gates) using binary signals. Quantities are stored in binary (two-valued) stor-
age elements (flip-flops). The purpose of this chapter is to introduce the various binary con-
cepts as a frame of reference for further study in the succeeding chapters.

1.2 BINARY NUMBERS

A decimal number such as 7.392 represents a quantity equal to 7 thousands, plus 3 hundreds,
plus 9 tens. plus 2 units. The thousands. hundreds. etc., are powers of 10 implied by the posi-
tion of the coefficients in the number. To be more exact. 7.392 is a shorthand notation for what
should be written as

7x10°+3x10°+9x 10" +2 x 10°

However. the convention is to write only the coefficients and, from their position. deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series
of coefficients:

AsQaa3arxd g a-dd 3

The coefficients a; are any of the 10 digits (0, 1, 2, ... 9). and the subscript value j gives the
place value and, hence, the power of 10 by which the coefficient must be multiplied. Thus. the
preceding decimal number can be expressed as

10%5 + 10%ay + 10%a; + 10%a; + 10'a; + 10%p + 107"y + 107%a-; + 103,

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and
the coefficients are multiplied by powers of 10. The binary system is a different number sys-
tem. The coefficients of the binary number system have only two possible values: 0 and 1.
Each coefficient a; is multiplied by 2/, and the results are added to obtain the decimal equiv-
alent of the number. The radix point (e.g., the decimal point when 10 is the radix) distinguishes
positive powers of 10 from negative powers of 10. For example, the decimal equivalent of the

4

Chapter 1 Digital Systems and Binary Numbers

binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients by pow-
ers of 2:

IX2 41X 4+0x2+1x2'+0x202+1%x27V+1X%X22%2=2675

In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

A r" F @py "N+ s agert + aper +ag + asyr!

tap A as,r™

The coefficients a; range in value from 0 to » — 1. To distinguish between numbers of differ-
ent bases, we enclose the coefficients in parentheses and write a subscript equal to the base used
(except sometimes for decimal numbers, where the content makes it obvious that the base is
decimal). An example of a base-5 number is

(4021.2)s =4 X 55+ 0x 52 +2%x 5" + 1 x5°+2%x 57" = (511.4)

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a
base-8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number is
127.4. To determine its equivalent decimal value, we expand the number in a power series with
a base of 8:

(1274)g =1 X 82 +2x 8 + 7x 8 + 4 X 871 = (87.5)y0

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal system
when the base of the number is less than 10. The letters of the alphabet are used to supplement
the 10 decimal digits when the base of the number is greater than 10. For example, in the
hexadecimal (base-16) number system, the first 10 digits are borrowed from the decimal sys-
tem. The letters A, B, C, D, E, and F are used for the digits 10, 11, 12, 13, 14, and 15, respec-
tively. An example of a hexadecimal number is

(B65F)1 = 11 X 16 + 6 X 167 + 5 X 16' + 15 X 16" = (46,687),9

As noted before, the digits in a binary number are called birs. When a bit is equal to 0. it does
not contribute to the sum during the conversion. Therefore, the conversion from binary to dec-
imal can be obtained by adding only the numbers with powers of two corresponding to the bits
that are equal to 1. For example,

(110101) = 32 + 16 + 4 + 1 = (53)y0

There are four 1's in the binary number. The corresponding decimal number is the sum of
the four powers of two. The [irst 24 numbers obtained from 2 to the power of n are listed in
Table 1.1. In computer work, 219 is referred to as K (kilo), 220 a5 M (mega), 2045 G (giga),
and 2% as T (tera). Thus, 4K = 2'2 = 4,096 and 16M = 2** = 16,777,216. Computer ca-
pacity is usually given in bytes. A byte is equal to eight bits and can accommodate (i.e., repre-
sent the code of) one keyboard character. A computer hard disk with four gigabytes of storage
has a capacity of 4G = 2%? bytes (approximately 4 billion bytes).

Section 1.3 Number-Base Conversions 5

Table 1.1

Pawers of Two
n 2" n 44 n »
0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1.024 18 262,144
3 8 11 2,048 19 524.288
4 16 12 4.096 20 1,048,576
5 2 13 8.192 21 2,097,152
6 64 14 16,384 22 4,194,304
¥ 128 15 32,768 23 8,388,608

Arithmetic operations with numbers in base r follow the same rules as for decimal num-
bers. When a base other than the familiar base 10 is used, one must be careful 1o use only the
r-allowable digits. Examples of addition, subtraction, and multiplication of two binary num-
bers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: —100111 multiplier: x 101
sum: 1010100 difference: 000110 1011
0000

1011
product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except that
the digits of the sum in any significant position can be only 0 or 1. Any carry obtained in a given
significant position is used by the pair of digits one significant position higher. Subtraction is
slightly more complicated. The rules are stll the same as in decimal, except that the borrow in
a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 to a minuend digit.) Multiplication is simple: The multiplier digits are always 1 or 0: there-
fore, the partial products are equal either to the multiplicand or to (.

1.3 NUMBER-BASE CONVERSIONS

The conversion of a number in base r to decimal is done by expanding the number in a power
series and adding all the terms as shown previously. We now present a general procedure for
the reverse operation of converting a decimal number to a number in base . If the number in-
cludes a radix point, it is necessary to separate the number into an integer part and a fraction
part, since each part must be converted differently. The conversion of a decimal integer to a num-
ber in base r is done by dividing the number and all successive quotients by r and accumulat-
ing the remainders. This procedure is best illustrated by example.

6 Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.1

Convert decimal 41 to binary, First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of % Then the quotient is again divided by 2 to give a new quotient and remainder.
The process is continued until the integer quotient becomes 0. The coefficients of the desired
binary number are obtained from the remainders as follows:

Integer

Quotient Remainder CoefTicient
4112 = 20 0 3 ag = 1
2072 = 10 + 0 a; =0
102 = 5 + 0 az =0
512 = 2 + ! a3= 1
W = 1 + 0 as =0
12 = 0 - ! as = 1

Therefore, the answer is (41)19 = (asaqasazaiag)y = (101001),.
The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder
41

_— O = O D =

101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except that
division is done by r instead of 2.

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in-
teger quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient
of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of
2. This process can be conveniently manipulated as follows:

153
19
2

0 2 = (231);

L

Section 1.3 Number-Base Conversions 7

The conversion of a decimal fraction to binary is accomplished by a method similar to that
used for integers, However, multiplication is used instead of division, and integers instead of
remainders are accumulated. Again, the method is best explained by example,

R

EXAMPLE 1.3

Convert (0.6875) to binary, First, (,6875 is multiplied by 2 1o give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits have sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient
0.6875 X 2 = | + 0.3750 a-p =1
03750 X 2 = + 0.7500 a3 =190
0.7500 X 2 = I + 0.5000 a3=1
0.5000 % 2 = | + 0.0000 ta_y =1

Therefore. the answer is (0.6875) 1y = (0.a_jg-2u3a_4)> = (0.1011)s.

To convert a decimal fraction to a number expressed in base s a similar procedure is used.
However, multiplication is by rinstead of 2, and the coefficients found from the integers may
range in value from 0 to » — | instead of 0 and 1.

m

EXAMPLE 1.4

Convert (0.513) 5 to octal.
0.513 X 8 = 4.104

0.104 % 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5248
0.248 X 8 = 1.984

0984 X 8 = 7.872
The answer, to seven significant figures, is obtained from the integer part of the products:

(0.513),5 = (0.406517 ...)y

8 Chapter 1 Digital Systems and Binary Numbers

The conversion of decimal numbers with both integer and fraction parts is done by con-
verting the integer and the fraction separately and then combining the two answers. Using the
results of Examples 1.1 and 1.3, we obtain

(41.6875) 15 = (101001.1011),
From Examples 1.2 and 1.4, we have
(153.513)1p = (231.406517)g

1.4 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important role in digital
computers. Since 2* = 8 and 2* = 16, each octal digit corresponds to three binary digits and
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal,
binary, octal, and hexadecimal number systems are listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary num-
ber into groups of three digits each, starting from the binary point and proceeding to the left
and to the right. The corresponding octal digit is then assigned to each group. The following
example illustrates the procedure:

(10 110 001 101 011 « 111 100 000 110); = (26153.7406)4

2 6 1 5 3 7 4 0 6
Table 1.2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
0l 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Section 1.5 Complements 9

Conversion from binary 1o hexadecimal is similar, except that the binary number is divided into
groups of four digits:

(10 1100 0110 1011 = 1111 0010}, = (2C6B.F2),4
2 @ 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily re-
membered from the values listed in Table 1.2

Conversion from octal or hexadecimal to binary is done by reversing the preceding proce-
dure. Each octal digit is converted to its three-digit binary equivalent. Similarly, each hexa-
decimal digit is converted to its four-digit binary equivalent. The procedure is illustrated in
the following examples:

(673.124)g = (110 111 011« 001 010 100)»
6 7 3 1 2 4

and
(306.D) 6 = (0011 0000 OLI0 - 1101}
3 0 6 D

Binary numbers are difficult to work with because they require three or four times as many
digits as their decimal equivalents, For example. the binary number 1THTTHITTT is equivalent
to decimal 4095, However, digital computers use binary numbers, and it is sometimes necessary
for the humian operator or user to communicate directly with the machine by means of such num-
bers. One scheme that retains the binary system in the computer, but reduces the number of dig-
its the human must consider, utilizes the relationship between the binary number system and the
octal or hexadecimal system., By this method, the human thinks in terms of octal or hexadecimal
numbers and performs the required conversion by inspection when direct communication with
the machine is necessary. Thus. the binary number 111111111111 has 12 digits and is expressed
in octal as 7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between
people (about binary numbers in the computer), the octal or hexadecimal representation is more
desirable because it can be expressed more compactly with a third or a quarter of the number of
digits required for the equivalent binary number. Thus, most computer manuals use either octal
or hexadecimal numbers to specify binary quantities. The choice between them is arbitrary,
although hexadecimal tends to win out, since it can represent a byte with two digits.

1.5 COMPLEMENTS

Complements are used in digital computers to simplify the subtraction operation and for log-
ical manipulation. Simplifying operations leads to simpler, less expensive circuits to implement
the operations, There are two types of complements lor each base-r system: the radix com-
plement and the diminished radix complement. The first is referred to as the r's complement
and the second as the (r — 1)'s complement. When the value of the base r is substituted in the
name, the two types are referred to as the 2's complement and 1's complement for binary num-
bers and the 10's complement and 9's complement for decimal numbers.

10

Chapter 1 Digital Systems and Binary Numbers

Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)s complement of N is defined as
(r" — 1) — N. For decimal numbers, r = 10and r — 1 = 9, so the 9's complement of N is
(10" — 1) — N. In this case, 10" represents a number that consists of a single 1 followed by
n0’s. 10" — 1 is a number represented by n 9's. For example. if n = 4. we have 10* = 10,000
and 10* — 1 = 9999. It follows that the 9's complement of a decimal number is obtained by
subtracting each digit from 9. Here are some numerical examples:

The 9's complement of 546700 is 999999 — 546700 = 453299,
The 9's complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r = 2and r — 1 = 1, sothe I's complementof Nis (2" — 1) — N.
Again, 2" is represented by a binary number that consists of a 1 followed by n 0's. 2" = 1 is
a binary number represented by n 1's. For example, if n = 4, we have 2* = (10000), and
2% — 1 = (1111),. Thus, the 1's complement of a binary number is obtained by subtracting
each digit from 1. However, when subtracting binary digits from 1, we can have either
I —0=1orl — 1 = 0, which causes the bit to change from 0 to | or from | to 0, respec-
tively. Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and
0's to 1's. The following are some numerical examples:

The 1's complement of 1011000 is 0100111.
The 1's complement of 0101101 is 1010010.

The (r — 1)'s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r's complement of an n-digit number N in base r is defined as r" — N for N # 0 and as
0 for N = 0. Comparing with the (r — 1)’s complement, we note that the r's complement is
obtained by adding 1 to the (r — 1)’s complement, since r” — N = [(r" = 1) = N] + L.
Thus, the 10's complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1
to the 9’s-complement value. The 2’s complement of binary 101100 is 010011 + 1 = 010100
and is obtained by adding 1 to the 1's-complement value.

Since 10 is a number represented by a 1 followed by n 0's, 10" — N, which is the 10s com-
plement of N, can be formed also by leaving all least significant 0's unchanged, subtracting
the first nonzero least significant digit from 10, and subtracting all higher significant digits
from 9. Thus,

the 10’s complement of 012398 is 987602
and
the 10's complement of 246700 is 753300

Section 1.5 Complements n

The 10's complement of the first number is obtained by subtracting 8 from 10 in the least sig-
nificant position and subtracting all other digits from 9. The 10’s complement of the second
number is obtained by leaving the two least significant 0's unchanged, subtracting 7 from 10,
and subtracting the other three digits from 9.

Similarly, the 2's complement can be formed by leaving all least significant 0's and the first
| unchanged and replacing 1°s with 0°s and 0's with 1's in all other higher significant digits.
For example,

the 2's complement of 1101100 is 0010100
and

the 2's complement of 0110111 is 1001001

The 2's complement of the first number is obtained by leaving the two least significant 0's and
the first 1 unchanged and then replacing I's with 0's and 0's with I’s in the other four most sig-
nificant digits, The 2's complement of the second number is obtained by leaving the least sig-
nificant | unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix point, If
the original number N contains a radix point, the point should be removed temporarily in order
to form the s or (r — 1)’s complement. The radix point is then restored to the complement-
ed number in the same relative position. It is also worth mentioning that the complement of the
complement restores the number to its original value, To see this relationship. note that the r's
complement of N is 7" = N, so that the complement of the complement is
r" = (r" — N) = N and is equal to the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow concept. In this
method, we borrow a | from a higher significant position when the minuend digit is smaller
than the subtrahend digit. The method works well when people perform subtraction with paper
and pencil. However, when subtraction is implemented with digital hardware, the method is less
efficient than the method that uses complements.

The subtraction of two r-digit unsigned numbers M — N in base r can be done as follows:

1. Add the minuend M 1o the r's complement of the subtrahend N. Mathematically,
M+ ({"-N)y=M-N+r"

2. It M = N, the sum will produce an end carry »", which can be discarded; what is left is
the result M — N.

3, If M < N, the sum does not produce an end carry and is equal to r" — (N — M),
which is the r's complement of (N — M). To obtain the answer in a familiar form, take
the »'s complement of the sum and place a negative sign in front.

12 Chapter 1 Digital Systems and Binary Numbers

The following examples illustrate the procedure:

EXAMPLE 1.5

Using 10’s complement, subtract 72532 — 3250,

M= 72532

10's complement of N = + 96750

Sum = 169282

Discard end carry 10° = —100000

Answer = 69282
Note that M has five digits and N has only four digits. Both numbers must have the same num-
ber of digits, so we write N as 03250. Taking the 10’s complement of N produces a 9 in the most

significant position. The occurrence of the end carry signifies that M = N and that the result
is therefore positive.

EXAMPLE 1.6

Using 10’s complement, subtract 3250 — 72532,

M = 03250
10's complement of N = +27468
Sum = 30718

There is no end carry. Therefore, the answer is —(10’s complement of 30718) = —69282.

Note that since 3250 < 72532, the result is negative. Because we are dealing with unsigned
numbers, there is really no way to get an unsigned result for this case. When subtracting with
complements, we recognize the negative answer from the absence of the end carry and the
complemented result. When working with paper and pencil, we can change the answer to a
signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner, using the
procedure outlined previously.

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Y and (b) ¥ — X by using 2's complements.

Section 1.5 Complements 13

(a) X = 1010100
2's complementof ¥ = + 0111101
Sum = 10010001

Discard end carry 27 = — 10000000
Answer: X = Y = 0010001

(b) Y = 100001 1
2's complement of X = + 0101100
Sum = 1101111
There is no end carry. Therefore, the answeris ¥ — X = —(2's complement of 110111]) =
=0010001.

Subtraction of unsigned numbers can aiso be done by means of the (r — 1)'s complement.
Remember that the (r — 1)’s complement is one less than the r's complement. Because of
this, the result of adding the minuend 1o the complement of the subtrahend produces a sum that
is one less than the correct difference when an end carry occurs. Removing the end carry and
adding | to the sum is referred to as an end-around carry.

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1's complement.
(a) X — ¥ = 1010100 — 1000011

X = 1010100

1's complement of ¥ = -+ 0111100
Sum = 10010000

End-around carry = + 1
Answer: X — Y = 0010001

(b) ¥ — X = 1000011 = 1010100
Y= 1000011
I's comlalemenl of X = + 0101011

Sum = 1101110

There is no end carry. Therefore. the answeris Y — X = —(1's complement of 1101110) =

—0010001.
n

Note that the negative result is obtained by taking the 1's complement of the sum, since this is
the type of complement used. The procedure with end-around carry is also applicable 1o sub-
tracting unsigned decimal numbers with 9°s complement.

14

1.6

Chapter 1 Digital Systems and Binary Numbers

SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to rep-
resent negative integers, we need a notation for negative values. In ordinary arithmetic, a neg-
ative number is indicated by a minus sign and a positive number by a plus sign. Because of
hardware limitations, computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost position of the number. The convention
is to make the sign bit O for positive and | for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string
of bits when represented in a computer. The user determines whether the number is signed or
unsigned. If the binary number is signed, then the leftmost bit represents the sign and the rest
of the bits represent the number. If the binary number is assumed to be unsigned, then the left-
most bit is the most significant bit of the number. For example, the string of bits 01001 can be
considered as 9 (unsigned binary) or as +9 (signed binary) because the leftmost bit is 0. The
string of bits 11001 represents the binary equivalent of 25 when considered as an unsigned
number and the binary equivalent of —9 when considered as a signed number. This is because
the | that is in the leftmost position designates a negative and the other four bits represent bi-
nary 9. Usually, there is no confusion in identifying the bits if the type of representation for the
number is known in advance.

The representation of the signed numbers in the last example is referred to as the signed-
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+
or —) or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in
ordinary arithmetic. When arithmetic operations are implemented in a computer, it is more
convenient to use a different system, referred to as the signed-complement system, for repre-
senting negative numbers. In this system, a negative number is indicated by its complement.
Whereas the signed-magnitude system negates a number by changing its sign, the signed-com-
plement system negates a number by taking its complement. Since positive numbers always start
with 0 (plus) in the leftmost position, the complement will always start with a 1, indicating a
negative number. The signed-complement system can use either the 1's or the 2's complement,
but the 2's complement is the most common.,

As an example, consider the number 9, represented in binary with eight bits. +9 is repre-
sented with a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9,
which gives 00001001, Note that all eight bits must have a value: therefore, 0's are inserted fol-
lowing the sign bit up to the first 1. Although there is only one way to represent +9, there are
three different ways to represent —9 with eight bits:

signed-magnitude representation: 10001001
signed-1's-complement representation: 11110110
signed-2"s-complement representation: 11110111

In signed-magnitude. —9 is obtained from +9 by changing the sign bit in the leftmost position
from 0 to 1. In signed-1's complement, —9 is obtained by complementing all the bits of +9,
including the sign bit. The signed-2's-complement representation of —9 is obtained by taking
the 2's complement of the positive number, including the sign bit.

Section 1.6 Signed Binary Numbers 15

Table 1.3
Signed Binary Numbers
Signed-2's Signed-1’s Signed
Decimal Complement Complement Magnitude

1 0111 o111 o111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
=(] — 1111 1000
=i 1111 1110 1001
=i 110 1101 1010
-3 L1101 1100 1011
-4 1100 1011 1100
=3 1011 1010 1101
-6 1010 1001 1110
=7 1001 1000 (R
-8 1000 —_ —

Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
The equivalent decimal number is also shown for reference. Note that the positive numbers
in all three representations are identical and have 0 in the leftmost position. The signed-2's-
complement system has only one representation for (. which is always positive, The other
two systems have either a positive 0 or a negative 0, something not encountered in ordinary
arithmetic. Note that all negative numbers have a | in the leftmost bit position: that is the
way we distinguish them from the positive numbers. With four bits, we can represent 16 binary
numbers. In the signed-magnitude and the 1°s-complement representations, there are eight
positive numbers and eight negative numbers, including two zeros. In the 2's-complement
representation, there are eight positive numbers, including one zero, and eight negative
numbers,

The signed-magnitude system is used in ordinary arithmetic, but is awkward when em-
ployed in computer arithmetic because of the separate handling of the sign and the magnitude.
Therefore, the signed-complement system is normally used. The |'s complement imposes some
difficulties and is seldom used for arithmetic operations. It is useful as a logical operation,
since the change of 1 to 0 or 0 1o 1 is equivalent to a logical complement operation, as will be
shown in the next chapter. The discussion of signed binary arithmetic that follows deals ex-
clusively with the signed-2's-complement representation of negative numbers. The same pro-
cedures can be applied to the signed-1's-complement system by including the end-around carry
as is done with unsigned numbers.

16 Chapter 1 Digital Systems and Binary Numbers

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary arith-
metic. If the signs are the same, we add the two magnitudes and give the sum the common sign.
If the signs are different, we subtract the smaller magnitude from the larger and give the differ-
ence the sign of the larger magnitude. For example, (+25) + (—37) = —(37 — 25) = —12
and is done by subtracting the smaller magnitude, 25, from the larger magnitude. 37, and
appending the sign of 37 to the result. This is a process that requires a comparison of the
signs and magnitudes and then performing either addition or subtraction. The same procedure
applies to binary numbers in signed-magnitude representation. In contrast, the rule for
adding numbers in the signed-complement system does not require a comparison or sub-
traction, but only addition. The procedure is very simple and can be stated as follows for
binary numbers:

The addition of two signed binary numbers with negative numbers represented in signed-
2's-complement form is obtained from the addition of the two numbers, including their sign bits.
A carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

+ 6 00000110 ~ 6 11111010
+13 00001101 +13 00001101
+19 00010011 + 7 00000111
+ 6 00000110 —~ 6 11111010
—13 11110011 =13 11110011
~ 7 11111001 ~19 11101101

Note that negative numbers must be initially in 2’s-complement form and that if the sum ob-
tained after the addition is negative, it is in 2’s-complement form.

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negative results are automatically in 2’s-
complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient number
of bits to accommodate the sum. If we start with two n-bit numbers and the sum occupies
n + 1 bits, we say that an overflow occurs. When one performs the addition with paper and
pencil, an overflow is not a problem, because we are not limited by the width of the page. We
just add another 0 to a positive number or another | to a negative number in the most signifi-
cant position to extend the number ton + 1 bits and then perform the addition. Overflow is a
problem in computers because the number of bits that hold a number is finite, and a result that
exceeds the finite value by | cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system. To determine the value of a negative number in signed-2's comple-
ment, it is necessary to convert the number (o a positive number to place it in a more familiar
form. For example, the signed binary number 11111001 is negative because the leftmost bit is
I. Its 2’s complement is 00000111, which is the binary equivalent of +7. We therefore recog-
nize the original negative number to be equal to —7.

Section 1.7 Binary Codes 17

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2's-complement form
is simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend
(including the sign bit). A carry out of the sign-bit position is discarded,

This procedure is adopted because a subtraction operation can be changed 10 an addition
operation if the sign of the subtrahend is changed. as is demonstrated by the following
relationship:

(x4) = (+B) = (£A) + (-B):
(£A) — (—B) = (=A) + (+B).

But changing a positive number 1o a negative number is easily done by taking the 2's comple-
ment of the positive number. The reverse is also true, because the complement of a negative num-
ber in complement form produces the equivalent positive number. To see this. consider the
subtraction (—6) — (=13) = +7. In binary with eight bits, this operation is written as
(11111010 = 11110011}, The subtraction is changed to addition by taking the 2's complement
of the subtrahend { — 13), giving (+13). In binary. this is 11111010 + 00001101 = 100000111.
Removing the end carry, we obtain the correct answer: 00000111 (+7).

Itis worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as unsigned numbers, Therefore, com-
puters need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned.

1.7 BINARY CODES

Digital systems use signals that have two distinet values and circuit elements that have two sta-
ble states. There is a direct analogy among binary signals, binary circuit elements, and binary
digits. A binary number of 7 digits, for example. may be represented by n binary circuit ele-
ments, each having an output signal equivalent to 0 or 1. Digital systems represent and ma-
nipulate not only binary numbers, but also many other discrete elements of information, Any
discrete element of information that is distinct among a group of quantities can be represented
with a binary code (i.e., a pattern of 0's and 1's). The codes must be in binary because, in
today's technology, only circuits that represent and manipulate patterns of 0's and 1's can be
manufactured economically for use in computers. However, it must be realized that binary
codes merely change the symbols, not the meaning of the elements of information that they rep-
resent. If we inspect the bits of a computer at random, we will find that most of the time they
represent some type of coded information rather than binary numbers.

An n-bit binary code is a group of n bits that assumes up to 2" distinct combinations of 1's
and 0's, with each combination representing one element of the set that is being coded. A set
of four elements can be coded with two bits, with each element assigned one of the following
bit combinations: 00, 01, 10, 11. A set of eight elements requires a three-bit code and a set of

18 Chapter 1 Digital Systems and Binary Numbers

BCD Code

16 elements requires a four-bit code. The bit combination of an n-bit code is determined from
the count in binary from 0 to 2" — 1. Each element must be assigned a unique binary bit com-
bination, and no two elements can have the same value; otherwise, the code assignment will
be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is n, there is
no maximum number of bits that may be used for a binary code. For example, the 10 decimal
digits can be coded with 10 bits, and each decimal digit can be assigned a bit combination of
nine 0's and a 1. In this particular binary code, the digit 6 is assigned the bit combination
0001000000.

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert dec-
imal numbers to binary, perform all arithmetic calculations in binary, and then convert the bi-
nary results back to decimal. This method requires that we store decimal numbers in the
computer so that they can be converted to binary. Since the computer can accept only binary
values, we must represent the decimal digits by means of a code that contains 1's and 0's. It is
also possible to perform the arithmetic operations directly on decimal numbers when they are
stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in the
set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that dis-
tinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible com-
binations remain unassigned. Different binary codes can be obtained by arranging four bits
into 10 distinct combinations. The code most commonly used for the decimal digits is the
straight binary assignment listed in Table 1.4. This scheme is called binary-coded decimal and
is commonly referred to as BCD. Other decimal codes are possible and a few of them are pre-
sented later in this section.

Table 1.4
Binary-Coded Decimal (BCD)

Decimal BCD
symbol Digit

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 00 <l W —= O

Section 1.7 Binary Codes 19

Table 1.4 gives the four-bit code for one decimal digit. A number with & decimal digits will
require 4& bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110,
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the
same as its equivalent binary number only when the number is between 0 and 9. A BCD num-
ber greater than 10 looks different from its equivalent binary number. even though both con-
tain 1's and 0's. Moreover, the binary combinations 1010 through 1111 are not used and have
no meaning in BCD. Consider decimal 185 and its corresponding value in BCD and binary:

(185)30 = (0001 1000 0101)gep = (10111001),

The BCD value has 12 bits to encode the characters of the decimal value. but the equivalent
binary number needs only 8 bits, It is obvious that the representation of a BCD number needs
more bits than its equivalent binary value. However. there is an advantage in the use of deci-
mal numbers, because computer input and outpur data are generated by people who use the dec-
imal system.

It is important to realize that BCD numbers are decimal numbers and not binary numbers,
although they use bits in their representation. The only difference between a decimal number
and BCD is that decimals are written with the symbols 0, 1, 2. ..., 9 and BCD numbers use
the binary code 0000, 0001. 0010, ..., 1001, The decimal value is exactly the same. Decimal
10 is represented in BCD with eight bits as 0001 0000 and decimal 15 as 0001 0101. The cor-
responding binary values are 1010 and 1111 and have only four bits.

BCD Addition

Consider the addition of two decimal digits in BCD. together with a possible carry from a pre-
vious less significant pair of digits. Since each digit does not exceed 9, the sum cannot be
greaterthan 9 + 9 + 1 = 19, with the 1 being a previous carry. Suppose we add the BCD dig-
its as if they were binary numbers. Then the binary sum will produce a result in the range
from O to 19. In binary, this range will be from 0000 10 10011, but in BCD, it is from 0000 to
1 1001, with the first (i.e., leftmost) | being a carry and the next four bits being the BCD sum.
When the binary sum is equal to or less than 1001 (without a carry), the corresponding BCD
digit is correct. However, when the binary sum is greater than or equal to 1010, the result is an
invalid BCD digit. The addition of 6 = (0110}, to the binary sum converts it to the correct digit
and also produces a carry as required. This is because a carry in the most significant bit posi-
tion of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the following
three BCD additions:

40100 4 0100 & 1000
45 <0101 48 +1000 +9 1001

9 1001 12 Loo 17 10001
+0110 +0110
10010 10111

In each case, the two BCD digits are added as if they were two binary numbers. If the binary
sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum and a carry,
In the first example, the sum is equal to 9 and is the correct BCD sum. In the second example.

20 Chapter 1 Digital Systems and Binary Numbers

the binary sum produces an invalid BCD digit. The addition of 0110 produces the correct BCD
sum, 0010 (i.e., the number 2), and a carry. In the third example, the binary sum produces a carry.
This condition occurs when the sum is greater than or equal to 16. Although the other four bits
are less than 1001, the binary sum requires a correction because of the carry. Adding 0110, we
obtain the required BCD sum 0111 (i.e., the number 7) and a BCD carry.

The addition of two n-digit unsigned BCD numbers follows the same procedure. Consider
the addition of 184 + 576 = 760 in BCD:

BCD 1 |
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum Orrr 10000 1010
Add 6 0110 0110
BCD sum 0111 0110 0000 760
The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next pair of digits. The second pair of BCD digits plus a previous carry produces a digit

sum of 0110 and a carry for the next pair of digits. The third pair of digits plus a carry produces
a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation of signed
numbers in binary. We can use either the familiar signed-magnitude system or the signed-com-
plement system. The sign of a decimal number is usually represented with four bits to conform
to the four-bit code of the decimal digits. It is customary to designate a plus with four 0’s and
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement system
can be either the 9's or the 10's complement, but the 10’s complement is the one most often
used. To obtain the 10's complement of a BCD number, we first take the 9's complement and
then add 1 to the least significant digit. The 9's complement is calculated from the subtraction
of each digit from 9,

The procedures developed for the signed-2's-complement system in the previous section
also apply to the signed-10"s-complement system for decimal numbers. Addition is done by
summing all digits, including the sign digit, and discarding the end carry. This operation
assumes that all negative numbers are in 10’s-complement form. Consider the addition
(+375) + (—240) = +135, done in the signed-complement system:

0 375
+9 760
0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is the 10's
complement of 0240, The two numbers are added and the end carry is discarded to obtain
+135. Of course, the decimal numbers inside the computer, including the sign digits, must be
in BCD. The addition is done with BCD digits as described previously.

Section 1.7 Binary Codes 21

The subtraction of decimal numbers, either unsigned or in the signed-10’s-complement
system, is the same as in the binary case: Take the 10's complement of the subtrahend and add
it to the minuend. Many computers have special hardware to perform arithmetic calculations
directly with decimal numbers in BCD. The user of the computer can specify programmed
instructions to perform the arithmetic operation with decimal numbers directly, without having
to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different codes
can be formulated by arranging four bits into 10 distinct combinations. BCD and three other
representative codes are shown in Table 1.5. Each code uses only 10 out of a possible 16 bit
combinations that can be arranged with four bits. The other six unused combinations have no
meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, cach bit position
is assigned a weighting factor in such a way that each digit can be evaluated by adding the weights
of all the I's in the coded combination. The BCD code has weights of 8. 4, 2. and 1. which corre-
spond to the power-of-twa values of each bit. The bit assignment 0110, for example. is interpreted
by the weights to represent decimal 6 because 8 X 0 + 4 X | +2 X | + | X 0 = 6. Thebit
combination 1101, when weighted by the respective digits 2421, gives the decimal equivalent of
2X 1 +4%1+4+2x0+1x1 =7 Note that some digits can be coded in two possible
ways in the 2421 code. For instance. decimal 4 can be assigned to bit combination 0100 or 1010,
since both combinations add up to a total weight of 4.

Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal BCD ‘
Digit 8421 2421 Excess-3 8 4 -2 -1

0 0000 0000 0011 0000

I 0001 0001 0100 0111

2 0010 0010 0101 0110

3 0011 0011 0110 0101

4 0100 0100 01 0100

5 0101 1011 1000 1011

6 0110 1100 1001 1010

7 01 1101 1010 1001

8 1000 1110 1011 1000

9 1001 1111 1100 11
1010 0101 0000 0001

Unused 1011 0110 0001 0010
bit 1100 o111 0010 0011
combi- 1101 1000 1ot 1100

nations 1110 1001 1110 1101
1111 1010 1111 1110

22 Chapter 1 Digital Systems and Binary Numbers

The 2421 and the excess-3 codes are examples of self-complementing codes. Such codes
have the property that the 9's complement of a decimal number is obtained directly by chang-
ing 1's to 0's and 0’s to 1's (i.e., by complementing each bit in the pattern). For example, dec-
imal 395 is represented in the excess-3 code as 0110 1100 1000. The 9's complement of 604
is represented as 1001 0011 0111, which is obtained simply by complementing each bit of the
code (as with the 1's complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-complement-
ing property. Excess-3 is an unweighted code in which each coded combination is obtained from
the corresponding binary value plus 3. Note that the BCD code is not self-complementing.

The 8, 4, =2, — 1 code is an example of assigning both positive and negative weights to a
decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and is calcu-
lated from8 X 0 +4 X 1 + (=2) X 1+ (-1) X0=2.

Gray Code

The output data of many physical systems are quantities that are continuous. These data must
be converted into digital form before they are applied to a digital system. Continuous or analog
information is converted into digital form by means of an analog-to-digital converter. It is some-
times convenient to use the Gray code shown in Table 1.6 to represent digital data that have been
converted from analog data. The advantage of the Gray code over the straight binary number
sequence is that only one bit in the code group changes in going from one number to the next.
For example, in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit
changes, from 0 to 1; the other three bits remain the same. By contrast, with binary numbers the
change from 7 to 8 will be from 0111 to 1000, which causes all four bits to change values.

Table 1.6

Gray Code
Gray Decimal
Code Equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14

1000 15

Section 1.7 Binary Codes 23

The Gray code is used in applications in which the normal sequence of binary numbers may
produce an error or ambiguity during the transition from one number to the next. If binary
numbers are used. a change, for example. from 0111 to 1000 may produce an intermediate er-
roneous number 1001 if the value of the rightmost bit takes longer to change than do the val-
ues of the other three bits. The Gray code eliminates this problem, since only one bit changes
its value during any transition between two numbers.

A typical application of the Gray code is the representation of analog data by a continu-
ous change in the angular position of a shaft. The shaft is partitioned into segments, and
each segment is assigned a number. If adjacent segments are made to correspond with the
Gray-code sequence, ambiguity is eliminated between the angle of the shaft and the value
encoded by the sensor.

ASCH Character Code

Many applications of digital computers require the handling not only of numbers, but also of
other characters or symbols. such as the letters of the alphabet. For instance. an insurance com-
pany with thousands of policyholders will use a computer to process its files. To represent the
names and other pertinent information, it is necessary to formulate a binary code for the let-
ters of the alphabet. In addition, the same binary code must represent numerals and special
characters (such as S). An alphanumeric character set is a set of elements that includes the 10
decimal digits, the 26 letters of the alphabet, and a number of special characters. Such a set con-
tains between 36 and 64 elements if only capital leuers are included. or between 64 and 128
clements if both uppercase and lowercase letters are included. In the first case, we need a bi-
nary code of six bits, and in the second. we need a binary code of seven bits.

The standard binary code for the alphanumeric characters is the American Standard Code
for Information Interchange (ASCII). which uses seven bits to code 128 characters. as shown
in Table 1.7. The seven bits of the code are designated by by through b;. with by the most sig-
nificant bit. The letter A, for example. is represented in ASCII as 1000001 (column 100, row
0001). The ASCII code also contains 94 graphic characters that can be printed and 34 non-
printing characters used for various control functions. The graphic characters consist of the 26
uppercase letters (A through Z), the 26 lowercase letters (a through z). the 10 numerals (0
through 9). and 32 special printable characters, such as %, *, and $.

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used for
routing data and arranging the printed text into a prescribed format. There are three types of
control characters: format effectors. information separators. and communication-control char-
acters. Format effectors are characters that control the layout of printing. They include the fa-
miliar word processor and typewriter controls such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the data into divi-
sions such as paragraphs and pages. They include characters such as record separator (RS) and
file separator (FS). The communication-control characters are useful during the transmission
of text between remote terminals. Examples of communication-control characters are STX
(start of text) and ETX (end of text), which are used to frame a text message transmitted through
telephone wires.

24 Chapter 1 Digital Systems and Binary Numbers

Table 1.7
American Standard Code for information Interchange (ASCII)
bsbebs

bybsbb; 000 001 o010 o1 100 101 110 1m
0000 NUL DLE SP 0 @ P p
0001 SOH DCI ! 1 A Q a q
0010 STX DC2 5 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ - D T d 1
0101 ENQ NAK % 3 E U e u
0110 ACK SYN & 6 F v f v
0111 BEL ETB 7 G w g W
1000 BS CAN (8 H X h X
1001 HT EM) 9 | Y i y
1010 LF SUB *] I z i z
1011 VT ESC + ! K [k {
1100 FF FS : < L \ I I
1101 CR GS = = M] m }
1110 SO RS 3 > N A n -
1111 SI us / ? 0 = 0 DEL

Control characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchrenous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in us Unit separator

SP Space DEL Delete

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity as a single
unit called a byte. Therefore, ASCII characters most often are stored one per byte. The extra
bit is sometimes used for other purposes, depending on the application. For example, some
printers recognize eight-bit ASCII characters with the most significant bit set to 0. An additional

Section 1.8 Binary Storage and Registers 25

128 eight-bit characters with the most significant bit set to 1 are used for other symbols, such
as the Greek alphabet or italic type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added to the
ASCII character to indicate its parity. A parity bit is an extra bit included with a message to make
the total number of 1°s either even or odd. Consider the following two characters and their
even and odd parity:

With even parity With odd parity
ASCIL A = 1000001 01000001 11000001
ASCII'T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an even
number of 1's in the character for even parity or an odd number of 1's in the character for
odd parity. In general, one or the other parity is adopted. with even parity being more
common.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This function is handled by generating an even parity bit at the sending end
for each character, The eight-bit characters that include parity bits are transmitted to their des-
tination, The parity of each character is then checked at the receiving end. If the parity of the
received character is not even, then at least one bit has changed value during the transmission.
This method detects one, three, or any odd combination of errors in each character that is trans-
mitted. An even combination of errors, however, goes undetected, and additional error detec-
tion codes may be needed to take care of that possibility.

What is done after an error is detected depends on the particular application. One possi-
bility is to request retransmission of the message on the assumption that the error was ran-
dom and will not occur again. Thus, if the receiver detects a parity error, it sends back the
ASCII NAK (negative acknowledge) control character consisting of an even-parity eight
bits 10010101. If no error is detected, the receiver sends back an ACK (acknowledge) con-
trol character, namely, 00000110, The sending end will respond to an NAK by transmitting
the message again until the correct parity is received, If, after a number of attempts, the
transmission is still in error, a message can be sent to the operator to check for malfunctions
in the transmission path.

1.8 BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some medium
for storing individual bits. A binary cell is a device that possesses two stable states and is ca-
pable of storing one bit (0 or 1) of information. The input to the cell receives excitation sig-
nals that set it to one of the two states. The output of the cell is a physical quantity that
distinguishes between the two states. The information stored in a cell is | when the cell is in
one stable state and 0 when the cell is in the other stable state.

26 Chapter 1 Digital Systems and Binary Numbers

Registers

A register is a group of binary cells. A register with n cells can store any discrete quantity of
information that contains n bits. The state of a register is an n-tuple of 1's and 0's, with each
bit designating the state of one cell in the register. The content of a register is a function of the
interpretation given to the information stored in it. Consider, for example, a 16-bit register
with the following binary content:

1100001111001001

A register with 16 cells can be in one of 2'® possible states. If one assumes that the content
of the register represents a binary integer, then the register can store any binary number from
0to2'® — 1. For the particular example shown, the content of the register is the binary equiv-
alent of the decimal number 50,121. If one assumes instead that the register stores alphanu-
meric characters of an eight-bit code, then the content of the register is any two meaningful
characters. For the ASCII code with an even parity placed in the eighth most significant bit
position, the register contains the two characters C (the leftmost eight bits) and I (the right-
most eight bits). If, however, one interprets the content of the register to be four decimal dig-
its represented by a four-bit code, then the content of the register is a four-digit decimal
number, In the excess-3 code, the register holds the decimal number 9,096. The content of the
register is meaningless in BCD, because the bit combination 1100 is not assigned to any dec-
imal digit. From this example, it is clear that a register can store discrete elements of infor-
mation and that the same bit configuration may be interpreted differently for different types
of data.

Register Transfer

A digital system is characterized by its registers and the components that perform data pro-
cessing. In digital systems, a register transfer operation is a basic operation that consists of
a transfer of binary information from one set of registers into another set of registers. The
transfer may be direct, from one register to another, or may pass through data-processing
circuits to perform an operation. Figure 1.1 illustrates the transfer of information among reg-
isters and demonstrates pictorially the transfer of binary information from a keyboard into
a register in the memory unit. The input unit is assumed to have a keyboard, a control cir-
cuit, and an input register. Each time a key is struck, the control circuit enters an equiva-
lent eight-bit alphanumeric character code into the input register. We shall assume that the
code used is the ASCII code with an odd-parity bit. The information from the input regis-
ter is transferred into the eight least significant cells of a processor register. After every
transfer, the input register is cleared to enable the control to insert a new eight-bit code
when the keyboard is struck again, Each eight-bit character transferred to the processor
register is preceded by a shift of the previous character to the next eight cells on its left. When
a transfer of four characters is completed, the processor register is full, and its contents are
transferred into a memory register. The content stored in the memory register shown in Fig. 1.1
came from the transfer of the characters “J,” “0,"” “H," and “N" after the four appropriate
keys were struck.

Section 1.8 Binary Storage and Registers 27

SRR BRI

: 2 anut
) Beells | Regisier

CONTROL

FIGURE 1.1
Transfer of information among registers

To process discrete quantities of information in binary form, a computer must be pro-
vided with devices that hold the data 1o be processed and with circuit elements that manip-
ulate individual bits of information. The device most commonly used for holding data is a
register. Binary variables are manipulated by means of digital logic circuits, Figure 1.2 il-
lustrates the process of adding two 10-bit binary numbers. The memory unit, which nor-
mally consists of millions of registers. is shown with only three of its registers. The part of
the processor unit shown consists of three registers—&/, K2, and R3—together with digital
logic circuits that manipulate the bits of R/ and R2 and transfer into R3 a binary number
equal 1o their arithmetic sum. Memory registers store information and are incapable of pro-
cessing the two operands. However, the information stored in memory can be transferred to
processor registers, and the results obtained in processor registers can be transferred back into
a memory register for storage until needed again. The diagram shows the contents of two
operands transferred from two memory registers into R/ and R2. The digital logic circuits
produce the sum, which is transferred to register R3. The contents of B3 can now be trans-
ferred back 1o one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital system
in a simple manner. The registers of the system are the basic elements for storing and holding
the binary information. Digital logic circuits process the binary information stored in the

28 Chapter 1 Digital Systems and Binary Numbers

TMEVORY DN

]a 000000000 %=

% —o0011100001)

rand 2 B
ad 0001000010}

= 0001000010 [R

Digital logic
circuits for ==
binary addition |

=0100100011|R3

FIGURE 1.2
Example of binary information processing

registers. Digital logic circuits and registers are covered in Chapters 2 through 6. The memory
unit is explained in Chapter 7. The description of register operations at the register transfer
level and the design of digital systems are covered in Chapter 8.

1.9 BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with operations that as-
sume logical meaning. The two values the variables assume may be called by different names
(true and false, yes and no, etc.), but for our purpose, it is convenient to think in terms of bits
and assign the values | and 0. The binary logic introduced in this section is equivalent to an
algebra called Boolean algebra. The formal presentation of Boolean algebra is covered in more
detail in Chapter 2. The purpose of this section is to introduce Boolean algebra in a heuristic
manner and relate it to digital logic circuits and binary signals.

Section 1.9 Binary Logic 29

Definition of Binary Logic

Binary logic consists of binary variables and a set of logical operations. The variables are desig-
nated by letters of the alphabet, such as A. B, C. x, v, z. etc.. with each variable having two and only
two distinct possible values: 1 and 0, There are three basic logical operations: AND, OR. and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator, For
example, x *y = zorxy = zisread “xAND y is equal to z." The logical operation AND
is interpreted to mean that z = 1| if and only if x = 1 and v = 1; otherwise = = 0.
(Remember that x, y, and z are binary variables and can be equal either to | or 0, and
nothing else.)

OR: This operation is represented by a plus sign. For example. v + v = zisread “x OR

yisequaltoz,” meaning thatz = 1ifx = lorify = lorifbothx = landy = 1. 1f

both x = Oand y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For example,
x" = z(orx = z)is read “not x is equal 10 =." meaning that z is what x is not. In other
words, if x = I, then z = 0, but if x = 0, then z = 1. The NOT operation is also re-
ferred to as the complement operation, since it changesa 1 toOand a0 to L.

~

Binary logic resembles binary arithmetic. and the operations AND and OR have similari-
ties to multiplication and addition, respectively. In fact. the symbols used for AND and OR are
the same as those used for multiplication and addition. However, binary logic should not be con-
fused with binary arithmetic. One should realize that an arithmetic variable designates a num-
ber that may consist of many digits. A logic variable is always either 1 or 0. For example, in
binary arithmetic. we have 1 + 1 = 10 (read “one plus one is equal to 2), whereas in binary
logic, we have | + 1 = 1 (read “one OR one is equal to one™).

For each combination of the values of x and y, there is a value of z specified by the defini-
tion of the logical operation. Definitions of logical operations may be listed in a compact form
called truth tables. A truth table is a table of all possible combinations of the variables, show-
ing the relation between the values that the variables may take and the result of the operation.
The truth tables for the operations AND and OR with variables x and y are obtained by listing
all possible values that the variables may have when combined in pairs. For each combination,
the result of the operation is then listed in a separate row. The truth tables for AND, OR. and
NOT are given in Table 1.8. These tables clearly demonstrate the definition of the operations.

Table 1.8
Truth Tables of Logical Operations
AND OR NOT

x y| x+» x | %'
00 0 0f1
0 1 1 L]0
10 1
11 1

30

Chapter 1 Digital Systems and Binary Numbers

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to produce an
output signal. Electrical signals such as voltages or currents exist as analog signals having
values over a given range, say, 0 to 3 V, but in a digital system are interpreted to be either of
two recognizable values, 0 or 1. Voltage-operated logic circuits respond to two separate volt-
age levels that represent a binary variable equal to logic 1 or logic 0. For example, a partic-
ular digital system may define logic 0 as a signal equal to 0 volts and logic 1 as a signal
equal to 3 volts. In practice, each voltage level has an acceptable range, as shown in Fig, 1.3.
The input terminals of digital circuits accept binary signals within the allowable range and
respond at the output terminals with binary signals that fall within the specified range. The
intermediate region between the allowed regions is crossed only during a state transition. Any
desired information for computing or control can be operated on by passing binary signals
through various combinations of logic gates, with each signal representing a particular binary
variable.

The graphic symbols used to designate the three types of gates are shown in Fig. 1.4. The
gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output signals

Volts
A
Signal
range for
logic 1
Transition occurs
between these limits
. Signal
range for
: logic 0
o=

FIGURE 1.3
Example of binary signals

x — 7 x D z=x+y & 4
(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

FIGURE 1.4
Symbols for digital logic circuits

Problems 31

AND:x -y 0 0 1 0 0

OR:x +¥ 0 1 1 1 0

NOT:w 1 L0 0 [1T 1

FIGURE 1.5
Input-output signals for gates

S

(a) Three-input AND gate (b) Four-input OR gate

FIGURE 1.6
Gates with multiple inputs

G=A+B+C+D

o1+
(e Tol - 5

if input logic requirements are satisfied. The input signals x and v in the AND and OR gates may
exist in one of four possible states: 00, 10, 11, or 01, These input signals are shown in Fig. 1.5 10-
gether with the corresponding output signal for each gate. The timing diagrams illustrate the re-
sponse of each gate to the four input signal combinations. The horizontal axis of the timing diagram
represents time, and the vertical axis shows the signal as it changes between the two possible volt-
age levels, The low level represents logic 0, the high level logic 1. The AND gate responds with
a logic 1 output signal when both input signals are logic |. The OR gate responds with a logic |
output signal if any input signal is logic 1. The NOT gate is commonly referred to as an inverter.
The reason for this name is apparent from the signal response in the timing diagram, which shows
that the output signal inverts the logic sense of the input signal.

AND and OR gates may have more than two inputs, An AND gate with three inputs and an
OR gate with four inputs are shown in Fig. 1.6. The three-input AND gate responds with logic
1 output if all three inputs are logic 1. The output produces logic 0 if any input is logic 0. The
four-input OR gate responds with logic | if any input is logic 1: its output becomes logic 0 only
when all inputs are logic 0.

PROBLEMS

Answers Lo problems marked with * appear at the end of the book,

1.1 List the octal and hexadecimal numbers from 16 to 32. Using A, B. and C for the last three
digits, list the numbers from § to 28 in base 13,

1.2* What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes, and
(c) 6.4G bytes?

32

Chapter 1

1.3

1.4

1.5*

1.6"

1.7%
1.8

1.9

1.1
1.12*

1.13

1.14

1.15

1.16

Digital Systems and Binary Numbers

Convert the following numbers with the indicated bases to decimal;
(a)* (4310)s (b)* (198);2
(c) (735)g (d) (525)s

What is the largest binary number that can be expressed with 14 bits? What are the equivalent dec-
imal and hexadecimal numbers?

Determine the base of the numbers in each case for the following operations to be correct:
(a) 14/2 =5, (b) 54/4 = 13,
(c) 24 + 17 = 40.

The solutions to the quadratic equation x> — 11x + 22 = Oare x = 3 and x = 6. What is the
base of the numbers?

Convert the hexadecimal number 68BE to binary, and then convert it from binary to octal.

Convert the decimal number 431 to binary in two ways: (a) Convert directly to binary; (b) con-
vert first to hexadecimal and then from hexadecimal to binary. Which method is faster?

Express the following numbers in decimal:

(a)* (10110.0101); (b)* (16.5)5
(c)* (26.24)4 (d) (FAFA)4
(e) (1010.1010),

Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010, (b) 110.010.
Explain why the decimal answer in (b) is 4 times that in (a).

Perform the following division in binary: 111011 -+ 101,

Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2E and 34.

Do the following conversion problems:

(a) Convert decimal 27.315 to binary.

(b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to dec-
imal. How close is the result to 2/37

(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the
answer the same?

Obtain the 1's and 2's complements of the following binary numbers:

(a) 10000000 (b) 00000000

(c) 11011010 (d) 01110110

(e) 10000101 (f) 11111111,

Find the 9's and the 10's complement of the following decimal numbers:
(a) 52,784,630 (b) 63,325,600

(c) 25,000,000 (d) 00.000,000.

(a) Find the 16's complement of B2FA.,

(b) Convert B2FA to binary.

(c) Find the 2’s complement of the result in (b).

(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

119"

1.20

.21

1.22

1.23

1.24

1.26

1.27

1.28

Problems 33

Perform subtraction on the given unsigned numbers using the 10's complement of the subtra-
hend. Where the result should be negative, find its 10's complement and affix a minus sign. Ver-
ify your answers.

(a) 6,428 — 3.409 (b) 125 — 1.B0O

(c) 2,043 — 6,152 (d) 1.631 — 745

Perform subtraction on the given unsigned binary numbers using the 2's complement of the sub-
trahend. Where the result should be negative. find its 2's complement and affix a minus sign.
(a) 10011 — 10001 (b) 100010 — 100011

(c) 1001 = 101000 (d) 110000 — 10101

The following decimal numbers are shown in sign-magnitude form: +9.286 and +801. Convent
them to signed- 10°s-complement ferm and perform the following operations (note that the sum
is +10.,627 and requires five digits and a sign).

(a) (+9.286) + (+801) (by (+9.286) + (—801)

() (—9.286) + (+801) (d) (—9,286) + (—801)

Convert decimal +46 and +29 to binary, using the signed-2's-complement representation and
enough digits to accommodate the numbers. Then perform the binary equivalent of
(+29) + (=49), (=29) + (+49).and (=29) + (=49). Convert the answers back to decimal
and verify that they are correct.

If the numbers (+9,742)y; and (+641),, are in signed magnitude format, their sum is
(+10.383) and requires five digits and a sign. Convert the numbers to signed-10's-comple-
ment form and find the following sums:

{a) (+9.742) + (+641) (b) (+9.742) + (-641)

©) (—9.742) + (+641) (d) (—9.742) + (—641)

Convert decimal 8,723 to both BCD and ASCII codes. For ASCIL an even parity bit is to be ap-
pended at the left.

Represent the unsigned decimal numbers 842 and 537 in BCD. and then show the steps neces-
sary 1o form their sum.

Formulate a weighted binary code for the decimal digits, using weights

(@*6.3,1.1

(b) 6.4,2.1

Represent the decimal number 5,137 in (a) BCD, (b) excess-3 code. (¢) 2421 code, and (d) a
6311 code.

Find the 9's complement of decimal 5,137 and express it in 2421 code. Show that the result is
the 1's complement of the answer to (¢) in Problem 1,25, This demonstrates that the 2421 code
is self-complementing.

Assign a binary code in some orderly manner 1o the 52 playing cards. Use the minimum number
of bits.

Write the expression “G. Boole” in ASCIL using an cight-bit code. Include the period and the
space. Treat the lefimost bit of cach character as a parity bit. Each eight-bit code should have
even parity. (George Boole was a 19th century mathematician. Boolean algebra, introduced in
the next chapter. bears his name.)

Chapter 1 Digital Systems and Binary Numbers

1.29* Decode the following ASCII code:

1000010 1101001 1101100 1101100 1000111 1100001 1110100 1100101 1110011,

1.30 The following is a string of ASCII characters whose bit patterns have been converted into hexa-
decimal for compactness: 73 F4 E5 76 ES 4A EF 62 73. Of the eight bits in each pair of digits,
the leftmost is a parity bit. The remaining bits are the ASCII code.

{a) Convert the string to bit form and decode the ASCIL
(b) Determine the parity used: odd or even?

1.31* How many printing characters are there in ASCII? How many of them are special characters
(not letters or numerals)?

1-32* What bit must be complemented to change an ASCII letter from capital to lowercase and vice
versa?

1.33* The state of a 12-bit register is 100010010111. What is its content if it represents
(a) three decimal digits in BCD?

(b) three decimal digits in the excess-3 code?
(c) three decimal digits in the 84-2-1 code?
(d) a binary number?
1.34 List the ASCII code for the 10 decimal digits with an odd parity bit in the leftmost position.

1.35 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig. P1.35
as functions of the three inputs a, b, and c. Use all eight possible combinations of a, b, and c.

abe

FIGURE P1.35

1.36 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in Fig.
P1.36 as functions of the two inputs a and b. Use all four possible combinations of a and b.

a b

References 35

REFERENCES
1. CAVANAGH, 1, 1. 1984, Digital Computer Arithmetic. New York: McGraw-Hill.
2, Maxo, M. M. 1988, Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Prentice-
Hall.
3. NELsoN, V. P, H. T. NaGLE, J. D, Irwin, and B, D, CarroLL. 1997, Digital Logic Circuit Analy-
sis and Design. Upper Saddle River, NJ: Prentice Hall.
4. Scumip, H. 1974, Decimal Computation. New York: John Wiley.

Chapter 2
Boolean Algebra and Logic Gates

2.1 INTRODUCTION

Because binary logic is used in all of today's digital computers and devices, the cost of the
circuits that implement it is an important factor addressed by designers. Finding simpler and
cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the over-
all cost of the design. Mathematical methods that simplify circuits rely primarily on Boolean
algebra. Therefore, this chapter provides a basic vocabulary and a brief foundation in
Boolean algebra that will enable you to optimize simple circuits and to understand the pur-
pose of algorithms used by software tools to optimize complex circuits involving millions
of logic gates.

2.2 BASIC DEFINITIONS

36

Boolean algebra, like any other deductive mathematical system, may be defined with a set of
elements, a set of operators, and a number of unproved axioms or postulates. A ser of elements
is any collection of objects, usually having a common property. If § is a set, and x and y are cer-
tain objects, then x € § means that x is a member of the set § and y ¢ S means that y is not an
element of S. A set with a denumerable number of elements is specified by braces:
A = {1, 2,3, 4} indicates that the elements of set A are the numbers 1, 2, 3, and 4. A binary
operator defined on a set § of elements is a rule that assigns, to each pair of elements from S,
a unique element from S. As an example, consider the relation a*bh = ¢. We say that * is a
binary operator if it specifies a rule for finding ¢ from the pair (@, b) and also if a, b, ¢ € S. How-
ever, * is not a binary operatorif a, be S, if cg §.

Section 2.2 Basic Definitions 37

The postulates of a mathematical system form the basic assumptions from which it is pos-
sible to deduce the rules, theorems, and properties of the system. The most common postulates
used to formulate various algebraic structures are as follows:

L

3

4

F

o

Closure. A se1 § is closed with respect to a binary operator if, for every pair of elements
of S, the binary operator specifies a rule for obtaining a unique element of S. For example,
the set of natural numbers N = {1,2.3,4,... } is closed with respect to the binary
operator + by the rules of arithmetic addition, since, for any a. b € N, there is a unique
ce N suchthata + b = ¢. The set of natural numbers is nor closed with respect to the
binary operator — by the rules of arithmetic subtraction, because 2 — 3 = —1 and 2,
leN. but(—1)egN.

Associative law, A binary operator * on a set § is said to be associative whenever
(x*y)*z = x*(y*z) forall x.v.2.€§
Commutative law. A binary operator * on a set § is said to be commutative whenever
x*y = y*xforallx,yeS
Identity element. A set § is said to have an identity element with respect to a binary op-
eration * on § if there exists an element e € § with the property that
e*x = x*e = xforevery xe§
Example: The element () is an identity element with respect to the binary operator + on
the setof integers / = { ..., -3.-2,.-1.0,1.2.3.... }, since
x+0=0+x=xforanyxel

The set of natural numbers, N, has no identity element, since 0 is excluded from the set.

. Inverse. A set § having the identity element e with respect to a binary operator * is said

to have an inverse whenever, for every x e §, there exists an element v € § such that
x*y=e¢

Example: In the set of integers, /. and the operator +, with ¢ = 0, the inverse of an ele-

mentais(—a}).sincea + (—a) = 0.

Distributive law. If * and + are two binary operators on a set 8, * 1s said to be distrib-

utive over * whenever

x*(yez) = (x*y) (x*z2)

A field is an example of an algebraic structure. A field is a set of elements, together with two
binary operators, each having properties | through 5 and both operators combining to give
property 6. The set of real numbers, together with the binary operators + and -, forms the
field of real numbers. The field of real numbers is the basis for arithmetic and ordinary alge-
bra. The operators and postulates have the following meanings:

The binary operator + defines addition.
The additive identity is 0.

38

Chapter 2 Boolean Algebra and Logic Gates

The additive inverse defines subtraction.

The binary operator + defines multiplication.

The multiplicative identity is 1.

For a # 0, the multiplicative inverse of @ = 1/a defines division (i.e.,a*1/a = 1),
The only distributive law applicable is that of - over +:

a*(b+c)=(a*b) + (a-c)

2.3 AXIOMATIC DEFINITION

OF BOOLEAN ALGEBRA

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938,
C. E. Shannon introduced a two-valued Boolean algebra called switching algebra that repre-
sented the properties of bistable electrical switching circuits. For the formal definition of
Boolean algebra, we shall employ the postulates formulated by E. V. Huntington in 1904,

Boolean algebra is an algebraic structure defined by a set of elements, B, together with

two binary operators, + and -, provided that the following (Huntington) postulates are
satisfied:

1. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator .

2, (a) Theelement 0 is an identity element with respectto +; thatis, x + 0 =0 + x = x,
(b) The element 1 is an identity element with respect to *; thatis, x+1 = 1-x = x.

3. (a) The structure is commutative with respectto +; thatis, x + y = y + x.
(b) The structure is commutative with respect to «; thatis, x*y = v+ x.

4. (a) The operator * is distributive over +; thatis, x+(y + z) = (x-y) + (x-2).
(b) The operator + is distributive over - thatis,x + (y*z) = (x + ¥)*(x + z).

5. For every element x € B, there exists an element x' € B (called the complement of x)
suchthat(@a)x + x’' = land (b) x+x" = 0.

6. There exist at least two elements x, y € B such that x # v.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num-

bers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over * (i.e., x + (y*2) = (x + ¥) - (x + 2)), is valid for
Boolean algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are no
subtraction or division operations.

Section 2.3 Axiomatic Definition of Boolean Algebra 39

4. Postulate 5 defines an operator called the complement that is not available in ordinary
algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of ele-
ments. Boolean algebra deals with the as yet undefined set of elements, 8, but in the
two-valued Boolean algebra defined next (and of interest in our subsequent use of that
algebra), B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects, The choice of the
symbols + and - is intentional, to facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra. Although one can use some knowledge from ordinary
algebra to deal with Boolean algebra, the beginner must be careful not to substitute the rules
of ordinary algebra where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure and
the variables of an algebraic system. For example. the elements of the field of real numbers are
numbers, whereas variables such as a. b, ¢, etc.. used in ordinary algebra, are symbols that
stand for real numbers. Similarly. in Boolean algebra, one defines the elements of the set B, and
variables such as x, y, and z are merely symbols that represent the elements, At this point, it is
important to realize that, in order to have a Boolean algebra, one must show that

1. the elements of the set B,
2. the rules of operation for the two hinary operators, and

3. the set of elements, B, together with the two operators. satisfy the six Huntington
postulates.

One can formulate many Boolean algebras, depending on the choice of elements of B and
the rules of operation, In our subsequent work, we deal only with a two-valued Boolean alge-
bra (i.e.. a Boolean algebra with only two elements). Two-valued Boolean algebra has appli-
cations in set theory (the algebra of classes) and in propositional logic. Our interest here is in
the application of Boolean algebra to gate-type circuits.

Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, 8 = {0, 1}, with rules for
the two binary operators + and « as shown in the following operator tables (the rule for the
complement operator is for verification of postulate 5):

X y | xy x X+ y x|
0 0 0 0 0 0 0 1
0 1 0 0 1 1 | 0
1 0 0 1 0 1
1 1 I 1 1 1

40 Chapter 2

Boolean Algebra and Logic Gates

These rules are exactly the same as the AND, OR, and NOT operations, respectively, defined
in Table 1.8. We must now show that the Huntington postulates are valid for the set B = {0, 1}
and the two binary operators + and +.

1.

2.

3

6.

That the structure is closed with respect to the two operators is obvious from the tables,
since the result of each operation is either 1 orOand 1, 0 e B.

From the tables, we see that

(@ 0+0=20 O0+1=1+0=1;

(b) 1:1=1 1:0=0-1=0.

This establishes the two identity elements, 0 for + and 1 for -+, as defined by postu-
late 2.

The commutative laws are obvious from the symmetry of the binary operator tables.

. (@) The distributive law x+(y + z) = (x+y) + (x-z) can be shown to hold from the

operator tables by forming a truth table of all possible values of x, y, and z. For each
combination, we derive x* (y + z) and show that the value is the same as the value of

(x=y) + (x-2):

x y z y+z |[x(y+2 x.y | x+z (x-y) + (x-2)
0o 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
o 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
10 1 1 I 0 | 1
1 1 0 1 I 1 0 1
11 1 | 1 I 1 1

(b) The distributive law of + over * can be shown to hold by means of a truth table sim-
ilar to the one in part (a).

. From the complement table, it is easily shown that

() x+x"=1,since0+0'=0+1=landl +1"=1+0= 1.
(b) x*x' = 0,since 00" =0-1=0and1-1"=1-0 = 0.
Thus, postulate 1 is verified.

Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, 1 and
0, with 1 # Q.

We have just established a two-valued Boolean algebra having a set of two elements, 1 and 0,
two binary operators with rules equivalent to the AND and OR operations, and a complement op-
erator equivalent to the NOT operator. Thus, Boolean algebra has been defined in a formal math-
ematical manner and has been shown to be equivalent to the binary logic presented heuristically
in Section 1.9. The heuristic presentation is helpful in understanding the application of Boolean
algebra to gate-type circuits, The formal presentation is necessary for developing the theorems

Section 2.4 Basic Theorems and Properties of Boolean Algebra 41

and properties of the algebraic system. The two-valued Boolean algebra defined in this section
is also called “switching algebra™ hy engineers. To emphasize the similarities between two-valued
Boolean algebra and other binary systems, that algebra was called “binary logic™ in Section 1.9,
From here on, we shall drop the adjective “two-valued” from Boolean algebra in subsequent
discussions.

2.4 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

In Section 2.3, the Huntington postulates were listed in pairs and designated by part (a) and part
(b). One part may be obtained from the other if the binary operators and the identity elements
are interchanged, This important property of Booleun algebra is called the duality principle
and states that every algebraic expression deducible from the postulates of Boolean algebra re-
mains valid if the operators and identity elements are interchanged. In a two-valued Boolean
algebra, the identity elements and the elements of the set 8 are the same: | and 0. The duality
principle has many applications. If the dral of an algebraic expression is desired, we simply
interchange OR and AND operators and replace ['s by 0's and 0's by 1.

Basic Theorems

Table 2.1 lists six theorems of Boolean algebra and four of its postulates, The notation is sim-
plified by omitting the binary operator whenever doing so does not lead to confusion. The the-
orems and postulates listed are the most basic relationships in Boolean algebra. The theorems,
like the postulates, are listed in pairs; each relation is the dual of the one paired with it. The
postulates are basic axioms of the algebraic structure and need no proof. The theorems must
be proven from the postulates. Proofs of the theorems with one variable are presented next.
Al the right is listed the number of the postulate which justifies that particular step of the
proof.

Table 2.1

Postulates and Theorems of Boolean Algebra
Postulate 2 () X+0=x (b) xl=x
Postulate 5 (a) r+x =1 (b) xx'=0
Theorem 1 (a) rhx=x (b) X-Xx=x
Theorem 2 (a) x+l=1 (b) x0=0
Theorem 3. involution (x')=x
Postulate 3, commutative (a) XH*y=y+x (b) xy =
Theorem 4, associative @x+(y+2)=(c+y)+:z (b) x(yz) = (xv)z
Postulate 4, distributive (a) x(y+3)=xv+ a2 by x+yz=(x+y}x+2)
Theorem 5, DeMorgan (a) (v +y) = x'y (b (xy) =x" + '
Theorem 6, absorption (a) X+ xy=x B x(x+y)=x

42 Chapter 2 Boolean Algebra and Logic Gates

THEOREM 1(a): x + x = x.

Statement Justification
x+x=(x+x)-1 postulate 2(b)
=(x + x)(x + x') 5(a)
=x+ xx' 4(b)
=x+0 5(b)

= x 2(a)

THEOREM 1(b): x-x =x.

Statement Justification
xrx=xx+0 postulate 2(a)
= xx + xx' 5(b)

= x(x + x") 4(a)
=x-1 5(a)

=X 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof in part (b)
is the dual of its counterpart in part (a). Any dual theorem can be similarly derived from the
proof of its corresponding theorem.

THEOREM 2(a): x + 1 = L.

Statement Justification
x+1=1(x+1) postulate 2(b)
=(x+x)(x+1) 5(a)
=x+x'1 4(b)
=x+2x 2(h)

=1 5(a)

THEOREM 2(b): x-0 = 0 by duality.

THEOREM 3: (x')’ = x. From postulate 5, we have x + x' = 1 and x+x' = 0, which
together define the complement of x. The complement of x' is x and is also (x")". Therefore,
since the complement is unique, we have (x')" = x. The theorems involving two or three
variables may be proven algebraically from the postulates and the theorems that have
already been proven. Take, for example, the absorption theorem:

Section 2.4 Basic Theorems and Properties of Boolean Algebra 43

THEOREM 6(a): x + xv = x.

Statement Justification
r+xy=x-1+xy postulate 2(b)
=x(1 +y) 4a)

= x(y + 1) 3(a)

= x+] 2a)

=x 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be proven by means of truth tables. In truth tables,
both sides of the relation are checked to see whether they yield identical results for all
possible combinations of the variables involved, The following truth table verifies the first
absorption theorem:

x|y :yix+xy
0| o o o
0|1 0 0
1 |o 0 I
I 1 !l 1

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will not
be shown here. However, their validity is easily shown with truth tables. For example, the truth
table for the first DeMorgan’s theorem, (x + ¥)’ = x'y', is as follows:

x y | x+ ¥ (x + y) x' Yy xy
0o o 0 1 1 1 1
0 1 1 | 0 | 0 0
10 1 0 0 1 0
1 1 1 0 0 0 0

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) NOT, (3)
AND, and (4) OR. In other words, expressions inside parentheses must be evaluated before
all other operations. The next operation that holds precedence is the complement, and then fol-
lows the AND and, finally, the OR. As an example, consider the truth table for one of De-
Morgan's theorems. The left side of the expression is (x + v)". Therefore. the expression
inside the parentheses is evaluated first and the result then complemented. The right side of

44 Chapter 2 Boolean Algebra and Logic Gates
the expression is x'y’, so the complement of x and the complement of y are both evaluated first

and the result is then ANDed. Note that in ordinary arithmetic, the same precedence holds (except
for the complement) when multiplication and addition are replaced by AND and OR, respectively.

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
1, and the logic operation symbols. For a given value of the binary variables, the function can
be equal to either 1 or 0. As an example, consider the Boolean function
Fr=x+y'z

The function Fj is equal to 1 if x is equal to | or if both y" and z are equal to 1. Fj is equal to
0 otherwise. The complement operation dictates that when y’ = 1, y = 0. Therefore, F; = 1
ifx = lorify = Oand z = 1. A Boolean function expresses the logical relationship between
binary variables and is evaluated by determining the binary value of the expression for all pos-
sible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2", where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from O through 2" — 1. Table 2.2
shows the truth table for the function F;. There are eight possible binary combinations for as-
signing bits to the three variables x, y, and z. The column labeled F| contains either 0 or 1 for
each of these combinations. The table shows that the function is equal to 1 when x = 1 or
when yz = 01 and is equal to 0 otherwise.

A Boolean function can be transformed from an algebraic expression into a circuit diagram
composed of logic gates connected in a particular structure. The logic-circuit diagram (also
called a schematic) for F) is shown in Fig. 2.1. There is an inverter for input y to generate its
complement. There is an AND gate for the term y'z and an OR gate that combines x with y'z.
In logic-circuit diagrams, the variables of the function are taken as the inputs of the circuit and
the binary variable F, is taken as the output of the circuit.

There is only one way that a Boolean function can be represented in a truth table. However,
when the function is in algebraic form, it can be expressed in a variety of ways, all of which

Table 2.2

Truth Tables for F, and F;
x Yy z F F
0 0 0 0 0
0 0 | 1 1
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 | 0
1 1 | | 0

Section 2.5 Boolean Functions 45

-

FIGURE 2.1
Gate implementation of Fy = x + y'z

>
y—11{>»

—h f
'

—)
S
—fasd

@F=xvz+txyz+ay

(b F=xy' +x'z

FIGURE 2.2
Implementation of Boolean function F; with gates

have equivalent logic. The particular expression used to represent the function will dictate the
interconnection of gates in the logic-circuit diagram. Here is a key fact that motivates our use
of Boolean algebra: By manipulating a Boolean expression according to the rules of Boolean
algebra, it is sometimes possible to obtain a simpler expression for the same function and thus
reduce the number of gates in the circuit and the number of inputs to the gate. Designers are
motivated to reduce the complexity and number of gates because their effort can significantly
reduce the cost of a circuit. Consider, for example, the following Boolean function:

F=xyz+x'yz +xy'

A schematic of an implementation of this function with logic gates is shown in Fig. 2.2(a).

46

Chapter 2 Boolean Algebra and Logic Gates

Input variables x and y are complemented with inverters to obtain x’ and y'. The three terms
in the expression are implemented with three AND gates. The OR gate forms the logical OR
of the three terms. The truth table for £ is listed in Table 2.2. The function is equal to 1 when
xyz = 001 or 011 or when xy = 10 (irrespective of the value of z) and is equal to 0 otherwise.
This set of conditions produces four 1's and four 0's for F5.

Now consider the possible simplification of the function by applying some of the identities
of Boolean algebra:

BE=xyYe+xyz+xy=x"z(y' +y) + ' =x'z + xy'

The function is reduced to only two terms and can be implemented with gates as shown in
Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both imple-
ment the same function, By means of a truth table, it is possible to verify that the two
expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or when
xy = 10. This produces the same four 1’s in the truth table. Since both expressions produce
the same truth table, they are equivalent. Therefore, the two circuits have the same outputs
for all possible binary combinations of inputs of the three variables. Each circuit implements
the same identical function, but the one with fewer gates and fewer inputs to gates is prefer-
able because it requires fewer wires and components. In general, there are many equivalent
representations of a logic function.

Algebraic Manipulation

EXAMPLE 2.1

When a Boolean expression is implemented with logic gates, each term requires a gate and each
variable within the term designates an input to the gate. We define a literal to be a single vari-
able within a term, in complemented or uncomplemented form. The function of Fig. 2.2(a) has
three terms and eight literals, and the one in Fig. 2.2(b) has two terms and four literals. By re-
ducing the number of terms, the number of literals, or both in a Boolean expression, it is often
possible to obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of re-
ducing an expression for the purpose of obtaining a simpler circuit. Functions of up to five
variables can be simplified by the map method described in the next chapter. For complex
Boolean functions, designers of digital circuits use computer minimization programs that are
capable of producing optimal circuits with millions of logic gates. The concepts introduced in
this chapter provide the framework for those tools. The only manual method available is a cut-
and-try procedure employing the basic relations and other manipulation techniques that be-
come familiar with use, but remain, nevertheless, subject to human error, The examples that
follow illustrate the algebraic manipulation of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals.
L x(x'+y)=xx"+2xy=0+xy=2ay

2, x+xy=(x+x")x+ty)=1l{x+y)=x+y

Section 2.5 Boolean Functions 47

A (r+¥)r+y)=x+xv+xn+w=x(l+y+y)=x
4 xy+xlztyr=xy+ x4+ ya{x+ £)
=y + 2’z + ayvz + x'yz
= xy(l +2)+x'2(1 +)
=xy + x'z.
5. (x4 y)(a' + 2)(v + 2) = (x + y)(x" + z), by duality from function 4.

Functions 1 and 2 are the dual of each other and nse dual expressions in corresponding steps.
An easier way to simplify function 3 is by means of postulate 4(b) from Table 2.1:
(x + ¥)(x + v') = x + yv' = x. The fourth function illustrates the fact that an increase in
the number of literals sometimes leads to a simpler final expression. Function 5 is not mini-
mized directly, but can be derived from the dual of the steps used to derive function 4. Fune-
tions 4 and 5 are together known as the consensus theorem.

Complement of a Function

The complement of a function ' is F' and is obtained from an interchange of 0's for 1's and
1's for 0's in the value of F. The complement of a function may be derived algebraically through
DeMorgan’s theorems, listed in Table 2.1 for two variables. DeMorgan’s theorems can be ex-
tended to three or more variables. The three-variable form of the first DeMorgan's theorem is
derived as follows, from postulates and theorems listed in Table 2.1:
(A+B+C) =(A+x) letB+C=x

= A"x' by theorem 5(a) (DeMorgan)
A'(B + C)' substitute B+ C = x
= A'(B'C") by theorem 5(a) (DeMorgan)
= A'B'C’ by theorem 4(b) (associative)

DeMorgan's theorems for any number of variables resemble the two-variable case in form and
can be derived by successive substitutions similar to the method used in the preceding deriva-
tion. These theorems can be generalized as follows:

(A+B+C+D+ - +F) =ABCD..F

(ABCD...F) =A"+B +C' +D' + -+ + F'

The generalized form of DeMorgan's theorems states that the complement of a function is
obtained by interchanging AND and OR operators and complementing each literal,

48 Chapter 2 Boolean Algebra and Logic Gates

EXAMPLE 2.2

Find the complement of the functions F; = x'yz' + x'y'zand /i, = x(y'z’ + yz). By ap-
plying DeMorgan’s theorems as many times as necessary, the complements are obtained as
follows:

Fi = (x'y2' + x'y'2)' = (x'y2")'(x'y'2)' = (x +)’ + 2)(x + y + 2)
Fz= [x(y'2 + y2)I' =x' + (y’Z + yr)'=x"+ (') (»2)’
X+ (y+2)0 +2)

]

x! + '\.:! + .‘"z
-

A simpler procedure for deriving the complement of a function is to take the dual of the func-
tion and complement each literal. This method follows from the generalized forms of DeMor-
gan's theorems. Remember that the dual of a function is obtained from the interchange of AND
and OR operators and 1's and 0's.

EXAMPLE 2.3

Find the complement of the functions F; and F; of Example 2.2 by taking their duals and com-
plementing each literal.

1. Fy = x'yz' + x'y'z.
The dual of Fyis (x' + y + 2')(x" + y' + 2).
Complement each literal: (x + ¥' + z)(x + vy + 2') = F}.
2. =x(y'z" + yz2).
The dual of Fais x + (y' + 2')(y + 2).
Complement each literal: x' + (y + 2)(y' + 2') = Fb.

2.6 CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x').
Now consider two binary variables x and y combined with an AND operation. Since each vari-
able may appear in either form, there are four possible combinations: x'y’, xy, xy’, and xy.
Each of these four AND terms is called a minterm, or a standard product. In a similar manner,
n variables can be combined to form 2" minterms. The 2" different minterms may be determined
by a method similar to the one shown in Table 2.3 for three variables. The binary numbers
from 0to 2" — 1 are listed under the n variables. Each minterm is obtained from an AND term
of the n variables, with each variable being primed if the corresponding bit of the binary num-
ber is a 0 and unprimed if a 1. A symbol for each minterm is also shown in the table and is of

Section 2.6 Canonical and Standard Forms 49

Table 2.3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms

X y z Term Designation Term Designation
0 0 0 %'v'g" mo xX+ty+z My
0 0 1 a'y'z my x+y+.2 M
0 1 0 ! m; x4+ ¥tz M,
0 1 1 a'yz ms x5 M;
1 0 0 'z’ my o s O o2 4 My
1 0 1 xy'z ms XAy 4+ Ms
1 1 0 xyz' mg x iyl Mg
1 1 1 xvz my ey M,

Table 2.4

Functions of Three Variables
x y z Function f, Function f;
0 0 0 0 0
0 0 1 1 0
0 1 0 0]
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 | 1 1

the form m;, where the subscript j denotes the decimal equivalent of the binary number of the
minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed or
unprimed, provide 2" possible combinations, called maxterms, or standard sums. The eight
maxterms for three variables, together with their symbolic designations, are listed in Table 2.3.
Any 2" maxterms for n variables may be determined similarly. It is important to note that
(1) each maxterm is obtained from an OR term of the n variables, with each variable being un-
primed if the corresponding bit is a 0 and primed if a I, and (2) each maxterm is the comple-
ment of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function and then tak-
ing the OR of all those terms. For example, the function £ in Table 2.4 is determined by ex-
pressing the combinations 001, 100, and 111 as x"y'z, xy'z’, and xyz, respectively. Since each
one of these minterms results in f; = 1, we have

H=xyz+ a3z +axyz=m +my+ my

50 Chapter 2 Boolean Algebra and Logic Gates

Similarly, it may be easily verified that
fH=x"yz + xy'z + xyz' + xyz = m3 + ms + mg + my

These examples demonstrate an important property of Boolean algebra: Any Boolean function
can be expressed as a sum of minterms (with “sum™ meaning the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing
those terms, The complement of f] is read as

fi=xy7 +x'yz' + x'yz + xy'z + xyz'
If we take the complement of f, we obtain the function f;:
fi= @ty +)ty + 0 +y+) +y +2)
= My* M3+ My Ms+ M
Similarly, it is possible to read the expression for f; from the table:
L=x+y+)x+y+2)Nx+y +2)(x +y+2)
= MqMM>M,

These examples demonstrate a second property of Boolean algebra: Any Boolean function can
be expressed as a product of maxterms (with “product” meaning the ANDing of terms). The
procedure for obtaining the product of maxterms directly from the truth table is as follows:
Form a maxterm for each combination of the variables that produces a 0 in the function, and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minterms
or product of maxterms are said to be in canonical form.

Sum of Minterms

Previously, we stated that, for n binary variables, one can obtain 2" distinct minterms and that
any Boolean function can be expressed as a sum of minterms. The minterms whose sum de-
fines the Boolean function are those which give the 1's of the function in a truth table. Since
the function can be either 1 or 0 for each minterm, and since there are 2" minterms, one can
calculate all the functions that can be formed with n variables to be 22", It is sometimes con-
venient to express a Boolean function in its sum-of-minterms form. If the function is not in this
form, it can be made so by first expanding the expression into a sum of AND terms, Each term
is then inspected to see if it contains all the variables. If it misses one or more variables, it is
ANDed with an expression such as x + x', where x is one of the missing variables. The next
example clarifies this procedure.

EXAMPLE 2.4

Express the Boolean function F = A + B'C as a sum of minterms. The function has three
variables: A, B, and C. The first term A is missing two variables; therefore,

A= A(B + B') = AB + AB'

Section 2.6 Canonical and Standard Forms 51

This function is still missing one variable, so
A= AB(C + C') + AB'(C + (")
= ABC + ABC' + AB'C + AB'C’

The second term B'C is missing one variable; hence.

B'C=RBC(A+ A') = AB'C + A'B'C
Combining all terms, we have

F=A+BC
= ABC + ABC' + AB'C + AB'C' + A'B'C

But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to remove
one of those occurrences. Rearranging the minterms in ascending order, we finally obtain

F=AB'C+ AB'C + AB'C + ABC' + ABC
ny o+ omy + oms + mg + my

When a Boolean function is in its sum-of-minterms form. it is sometimes convenient (o express
the function in the following brief notation:

F(A,B.C) = Z(1.4.5,6,7)

The summation symbol 3 stands for the ORing of terms; the numbers following it are the
minterms of the function. The letters in parentheses following F form a list of the variables in
the order taken when the minterm is converted to an AND term,

An alternative procedure for deriving the minterms of a Boolean function is to obtain the
truth table of the function directly from the algebraic expression and then read the minterms
from the truth 1able. Consider the Boolean function given in Example 2.4:

F=A+BC

The truth table shown in Table 2.5 can be derived directly from the algebraic expression by list-
ing the eight binary combinations under variables A, B, und C and inserting 1's under F for those

Table 2.5

Truth Table for F = A + B'C
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 Q 1
1 0 1 |
1 1 0 1
1 1 1 1

52 Chapter 2 Boolean Algebra and Logic Gates

combinations for which A = 1 and BC = 01. From the truth table, we can then read the five
minterms of the functiontobe 1,4, 5, 6, and 7.

Product of Maxterms

Each of the 2%" functions of n binary variables can be also expressed as a product of maxterms.
To express a Boolean function as a product of maxterms, it must first be brought into a form
of OR terms. This may be done by using the distributive law, x + yz = (x + y)(x + 2).
Then any missing variable x in each OR term is ORed with xx'. The procedure is clarified in
the following example.

EXAMPLE 2.5

Express the Boolean function F = xy + x'z as a product of maxterms. First, convert the func-
tion into OR terms by using the distributive law:

F=xy+x'z= (xy + x")(xy + z)
=(x+x")(y +) (x+2)(y + 2)
= (x" +y)(x + 2)(y + 2)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,
Xty =x'+y+'=+y+)x' +y+2)
xtz=xtzty =(x+y+)(x+y +2)
ytz=ytz+axx'=(x+y+2)(x' +y+2)

Combining all the terms and removing those which appear more than once, we finally obtain
F=e{x+y+z2)x+y +2)(x +y+2)(x' +y+2')

= MoM>MMs
A convenient way to express this function is as follows:
F(x,y,z) =I1(0, 2,4, 5)

The product symbol, T, denotes the ANDing of maxterms; the numbers are the maxterms of
the function.

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms
missing from the original function. This is because the original function is expressed by those
minterms which make the function equal to 1, whereas its complement is a 1 for those minterms
for which the function is a 0. As an example, consider the function

F(A,B,C) = 2(1,4,5,6,7)
This function has a complement that can be expressed as

F'(A,B,C) = 2(0,2,3) = mg + my + ms

Section 2.6 Canonical and Standard Forms 53

Now, if we take the complement of £ by DeMorgan's theorem, we obtain Fin a different form:
F = (mg+ my + m3) = mymyms = MoM_My = T1(0, 2, 3)

The last conversion follows from the definition of minterms and maxterms as shown in Table 2.3.
From the table, it is clear that the following relation holds:

m} = Mj
That is, the maxterm with subscript f is a complement of the minterm with the same subscript
J and vice versa.

The last example demonstrates the conversion between a function expressed in sum-of-
minterms form and its equivalent in product-of-maxterms form. A similar argument will show
that the conversion between the product of maxterms and the sum of minterms is similar. We
now state a general conversion procedure: To convert from one canonical form to another, in-
terchange the symbols X and IT and list those numbers missing from the original form. In
order to find the missing terms, one must realize that the total number of minterms or maxterms
is 2", where n is the number of binary variables in the function.

A Boolean function can be converied from an algebraic expression 10 a product of max-
terms by means of a truth table and the canonical conversion procedure. Consider, for exam-
ple, the Boolean expression

F=xy+2a'z
First. we derive the truth table of the function, as shown in Table 2.6. The 1's under F in the
table are determined from the combination of the variables for which xy = 11 orxz = 01, The

minterms of the function are read from the truth table to be 1. 3, 6. and 7. The function expressed
as a sum of minterms is

Flx.vz) = 3(1.3.6.7)

Since there is a total of eight minterms or maxterms in a function of three variables. we deter-
mine the missing terms to be 0. 2. 4, and 5. The function expressed as a product of maxterms is

Flx.v,z) = T1(0.2.4. 5)

the same answer as obtained in Example 2.5,

Table 2.6

Truth Table for F = xy + x'z
X Y z F
0 0 0 0
0 0 | 1
0 1 0 0
0 ! 1 1
1 0 0 0
i 0 i 0
I 1 0 |
1 1 1 1

54 Chapter 2 Boolean Algebra and Logic Gates

Standard Forms

otz by

-

11 L

The two canonical forms of Boolean algebra are basic forms that one obtains from reading a
given function from the truth table. These forms are very seldom the ones with the least num-
ber of literals, because each minterm or maxterm must contain, by definition, all the variables,
either complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration, the
terms that form the function may contain one, two, or any number of literals. There are two types
of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product terms,
with one or more literals each. The sum denotes the ORing of these terms. An example of a func-
tion expressed as a sum of products is

Fi=y +xy+2'yz

The expression has three product terms, with one, two, and three literals. Their sum is, in ef-
fect, an OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gates fol-
lowed by a single OR gate. This configuration pattern is shown in Fig. 2.3(a). Each product term
requires an AND gate, except for a term with a single literal. The logic sum is formed with an
OR gate whose inputs are the outputs of the AND gates and the single literal. It is assumed that
the input variables are directly available in their complements, so inverters are not included in
the diagram. This circuit configuration is referred to as a two-level implementation.

A product of sums is a Boolean expression containing OR terms, called sum rerms. Each term
may have any number of literals. The producr denotes the ANDing of these terms. An exam-
ple of a function expressed as a product of sums is

B=x(y +z)(x" +y+2)

This expression has three sum terms, with one, two, and three literals. The product is an AND
operation. The use of the words product and sum stems from the similarity of the AND oper-
ation to the arithmetic product (multiplication) and the similarity of the OR operation to the arith-
metic sum (addition). The gate structure of the product-of-sums expression consists of a group
of OR gates for the sum terms (except for a single literal), followed by an AND gate, as shown
in Fig. 2.3(b). This standard type of expression results in a two-level gating structure.

Fy

F

Lot T

(a) Sum of Products (b) Product of Sums

FIGURE 2.3
Two-level implementation

Section 2.7 Other Logic Operations 55

Fi

mMonN %
mAa Un W

5
=D
B

(a)AB + C(D + E) (b)AB+ CD + CE

FIGURE 2.4
Three- and two-level implementation

A Boolean function may be expressed in a nonstandard form. For example, the function
Fs=AB+C(D + E)

1s neither in sum-of-products nor in product-of-sums form, The implementation of this ex-
pression is shown in Fig, 2.4(a) and requires two AND gates and two OR gates. There are three
levels of gating in this circuit. It can be changed to a standard form by using the distributive
law to remove the parentheses:

F;=AB+ C(D + E) = AB + CD + CE

The sum-of-products expression is implemented in Fig. 2.4(b). In general. a tiwo-level imple-
mentation is preferred because it produces the least amount of delay through the gates when
the signal propagates from the inputs to the output. However, the number of inputs 1o a given
gate might not be practical.

2.7 OTHER LOGIC OPERATIONS

When the binary operators AND and OR are placed between two variables, x and v, they form
two Boolean functions, x+y and x + v. respectively. Previously we stated that there are 2o
functions for n binary variables. Thus, for two variables, n = 2, and the number of possible
Boolean functions is 16. Therefore, the AND and OR functions are only 2 of a total of 16 pos-
sible functions formed with two binary vanables. It would be instructive to find the other 14
functions and investigate their propertics.

The truth tables for the 16 functions formed with two binary variables are listed in Table 2.7.
Each of the 16 columns, £ to F|s. represents a truth table of one possible function for the two
variables, x and y. Note that the functions are determined from the 16 binary combinations that
can be assigned to F. The 16 functions can be expressed algebraically by means of Boolean func-
tions, as is shown in the first column of Table 2.8, The Boolean expressions listed are simpli-
fied 1o their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND, OR, and
NOT, there is no reason one cannot assign special operator symbols for expressing the other func-
tions. Such operator symbols are listed in the second column of Table 2.8. However, of all the new
symbols shown. only the exclusive-OR symbol. & , is in common use by digital designers.

Chapter 2 Boolean Algebra and Logic Gates

Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

x vy |k R b 5 kg Fs F¢ F; Fg F Fo Fy Fiz Fyz Fi4 Fis

0 0 6o o o 0 0o 0 00 1 1 1 1 1 1 1 1

0 1 g o0 % 1 ¥ 1 @ ®» e X 3 11

1 0 g o @ T @9 ¥ 1.@¢ O L I @ 0 1 1

I | o 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables
Operator
Boolean Functions Symbol Name Comments

Fp=0 Null Binary constant 0
F = xy x-y AND Xxandy
F =y Xy Inhibition X, but not ¥
B=x Transfer X
Fy=x'"y AVAS Inhibition ¥, but not x
F=y% Transfer y
Fo=xy +x'y x®y Exclusive-OR x or Y, but not both
FR=x+y x+y OR xory
Fg=(x+y) x|y NOR Not-OR
Fy=xy+x'y (x®y) Equivalence Xxequals y
Fig =)' ¥ Complement Not y
Fio=x+y xCy Implication If y, then x
Fi; =x' x' Complement Not x
Fia=x"+y xDy Implication If x, then y
Fyy = (J}‘)' X T y NAND Not-AND
Fs=1 Identity Binary constant 1

Each of the functions in Table 2.8 is listed with an accompanying name and a comment that
explains the function in some way. The 16 functions listed can be subdivided into three categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND, OR,
NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Constants for binary functions can be equal to only 1 or 0. The complement function pro-
duces the complement of each of the binary variables. A function that is equal to an input vari-
able has been given the name transfer, because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary operators, two (inhibi-
tion and implication) are used by logicians, but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are used extensively in the design of digital systems.

Section 2.8 Digital Logic Gates 57

The NOR function is the complement of the OR function, and its name is an abbreviation
of not-OR. Similarly, NAND is the complement of AND and is an abbreviation of not-AND.
The exclusive-OR, abbreviated XOR. is similar to OR, but excludes the combination of both
xand y being equal to 1: it holds only when x and y differ in value. (It is sometimes referred
10 as the binary difference operator.) Equivalence is a function that is 1 when the two binary
variables are equal (i.e.. when both are 0 or both are 1). The exclusive-OR and equivalence func-
tions are the complements of each other. This can be easily verified by inspecting Table 2.7:
The truth table for exclusive-OR is Fg and for equivalence is Fo, and these two functions are
the complements of each other. For this reason. the equivalence function is called exclusive-
NOR, abbreviated XNOR,

Boolean algebra, as defined in Section 2.2, has two binary operators, which we have called
AND and OR. and a unary operator, NOT (complement). From the definitions, we have deduced
a number of properties of these operators and now have defined other binary operators in terms
of them, There is nothing unique about this procedure. We could have just as well started with
the operator NOR (|), for example, and later defined AND, OR, and NOT in terms of it. There
are. nevertheless, good reasons for introducing Boolean algebra in the way it has been intro-
duced. The concepts of “and,” “or,” and “not” are familiar and are used by people to express
everyday logical ideas. Moreover, the Huntington postulates reflect the dual nature of the al-
gebra, emphasizing the symmetry of + and - with respect 1o each other.

2.8 DIGITAL LOGIC GATES

Since Boolean functions are expressed in terms of AND, OR. and NOT operations, it is easier
to implement a Boolean function with these type of gates. Still, the possibility of constructing
gates for the other logic operations is of practical interest. Factors to be weighed in consider-
ing the construction of other types of logic gates are (1) the feasibility and economy of producing
the gate with physical components. (2) the possibility of extending the gate to more than two
inputs. (3) the basic properties of the binary operator. such as commutativity and associativi-
ty, and (4) the ability of the gate to implement Boolean functions alone or in conjunction with
other gates.

Of the 16 functions defined in Table 2.8, two are equal to a constant and four are repeated.
There are only 10 functions left to be considered as candidates for logic gates. Two—inhibi-
tion and implication—are not commutative or associative and thus are impractical to use as stan-
dard logic gates. The other eight—complement, transfer, AND, OR, NAND, NOR,
exclusive-OR. and equivalence—are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig, 2.5, Each gate has
one or two binary input variables, designated by x and v, and one binary output variable, des-
ignated by F. The AND, OR, and inverter circuits were defined in Fig. 1.6. The inverter cir-
cuit inverts the logic sense of a binary variable, producing the NOT, or complement, function.
The small circle in the output of the graphic symbol of an inverter (referred to as a bubble) des-
ignates the logic complement. The triangle symbol by itself designates a buffer circuit. A buffer
produces the transfer function, but does not produce a logic operation, since the binary value
of the output is equal to the binary value of the input. This circuit is used for power amplifi-
cation of the signal and is equivalent to two inverters connected in cascade.

58

Chapter 2 Boolean Algebra and Logic Gates

Graphic Algebraic Truth
Reidi symbol function table
r y| F
x 7 7 -'.; - 0 0| 0
o e E
I 1] 1%
x yl F
OR ¥ = 4 B
y __,l‘ 7, E F=x+ ¥ 0 1 1
1 0] 1
1 1] I
[F
Inverter F=x' ?_1
11 ©
xi F
Buffer F=x o o
1 1
x oy F
NAND F= (o) 0 1| 1
1 0] 1
1 1] @
x ¥
r: Pe(x+y) 9
1 o o0
1 1] 0
¥ y] F
Exclusive-OR F=xy' +xy 0 of o
(XOR) =x8y e 1
I D] 1
1 1] B
x y| F
Exclusive-NOR F=xy+xy 0 o -T
or = §
equivalence o ? l!) g
I ‘1] 1
FIGURE 2.5

Digital logic gates

Section 2.8 Digital Logic Gates 59

The NAND function is the complement of the AND function. as indicated by a graphic
symbol that consists of an AND graphic symbol followed by a small circle. The NOR function
is the complement of the OR function and uses an OR graphic symbol followed by a small cir-
cle. NAND and NOR gates are used extensively as standard logic gates and are in fact far more
popular than the AND and OR gates. This is because NAND and NOR gates are easily con-
structed with transistor circuits and because digital circuits can be easily implemented with
them.

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for
the additional curved line on the input side. The equivalence. or exclusive-NOR, gate is the
complement of the exclusive-OR, as indicated by the small circle on the output side of the
graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2.5—except for the inverter and buffer—can be extended to have
more than two inputs, A gate can be extended to have multiple inputs if the binary operation it
represents is commutative and associative. The AND and OR operations, defined in Boolean
algebra, possess these two properties. For the OR function, we have

X+ y=y+tx (commutative)
and
(x+¥)+z=x+(y+2)=x+y+: (associative)

which indicates that the gate inputs can be interchanged and that the OR function can be ex-
tended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended to have more
than two inputs, provided that the definition of the operation is modified slightly. The difficulty is
that the NAND and NOR operators are not associative (ie. (x | ¥) | = # x | (v | 2)). as shown
in Fig. 2.6 and the following equations:

(U ba=la+y) +al' = (x40 =52 + e
dlla =+ (y+ T =x(r+2) = ¥y + 22
To overcome this difficulty, we define the multiple NOR (or NAND) gate as a complemented
OR (or AND) gate. Thus, by definition, we have
xlylz=(x+y+3z)
xtytz=(xvz)
The graphic symbols for the three-input gates are shown in Fig. 2.7. In writing cascaded NOR
and NAND operations. one must use the correct parentheses to signify the proper sequence of

the gates. To demonstrate this principle, consider the circuit of Fig, 2.7(c). The Boolean func-
tion for the circuit must be written as

F = [(ABC)'(DE)'Y = ABC + DE

60

Chapter 2 Boolean Algebra and Logic Gates

xr—3
¥— :

(xdiy)dz=(x+y2z

lyl)=x(+2)

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x | y) |z # x| (v | 2)

(x+y+2)

(xyz)'

{a) 3-input NOR gate {b) 3-input NAND gate

A —
B —
C —

—
o

F=[(ABC)' - (DE)'] = ABC + DE

(c) Cascaded NAND gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gates

The second expression is obtained from one of DeMorgan's theorems. It also shows that an ex-
pression in sum-of-products form can be implemented with NAND gates. (NAND and NOR
gates are discussed further in Section 3.7.)

The exclusive-OR and equivalence gates are both commutative and associative and can be
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon
from the hardware standpoint. In fact, even a two-input function is usually constructed with other
types of gates. Moreover, the definition of the function must be modified when extended to more
than two variables, Exclusive-OR is an odd function (i.e., it is equal to 1 if the input variables
have an odd number of 1's). The construction of a three-input exclusive-OR function is shown
in Fig. 2.8. This function is normally implemented by cascading two-input gates, as shown in
(a). Graphically, it can be represented with a single three-input gate, as shown in (b). The truth
table in (c) clearly indicates that the output F is equal to | if only one input is equal to | or if

Section 2.8 Digital Logic Gates 61

x ¥ z &
."
0o 0o 0 0
% F=x Q_I' 9z 0 0 1 1
- g 1 Wb
(a) Using 2-input gates 0o 1 1 0
1 0 0 1
1 0 1 0
" 1 1 0 0
{ﬂ>—ruxme: A |
¥ (c) Truth table

(b) 3-input gate
FIGURE 2.8
Three-input exclusive-OR gate

all three inputs are equal to | (i.e., when the total number of 1's in the input variables is odd).
(Exclusive-OR gates are discussed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except during
transition. One signal value represents logic | and the other logic 0. Since two signal values
are assigned to two logic values, there exist two different assignments of signal level to logic
value, as shown in Fig. 2.9. The higher signal level is designated by H and the lower signal
level by L. Choosing the high-level H to represent logic | defines a positive logic system.
Choosing the low-level L to represent logic | defines a negative logic system. The terms posi-
tive and negative are somewhat misleading. since both signals may be positive or both may
be negative. It is not the actual values of the signals that determine the type of logic. but rather
the assignment of logic values to the relative amplitudes of the two signal levels.

Hardware digital gates are defined in terms of signal values such as H and L. It is up to
the user to decide on a positive or negative logic polarity. Consider, for example, the elec-
tronic gate shown in Fig. 2.10(b). The truth table for this gate is listed in Fig. 2.10(a). It
specifies the physical behavior of the gate when H is 3 volts and L is 0 volts. The truth table
of Fig. 2.10{(c) assumes a positive logic assignment, with # = 1 and L = 0. This truth table
is the same as the one for the AND operation. The graphic symbol for a positive logic AND
gate is shown in Fig. 2.10(d).

Logic Signal Logic Signal
value value value value
1 — H 0 e
0 ! A 1 L
(a) Positive logic (b) Negative logic
FIGURE 2.9

Signal assignment and logic polarity

62

Chapter 2 Boolean Algebra and Logic Gates

x ¥y z
L L L x
L H L
H L L y
H H H
(a) Truth table (b) Gate block diagram
with Hand L
x Yy z
0 0 0
0o 1 0
1 0 0
2 [1
{c) Truth table for (d) Positive logic AND gate
positive logic
x ¥ z
5 [1
1 0 1 -
0 1 |1 - ¢
0 o i} y —Dp
(e) Truth table for (f) Negative logic OR gate

negative logic

FIGURE 2.10
Demonstration of positive and negative logic

Now consider the negative logic assignment for the same physical gate with L = land H = 0.
The result is the truth table of Fig. 2.10(e). This table represents the OR operation, even though
the entries are reversed. The graphic symbol for the negative-logic OR gate is shown in Fig.
2.10(f). The small triangles in the inputs and output designate a polarity indicator, the presence
of which along a terminal signifies that negative logic is assumed for the signal, Thus, the same
physical gate can operate either as a positive-logic AND gate or as a negative-logic OR gate.

The conversion from positive logic to negative logic and vice versa is essentially an oper-
ation that changes 1's to 0's and 0's to 1's in both the inputs and the output of a gate. Since this
operation produces the dual of a function, the change of all terminals from one polarity to the
other results in taking the dual of the function. The upshot is that all AND operations are con-
verted to OR operations (or graphic symbols) and vice versa. In addition, one must not forget
to include the polarity-indicator triangle in the graphic symbols when negative logic is as-
sumed. In this book, we will not use negative logic gates and will assume that all gates oper-
ate with a positive logic assignment,

Section 2.9 Integrated Circuits 63

2.9 INTEGRATED CIRCUITS

An integrated circuit (abbreviated IC) is a silicon semiconductor crystal, called a chip, containing
the electronic components for constructing digital gates. The various gates are interconnected
inside the chip to form the required circuit. The chip is mounted in a ceramic or plastic con-
tainer, and connections are welded to external pins to form the integrated circuit. The number
of pins may range from 14 on a small IC package to several thousand on a larger package.
Each IC has a numeric designation printed on the surface of the package for identification,
Vendors provide data books, catalogs, and Internet websites that contain descriptions and in-
formation about the ICs that they manufacture.

Levels of Integration

Digital ICs are often categorized according to the complexity of their circuits, as measured by
the number of logic gates in a single package. The differentiation between those chips which
have a few internal gates and those having hundreds of thousands of gates is made by cus-
tomary reference to a package as being either a small-, medium-, large-, or very large-scale in-
tegration device.

Small-scale integration (S81) devices contain several independent gates in a single pack-
age. The inputs and outputs of the gates are connected directly to the pins in the package. The
number of gates is usually fewer than 10 and is limited by the number of pins available in
the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to 1,000
gates in a single package. They usually perform specific elementary digital operations. MSI dig-
ital functions are introduced in Chapter 4 as decoders, adders, and multiplexers and in Chapter
6 as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package. They
include digital systems such as processors, memory chips. and programmable logic devices.
Some LSI components are presented in Chapter 7.

Very large-scale integration (VLLSI) devices contain hundred of thousands of gates within
a single package. Examples are large memory arrays and complex microcomputer chips. Be-
cause of their small size and low cost. VLSI devices have revolutionized the computer system
design technology, giving the designer the capability to create structures that were previously
uneconomical to build.

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical operation, but
also by the specific circuit technology to which they belong. The circuit technology is referred
1o as a digital logic familv, Each logic family has its own basic electronic circuit upon which
more complex digital circuits and components are developed, The basic circuit in each tech-
nology is a NAND, NOR, or inverter gate. The electronic components employed in the con-
struction of the basic circuit are usually used to name the technology. Many different logic

64

Chapter 2 Boolean Algebra and Logic Gates

families of digital integrated circuits have been introduced commercially. The following are the
most popular:

TTL transistor—transistor logic;

ECL emitter-coupled logic;

MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

TTL is a logic family that has been in use for a long time and is considered to be standard.
ECL has an advantage in systems requiring high-speed operation. MOS is suitable for circuits
that need high component density, and CMOS is preferable in systems requiring low power con-
sumption, such as digital cameras and other handheld portable devices. Low power consump-
tion is essential for VLSI design; therefore, CMOS has become the dominant logic family,
while TTL and ECL are declining in use. The basic electronic digital gate circuit in each logic
family is analyzed in Chapter 10. The most important parameters that are evaluated and com-
pared are discussed in Section 10.2 and are listed here for reference:

Fan-out specifies the number of standard loads that the output of a typical gate can drive
without impairing its normal operation. A standard load is usually defined as the amount of cur-
rent needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.

Power dissipation is the power consumed by the gate that must be available from the power
supply.

Propagation delay is the average transition delay time for a signal to propagate from input
to output. For example, if the input of an inverter switches from 0 to 1, the output will switch
from 1 to 0, but after a time determined by the propagation delay of the device. The operating
speed is inversely proportional to the propagation delay.

Noise margin is the maximum external noise voltage added to an input signal that does not
cause an undesirable change in the circuit output,

Computer-Aided Design

Integrated circuits having submicron geometric features are manufactured by optically pro-
jecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated with a
photoresistive material that either hardens or softens when exposed to light. Removing extra-
neous photoresist leaves patterns of exposed silicon. The exposed regions are then implanted with
dopant atoms to create a semiconductor material having the electrical properties of transistors
and the logical properties of gates. The design process translates a functional specification or
description of the circuit (i.e., what it must do) into a physical specification or description (how
it must be implemented in silicon),

The design of digital systems with VLSI circuits containing millions of transistors and
gates is an enormous and formidable task. Systems of this complexity are usually impossi-
ble to develop and verify without the assistance of computer-aided design (CAD) tools,

Section 2.9 Integrated Circuits 65

which consist of software programs that support computer-based representations of circuits
and aid in the development of digital hardware by automating the design process. Elec-
tronic design automation (EDA) covers all phases of the design of integrated circuits. A
typical design flow for creating VLSI circuits consists of a sequence of steps beginning
with design entry (e.g.. entering a schematic) and culminating with the generation of the data-
base that contains the photomask used to fabricate the IC. There are a variety of options
available for creating the physical realization of a digital circuit in silicon. The designer can
choose between an application-specific integrated circuit (ASIC). a field-programmable
gate array (FPGA), a programmable logic device (PLD), and a full-custom IC. With each
of these devices comes a set of CAD tools that provide the necessary software to facilitate
the hardware fabrication of the unit. Each of these technologies has a market niche deter-
mined by the size of the market and the unit cost of the devices that are required to imple-
ment a design.

Some CAD systems include an editing program for creating and modifying schematic dia-
grams on a computer screen, This process is called schematic capture or schematic entry. With
the aid of menus, keyboard commands, and a mouse, a schematic editor can draw circuit dia-
grams of digital circuits on the computer screen. Components can be placed on the screen from
a list in an internal library and can then be connected with lines that represent wires, The
schematic entry software creates and manages a database containing the information produced
with the schematic, Primitive gates and functional blocks have associated models that allow the
functionality (i.e., logical behavior) and timing of the circuit to be verified. Verification is per-
formed by applying inputs to the circuit and using a logic simulator to determine and display
the outputs in text or waveform format.

An important development in the design of digital systems is the use of a hardware de-
scription language (HDL). Such a language resembles a computer programming language,
but is specifically oriented 1o describing digital hardware. It represents logic diagrams and other
digital information in textual form to describe the functionality and structure of a circuit.
Moreover, the HDL description of a circuit’s functionality can be abstract, without reference
1o specific hardware, thereby freeing a designer to devote attention to higher level functional
detail (e.g.. under certain conditions the circuit must detect a particular pattern of 1's and 0's
in a serial bit stream of data) rather than transistor-level detail. HDL-based models of a cir-
cuit or system are simulated 1o check and verify its functionality before it is submitted to fab-
rication, thereby reducing the risk and waste of manufacturing a circuit that fails to operate
correctly. In tandem with the emergence of HDL-based design languages, tools have been
developed to automatically and optimally synthesize the logic described by an HDL model of
a circuit. These two advances in technology have led to an almost total reliance by industry
on HDL-based synthesis tools and methodologies for the design of the circuits of complex de-
gital systems. Two hardware description languages—Verilog and VHDL—have been ap-
proved as standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in
use by design teams worldwide. The Verilog HDL is introduced in Section 3.10, and because
of its importance, we include several exercises and design problems based on Verilog through-
out the book.

66 Chapter 2

PROBLEMS

Boolean Algebra and Logic Gates

Answers to problems marked with * appear at the end of the book.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2,10

2.1

212

Demonstrate the validity of the following identities by means of truth tables:

(a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z"and (xyz)' = x" +y' + 2
(b) The distributive law: x + yz = (x + ¥)(x + 2)

(c) The distributive law; x(y + z) = xy + x2

(d) The associativelaw: x + (y +2) = (x + y¥) + 2

(e) The associative law and x(yz) = (xv)z

Simplify the following Boolean expressions to @ minimum number of literals:

(@* xy + xy' ®)* (x + y)(x + ')

(c)* xyvz + x'y + xyg' (d* (A + B) (A" + B')
(&) xyz' + x'yz + xyz + x'yz' ® (x+y+)x' +y +2)
Simplify the following Boolean expressions to & minimum number of literals:
(2)* ABC + A'B + ABC' (b)* x'yz + xz

@)F (x + y)'(x’ +5') (d)* xy + x(wz + wz')
(e)* (BC' + A'D)(AB' + CD')) (x+y +2')x" +2')
Reduce the following Boolean expressions to the indicated number of literals:
(ay* A'C" + ABC + AC’ to three literals

m* (x'y' +2) +z+xv+wz to three literals

(c)* A'B(D' + C'D) + B(A + A'CD) to one literal

(@ (A" + C)(A"+C')(A+ B+ C'D) to four literals

(e) ABCD + A'BD + ABC'D to two literals

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.2.

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.3,

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.4.

Find the complement of F' = wx -+ yz; then show that FF' = 0and F + F' = 1.

Find the complement of the following expressions:
(a)* xy' + x'y (b) (A'B+CD)E' + E
(€) (' +y+z20(x+ y)(x+2)

Given the Boolean functions | and F', show that

(a) The Boolean function £ = Fy + Fj contains the sum of the minterms of F, and F.

(b) The Boolean function G = FF, contains only the minterms that are common to F,
and F.

List the truth table of the function:

(ay* F=xy+ xy' +¥'z (b) F=x'z" +yz

We can perform logical operations on strings of bits by considering each pair of corresponding
bits separately (called bitwise operation). Given two eight-bit strings A = 10110001 and
B = 10101100, evaluate the eight-bit result after the following logical operations: (a)* AND,
(b) OR, (c)* XOR, (d)* NOT A, (e) NOT B.

Problems 67

2.13 Draw logic diagrams to implement the following Boolean expressions:
(@ Y=A+B+B(A+C)
(b) ¥ = A(B® D) + C'
() Y =4+ CD + ABC
d ¥=(A®C) +8
(&) ¥ =(A"+B')(C+D)
(fy ¥=1[(A+B)(C + D)
2.14 Implement the Boolean function
F=xy+ xy'+yz

(a) with AND, OR, and inverter gates,
(by* with OR and inverter gates,

(c) with AND and inverter gales,

(d) with NAND and inverter gates, and
(e) with NOR and inverter gates.

2.15* Simplify the following Boolean functions 7' and 7’3 to a minimum number of literals:

A B C T T
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 | 0 0 1
1 1 1 0 1

2.16 The logical sum of all minterms of a Boolean function of n variables is 1.
(a) Prove the previous statement for n = 3.
(b) Suggest a procedure for a general proof.

2.17 Obtain the truth table of the following functions. and express each function in sum-of-minterms
and product-of-maxterms form:
(ay* (xy + 2)(y + az) by (x+ ¥y +2)
(€) x'z+wx'y + wya' +w'y' (dy {x» + 32"+ 2'2)(x +2)
2.18 For the Boolean function
F=xy'z+x'yz+way+ wa'y + way

(a) Obtain the truth table of F.

(b) Draw the logic diagram. using the original Boolean expression.

(c)* Use Boolean algebra to simplify the function to a minimum number of literals,

(d) Obrain the truth table of the function from the simplified expression and show that it is the
same as the one in part (a),

(¢) Draw the logic diagram from the simplified expression, and compare the total number of
gates with the diagram of part (b).

68 Chapter 2 Boolean Algebra and Logic Gates

2.19% Express the following function as a sum of minterms and as a product of maxterms:
F(A,B,C,D)=B'D+ A'D + BD

2.20 Express the complement of the following functions in sum-of-minterms form:

(@) F(A,B,C,D) = £(3,5,9,11,15) (b) Fx,y,z)=11(2,4,57)
2.21 Convert each of the following to the other canonical form:
(@) F(x,y.z) = 2(2,5,6) ' (b) F(A,B,C,D)=1T1(0,1.2,4,7,9,12)
2.22% Convert each of the following expressions into sum of products and product of sums:
(a) (AB + C)(B + C'D) (®) x' +x(x+y)(y+2')
2.23 Draw the logic diagram corresponding to the following Boolean expressions without simplifying
them:
(a) BC' + AB + ACD (b) (A+ B)(C+ DA+ B+ D)
(c) (AB + A'B')(CD' + C'D) (d A+CD+ (A+ D')(C'+ D)

2.24 Show that the dual of the exclusive-OR is equal to its complement.

2.25 By substituting the Boolean expression equivalent of the binary operations as defined in Table 2.8,
show the following:
(a) The inhibition operation is neither commutative nor associative,
(b) The exclusive-OR operation is commutative and associative.

2.26 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are defined

by the following truth table:
fy f; a b c
1 0 0 0 0
0 0 0 0 1
0 1 0 1 0
1 1 0 1 1
0 1 1 0 0
0 1 1 0 1
1 1 1 1 0
1 0 1 1 1

2.28 Write Boolean expressions and construct the truth tables describing the outputs of the circuits
described by the following logic diagrams:

a b Dc (il
b

(a) (b)

References 69

REFERENCES

1. BooLe, G. 1854, An Investigation of the Laws of Thought. New York: Dover.

2. DieTMEYER. D, 1., 1988. Logic Design of Digital Systems, 3d ed. Boston: Allyn and Bacon.

3. HusmingTox, E. V. Sets of independent postulates for the algebra of logic. Trans. Am. Marh. Soc..
5 (1904): 288-309.

4. IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, Language Reference Manual (LRM), IEEE Std.1364-1995, 1996, 2001, 2005, The
Institute of Electrical and Electronics Engineers, Piscataway. NJ.

5. IEEE Standard VHDL Language Reference Manual (LRM). IEEE Sid, 1076-1987. 1988, The
Institute of Electrical and Electronics Engineers, Piscataway, NJ.

6. Mano, M. M., and C. R. KIME. 2000. Logic and Computer Design Fundamentals, 2d ed. Upper
Saddle River, NJ: Prentice Hall.

7. SHANNON, C. E. A symbolic analysis of relay and switching circuits, Trans. AIEE 57 (1938):
713-723,

Chapter 3

Gate-Level Minimization

3.1

INTRODUCTION

Gate-level minimization refers to the design task of finding an optimal gate-level imple-
mentation of the Boolean functions describing a digital circuit. This task is well under-
stood, but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to exe-
cute a manual design of simple circuits, preparing you for skilled use of modern design
tools. The chapter will also introduce a hardware description language that is used by mod-
ern design tools.

3.2 THE MAP METHOD

70

The complexity of the digital logic gates that implement a Boolean function is directly related
to the complexity of the algebraic expression from which the function is implemented. Al-
though the truth table representation of a function is unique, when it is expressed algebraically
it can appear in many different, but equivalent, forms. Boolean expressions may be simplified
by algebraic means as discussed in Section 2.4. However, this procedure of minimization is awk-
ward because it lacks specific rules to predict each succeeding step in the manipulative process.
The map method presented here provides a simple, straightforward procedure for minimizing
Boolean functions. This method may be regarded as a pictorial form of a truth table. The map
method is also known as the Karnaugh map or K-map.

Section 3.2 The Map Method n

A K-map is a diagram made up of squares, with each square representing one minterm of
the function that is to be minimized. Since any Boolean function can be expressed as a sum of
minterms, it follows that a Boolean function is recognized graphically in the map from the
area enclosed by those squares whose minterms are included in the function. In fact, the map
presents a visual diagram of all possible ways a function may be expressed in standard form.
By recognizing various patterns. the user can derive alternative algebraic expressions for the
same function, from which the simplest can be selected.

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic ex-
pression is an algebraic expression with a minimum number of terms and with the smallest
possible number of literals in each term. This expression produces a circuit diagram with a
minimum number of gates and the minimum number of inputs to each gate. We will see sub-
sequently that the simplest expression is not unique: It is sometimes possible to find two or more
expressions that satisfy the minimization criteria, In that case, either solution is satistactory,

Two-Variable Map

The two-variable map is shown in Fig, 3.1(a). There are four minterms for two variables; hence,
the map consists of four squares, one for each minterm. The map is redrawn in (b) to show the
relationship between the squares and the two variables x and y. The 0 and 1 marked in each row
and column designate the values of variables. Variable x appears primed in row 0 and unprimed
in row 1. Similarly. v appears primed in column 0 and unprimed in column 1.

¥

¥ —_—
b5 0 X
",]
L my 0] xi¥ x'y
m. .
niy s el ay Xy
(a) (b)

FIGURE 3.1
Two-variable map

If we mark the squares whose minterms belong to a given function, the two-variable map
becomes another useful way to represent any one of the 16 Boolean functions of two variables.
As an example, the function xy is shown in Fig. 3.2(a), Since xy is equal to mj3, a | is placed
inside the square that belongs to mj. Similarly, the function x + y is represented in the map
of Fig. 3.2(b) by three squares marked with 1's. These squares are found from the minterms of
the function:

nmp+my+my=xy+ay +axy=x+y
The three squares could also have been determined from the intersection of variable x in the

second row and variable y in the second column, which encloses the area belonging to x or v,
In each example, the minterms at which the function is asserted are marked with a 1.

72 Chapter 3 Gate-Level Minimization

y ¥
y A] e,
* 0 1 x . 0 1
my my my
0 0
. my L
x1q1 1 X1 1
-3
{a) xy (byx+y

FIGURE 3.2
Representation of functions in the map

yz p—— i A
X 00 01 11 10
my m; My m,
iy m sy ny 0)x'y'z' | x'y'z | x'yz | x'yz’
my my iy ny
an nis ms mg Xq1lay'z' | av'z | xyz | vz’
—r—
4

(a) (b)

FIGURE 3.3
Three-variable map

Three-Variable Map

A three-variable map is shown in Fig. 3.3. There are eight minterms for three binary variables;
therefore, the map consists of eight squares. Note that the minterms are arranged. not in a bi-
nary sequence, but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbers in each row and each column to show the relation-
ship between the squares and the three variables. For example, the square assigned to ms cor-
responds to row 1 and column 01. When these two numbers are concatenated, they give the
binary number 101, whose decimal equivalent is 5. Each cell of the map corresponds to a
unique minterm, so another way of looking at square ms = xy'z is to consider it to be in the
row marked x and the column belonging to y'z (column 01). Note that there are four squares
in which each variable is equal to 1 and four in which each is equal to 0. The variable appears
unprimed in the former four squares and primed in the latter. For convenience, we write the vari-
able with its letter symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must recog-
nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif-
fer by only one variable, which is primed in one square and unprimed in the other, For example,
ms and m lie in two adjacent squares. Variable y is primed in ms and unprimed in m4, where-
as the other two variables are the same in both squares. From the postulates of Boolean algebra,
it follows that the sum of two minterms in adjacent squares can be simplified to a single AND

Section 3.2 The Map Method 73

term consisting of only two literals. To clarify this concept, consider the sum of two adjacent
squares such as ms and my:

ms + my = xy'z+xyz=xx(y' +y) =12z
Here. the two squares differ by the variable y. which can be removed when the sum of the two
minterms is formed. Thus, any two minterms in adjacent squares (vertically or horizontally, but
not diagonally, adjacent) that are ORed together will cause a removal of the dissimilar variable.
The next four examples explain the procedure for minimizing a Boolean function with a map.

EXAMPLE 3.1

Simplify the Boolean function

Flx,v.z) = £(2.3,4.5)

First, a 1 is marked in each minterm that represents the function. This is shown in Fig. 3.4, in
which the squares for minterms 010, 011, 100, and 101 are marked with 1's. The next step is
to find possible adjacent squares, These are indicated in the map by two rectangles, each en-
closing two 1's, The upper right rectangle represents the area enclosed by x'y. This area is de-
termined by observing that the two-square area is in row (), corresponding to x’, and the last
two columns, corresponding to y. Similarly, the lower left rectangle represents the product
term xyv'. (The second row represents x and the two left columns represent y'.) The logical
sum of these two product terms gives the simplified expression

F=xy+xy

", m LY L. /(

FIGURE 3.4
Map for Example 3.1, F(x, y, 2) = £(2,3,4,5) = x'y + ay

In certain cases. two squares in the map are considered to be adjacent even though they do
not touch each other. In Fig. 3.3, my is adjacent to m, and my is adjacent to mg because the
minterms differ by one variable. This difference can be readily verified algebraically:

mg + my = x'y'z' + x'v! = X'y +y) =22

my+mg=xyz'+xyz'=x" + (¥ +y) =7

Consequently. we must modify the definition of adjacent squares to include this and other sim-
ilar cases. We do so by considering the map as being drawn on a surface in which the right and
left edges touch each other to form adjacent squares.

74 Chapter 3 Gate-Level Minimization

EXAMPLE 3.2

Simplify the Boolean function
F(x,y.z) = 2(3,4,6,7)

The map for this function is shown in Fig. 3.5. There are four squares marked with 1's, one
for each minterm of the function. Two adjacent squares are combined in the third column to
give a two-literal term yz. The remaining two squares with 1's are also adjacent by the new
definition. These two squares, when combined, give the two-literal term xz'. The simplified
function then becomes

Note: xy'z" + xyz' = xz'

FIGURE 3.5
Map for Example 3.2, F(x, y, z) = 2(3,4,6,7) = yz + xz'

Consider now any combination of four adjacent squares in the three-variable map. Any such
combination represents the logical sum of four minterms and results in an expression with only
one literal. As an example, the logical sum of the four adjacent minterms 0, 2, 4, and 6 reduces
to the single literal term z':

x'y'z' + x'yz' + xy'2" + xyz'
Xy +y) + 2 +y)

=x+x=(x"+x)=2

I

mg + my + my + mg

Il

The number of adjacent squares that may be combined must always represent a number
that is a power of two, such as 1, 2, 4, and 8. As more adjacent squares are combined, we ob-
tain a product term with fewer literals.

One square represents one minterm, giving a term with three literals.
Two adjacent squares represent a term with two literals.
Four adjacent squares represent a term with one literal.

Eight adjacent squares encompass the entire map and produce a function that is always
equal to 1.

Section 3.2 The Map Method 75

EXAMPLE 3.3

Simplify the Boolean function

F(x,v,z) = 2£(0.2,4.5.6)
The map for F is shown in Fig. 3.6, First, we combine the four adjacent squares in the first and
last columns to give the single literal term z'. The remaining single square, representing minterm
5. is combined with an adjacent square that has already been used once. This is not only per-

missible, but rather desirable, because the two adjacent squares give the two-literal term xy’
and the single square represents the three-literal minterm xyv'z. The simplified function is

F=72+xy

Nore:y'z' +yv2'=7'

FIGURE 3.6
Map for Example 3.3, F(x, y, 2) = (0,2, 4,5,6) = 2’ + xy

If a function is not expressed in sum-of-minterms form., it is possible to use the map to ob-
tain the minterms of the function and then simplify the function to an expression with a mini-
mum number of terms. It is necessary, however, to make sure that the algebraic expression is
in sum-of-products form. Each product term can be plotted in the map in one, two, or more
squares. The minterms of the function are then read directly from the map.

EXAMPLE 3.4
Let the Boolean function
F=AC+ A'B+ AB'C + BC
(a) Express this function as a sum of minterms.
(b) Find the minimal sum-of-products expression.

Three product terms in the expression have two literals and are represented in a three-variable
map by two squares each. The two squares corresponding to the first term, A'C, are found in
Fig. 3.7 from the coincidence of A’ (first row) and C (two middle columns) to give squares 001

76 Chapter 3 Gate-Level Minimization

my

FIGURE 3.7
Map for Example 3.4, A'C + A’'B+ AB'C + BC=C+ A'B

and 011. Note that, in marking 1's in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A’B, which has 1's in squares 011
and 010. Square 011 is common with the first term, A'C, though, so only one 1 is marked in
it. Continuing in this fashion, we determine that the term AB'C belongs in square 101, corre-
sponding to minterm 5, and the term BC has two 1's in squares 011 and 111. The function has
a total of five minterms, as indicated by the five 1's in the map of Fig. 3.7. The minterms are
read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in sum-of-
minterms form as

F(A,B,C) = £(1,2,3,5,7)

The sum-of-products expression, as originally given, has too many terms. It can be simplified,
as shown in the map, to an expression with only two terms:

F=C-+ A'B

3.3 FOUR-VARIABLE MAP

The map for Boolean functions of four binary variables is shown in Fig. 3.8, In (a) are listed
the 16 minterms and the squares assigned to each. In (b), the map is redrawn to show the re-
lationship between the squares and the four variables. The rows and columns are numbered in
a Gray code sequence. with only one digit changing value between two adjacent rows or
columns. The minterm corresponding to each square can be obtained from the concatenation
of the row number with the column number. For example, the numbers of the third row (11)
and the second column (01), when concatenated, give the binary number 1101, the binary
equivalent of decimal 13. Thus, the square in the third row and second column represents
minterm m; 5.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges, as
well as the right and left edges, touching each other to form adjacent squares. For example,

Section 3.3 Four-Variable Map 77

y
N4
W 00 01 11 10
"y m i, me
my ny m; s 00 pw'x'vz'wix'v'z | wix'vz |wix'yz’
o, i, . iy,
my my my mg 01 | wiay'z" | wiay'z | wixyz | wiayz'
) myy My my =
myy 3 myg iy 1| way'z’ | way'z | wxyz | wxyz’
w m, "y, "y, my,
"y ny nyy my 10 wa'y'z" | wa'y'z | wx'yz | wx'yz’
—_—
2
(a) (b)

FIGURE 3.8
Four-variable map

mq and m; form adjacent squares, as do m3 and m ;. The combination of adjacent squares that
is useful during the simplification process is easily determined from inspection of the four-
variable map:

One square represents one minterm, giving a term with four literals.
Two adjacent squares represent a term with three literals.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that is always equal to 1.

No other combination of squares can simplify the function. The next two examples show
the procedure used to simplify four-variable Boolean functions.

EXAMPLE 3.5

Simplify the Boolean function

Flw, x.v.2) = £(0,1,2,4,5.6,8,9, 12,13, 14)

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by 1's in the map of Fig. 3.9. Eight adjacent squares marked with 1's
can be combined to form the one literal term y'. The remaining three 1's on the right cannot
be combined to give a simplified term; they must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller is the number of literals in the term,
In this example, the top two 1's on the right are combined with the top two 1's on the left to
give the term w'z". Note that it is permissible to use the same square more than once. We are

78 Chapter 3 Gate-Level Minimization

¥z —
“’\ 00 11 10

Pyl

w'y'z

11"‘\".":'

My

xvz'

y, my,

Note: w'y'z' + w'yvz' = w'z’
wz vy =xr

FIGURE 3.9
Map for Example 3.5, F(w, x, ¥, z) = 2(0,1,2,4,5,6,8,9, 12,13, 14) =
y +wz' + xz'

now left with a square marked by | in the third row and fourth column (square 1110). Instead
of taking this square alone (which will give a term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middle rows and the two end columns, giving the term xz’. The simplified function is

F=yi+wjzl +xzr

EXAMPLE 3.6

Simplify the Boolean function
F=AB'C' + B'CD'"+ A'BCD’ + AB'C’

The area in the map covered by this function consists of the squares marked with 1's in Fig. 3.10.
The function has four variables and, as expressed, consists of three terms with three literals each
and one term with four literals. Each term with three literals is represented in the map by two
squares. For example, A'B'C" is represented in squares 0000 and 0001. The function can be sim-
plified in the map by taking the 1’s in the four corners to give the term B'D’. This is possible
because these four squares are adjacent when the map is drawn in a surface with top and bot-
tom edges, as well as left and right edges, touching one another. The two left-hand 1’s in the top
row are combined with the two 1°s in the bottom row to give the term B'C’, The remaining 1
may be combined in a two-square area to give the term A'CD’. The simplified function is

F=B'D + BC' + A'CD’

Section 3.3 Four-Variable Map 79

ABCD
A'B'CD’
ny my ms my
o i A
D o —
L iy mis i, B
1n
A
AB'C'D’

Now: A'B'C'D" + A'B'CD' = A'B'D’
AB'C'D’ + AB'CD' = AB'D'
A'B'D' — AB'D' = B'D'
A'B'C' - AB'C' = B'C'
FIGURE 3.10
Map for Example 3.6, A’B'C" + B'CD" + A’BCD’ + AB'C' = B'D’ + B'C’ + A’CD’

Prime Implicants

In choosing adjacent squares in a map, we must ensure that (1) all the minterms of the func-
tion are covered when we combine the squares, (2) the number of terms in the expression is
minimized, and (3) there are no redundant terms (i.e., minterms already covered by other terms).
Sometimes there may be two or more expressions that satisfy the simplification criteria, The
procedure for combining squares in the map may be made more systematic if we understand
the meaning of two special types of terms. A prime implicant is a product term obtained by com-
bining the maximum possible number of adjacent squares in the map. If a minterm in a square
is covered by only one prime implicant, that prime implicant is said to be essential.

The prime implicants of a function can be obtained from the map by combining all possi-
ble maximum numbers of squares. This means that a single 1 on a map represents a prime im-
plicant if it is not adjacent 1o any other 1's. Two adjacent 1°s form a prime implicant, provided
that they are not within a group of four adjacent squares, Four adjacent |’s form a prime im-
plicant if they are not within a group of eight adjacent squares, and so on. The essential prime
implicants are found by looking at each square marked with a 1 and checking the number of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B.C.D) = £(0.2,3,5.7.8,9,10, 11,13, 15)

The minterms of the function are marked with 1's in the maps of Fig. 3.11. The partial map (part
(a) of the figure) shows 1wo essential prime implicants, each formed by collapsing four cells into
a term having only two literals. One term is essential because there is only one way to include

80 Chapter 3 Gate-Level Minimization

A'B'C'D’

BD

AB'C'D'

B'C

My

My "y y My

AB'CD'
Note: A'B'C'D" + A'B'CD' = A'B'D’
AB'C'D' + AB'CD' = AB'D'
A'B'D'+ AB'D' = B'D'
(a) Essential prime implicants (b) Prime implicants CD, B'C,
BD and B'D' AD,and AB'

FIGURE 3.11
Simplification using prime implicants

minterm m within four adjacent squares. These four squares define the term B'D’. Similarly,
there is only one way that minterm m5 can be combined with four adjacent squares, and this gives
the second term BD. The two essential prime implicants cover eight minterms. The three minterms
that were omitted from the partial map (m3, mq, and m; ;) must be considered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with prime.
implicants. Minterm m3 can be covered with either prime implicant CD or prime implicant
B'C. Minterm mg can be covered with either AD or AB'. Minterm m, is covered with any one
of the four prime implicants. The simplified expression is obtained from the logical sum of the
two essential prime implicants and any two prime implicants that cover minterms ms, me, and
mj 1. There are four possible ways that the function can be expressed with four product terms
of two literals each:

F=BD+ B'D'"+CD+ AD
= BD + B'D' + CD + AB'
= BD + B'D' + B'C + AD
= BD + B'D' + B'C + AB'

The previous example has demonstrated that the identification of the prime implicants in the map
helps in determining the alternatives that are available for obtaining a simplified expression.

The procedure for finding the simplified expression from the map requires that we first de-
termine all the essential prime implicants. The simplified expression is obtained from the log-
ical sum of all the essential prime implicants, plus other prime implicants that may be needed
to cover any remaining minterms not covered by the essential prime implicants. Occasionally,
there may be more than one way of combining squares, and each combination may produce an
equally simplified expression.

Section 3.4 Five-Variable Map 81

3.4 FIVE-VARIABLE MAP

Maps for more than four variables are not as simple to use as maps for four or fewer variables.
A five-variable map needs 32 squares and a six-variable map needs 64 squares. When the num-
ber of variables becomes large, the number of squares becomes excessive and the geometry for
combining adjacent squares becomes more involved.

The five-variable map is shown in Fig. 3.12. It consists of 2 four-variable maps with vari-
ables A, B, C, D, and E. Variable A distinguishes between the two maps, as indicated at the top
of the diagram. The left-hand four-variable map represents the 16 squares in which A = 0,
and the other four-variable map represents the squares in which A = 1. Minterms 0 through
15 belong with A = 0 and minterms 16 through 31 with A = 1. Each four-variable map re-
tains the previously defined adjacency when taken separately. In addition, each square in the
A = 0 map is adjacent to the corresponding square in the A = | map. For example, minterm
4 is adjacent to minterm 20 and minterm 15 to 31, The best way to visualize this new rule for
adjacent squares is to consider the two half maps as being one on top of the other. Any two
squares that fall one over the other are considered adjacent.

By following the procedure used for the five-variable map, it is possible to construct a six-
variable map with 4 four-variable maps to obtain the required 64 squares. Maps with six or more
variables need too many squares and are impractical to use. The alternative is to employ com-
puter programs specifically written to facilitate the simplification of Boolean functions with a
large number of variables,

By inspection, and taking into account the new definition of adjacent squares, it is possible
to show that any 2* adjacent squares, for k = (0, 1,2,..., n) in an n-variable map, will rep-
resent an area that gives a term of n — k literals. For this statement to have any meaning, how-
ever, n must be larger than k. When n = &, the entire area of the map is combined to give the

A=0 A=1
DE R DE i .
BC 0 01 11 10 BC 00 01 11 10
m, A "y m. i, [my, "
w| o 1 -] 2 00| 16| 17| 19] 18
my "y e ", My iy, (% "y
o 4 5 9 6 oif 20| 21| 23| 22
iz M3 My my, c Moy My, my L c
|l iz | 1| n| 2. |2 | n| 3w
B m, my my my, i "y My L My
10| 8 9 [11| 10 | 24| 25 27 | 26
E E
FIGURE 3.12

Five-variable map

82 Chapter 3 Gate-Level Minimization

Table 3.1
The Relationship between the Number of Adjacent Squares and the
Number of Literals in the Term
Number of
Adjacent Number of Literals
Squares in a Term in an n-variable Map
K 2* n=2 n=3 n=4 ==35
0 1 2 3 4 5
1 2 1 2 3 Rl
2 4 0 1 2 3
3 8 0 | 2
4 16 0 1
5 32 0

identity function. Table 3.1 shows the relationship between the number of adjacent squares
and the number of literals in the term. For example, eight adjacent squares combine an area in
the five-variable map to give a term of two literals.

EXAMPLE 3.7

Simplify the Boolean function

F(A.B,C.D.E) = 3(0,2,4,6,9, 13,21, 23,25, 29, 31)

The five-variable map for this function is shown in Fig. 3.13. There are six minterms from
0 to 15 that belong to the part of the map with A = 0. The other five minterms belong with
A = 1. Four adjacent squares in the A = 0 map are combined to give the three-literal term
A'B'E'. Note that it is necessary to include A" with the term because all the squares are as-
sociated with A = 0. The two squares in column 01 and the last two rows are common to
both parts of the map. Therefore, they constitute four adjacent squares and give the three-
literal term BD'E. Variable A is not included here because the adjacent squares belong to
both A = 0 and A = 1. The term ACE is obtained from the four adjacent squares that are
entirely within the A = 1 map. The simplified function is the logical sum of the three
terms:

F = A'B'E' + BD'E + ACE

3.5

Section 3.5 Product-of-Sums Simplification 83

FIGURE 3.13
Map for Example 3.7, F = A'B'E' + BD'E + ACE

PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were ex-
pressed in sum-of-products form. With a minor modification, the product-of-sums form can be
obtained.

The procedure for obtaining a minimized function in product-of-sums form follows from
the basic properties of Boolean functions. The 1's placed in the squares of the map represent
the minterms of the function. The minterms not included in the standard sum-of-products form
of a function denote the complement of the function. From this observation, we see that the
complement of a function is represented in the map by the squares not marked by 1's. If we
mark the empty squares by 0°s and combine them into valid adjacent squares, we obtain a
simplified expression of the complement of the function (i.e., of F'). The complement of
F’ gives us back the function F. Because of the generalized DeMorgan's theorem, the func-
tion so obtained is automatically in product-of-sums form. The best way to show this is by
example.

84

EXAMPLE 3.8

Chapter 3 Gate-Level Minimization

C
D —_—
AB 00 01 11 10 5
m, -, m, ——
ol 1 | 1 —1 | , BcD'
BC'D —
01 1
s B
i
A "y mny my
10 1 1 1 AB
—————

Note: BC'D' + BCD' = BD'
FIGURE 3.14

Map for Example 3.8, F(A, B, C, D) = £(0,1,2,5,8,9,10)= B'D’ + B'C' + AC'D =
(A" + B)(C" + D')(B" + D)

Simplify the following Boolean function into (a) sum-of-products form and (b) product-of-
sums form:

F(A,B,C,D) = 2£(0,1,2,5,8,9,10)

The 1's marked in the map of Fig. 3.14 represent all the minterms of the function. The
squares marked with 0's represent the minterms not included in F and therefore denote the
complement of F. Combining the squares with 1's gives the simplified function in sum-of-
products form:
(a) F=B'D' + B'C'+ A'C'D
If the squares marked with 0's are combined, as shown in the diagram, we obtain the
simplified complemented function:

F'=AB + CD + BD'

Applying DeMorgan's theorem (by taking the dual and complementing each literal as de-
scribed in Section 2.4), we obtain the simplified function in product-of-sums form:

(b) F = (A’ + B')(C' + D')(B' + D)
1

The implementation of the simplified expressions obtained in Example 3.8 is shown in
Fig. 3.15. The sum-of-products expression is implemented in (a) with a group of AND gates,
one for each AND term. The outputs of the AND gates are connected to the inputs of a sin-
gle OR gate. The same function is implemented in (b) in its product-of-sums form with a
group of OR gates, one for each OR term. The outputs of the OR gates are connected to the
inputs of a single AND gate. In each case, it is assumed that the input variables are directly

Section 3.5 Product-of-Sums Simplification 85

B A
D B
c
—T —f=n
c — D —
A
D D
(a)F=8B'D'+B'C+A'CD (BYF=(A"+B)(C + D) (B +D)
FIGURE 3.15

Gate implementations of the function of Example 3.8

Table 3.2

Truth Table of Function F
x y z F
0 0 0 0
0 0 1 1
0] 0 0
0 | 1 I
I 0 (1] 1
1 0 1 1]
1 1 0 1
I | 1 0

|

available in their complement. so inverters are not needed. The configuration pattern estab-
lished in Fig. 3.15 is the general form by which any Boolean function is implemented when
expressed in one of the standard forms. AND gates are connected to a single OR gate when
in sum-of-products form; OR gates are connected to a single AND gate when in product-of-
sums form. Either configuration forms two levels of gates. Thus, the implementation of a
function in a standard form is said to be a two-level implementation.

Example 3.8 showed the procedure for obtaining the product-of-sums simplification when
the function is originally expressed in the sum-of-minterms canonical form. The procedure is
also valid when the function is originally expressed in the product-of-maxterms canonical
form. Consider, for example, the truth table that defines the function F in Table 3.2, In sum-
of-minterms form, this function is expressed as

F(x,y,.z) = Z(1,3.4,6)
In product-of-maxterms form, it is expressed as
F(x,y.2) =1{0,2.5,7)

In other words, the 1's of the function represent the minterms and the 0's represent the max-
terms. The map for this function is shown in Fig. 3.16. One can start simplifying the function
by first marking the I's for each minterm that the function is a 1. The remaining squares are

86

Chapter 3 Gate-Level Minimization

vz Py et
* 00 01 11 10

my o |-y

0

0 ______._.-l-—-"x’z
x{l

FIGURE 3.16
Map for the function of Table 3.2

marked by 0's. If, instead, the product of maxterms is initially given, one can start marking 0's
in those squares listed in the function; the remaining squares are then marked by 1's. Once the
1's and 0’s are marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the 1’s to obtain

F=xz¥az

For the product of sums, we combine the 0's to obtain the simplified complemented function
F'=xz+x'7

which shows that the exclusive-OR function is the complement of the equivalence function

(Section 2.6). Taking the complement of F’, we obtain the simplified function in product-of-
sums form:

F=(x'+2)x+2)

To enter a function expressed in product-of-sums form into the map, use the complement of the
function to find the squares that are to be marked by 0's. For example, the function

F=(A"+B +C')B+ D)
can be entered into the map by first taking its complement, namely,
F' = ABC + B'D'

and then marking 0's in the squares representing the minterms of F'. The remaining squares
are marked with 1's.

3.6 DON'T-CARE CONDITIONS

The logical sum of the minterms associated with a Boolean function specifies the conditions
under which the function is equal to 1. The function is equal to O for the rest of the minterms.
This pair of conditions assumes that all the combinations of the values for the variables of the
function are valid. In practice, in some applications the function is not specified for certain
combinations of the variables. As an example, the four-bit binary code for the decimal digits
has six combinations that are not used and consequently are considered to be unspecified.

Section 3.6 Don’t-Care Conditions 87

Functions that have unspecified outputs for some input combinations are called incompletely
specified funcrions. In most applications, we simply don’t care what value is assumed by the
function for the unspecified minterms. For this reason, it is customary to call the unspecified
minterms of a function don t-care conditions. These don't-care conditions can be used on a
map to provide further simplification of the Boolean expression.

A don’t-care minterm is a combination of variables whose logical value is not specified. Such
a minterm cannot be marked with a | in the map, because it would require that the function al-
ways be a | for such a combination. Likewise, putting a 0 on the square requires the function
to be 0. To distinguish the don’t-care condition from 1°s and 0's, an X is used. Thus, an X in-
side a square in the map indicates that we don’t care whether the value of 0 or | is assigned to
F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care minterms
may be assumed to be either 0 or 1. When simplifying the function, we can choose to include
each don't-care minterm with either the 1's or the (s, depending on which combination gives
the simplest expression.

EXAMPLE 3.9

Simplify the Boolean function
F(w,x,y,2) = £(1,3,7, 11, 15)
which has the don't-care conditions
d{w,x.y,z) = £(0.2,5)

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of are the don’t-care minterms that may be assigned either 0 or 1. The map sim-
plification is shown in Fig. 3.17. The minterms of F are marked by 1's, those of d are marked

yz —

00 01 11
w B
X B

wx

oL o

Phyy iy R T

11] 0 : 5 0

iy "y 5 ;.. my,
wf o 0 B 0
N
z -
(a}) F=yz + wix' (b) F=yz+wz
FIGURE 3.17

Example with don’t-care conditions

88

Chapter 3 Gate-Level Minimization

by X's, and the remaining squares are filled with 0's. To get the simplified expression in sum-
of-products form, we must include all five 1’s in the map, but we may or may not include any
of the X's, depending on the way the function is simplified. The term yz covers the four minterms
in the third column. The remaining minterm, m;, can be combined with minterm mj; to give
the three-literal term w'x’z. However, by including one or two adjacent X's we can combine
four adjacent squares to give a two-literal term. In part (a) of the diagram, don’t-care minterms
0 and 2 are included with the 1's, resulting in the simplified function

F=yz +wkx'
[n part (b), don’t-care minterm 5 is included with the 1's, and the simplified function is now
F —— J.z + w‘z

Either one of the preceding two expressions satisfies the conditions stated for this example.
4

The previous example has shown that the don't-care minterms in the map are initially marked
with X's and are considered as being either 0 or |. The choice between 0 and | is made de-
pending on the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obtained will consist of a sum of minterms that includes those minterms
which were initially unspecified and have been chosen to be included with the 1's. Consider
the two simplified expressions obtained in Example 3.9:

F(w,x,y,2) =yz +w'x' = £(0,1,2,3,7,11. 15)
Fw,x,»,2) = yz + w'z = £(1,3,5,7, 11, 15)

Both expressions include minterms 1, 3, 7, 11, and 15 that make the function F equal to 1. The
don’t-care minterms 0, 2, and 5 are treated differently in each expression. The first expression
includes minterms 0 and 2 with the 1’s and leaves minterm 5 with the 0’s. The second expres-
sion includes minterm 5 with the 1's and leaves minterms 0 and 2 with the 0's. The two ex-
pressions represent two functions that are not algebraically equal. Both cover the specified
minterms of the function, but each covers different don’t-care minterms. As far as the incom-
pletely specified function is concerned, either expression is acceptable because the only dif-
ference is in the value of F for the don’t-care minterms.

It is also possible to obtain a simplified product-of-sums expression for the function of
Fig. 3.17. In this case, the only way to combine the 0's is to include don’t-care minterms 0
and 2 with the 0's to give a simplified complemented function:

F'=z' +wy'
Taking the complement of F' gives the simplified expression in product-of-sums form:
Fiw,x,5,2) = z(w' +y) = £(1,3,5,7,11, 15)
In this case, we include minterms 0 and 2 with the 0's and minterm 5 with the 17s.

Section 3.7 NAND and NOR Implementation 89

3.7 NAND AND NOR IMPLEMENTATION

Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and
OR gates. NAND and NOR gates are easier to fabricate with electronic components and are
the basic gates used in all IC digital logic families. Because of the prominence of NAND and
NOR gates in the design of digital circuits, rules and procedures have been developed for the
conversion from Boolean functions given in terms of AND, OR, and NOT into equivalent
NAND and NOR logic diagrams.

NAND Circuits

The NAND gate is said to be a universal gate because any digital system can be implemented
with it. To show that any Boolean function can be implemented with NAND gates. we need
only show that the logical operations of AND, OR, and complement can be obtained with NAND
gates alone, This is indeed shown in Fig. 3.18. The complement operation is obtained from a one-
input NAND gate that behaves exactly like an inverter. The AND operation requires two NAND
gates. The first produces the NAND operation and the second inverts the logical sense of the sig-
nal. The OR operation is achieved through a NAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain the sim-
plified Boolean function in terms of Boolean operators and then convert the function to NAND
logic. The conversion of an algebraic expression from AND, OR. and complement to NAND
can be done by simple circuit manipulation techniques that change AND-OR diagrams to
NAND diagrams.

To facilitate the conversion to NAND logic, it is convenient to define an alternative graphic
symbol for the gate. Two equivalent graphic symbols for the NAND gate are shown in Fig. 3.19.

Inverter x —Do—— X
X
AND | :D:—Do— Xy

OR y)Y=x+y

FIGURE 3.18
Logic operations with NAND gates

X X
(a) AND-invent (b) Invert-OR
FIGURE 3.19

Two graphic symbols for the NAND gate

90 Chapter 3 Gate-Level Minimization

The AND-invert symbol has been defined previously and consists of an AND graphic symbol fol-
lowed by a small circle negation indicator referred to as a bubble. Alternatively, it is possible to
represent a NAND gate by an OR graphic symbol that is preceded by a bubble in each input. The
invert-OR symbol for the NAND gate follows DeMorgan's theorem and the convention that the
negation indicator denotes complementation. The two graphic symbols’ representations are use-
ful in the analysis and design of NAND circuits. When both symbols are mixed in the same
diagram, the circuit is said to be in mixed notation.

Two-Level Implementation

The implementation of Boolean functions with NAND gates requires that the functions be in
sum-of-products form. To see the relationship between a sum-of-product expression and its
equivalent NAND implementation, consider the logic diagrams drawn in Fig. 3.20. All three
diagrams are equivalent and implement the function

F=AB+ CD

The function is implemented in (a) with AND and OR gates. In (b), the AND gates are re-
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graphic
symbol. Remember that a bubble denotes complementation and two bubbles along the same
line represent double complementation, so both can be removed. Removing the bubbles on the
gates of (b) produces the circuit of (a). Therefore, the two diagrams implement the same func-
tion and are equivalent.

In Fig. 3.20(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either (b) or (c) is acceptable. The

- T

U O

(a)

W

o 0

(®) (c)

FIGURE 3.20
Three ways to implement F = AB + CD

Section 3.7 NAND and NOR Implementation 21

one in (b) is in mixed notation and represents a more direct relationship to the Boolean
expression it implements. The NAND implementation in Fig. 3.20(c) can be verified alge-
braically. The function it implements can easily be converted to sum-of-products form by
DeMorgan’s theorem:

F = ((AB)'(CD)')' = AB + CD

EXAMPLE 3.10

Implement the following Boolean function with NAND gates:
F(x,v,z) =(1,2.3,4,57)

The first step is to simplify the function into sum-of-products form. This is done by means of
the map of Fig. 3.21(a), from which the simplified function is obtained:

F=xy' 4+ xly+z

The two-level NAND implementation is shown in Fig. 3.21(b) in mixed notation. Note that input
z must have a one-input NAND gate (an inverter) to compensate for the bubble in the second-
level gate. An alternative way of drawing the logic diagram is given in Fig. 3.21(c). Here, all
the NAND gates are drawn with the same graphic symbol. The inverter with input z has been
removed, but the input variable is complemented and denoted by z'.

]

F=xy'+x'y+z

=

e x e

e

FIGURE 3.21
Solution to Example 3.10

92

Chapter 3 Gate-Level Minimization

The procedure described in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic diagram
from a Boolean function is as follows:

1. Simplify the function and express it in sum-of-products form.

2. Draw a NAND gate for each product term of the expression that has at least two literals.
The inputs to each NAND gate are the literals of the term. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
level, with inputs coming from outputs of first-level gates.

4. Aterm with a single literal requires an inverter in the first level. However, if the single literal
is complemented, it can be connected directly to an input of the second-level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions, however, when the design of digital systems results in gating structures
with three or more levels. The most common procedure in the design of multilevel circuits is
to express the Boolean function in terms of AND, OR, and complement operations. The func-
tion can then be implemented with AND and OR gates. After that, if necessary, it can be con-
verted into an all-NAND circuit. Consider, for example, the Boolean function

F = A(CD + B) + BC'

Although it is possible to remove the parentheses and reduce the expression into a standard sum-
of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.22(a). There are four levels of gating in the cir-
cuit. The first level has two AND gates. The second level has an OR gate followed by an AND
gate in the third level and an OR gate in the fourth level. A logic diagram with a pattern of al-
ternating levels of AND and OR gates can easily be converted into a NAND circuit with the
use of mixed notation, shown in Fig. 3.22(b). The procedure is to change every AND gate to
an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol. The NAND
circuit performs the same logic as the AND-OR diagram as long as there are two bubbles along
the same line. The bubble associated with input B causes an extra complementation, which
must be compensated for by changing the input literal to B'.

The general procedure for converting a multilevel AND—OR diagram into an all-NAND di-
agram using mixed notation is as follows;

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2, Convert all OR gates to NAND gates with invert-OR graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is not compensated by an-
other small circle along the same line, insert an inverter (a one-input NAND gate) or
complement the input literal.

As another example, consider the multilevel Boolean function
F = (AB' + A'B)(C + D')

Section 3.7 NAND and NOR Implementation 93

m 2= N

(a) AND-OR gates

(b) NAND gates

FIGURE 3.22
Implementing F = A(CD ~ B) + BC’

The AND-OR implementation of this function is shown in Fig. 3.23(a) with three levels of gat-
ing. The conversion to NAND with mixed notation is presented in part (b) of the diagram. The
two additional bubbles associated with inputs C and D' cause these two literals to be comple-
mented to C' and D. The bubble in the output NAND gate complements the output value, so
we need to insert an inverter gate at the output in order 1o complement the signal again and get
the original value back.

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and rules for
NOR logic are the duals of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gate that can be used to implement any Boolean function.
The implementation of the complement, OR, and AND operations with NOR gates is shown
in Fig. 3.24. The complement operation is obtained from a one-input NOR gate that behaves
exactly like an inverter. The OR operation requires two NOR gates, and the AND operation is
obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.25. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND
symbol complements each input and then performs an AND operation. The two symbols
designate the same NOR operation and are logically identical because of DeMorgan's
theorem.

94 Chapter 3 Gate-Level Minimization

(a) AND-OR gates

(b) NAND gates

FIGURE 3.23
Implementing F = (AB’ + A’B)(C + D')

Inverter

=
: |'.l‘.'§
h--

FIGURE 3.24
Logic operations with NOR gates

y—7F

(x+y+2z) xy''=(x+y+2)

{a) OR-invert (b) Invert-AND

FIGURE 3.25
Two graphic symbols for the NOR gate

Section 3.7 NAND and NOR Implementation 95

A two-level implementation with NOR gates requires that the function be simplified into
product-of-sums form. Remember that the simplified product-of-sums expression is obtained
from the map by combining the 0's and complementing, A product-of-sums expression is im-
plemented with a first level of OR gates that produce the sum terms followed by a second-
level AND gate to produce the product. The transformation from the OR-AND diagram to a
NOR diagram is achieved by changing the OR gates to NOR gates with OR-invert graphic
symbols and the AND gate 1o a NOR gate with an invert-AND graphic symbol. A single literal
term going into the second-level gate must be complemented. Fig. 3.26 shows the NOR im-
plementation of a function expressed as a product of sums:

F=(A+ B)(C + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the same line.
Variable E is complemented to compensate for the third bubble at the input of the second-level
gate.

The procedure for converting a multilevel AND-OR diagram to an all-NOR diagram is
similar to the one presented for NAND gates. For the NOR case. we must convert each OR gate
to an OR-invert symbol and each AND gate to an invert-AND symbol. Any bubble that is not
compensated by another bubble along the same line needs an inverter, or the complementation
of the input literal.

The transformation of the AND-OR diagram of Fig. 3.23(a) into a NOR diagram is shown
in Fig. 3.27. The Boolean function for this circuit is

F=(AB + A'B)(C + D)

FIGURE 3.26
Implementing F = (A + B)(C + DJE

FIGURE 3.27
Implementing F = (AB" + A’B)(C + D’) with NOR gates

Chapter 3 Gate-Level Minimization

The equivalent AND-OR diagram can be recognized from the NOR diagram by removing all
the bubbles. To compensate for the bubbles in four inputs, it is necessary to complement the
corresponding input literals.

3.8 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR gates. For this
reason, NAND and NOR logic implementations are the most important from a practical point
of view. Some (but not all) NAND or NOR gates allow the possibility of a wire connection be-
tween the outputs of two gates to provide a specific logic function. This type of logic is called
wired logic. For example, open-collector TTL NAND gates, when tied together, perform wired-
AND logic. (The open-collector TTL gate is shown in Chapter 10, Fig. 10.11.) The wired-
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the lines going through the center of the gate to distinguish it from a conventional
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained from the indicated wired connection. The logic function implemented by the circuit
of Fig. 3.28(a) is

F = (AB)'-+-(CD)' = (AB + CD)' = (A’ + B')(C’ + D')
and is called an AND-OR-INVERT function.

Similarly, the NOR outputs of ECL gates (see Figure 10.17) can be tied together to perform
a wired-OR function. The logic function implemented by the circuit of Fig. 3.28(b) is

F=(A+B) +(C+ D) =[(A+ B)(C+ D)

and is called an OR-AND-INVERT function.

A wired-logic gate does not produce a physical second-level gate, since it is just a wire con-
nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.28 as
two-level implementations. The first level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit-
ted in subsequent discussions.

F=(AB + CD)' F=[(A+B)(C+ D))

(a) Wired-AND in open-collector
TTL NAND gates.

(AND-OR-INVERT)

FIGURE 3.28
Wired logic

(b) Wired-OR in ECL gates

(OR-AND-INVERT)

(a) Wired-AND logic with two NAND gates
(b) Wired-OR in emitter-coupled logic (ECL) gates

Section 3.8 Other Two-Level Implementations 97

Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level combi-
nations of gates are possible. We consider four 1ypes of gates: AND, OR, MAND, and NOR.
If we assign one type of gate for the first level and one type for the second level, we find that
there are 16 possible combinations of two-level forms. (The same type of gate can be in the first
and second levels, as in a NAND-NAND implementation.) Eight of these combinations are said
1o be degenerate forms because they degenerate to a single operation, This can be seen from
a circuit with AND gates in the first level and an AND gate in the second level. The output of
the circuit is merely the AND function of all input variables. The remaining eight nondegenerate
forms produce an implementation in sum-of-products form or product-of-sums form, The eight
nondegenerate forms are as follows:

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-AND
OR-NAND AND-NOR

The first gate listed in each of the forms constitutes a first level in the implementation. The sec-
ond gate listed is a single gate placed in the second level. Note that any two forms listed on the
same line are duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in Section 3.4.
The NAND-NAND and NOR-NOR forms were presented in Section 3.6. The remaining four
forms are investigated in this section.

AND-OR-INVERT Implementation

The two forms NAND-AND and AND-NOR are equivalent and can be treated together. Both
perform the AND-OR-INVERT function, as shown in Fig. 3.29. The AND-NOR form re-
sembles the AND-OR form, but with an inversion done by the bubble in the output of the
NOR gate. It implements the function

F=(AB+CD+ E)

(a) AND-NOR (b) AND-NOR (c) NAND-AND

FIGURE 3.29
AND-OR-INVERT circuits, F = (AB + CD + E)*

98

Chapter 3 Gate-Level Minimization

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.29(b). Note that the single variable £ is nor complemented, because the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter-
minal of the second-level gate to the output terminals of the first-level gates. An inverter is need-
ed for the single variable in order to compensate for the bubble. Alternatively, the inverter can
be removed, provided that input E is complemented. The circuit of Fig. 3.29(c) is a
NAND-AND form and was shown in Fig. 3.28 to implement the AND-OR-INVERT function.

An AND-OR implementation requires an expression in sum-of-products form. The
AND-OR-INVERT implementation is similar, except for the inversion. Therefore, if the comp-
lement of the function is simplified into sum-of-products form (by combining the 0's in the map),
it will be possible to implement F' with the AND-OR part of the function. When F’ passes
through the always present output inversion (the INVERT part), it will generate the output F
of the function. An example for the AND-OR-INVERT implementation will be shown
subsequently.

OR-AND-INVERT implementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, except for the inversion done
by the bubble in the NAND gate. It implements the function

F = [(A + B)(C + D)EY

By using the alternative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c¢) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig. 3.30(c) is a NOR-OR
form and was shown in Fig, 3.28 to implement the OR-AND-INVERT function.

The OR-AND-INVERT implementation requires an expression in product-of-sums form.
If the complement of the function is simplified into that form, we can implement F' with the
OR-AND part of the function. When F* passes through the INVERT part, we obtain the com-
plement of F’, or F, in the output,

(a) OR-NAND (b) OR-NAND (c) NOR-OR

FIGURE 3.30
OR-AND-INVERT circuits, F = [(A + B)(C + D)EY

Section 3.8 Other Two-Level Implementations 99

Table 3.3
Implementation with Other Two-Level Forms
Equivalent
Nondegenerate
eJ Implements simplify To Get
the F an Output
(b)* Function into of

NAND-AND AND-OR-INVERT Sum-of-products

form by combining

0's in the map, F
NOR-OR OR-AND-INVERT Product-of-sums

form by combining
1"s in the map and
then complementing. F

*Form (b) requires an inverter for a single literal term.

Tabular Summary and Example

EXAMPLE 3.11

Table 3.3 summarizes the procedures for implementing a Boolean function in any one of the
four 2-level forms. Because of the INVERT part in each case, it is convenient 1o use the sim-
plification of /' (the complement) of the function. When F' is implemented in one of these
forms, we obtain the complement of the function in the AND-OR or OR-AND form. The four
2-level forms invert this function. giving an output that is the complement of F’. This is the
normal output F.

Implement the function of Fig, 3.31(a) with the four 2-level forms listed in Table 3.3.
The complement of the function is simplified into sum-of-products form by combining the 0's
in the map:

Fl'=u'y + xy' ¢
The normal output for this function can be expressed as
F=(xv+ay +2z)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations
are shown in Fig. 3.31(b). Note that a one-input NAND, or inverter, gate is needed in the
NAND-AND implementation, but not in the AND-NOR case. The inverter can be removed
if we apply the input variable ' instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement of the
function in product-of-sums form. To obtain this expression, we first combine the 1's in the map:

F=x'y'z" + xy2'

100 Chapter 3 Gate-Level Minimization

yz g, E——
X 0 01 1 10
. ”'ol 'l:u lllso M:O F=IJ}"Z’+I}?Z'
x'y'z'-—-—""-f F=x'y+xy' +2
il m, 5 my 2 My . mg ; - x},zu

AND-NOR

OR-NAND

NOR-OR

() F=[(x+y+z)(x+y +2)]

FIGURE 3.31
Other two-level implementations

Then we take the complement of the function:

F'=(x+y+z)(x+y +2)
The normal output F can now be expressed in the form
F=[x+y+2)(x +y +2)

which is the OR-AND-INVERT form. From this expression, we can implement the function
in the OR-NAND and NOR-OR forms, as shown in Fig. 3.31(c).

Section 3.9 Exclusive-OR Function 101

3.9 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol &, is a logical operation that performs the
following Boolean operation:

x8y=xy + x'y

The exclusive-OR is equal to | if only x is equal to 1 or if only y is equal to | (i.e., x and y dif-
fer in value), but not when both are equal to 1 or when both are equal to 0. The exclusive-
NOR, also known as equivalence, performs the following Boolean operation:

(x@y) = xy + xy'

The exclusive-NOR is equal to 1 if both x and v are equal to 1 or if both are equal to 0. The ex-
clusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth
table or by algebraic manipulation:

(@) = (' +x'y) = (¢ + ¥)(x +¥) = xp + 2y

The following identities apply to the exclusive-OR operation:

x@0=x
3l =x
x@x=0
8x' =1

8y =x"@y= (x8y)

Any of these identities can be proven with a truth 1able or by replacing the © operation by its
equivalent Boolean expression. Also, it can be shown that the exclusive-OR operation is both
commutative and associative; that is,

ABB=B®A
and
(A@B)SC=A8(BBC)= A®BBC

This means that the two inputs to an exclusive-OR gate can be interchanged without affecting
the operation. It also means that we can evaluate a three-variable exclusive-OR operation in any
order, and for this reason, three or more variables can be expressed without parentheses. This
would imply the possibility of using exclusive-OR gates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, even a two-
input function is usually constructed with other types of gates. A two-input exclusive-OR func-
tion is constructed with conventional gates using two inverters, two AND gates, and an OR gate,
as shown in Fig. 3.32(a). Figure 3.32(b) shows the implementation of the exclusive-OR with
four NAND gates. The first NAND gate performs the operation (xv)" = (x' + ¥'). The other
two-level NAND circuit produces the sum of products of its inputs:

(+ ¥+ (" +¥ry=xv" +x'y=xBy

102 Chapter 3 Gate-Level Minimization

’ 1

e
P>

x SRR
= —1
y
(b) With NAND gates
FIGURE 3.32
Exclusive-OR implementations

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR
operations. Nevertheless, this function emerges quite often during the design of digital sys-
tems. It is particularly useful in arithmetic operations and error detection and correction circuits.

0Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the & symbol with its equivalent Boolean expression. In par-
ticular, the three-variable case can be converted to a Boolean expression as follows:

A®B®C = (AB' + A'B)C' + (AB + A'B')C
= AB'C’ + A'BC’ + ABC + A'B'C
= 2(1,2,4,7)

The Boolean expression clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary to the two-
variable case, in which only one variable must be equal to 1, in the case of three or more vari-
ables the requirement is that an odd number of variables be equal to 1. As a consequence, the
multiple-variable exclusive-OR operation is defined as an odd function.

The Boolean function derived from the three-variable exclusive-OR operation is expressed
as the logical sum of four minterms whose binary numerical values are 001, 010, 100, and
111. Each of these binary numbers has an odd number of 1's. The remaining four minterms

Section 3.9 Exclusive-OR Function 103

not included in the function are 000. 011, 101. and 110. and they have an even number of 1's
in their binary numerical values. In general, an n-variable exclusive-OR function is an odd
function defined as the logical sum of the 2"/2 minterms whose binary numerical values
have an odd number of 1's.

The definition of an odd function can be clarified by plotting it in a map. Figure 3.33(a) shows
the map for the three-variable exclusive-OR function. The four minterms of the function are a
unit distance apart from each other. The odd function is identified from the four minterms
whose binary values have an odd number of 1's. The complement of an odd function is an
even function. As shown in Fig. 3.33(b), the three-variable even function is equal to | when
an even number of its variables is equal to 1 (including the condition that none of the variables
isequal to 1).

The three-input odd function is implemented by means of two-input exclusive-OR gates, as
shown in Fig. 3.34(a). The complement of an odd function is obtained by replacing the output
gate with an exclusive-NOR gate, as shown in Fig. 3.34(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation, we can
obtain the sum of minterms for this function:

ABGBBCHD = (AB' + A'B)@ (CD' + C'D)
= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD’ + C'D)
= 3(1,2,4,7,8.11.13, 14)

There are 16 minterms for a four-variable Boolean function. Half of the minterms have binary
numerical values with an odd number of 1's: the other half of the minterms have binary numerical

BC L BC B
AN o o 11 10 A W 01 1110
@ ., ™y LR oy ry m. ™
0 | 1 o| 1 1
=)] " ™, ™ ™, " ™,
Af1] 1 1 Af1 1 1
c c
{a) Odd function F = A& BS ¢ (b) Even function F= (A & B& C)’
FIGURE 3.33

Map for a three-variable exclusive-OR function

A A
B l. I' B
c c

(a) 3-input odd function (b) 3-input even function

FIGURE 3.34
Logic diagram of odd and even functions

104

Chapter 3 Gate-Level Minimization

c C
CcD CcD —_—
ABN 00 01 11 10 AB 00 01 1110
my m, my my my i my my
00 1 1 00 1 1
m, g m, mg i, g m- m,
01 1 1 01 1 1
B m m m B
iy My My My 1 i 1 LU
11 1 1 11 1 1
4 mg "y gy my, “ s ny nyy my
0] 1 1 10 1 1
—————— e ——
D D
(a) Odd function F= AG B@E2CSE& D (b) Even function F= (A@B&HCH D)’
FIGURE 3.35

Map for a four-variable exclusive-OR function

values with an even number of 1's, In plotting the function in the map, the binary numerical value
for a minterm is determined from the row and column numbers of the square that represents the
minterm. The map of Fig. 3.35(a) is a plot of the four-variable exclusive-OR function. This is
an odd function because the binary values of all the minterms have an odd number of 1’s. The
complement of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to 1 when an even number of its variables is equal to 1.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error detection and correction
codes. As discussed in Section 1.7, a parity bit is used for the purpose of detecting errors dur-
ing the transmission of binary information, A parity bit is an extra bit included with a binary
message to make the number of 1's either odd or even. The message, including the parity bit,
is transmitted and then checked at the receiving end for errors. An error is detected if the
checked parity does not correspond with the one transmitted. The circuit that generates the par-
ity bit in the transmitter is called a parity generator. The circuit that checks the parity in the
receiver is called a parity checker.

As an example, consider a three-bit message to be transmitted together with an even parity
bit. Table 3.4 shows the truth table for the parity generator. The three bits—x, v, and z—
constitute the message and are the inputs to the circuit. The parity bit P is the output. For even
parity, the bit P must be generated to make the total number of 1's (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to 1 for those
minterms whose numerical values have an odd number of 1's. Therefore, P can be expressed
as a three-variable exclusive-OR function:

P=x@®yDz

The logic diagram for the parity generator is shown in Fig. 3.36(a).

Section 3.9 Exclusive-OR Function 105

Table 3.4
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
x ¥ z P
0 0 0
0 0 1 1
0 I 0 1
0 | I 0
| 0 0 1
1 0 1 0
1 1 0 0
1 | 1 |
X
J ¥
v i c
z P
(a) 3-bit even parity penerator (b) 4-bit even parity checker

FIGURE 3.36
Logic diagram of a parity generator and checker

The three bits in the message. together with the parity bit, are transmitted to their destina-
tion, where they are applied 1o a parity-checker circuit to check for possible errors in the trans-
mission. Since the information was transmitted with even parity. the four bits received must have
an even number of 1's. An error occurs during the transmission if the four bits received have
an odd number of 1's, indicating that one bit has changed in value during transmission. The out-
put of the parity checker, denoted by C, will be equal to 1 if an error occurs—that is, if the four
bits received have an odd number of 1's. Table 3.5 is the truth table for the even-parity checker.
From it, we see that the function C consists of the eight minterms with binary numerical val-
ues having an odd number of 1's. The table corresponds to the map of Fig. 3.35(a), which
represents an odd function. The parity checker can be implemented with exclusive-OR gates:

C=xByB:9P

The logic diagram of the parity checker is shown in Fig. 3.36(b).

It is worth noting that the parity generator can be implemented with the circuit of Fig. 3.36(b)
if the input P is connected to logic 0 and the output is marked with P, This is because z 0 = z,
causing the value of z 1o pass through the gate unchanged. The advantage of this strategy is that
the same circuit can be used for both parity generation and checking.

106 Chapter 3 Gate-Level Minimization

Table 3.5
Even-Parity-Checker Truth Table
Four Bits Parity Error
Received Check
x y z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 |
0 0 1 1 0
0 1 0 0 !
0 1 0 l 0
0 | 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
| 0 1 0 0
! 0 1 1 1
! | 0 0 0
1 1 0 1 1
l ! 1 0 1
1 1 1 | 0

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minterms whose numerical values have either
an odd or even number of 1's. As a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1's is the complement of an odd function. It is im-
plemented with exclusive-OR gates, except that the gate associated with the output must be an
exclusive-NOR to provide the required complementation.

3.10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circuit is small. For any-
thing else (i.e., a practical circuit), designers use computer-based design tools. Coupled with
a correct-by-construction methodology, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design. Prototype integrated
circuits are too expensive and time consuming to build, so all modern design tools rely on a
hardware description language to describe, design, and test a circuit in software before it is
ever manufactured.

A hardware description language (HDL) is a computer-based language that describes the
hardware of digital systems in a textual form. It resembles an ordinary computer programming
language, such as C, but is specifically oriented to describing hardware structures and the
behavior of logic circuits. It can be used to represent logic diagrams, truth tables, Boolean

Section 3.10 Hardware Description Language 107

expressions, and complex abstractions of the behavior of a digital system. One way to view an
HDL is to observe that it describes a relationship between signals that are the inputs to a cir-
cuit and the signals that are outputs of the circuit, For example, an HDL description of an AND
gate describes how the logic value of the gate’s output is determined by the logic values of its
inputs.

As a documentation language. an HDL is used to represent and document digital systems
in a form that can be read by both humans and computers and is suitable as an exchange lan-
guage between designers, The language content can be stored, retrieved, edited, and transmit-
ted easily and processed by computer software in an efficient manner.

HDLs are used in several major steps in the design flow of an integrated circuit: design
entry, functional simulation or verification, logic synthesis. timing verification. and fault
simulation.

Design enrry creates an HDL-based description of the functionality that is to be imple-
mented in hardware. Depending on the HDL, the description can be in a variety of forms:
Boolean logic equations, truth tables, a netlist of interconnected gates, or an abstract behavioral
model. The HDL model may also represent a partition of a larger circuit into smaller inter-
connected and interacting functional units.

Logic sinudarion displays the behavior of a digital system through the use of a computer. A
simulator interprets the HDL description and either produces readable output, such as a time-
ordered sequence of input and output signal values, or displays waveforms of the signals. The
simulation of a circuit predicts how the hardware will behave before it is actually fabricated.
Simulation allows the detection of functional errors in a design without having to physically
create and operate the circuit. Errors that are detected during a simulation can be corrected by
modifying the appropriate HDL statements. The stimulus (i.e., the logic values of the inputs to
a circuit) that tests the functionality of the design is called a test bench. Thus, to simulate a dig-
ital system, the design is first described in an HDL and then verified by simulating the design
and checking it with a test bench, which is also written in the HDL. An alternative and more
complex approach relies on formal mathematical methods to prove that a circuit is function-
ally correct. We will focus exclusively on simulation.

Logic synthesis is the process of deriving a list of physical components and their intercon-
nections (called a nerlisr) from the model of a digital system described in an HDL. The netlist
can be used to fabricate an integrated circuit or to lay out a printed circuit board with the hard-
ware counterparts of the gates in the list. Logic synthesis is similar to compiling a program in
a conventional high-level language. The difference is that, instead of producing an object code,
logic synthesis produces a database describing the elements and structure of a circuit. The data-
base specifies how to fabricate a physical integrated circuit that implements in silicon the func-
tionality described by statements made in an HDL. Logic synthesis is based on formal exact
procedures that implement digital circuits and addresses that part of a digital design which can
be automated with computer software. The design of today’s large, complex circuits is made
possible by logic synthesis software.

Timing verification confirms that the fabricated integrated circuit will operate at a speci-
fied speed. Because each logic gate in a circuit has a propagation delay, a signal transition at
the input of a circuit cannot immediately cause a change in the logic value of the output of a
circuit. Propagation delays ultimately limit the speed at which a circuit can operate. Timing

108 Chapter 3 Gate-Level Minimization

verification checks each signal path to verify that it is not compromised by propagation delay.
This step is done after logic synthesis specifies the actual devices that will compose a circuit
and before the circuit is released for production.

In VLSI circuit design, fault simularion compares the behavior of an ideal circuit with the
behavior of a circuit that contains a process-induced flaw. Dust and other particulates in the
atmosphere of the clean room can cause a circuit to be fabricated with a fault. A circuit with
a fault will not exhibit the same functionality as a fault-free circuit. Fault simulation is used
to identify input stimuli that can be used to reveal the difference between the faulty circuit and
the fault-free circuit. These test patterns will be used to test fabricated devices to ensure that
only good devices are shipped to the customer. Test generation and fault simulation may occur
at different steps in the design process, but they are always done before production in order
to avoid the disaster of producing a circuit whose internal logic cannot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the public
domain, there are two standard HDLs that are supported by the IEEE: VHDL and Verilog.
VHDL is a Department of Defense-mandated language. (The Vin VHDL stands for the first
letter in VHSIC, an acronym for very high speed integrated circuit.) Verilog began as a
proprietary HDL of Cadence Design Systems, but Cadence transferred control of Verilog to
a consortium of companies and universities known as Open Verilog International (OVI) as a
step leading to its adoption as an IEEE standard. VHDL is more difficult to learn than Verilog.
Because Verilog is an easier language than VHDL to describe, learn, and use, we have cho-
sen it for this book. However, the Verilog HDL descriptions listed throughout the book are not
just about Verilog, but also serve to introduce a design methodology based on the concept of
computer-aided modeling of digital systems by means of a typical hardware description
language. Our emphasis will be on the modeling, verification, and synthesis (both manual
and automated) of Verilog models of circuits having specified behavior. The Verilog HDL
was initially approved as a standard HDL in 1995; revised and enhanced versions of the lan-
guage were approved in 2001 and 2005. We will address only those features of Verilog,
including the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

Module Declaration

The language reference manual for the Verilog HDL presents a syntax that describes precisely
the constructs that can be used in the language. In particular, a Verilog model is composed
of text using keywords, of which there are about 100. Keywords are predefined lowercase
identifiers that define the language constructs, Examples of keywords are module, end-
module, input, output, wire, and, or, and not, For clarity, keywords will be displayed in
boldface in the text in all examples of code and wherever it is appropriate to call attention
to their use. Any text between two forward slashes (/) and the end of the line is interpreted
as a comment and will have no effect on a simulation using the model. Multiline comments
begin with /* and terminate with */. Blank spaces are ignored, but they may not appear with-
in the text of a keyword, a user-specified identifier, an operator, or the representation of a num-
ber. Verilog is case sensitive. which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT). The term module refers to the text enclosed

Section 3.10 Hardware Description Language 109

A wl
Gl
B - ‘ b D

FIGURE 3.37
Circuit to demonstrate an HDL

by the keyword pair module ... endmodule. A module is the fundamental descriptive unit
in the Verilog language. It is declared by the keyword module and must always be terminated
by the keyword endmodule.

Combinational logic can be described by a schematic connection of gates, by a set of Boolean
equations, or by a truth table. Each type of description can be developed in Verilog. We will
demonstrate each style, beginning with a simple example of a Verilog gate-level description to
illustrate some aspects of the language.

The HDL description of the circuit of Fig. 3.37 is shown in HDL Example 3.1. The first line of
text is a comment (optional) providing useful information to the reader. The second line begins with
the keyword module and starts the declaration (description) of the module; the last line completes
the declaration with the keyword endmodule. The keyword module is followed by a name and a
list of ports. The name (Simple_Circuit in this example) is an identifier. Identifiers are names given
to modules, variables (e.g., a signal), and other elements of the language so that they can be ref-
erenced in the design. In general, we choose meaningful names for modules. Identifiers are com-
posed of alphanumeric characters and the underscore (_), and are case sensitive. Identifiers must
start with an alphabetic character or an underscore, but they cannot start with a number.

HDL Example 3.1 (Combinational logic modeled with primitives)

1/ Verilog model of circuit of Figure 3.37. IEEE 1364-1995 Syntax

module Simple_Circuit (A, B, C, D, E);

output D, E:

input A B, C

wire wi;

and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);

or G3(D, w1, E);

endmodule

The port list of a module is the interface between the module and its environment. In this
example, the ports are the inputs and outputs of the circuit, The logic values of the inputs to
a circuit are determined by the environment; the logic values of the outputs are determined
within the circuit and result from the action of the inputs on the circuit. The port list is en-
closed in parentheses, and commas are used to separate elements of the list. The statement

110 Chapter 3 Gate-Level Minimization

is terminated with a semicolon (;). In our examples, all keywords (which must be in lower-
case) are printed in bold for clarity, but that is not a requirement of the language. Next, the
keywords input and output specify which of the ports are inputs and which are outputs. In-
ternal connections are declared as wires. The circuit in this example has one internal con-
nection, at terminal w/, and is declared with the keyword wire. The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descriptive key-
word (and, not, or). The elements of the list are referred to as instantiations of a gate, each
of which is referred to as a gate instance. Each gate instantiation consists of an optional
name (such as G/, G2, etc.) followed by the gate output and inputs separated by commas and
enclosed in parentheses. The output of a primitive gate is always listed first, followed by
the inputs. For example, the OR gate of the schematic is represented by the or primitive, is
named G3, and has output D and inputs w/ and E. (Nore: The output of a primitive must be
listed first, but the inputs and outputs of a module may be listed in any order.) The module
description ends with the keyword endmodule. Each statement must be terminated with a
semicolon, but there is no semicolon after endmodule.

It is important to understand the distinction between the terms declaration and instantiation.
A Verilog module is declared. Its declaration specifies the input—output behavior of the hard-
ware that it represents. Predefined primitives are not declared, because their definition is spec-
ified by the language and is not subject to change by the user. Primitives are used (i.e.,
instantiated), just as gates are used to populate a printed circuit board. We’ll see that once a mod-
ule has been declared. it may be used (instantiated) within a design. Note that Simple_Circuit
is not a computational model like those developed in an ordinary programming language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A Verilog model is a descriptive model. Simple_Circuit describes what primitives form a cir-
cuit and how they are connected. The input-output behavior of the circuit is implicitly speci-
fied by the description because the behavior of each logic gate is defined. Thus, an HDL-based
model can be used to simulate the circuit that it represents.

Gate Delays

All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an output. When an HDL model of a circuit is simulated, it is sometimes neces-
sary to specify the amount of delay from the input to the output of its gates. In Verilog, the prop-
agation delay of a gate is specified in terms of zime units and is specified by the symbol #. The
numbers associated with time delays in Verilog are dimensionless. The association of a time
unit with physical time is made with the ‘timescale compiler directive. (Compiler directives
start with the (') back quote, or grave accent, symbol.) Such a directive is specified before the
declaration of a module and applies to all numerical values of time in the code that follows. An
example of a timescale directive is

timescale 1ns/100ps

The first number specifies the unit of measurement for time delays. The second number spec-
ifies the precision for which the delays are rounded off, in this case to 0.1 ns. If no timescale
is specified, a simulator may display dimensionless values or default to a certain time unit,
usually 1 ns (= 107 sec). Our examples will use only the default time unit.

Section 3.10 Hardware Description Language m

Table 3.6

Output of Gates after Delay
Time Units —mPut ok
(ns) ABC EwlD
Initial — 000 101
Change — 111 101
10 111 001
20 111 001
30 111 010
40 111 010
50 111 011

HDL Example 3.2 repeats the description of the simple circuit of Example 3.1, but with
propagation delays specified for each gate. The and, or, and not gates have a time delay of 30,
20, and 10 ns, respectively. If the circuit is simulated and the inputs change from A, B, C = 0
A, B.C = 1, the outputs change as shown in Table 3.6 (calculated by hand or generated by a
simulator). The output of the inverter at £ changes from 1 to 0 after a 10-ns delay. The output of
the AND gate at w/ changes from 0 to 1 after a 30-ns delay. The output of the OR gate at D
changes from 1 to 0 at r = 30 ns and then changes back to 1 at ¢ = 50 ns. In both cases, the
change in the output of the OR gate results from a change in its inputs 20 ns earlier. It is clear from
this result that although output D eventually returns to a final value of 1 after the input changes,
the gate delays produce a negative spike that lasts 20 ns before the final value is reached.

HDL Example 3.2 (Gate-level model with propagation delays)
/! Verilog model of simple circuit with propagation delay

module Simple_Circuit_prop_delay (A, B, C, D, E);

output D, E;

input A B C;

wire wl,

and #(30) G1 (w1, A, B);
not #(10) G2 (E, C);

or #(20) G3 (D, w1, E);
endmodule

In order to simulate a circuit with an HDL, 1t is necessary to apply inputs to the circuit so
that the simulator will generate an output response. An HDL description that provides the stim-
ulus to a design is called a rest bench. The writing of test benches is explained in more detail
at the end of Section 4.12. Here. we demonstrate the procedure with a simple example with-
out dwelling on too many details, HDL Example 3.3 shows a test bench for simulating the cir-
cuit with delay. (Note the distinguishing name Simple_Circuit_prop_delay.) In its simplest

112

Chapter 3 Gate-Level Minimization

form, a test bench is a module containing a signal generator and an instantiation of the model
that is to be verified. Note that the test bench (t_Simple_Circuit_prop_delay) has no input or
output ports, because it does not interact with its environment. In general, we prefer to name
the test bench with the prefix 7_ concatenated with the name of the module that is to be tested
by the test bench, but that choice is left to the designer. Within the test bench, the inputs to the
circuit are declared with keyword reg and the outputs are declared with the keyword wire. The
module Simple_Circuit_prop_delay is instantiated with the instance name M1. Every instan-
tiation of a module must include a unique instance name. Note that using a test bench is sim-
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probes (wires) to the outputs of the circuit. (The interaction between the signal gen-
erators of the stimulus module and the instantiated circuit module is illustrated in Fig. 4.33.)

HDL Example 3.3
/Il Test bench for Simple_Circuit_prop_delay

module t_Simple_Circuit_prop_delay;
wire Dy &
reg A, B, C;

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required

initial
begin
A =1b0; B =1b0; C = 1'b0;
#100 A=1'b1; B=1'b1; C = 1'b1;
end

initial #200 $finish;
endmodule

Hardware signal generators are not used to verify an HDL model: The entire simulation ex-
ercise is done with software models executing on a digital computer. The waveforms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initial keyword is used with a set of statements that begin executing when
the simulation is initialized; initial terminates execution when the last statement has finished
executing. initial statements are commonly used to describe waveforms in a test bench. The
set of statements to be executed is called a block statement and consists of several statements
enclosed by the keywords begin and end. The action specified by the statements begins when
the simulation is launched, and the statements are executed in sequence, from top to bottom,
by a simulator in order to provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C
are each set to 1'b0, which signifies one binary digit with a value of 0.) After 100 ns, the in-
puts change to A, B, C = 1, After another 100 ns, the simulation terminates at time 200 ns. A
second initial statement uses the $finish system task to specify termination of the simulation.
If a statement is preceded by a delay value (e.g., #100), the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms that result

Section 3.10 Hardware Description Language 113

0.0ns 58.0ns 116.0 ns 174.0 ns
Name I T I T A W S W Sl 0l ST o3 G S A T e 9
A I
B [
C I
D]]
E [1
FIGURE 3.38

Simulation output of HDL Example 3.3

from the simulation is shown in Figure 3.38, The total simulation takes 200 ns. The inputs A,
B, and C change from 0 to 1 after 100 ns. Output £ is unknown for the first 10 ns (denoted by
shading). and output D is unknown for the first 30 ns. Output £ goes from | to 0 at 110 ns. Out-
put D goes from 1 to 0 at 130 ns and back to 1 at 150 ns, just as we predicted in Table 3.6,

Boolean Expressions

Boolean equations describing combinational logic are specified in Verilog with a continuous
assignment statement consisting of the keyword assign followed by a Boolean expression. To
distinguish arithmetic operators from logical operators, Verilog uses the symbols (&), (/), and
{~) for AND, OR. and NOT (complement), respectively. Thus, to describe the simple circuit
of Fig. 3.37 with a Boolean expression, we use the statement

assign D = (A & B)|~C;
HDL Example 3.4 describes a circuit that is specified with the following two Boolean expressions:

E=A+BC+8B'D
F=B'C+BC'D’

The equations specify how the logic values £ and F are determined by the values of A, B, C,
and D,

HDL Example 3.4 (Combinational logic modeled with Boolean equations)

/I Verilog model: Circuit with Boolean expressions

module Circuit_Booclean_CA (E, F, A, B, C, D),
output E,F:
input A B, C D;

assignE=A|(B&C)|(~-B&D);
assignF=(~-B&C)|(B&~C &~D).
endmodule

114 Chapter 3 Gate-Level Minimization

The circuit has two outputs E and F and four inputs A, B, C, and D. The two assign state-
ments describe the Boolean equations. The values of E and F during simulation are determined
dynamically by the values of A, B, C, and D. The simulator detects when the test bench changes
a value of one or more of the inputs, When this happens, the simulator updates the values of E
and F. The continuous assignment mechanism is so named because the relationship between
the assigned value and the variables is permanent. The mechanism acts just like combination-
al logic, has a gate-level equivalent circuit, and is referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL statements, just as it can
be drawn in a circuit diagram or specified with a Boolean expression. A third alternative is to
describe combinational logic with a truth table.

User-Defined Primitives

The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by the sys-
tem and are referred to as system primitives. (Caution: Other languages may use these words
differently.) The user can create additional primitives by defining them in tabular form, These
types of circuits are referred to as user-defined primitives (UDPs). One way of specifying a dig-
ital circuit in tabular form is by means of a truth table. UDP descriptions do not use the key-
word pair module ... endmodule. Instead, they are declared with the keyword pair primitive
... endprimitive. The best way to demonstrate a UDP declaration is by means of an example.

HDL Example 3.5 defines a UDP with a truth table. It proceeds according to the following
general rules:

* Itis declared with the keyword primitive, followed by a name and port list.

* There can be only one output, and it must be listed first in the port list and declared with
keyword output.

* There can be any number of inputs. The order in which they are listed in the input
declaration must conform to the order in which they are given values in the table that
follows.

* The truth table is enclosed within the keywords table and endtable.

* The values of the inputs are listed in order, ending with a colon (:). The output is always
the last entry in a row and is followed by a semicolon ().

* The declaration of a UDP ends with the keyword endprimitive.

Note that the variables listed on top of the table are part of a comment and are shown only
for clarity. The system recognizes the variables by the order in which they are listed in the
input declaration. A user-defined primitive can be instantiated in the construction of other mod-
ules (digital circuits), just as the system primitives are used. For example, the declaration

Circuit_with_UDP_02467 (E, F, A, B, C, D);
will produce a circuit that implements the hardware shown in Figure 3.39.

Although Verilog HDL uses this kind of description for UDPs only, other HDLs and
computer-aided design (CAD) systems use other procedures to specify digital circuits in tab-
ular form. The tables can be processed by CAD software to derive an efficient gate struc-
ture of the design. None of Verilog's predefined primitives describes sequential logic. The

Section 3.10 Hardware Description Language

HDL Example 3.5
11 Verilog model: User-defined Primitive

primitive UDP_02467 (D, A, B, C);

output D;

input A, B, C;

/i Truth table for D=f(A,B,C)=X(0,2,4,6, 7).

table

nooA B Cc D /I Column header comment
0 0] ¢
0 0 1 0
1] 1 0 C by
1] 1 1 0;
1 0 0 1
1 0 1 0
1 1 0 e
1 1 1 L H

endtable

endprimitive

I Instantiate primitive
/! Verilog model: Circuit instantiation of Circuit_UDP_02487

module Circuit_with_UDP_02467 (e, f, a, b, ¢, d);

output e.f

input ab.cd;

UDP_02467 (e,a, b, c)

and (f. e, d); /I Option gate instance name omitted
endmodule

FIGURE 3.39
Schematic for Circuit with_UDP_02467

116 Chapter 3 Gate-Level Minimization

model of a sequential UDP requires that its output be declared as a reg data type, and that
a column be added to the truth table to describe the next state. So the columns are organ-
izes as inputs : state : next state.

In this section, we introduced the Verilog HDL and presented simple examples to illustrate
alternatives for modeling combinational logic. A more detailed presentation of Verilog HDL
can be found in the next chapter. The reader familiar with combinational circuits can go directly
to Section 4.12 to continue with this subject.

PROBLEMS

Answers to problems marked with * appear at the end of the book,
3.1* Simplify the following Boolean functions, using three-variable maps:

(a) F(x,y,2)= 2(0,26,7) (b) F(x,y,z) = £(0,2,3,4,6)

(c) F(x,y.z)=2(0,1,2,3,7) d) F(x,y2) = 2(3,5,6,7)
3.2 Simplify the following Boolean functions, using three-variable maps:

(@)* F(x,y.z) = 2(0,1,5,7) (b)* F(x,y.2) = £(1,2,3,6,7)

(©) F(x.y,z) = £(0.1,6,7) (d) F(x,y.z) = £(0,1,3,4,5)

(e) F(x.y,2) = 2(1,3,5,7) () F(x,y.z) = £(1,4,5.6,7)
3.3%* Simplify the following Boolean expressions, using three-variable maps:

(@ F(x,y,2) = xy + x'y'z' + x'yz' () F(x,y2) = x'y' + yz + x'yz’

@) Flx,»z) =xy +yi' +y'¢ d) Fx,y,2) =xyz +x'y'z+ xy'z
3.4 Simplify the following Boolean functions, using Karnaugh maps;

@* F(x, y,2) = £(2.3,6,7) (b)* F(A, B,C, D) = £(4,6,7,15)

(¢)* F(A.B,C,D) = 3(3,7,11,13,14,15) (d)* F(w, x, y.2) = (2.3, 12,13, 14, 15)

(e) F(w.x,y,z) = £(1,4,5,6,7,13) O F(w,x,»2)=2(0,1,58,9)

3.5 Simplify the following Boolean functions, using four-variable maps:
(@) F(w, x,y2) = £(1,4,5,6, 12, 14, 15)
(b) F(A, B.C,D) = 2(1,5,9, 10,11, 14, 15)
() F(w.x,y.2)=2(0,1,4,56,7,8,9)
(dy* F(A,B,C, D) = £(0,2,4,5,6,7,8, 10,13, 15)

3.6 Simplify the following Boolean expressions, using four-variable maps:
(a)* A'B'C'D’ + AC'D' + B'CD' + A'BCD + BC'D
(by*x'z + w'xy’ + w(x'y + xy')
(c) A'B'C'D' + A'CD' + AB'D’ + ABCD + A’'BD
(d) A'B'C'D' + AB'C + B'CD' + ABCD' + BC'D
3.7 Simplify the following Boolean expressions, using four-variable maps:
(a)* w'z + xz2 + x'y + wx'z
(b) C'D + A'B'C + ABC' + AB'C
(c)* AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D
(d) xyz + wy + wxy' + x'y
3.8 Find the minterms of the following Boolean expressions by first plotting each function in a map:
(@) xy + yz + xy'z (b)*C’'D + ABC' + ABD' + A'B'D
() wyz + wx' + wxz' (d) A'B+ A'CD + B'CD + BC'D'

39

3.2

Problems 117

Find all the prime implicants for the following Boolean functions, and determine which are es-
sential:

(ay* F(w,x,v,z) = £(0,2,4,5,6,7.8, 10, 13, 15)
(bl"F(A.BC)=I(0.23578 10, 11. 14, 15)
(¢) F(A,B.C.,D) = 2(1,3,4,510,11,12,13,14,15)
d) Flw.x,»2) = Z(1,3,6,7.8,9,12, 13, 14, 15)

(e) F(A,B,C.D) = %(0,2,3,57.8.10,11,13.15)
H Flw,x.y.2) = £(0,2,7,8,9.10,12, 13, 14, 15)

Simplify the following Boolean functions by first finding the essential prime implicants:
(@) F(w.x,»z)=2(0,2,4,56.78,10.13,15)

(b) F(A,B,C,D) = 2(0,2,3,5,7,8,10,11, 14, 15)

(e)* F(A,B,C,) = 2(1,3.4,5,10, 11,12, 13, 14, 15)

(d) F(w,x,y.2)= 2(1,3,6,7.8,9.12, 13, 14, 15)

(e) F(A.B, C) 2(0,2,3,5.7,8,10,11, 13, 15)

f) Flw,x.y.z) = Z(0,2,7.8.9.10, 12, 13, 14, 15)

Simplify the following Boolean functions, using five-variable maps:

(a)* F(A.B.C.D. E) = £(0,1,4,5.16. 17.21.25.29)

(b) F(A.B.C.D) = A'B'CE' + B'C'D'E' + A'B'D' + B'CD' + A'CD + A'BD
Simplify the following Boolean functions to product-of-sums form:

(@) F(w,xy2) = Z(0,1.2.58,10,13)

(b)* F(A.B.C.D) = I (1.3.5.7. 13, 15)

() F(A.B.C.D) =T1(1.3.6.9.11.12. 14)

Simplify the following expressions to (1) sum-of-products and (2) products-of-sums:
(ay*x's' + ¥v'z' + vz’ + xv

(b) ACD' + C'D + AB' + ABCD

(€) (A+C' +D')(A+B +D)A+B+D)A +B+C(')

(d) ABC' + AB'D + BCD

Give three possible ways to express the following Boolean function with eight or fewer literals:
F = B'C'D' + AB'CD' + BC'D + A'BCD

Simplify the following Boolean function F. together with the don't-care conditions d, and then
express the simplified function in sum-of-minterms form:

(@ Flxy.z) = Z(234.6,7) (b)* F{A. B.C. D) = £(0.6, 8,13, 14)
d(x,y.2) = £(0.1,5) d(A, B.C. D) = 3(2,4,10)

(c) F(A B ,C D)= X(4571213.14) (d) F(A B.C.D)= 3(1,3.8 10,15)
d(A.B.C.D) = £(1,9, 11,15) d(A, B.C.D) = 3(0,2,9)

Simplify the following functions, and implement them with two-level NAND gate circuits:
(a) F(A,B,C.D) = A'B'C + AC' + ACD + ACD' + A'B'D’

(b) F(A.B,C.D) = AB + A'BC + A'B'C'D

{c) F(A.B.C)=(A'"+ B' +C')(A" + B') (A" + C")

d) F(AB.C.D)=A'B+A+C + D

3.17* Draw a NAND logic diagram that implements the complement of the following function:

F(A.B.C,D) = £(0,1.2,3,4,8,9,12)

118

Chapter 3 Gate-Level Minimization

3.18

3.19

3.20

3.21

3.22
3.23

3.24

3.25

3.26

3.27
3.28

3.29

Draw a logic diagram using only two-input NOR gates to implement the following function:
F(A,B,C,D) = (A®B) (C®D)

Simplify the following functions, and implement them with two-level NOR gate circuits:

(ay* F = wx' + y'z' + w'ys'

(b) F(w,x,y.2) = 2(1,2,13, 14)

(© Flxy.z) =[(x +y)x' +2))

Draw the multi-level NOR and multi-level NAND circuits for the following expression:

(AB' + CD')E + BC(A + B)

Draw the multi-level NAND circuit for the following expression:
wx +y+z) + xyz

Convert the logic diagram of the circuit shown in Fig. 4.4 into a multiple-level NAND circuit.

Implement the following Boolean function F, together with the don't-care conditions d, using no
more than two NOR gates:

F(A,B.C.D) = 2(2,4,6,10, 12)
d(A,B,C, D) = £(0,8,9,13)
Assume that both the normal and complement inputs are available.

Implement the following Boolean function F, using the two-level forms of logic (a) NAND-
AND, (b) AND-NOR, (¢) OR-NAND, and (d) NOR-OR:

F(A, B ,C,D) = 2(0,4,8,9,10,11, 12, 14)
List the eight degenerate two-level forms and show that they reduce to a single operation, Explain
how the degenerate two-level forms can be used to extend the number of inputs to a gate.
With the use of maps, find the simplest sum-of-products form of the function F = fg, where
f=abc" +c'd+ a'cd + b'cd’
and

g=(a+b+c +d')b +¢ +d)a +c+d)

Show that the dual of the exclusive-OR is also its complement.

Derive the circuits for a three-bit parity generator and four-bit parity checker using an odd
parity bit.

Implement the following four Boolean expressions with three half adders
D=A®BBC
E = A'BC + AB'C
F = ABC' + (A' + B')C
G = ABC

3.30* Implement the following Boolean expression with exclusive-OR and AND gates:

F = AB'CD' + A’'BCD' + AB'C'D + A'BC’'D

3.33

3.34

3.35*

3.36

Problems 119

Write a Verilog gate-level description of the circuit shown in

(a) Fig.3.22(a) (b) Fig. 3.22(b) (c) Fig. 3.23(a)

{d) Fig.3.23(h) (e) Fig. 3.26 (f) Fig.3.27

Using continuous assignment statements, write a Verilog description of the circuit shown in
(a) Fig. 3.22(a) (b) Fig. 3.22(b) (c) Fig. 3.23(a)

(d) Fig.3.23(b) (e) Fig.3.26 () Fig.3.27

The exclusive-OR circuit of Fig, 3.32(a) has gates with a delay of 4 ns for an inverter, a 8 ns

delay for an AND gate, and a 10 ns delay for an OR gate, The input of the circuit goes from

xyv = 00t xy = 01,

(a) Determine the signals at the output of each gate from s = Otor = 50 ns.

(b) Write a Verilog gate-level description of the circuit. including the delays.

(¢) Write a stimulus module (i.e.. a test bench similar to HDL Example 3.3). and simulate the cir-
cuit to verify the answer in part (a).

Using continuous assignments, write a Verilog description of the circuit specified by the follow-
ing Boolean functions:

Out | = (C + B)(A' + D)B'

Ow 2= (CB' + ABC + C'B)(A + D')

Ow 3 = C(AD + B) + BA’
Write a test bench and simulate the circuit’s behavior.

Find the syntax errors in the following declarations (note that names for primitive gates are
optional):

module Exmpl-3(A, B, C, D, F) /I Line 1
inputs A, B,C,OutputD,F, //Line2
output B // Line 3
and g1(A, B, D); I/ Line 4
not (D, A, C), ! Line 5
OR (F.B.C) /I Line &

endofmodule; I Line 7

Draw the logic diagram of the digital circuit specified by the following Verilog description:

(a) module Circuit_A (A, B, C, D, F);
input A B,C D;
output B
wire w,x.y,zad
and (x.B,C, d);

and (y,a,C),
and (w, z .B);
or (z.y, A)
or (F, x, w);
not (a, A)
not (d, D)

endmodule

120 Chapter 3 Gate-Level Minimization

(b) module Circuit_B (A_gtB, A_ItB, A_eqB, A0, A1, BO, B1);

output A_gtB, A_ItB, A_eqB;
input A0, A1, BO, B1;

nor (A_gtB, A_ItB, A_egB);

or (A_ItB, w1, w2, w3),

and (A_eqB, w4, w5);

and (w1, wb, B1);

and (w2, wb, w7, BO);

and (w3, w7, BO, B1);

not (w, A1);

not (w7, AD);

xnor (w4, A1, B1);

xnor (w5, A0, BO);
endmodule

(¢) module Circuit_C (output y1, input a, b, output y2);

assignyl =a&b;
or (y2, a, b);
endmodule

3.37 A majority logic function is a Boolean function that is equal to 1 if the majority of the variables
are equal to 1, equal to 0 otherwise. Write a Verilog user-defined primitive for a four-bit majori-

ty function.
3.38 Simulate the behavior of Circuit_with_UDP_02467, using the stimulus waveforms shown in

Fig. P3.38.

A
T T I T T T L,ns
10 20 30 40 60 70 80

B
T T I T Lns
10 20 30 40 60 70 80

C

T tns

10 20 30 40 60 70 80

FIGURE P3.38
Stimulus waveforms for Problem 3.38

REFERENCES

References 121

1.

BHASKER, J. 1997. A Verilog HDL Primer. Allentown. PA: Star Galaxy Press.

Cuern, M.D. 1999. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL. Upper
Saddle River, NJ: Prentice Hall.

Hnu, F.)., and G, R. PETERSON. 1981. Introduction to Switching Theory and Logical Design, 3d
ed. New York: John Wiley.

IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language (IEEE Sid 1364-1995). 1995. New York: The Institute of Electrical and Electronics
Engineers.

KARNAUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transacrions of
AIEE, Communication and Electronics. 72, part | (Nov. 1953): 593-99.

KoHavi, Z. 1978, Switching and Automata Theory, 2d ed. New York: McGraw-Hill.

Mano, M. M., and C. R, KIME, 2004. Logic and Computer Design Fundamentals, 3rd ed. Upper
Saddle River, NJ: Prentice Hall.

McCLuskEey, E. J. 1986, Logic Design Principles, Englewood Cliffs, NI: Prentice-Hall.
PALNITRAR, S. 1996, Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

Chapter 4

Combinational Logic

4.1

INTRODUCTION

Logic circuits for digital systems may be combinational or sequential. A combinational circuit
consists of logic gates whose outputs at any time are determined from only the present combi-
nation of inputs. A combinational circuit performs an operation that can be specified logically
by a set of Boolean functions. In contrast, sequential circuits employ storage elements in addi-
tion to logic gates. Their outputs are a function of the inputs and the state of the storage elements.
Because the state of the storage elements is a function of previous inputs, the outputs of a se-
quential circuit depend not only on present values of inputs, but also on past inputs, and the cir-
cuit behavior must be specified by a time sequence of inputs and internal states, Sequential
circuits are the building blocks of digital systems and are discussed in Chapters 5, 8, and 9.

4,2 COMBINATIONAL CIRCUITS

122

A combinational circuit consists of input variables, logic gates, and output variables. Combina-
tional logic gates react to the values of the signals at their inputs and produce the value of the out-
put signal, transforming binary information from the given input data to a required output data.
A block diagram of a combinational circuit is shown in Fig. 4.1. The n input binary variables
come from an external source; the m output variables are produced by the internal combinational
logic circuit and go to an external destination. Each input and output variable exists physically
as an analog signal whose values are interpreted to be a binary signal that represents logic 1 and
logic 0. (Note: Logic simulators show only 0's and 1's, not the actual analog signals.) In many
applications, the source and destination are storage registers. If the registers are included with the
combinational gates, then the total circuit must be considered to be a sequential circuit.

Section 4.3 Analysis Procedure 123

: > Combinational =
nmnputs 15 repry £ L
P = crcut 'S .

FIGURE 4.1
Block diagram of combinational circuit

For n input variables, there are 2" possible binary input combinations. For each possible input
combination, there is one possible output value. Thus, a combinational circuit can be specified
with a truth table that lists the output values for each combination of input variables. A com-
binational circuit also can be described by m Boolean functions, one for each output variable.
Each output function is expressed in terms of the n input variables.

In Chapter 1, we learned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric voltages
or some other type of signal. The signals can be manipulated in digital logic gates to perform
required functions. In Chapter 2, we introduced Boolean algebra as a way to express logic
functions algebraically. In Chapter 3, we learned how to simplify Boolean functions to achieve
economical (simpler) gate implementations, The purpose of the current chapter is to use the
knowledge acquired in previous chapters to formulate systematic analysis and design proce-
dures for combinational circuits. The solution of some typical examples will provide a useful
catalog of elementary functions that are important for the understanding of digital systems,
We'll address three tasks: (1) Analyze the behavior of a given logic circuit, (2) synthesize a ¢ir-
cuit that will have a given behavior, and (3) write HDL models for some common circuits.

There are several combinational circuits that are employed extensively in the design of dig-
ital systems, These circuits are available in integrated circuits and are classified as standard com-
ponents. They perform specific digital functions commonly needed in the design of digital
systems. In this chapter. we introduce the most important standard combinational circuits, such
as adders, subtractors, comparators, decoders. encoders, and multiplexers. These components are
available in integrated circuits as medium-scale integration (MSI) circuits. They are also used
as standard cells in complex very large-scale integrated (VLSI) circuits such as application-
specific integrated circuits (ASICs). The standard cell functions are interconnected within the
VLSI circuit in the same way that they are used in multiple-1C MSI design.

4.3 ANALYSIS PROCEDURE

The analysis of a combinational circuit requires that we determine the function that the circuit
implements. This task starts with a given logic diagram and culminates with a set of Boolean
functions. a truth table, or. possibly, an explanation of the circuit operation. If the logic diagram
to be analyzed is accompanied by a function name or an explanation of what it is assumed to
accomplish. then the analysis problem reduces to a verification of the stated function. The
analysis can be performed manually by finding the Boolean functions or truth table or by using
a computer simulation program.

124 Chapter 4 Combinational Logic

The first step in the analysis is to make sure that the given circuit is combinational and not
sequential. The diagram of a combinational circuit has logic gates with no feedback paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms part of the input to the first gate. Feedback paths in a digital circuit de-
fine a sequential circuit and must be analyzed according to procedures outlined in Chapter 9.

Once the logic diagram is verified to be that of a combinational circuit, one can proceed to
obtain the output Boolean functions or the truth table. If the function of the circuit is under in-
vestigation, then it is necessary to interpret the operation of the circuit from the derived Boolean
functions or truth table. The success of such an investigation is enhanced if one has previous
experience and familiarity with a wide variety of digital circuits.

To obtain the output Boolean functions from a logic diagram, we proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols—but
with meaningful names. Determine the Boolean functions for each gate output.

2, Label the gates that are a function of input variables and previously labeled gates with
other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean func-
tions in terms of input variables.

The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed procedure. We
note that the circuit has three binary inputs—A, B, and C—and two binary outputs—F; and F>.

[=1

F,

FIGURE 4.2
Logic diagram for analysis example

Section 4.3 Analysis Procedure 125

The outputs of various gates are labeled with intermediate symbols. The outputs of gates that
are a function only of input variables are Ty and 75. Output F> can easily be derived from the
input variables. The Boolean functions for these three outputs are

F, = AB + AC + BC
Ti=A+B+C
T> = ABC

Next, we consider outputs of gates that are a function of already defined symbols:
T3 = FiT
=T+ T,
To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
Fy=Ty+Ty=F5T| + ABC = (AB + AC + BC)'(A + B + C) + ABC
=(A"+B)A' +C')B' +C)A+B+C)+ ABC
= (A' + B'C')(AB’' + AC' + BC' + B'C) + ABC
= A'BC’' + A'B'C + AB'C' + ABC
If we want to pursue the investigation and determine the information transformation task
achieved by this circuit, we can draw the circuit from the derived Boolean expressions and try
to recognize a familiar operation. The Boolean functions for F and F> implement a circuit dis-
cussed in Section 4.5. Merely finding a Boolean representation of a circuit doesn’t provide in-
sight into its behavior, but in this example we will observe that the Boolean equations and truth
table for F, and F> match those describing the functionality of what we call a full adder.
The derivation of the truth table for a circuit is a straightforward process once the output

Boolean functions are known. To obtain the truth table directly from the logic diagram with-
out going through the derivations of the Boolean functions, we proceed as follows:

1. Determine the number of input variables in the circuit. For n inputs, form the 2" possible
input combinations and list the binary numbers from 0 10 2" — 1 in a table,

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates which are a function of the input
variables only.

4. Proceed to obtain the truth table for the outputs of those gates which are a function of pre-
viously defined values until the columns for all outputs are determined,

This process is illustrated with the circuit of Fig. 4.2, In Table 4.1, we form the eight possi-
ble combinations for the three input variables. The truth table for £ is determined directly from
the values of A, B, and C, with F; equal to | for any combination that has two or three inputs
equal 1o 1. The truth table for F is the complement of that of F>. The truth tables for 7) and 7>
are the OR and AND functions of the input variables, respectively. The values for T; are derived
from T, and F5: T3 is equal to | when both T and F’ are equal to 1, and T3 is equal to 0 other-
wise. Finally, F; is equal to | for those combinations in which either T or T; or both are equal

126 Chapter 4 Combinational Logic

Table 4.1

Truth Table for the Logic Diagram of Fig. 4.2
A B C F, Fj Ty T T3 F
0 0 0 0 1 0 0 0 0
0 0 I 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 I 0 1 0 0 0
1 1 I ! 0 1 1 0 1

to 1. Inspection of the truth table combinations for A, B, C, F}, and F> shows that it is identical
to the truth table of the full adder given in Section 4.5 for x, y, z, §, and C, respectively.
Another way of analyzing a combinational circuit is by means of logic simulation, This is
not practical, however, because the number of input patterns that might be needed to generate
meaningful outputs could be very large. But simulation has a very practical application in ver-
ifying that the functionality of a circuit actually matches its specification. In Section 4.12, we
demonstrate the logic simulation and verification of the circuit of Fig. 4.2, using Verilog HDL.

4.4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective and
culminates in a logic circuit diagram or a set of Boolean functions from which the logic dia-
gram can be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs and outputs
and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and outputs.
3. Obtain the simplified Boolean functions for each output as a function of the input variables.
4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).

A truth table for a combinational circuit consists of input columns and output columns, The
input columns are obtained from the 2" binary numbers for the » input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec-
ified in the truth table give the exact definition of the combinational circuit. It is important that
the verbal specifications be interpreted correctly in the truth table, as they are often incom-
plete, and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method,
such as algebraic manipulation, the map method, or a computer-based simplification program.
Frequently, there is a variety of simplified expressions from which to choose. In a particular

Section 4.4 Design Procedure 127

application, certain criteria will serve as a guide in the process of choosing an implementation.
A practical design must consider such constraints as the number of gates, number of inputs to
a gate, propagation time of the signal through the gates. number of interconnections, limitations
of the driving capability of each gate (i.e., the number of gates to which the output of the cir-
cuit may be connected). and various other criteria that must be taken into consideration when
designing integrated circuits. Since the importance of each constraint is dictated by the particular
application, it is difficult to make a general stalement about what constitutes an acceptable im-
plementation. In most cases, the simplification begins by satisfying an elementary objective,
such as producing the simplified Boolean functions in a standard form. Then the simplification
proceeds with further steps to meet other performance criteria.

Code Conversion Example

The availability of a large variety of codes for the same discrete elements of information re-
sults in the use of different codes by different digital systems. It is sometimes necessary 1o use
the output of one system as the input to another. A conversion circuit must be inserted between
the two systems if each uses different codes for the same information. Thus. a code converter
is a circuit that makes the two systems compatible even though each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the bit combi-
nation of elements as specified by code A and the output lines must generate the corresponding
bit combination of code B. A combinational circuit performs this transformation by means of
logic gates. The design procedure will be illustrated by an example that converts binary coded
decimal (BCD) to the excess-3 code for the decimal digits.

The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1.5 (Section
1.7). Since each code uses four bits 1o represent a decimal digit, there must be four input vari-
ables and four output variables. We designate the four input binary variables by the symbols
A, B. C.and D. and the four output variables by w. x. v. and =. The truth table relating the input
and output variables is shown in Table 4.2. The bit combinations for the inputs and their

Table 4.2
Truth Table for Code-Conversion Example
Input BCD Output Excess-3 Code

A B C D w x ¥ z
0 0 0 0 0 0 1 1
0 0 0 | 0 1 0 0
0 0 | 0 0 I 0 1
0 0 1 1 0 1 1 0
0 | 0 0 0 1 | 1
0 1 0 1 i 0 0 0
0 1 1 0 | 0 0 1
0 1 | 1 I 0 1 0
1 0 0 0 1 0 | 1
1 0 0 1 1 | 0 0

128

Chapter 4 Combinational Logic

corresponding outputs are obtained directly from Section 1.7. Note that four binary variables
may have 16 bit combinations, but only 10 are listed in the truth table. The six bit combina-
tions not listed for the input variables are don't-care combinations. These values have no mean-
ing in BCD and we assume that they will never occur. Therefore, we are at liberty to assign to
the output variables either a | or a 0, whichever gives a simpler circuit.

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs.
Each one of the four maps represents one of the four outputs of the circuit as a function of
the four input variables. The 1's marked inside the squares are obtained from the minterms
that make the output equal to 1. The 1's are obtained from the truth table by going over the
output columns one at a time, For example, the column under output z has five 1's; therefore,
the map for z has five 1's, each being in a square corresponding to the minterm that makes
z equal to 1. The six don't-care minterms 10 through 15 are marked with an X. One possi-
ble way to simplify the functions into sum-of-products form is listed under the map of each
variable. (See Chapter 3.)

B
y=CD+CD'
c
cD - TS
ABN_00__ 01l __11__ 10
my my my my
00
m,
01
B
1
A
10
—
D
x=B'C+BD+BCD’ w=A+ BC+ BD

FIGURE 4.3
Maps for BCD-to-excess-3 code converter

Section 4.4 Design Procedure 129

Atwo-level logic diagram may be obtained directly from the Boolean expressions derived from
the maps. There are various other possibilities for a logic diagram that implements this circuit.
The expressions obtained in Fig. 4.3 may be manipulated algebraically for the purpose of using
common gates for two or more outputs. This manipulation, shown next. illustrates the flexibility
obtained with multiple-output systems when implemented with three or more levels of gates:

y=CD+CD' =CD+ (C+ D)
x=B'C+ B'D+ BC'D' = B'(C + D)+ BC'D'
= B'(C + D) + B(C + D)
w=A+BC+BD=A+B(C+D)
The logic diagram that implements these expressions is shown in Fig. 4.4, Note that the OR
gate whose output is C + D has been used to implement partially each of three outputs,

Not counting input inverters, the implementation in sum-of-products form requires seven
AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND gates, four
OR gates, and one inverter. If only the normal inputs are available, the first implementation will
require inverters for variables B, C, and D, and the second implementation will require in-
verters for variables B and D. Thus, the three-level logic circuil requires fewer gates, all of
which in turn require no more than two inputs.

P
e y
__[>—-——{>o—< (€ +DY

C+D

ra

A

FIGURE 4.4
Logic diagram for BCD-to-excess-3 code converter

130

4.5

Chapter 4 Combinational Logic

BINARY ADDER-SUBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the functions en-
countered are the various arithmetic operations. The most basic arithmetic operation is the ad-
dition of two binary digits. This simple addition consists of four possible elementary operations:
0+0=00+1=1,1+0=1,and 1 + 1 = 10. The first three operations produce a
sum of one digit, but when both augend and addend bits are equal to 1, the binary sum con-
sists of two digits. The higher significant bit of this result is called a carry. When the augend
and addend numbers contain more significant digits, the carry obtained from the addition of two
bits is added to the next higher order pair of significant bits. A combinational circuit that per-
forms the addition of two bits is called a half adder. One that performs the addition of three
bits (two significant bits and a previous carry) is a full adder. The names of the circuits stem
from the fact that two half adders can be employed to implement a full adder.

A binary adder—subtractor is a combinational circuit that performs the arithmetic operations
of addition and subtraction with binary numbers. We will develop this circuit by means of a hi-
erarchical design. The half adder design is carried out first, from which we develop the full
adder. Connecting n full adders in cascade produces a binary adder for two n-bit numbers. The
subtraction circuit is included in a complementing circuit.

Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs
and two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. We assign symbols x and y to the two inputs and S (for
sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 4.3.
The C output is | only when both inputs are 1. The § output represents the least significant bit
of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum-of-products expressions are

§=x'y+ xy
C = xy
The logic diagram of the half adder implemented in sum of products is shown in Fig. 4.5(a).

It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 4.5(b).
This form is used to show that two half adders can be used to construct a full adder.

Table 4.3
Half Adder

X 14

—-_——c o
=l = =

— o000 |
o= =0 L]

Full Adder

Section 4.5 Binary Adder-Subtractor 131

X
v
s
X N—y 4
X
: D
(a)§=x" +x'y (b)S=x8y
C=ay C=xy
FIGURE 4.5

Implementation of half adder

A full adder is a combinational circuit that forms the arithmetic sum of three bits, It consists of three
inputs and two outputs. Two of the input variables, denoted by x and v, represent the two signifi-
cant bits to be added. The third input, z, represents the carry from the previous lower significant
position. Two outputs are necessary because the arithmetic sum of three binary digits ranges in value
from 0 to 3. and binary 2 or 3 needs two digits. The two outputs are designated by the symbols §
for sum and € for carry. The binary variable S gives the value of the least significant bit of the sum.
The binary variable C gives the output carry. The truth table of the full adder is listed in Table 4.4.
The eight rows under the input variables designate all possible combinations of the three vari-
ables. The output variables are determined from the arithmetic sum of the input bits, When all
input bits are 0, the output is 0. The S output is equal to | when only one input is equal to | or when
all three inputs are equal to 1. The € output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations at var-
ious stages of the problem. On the one hand, physically, the binary signals of the inputs are con-
sidered binary digits to be added arithmetically to form a two-digit sum at the output, On the
other hand. the same binary values are considered as variables of Boolean functions when ex-
pressed in the truth table or when the circuit is implemented with logic gates. The maps for the
outputs of the full adder are shown in Fig. 4.6. The simplified expressions are

Table 4.4

Full Adder

X y z C 5
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 | 0
1 0 0 0 1
1 0 | 1 0
1 1 0 | 0
1 1 | | 1

132 Chapter 4 Combinational Logic

¥z — e — Yz

X 00 ol 11 10 e 00
"y m, my my my
0 1 1 0
"y my my Iy my
edlll 1 x4l
—
Z
FIGURE 4.6

Maps for full adder

S = x!yrz + -rryz! + xyrz!' + x}‘z
C=xy+axz+yz
The logic diagram for the full adder implemented in sum-of-products form is shown in Fig. 4.7.

It can also be implemented with two half adders and one OR gate, as shown in Fig. 4.8. The S output
from the second half adder is the exclusive-OR of z and the output of the first half adder,

giving
§S=z0(xDy)
=2'(xy' + x'y) +z(xy' + x'y)’
= z'(xy' + x'y) + z(xy + x'y')
=xy'z + x'yz' + xyz + x'y'z
The carry output is
C=z(xy +x'y) +xy=xy'z+ x'yz + xy

FIGURE 4.7
Implementation of full adder in sum-of-products form

rate

Section 4.5 Binary Adder-Subtractor 133

r xBy _ﬂ\(x@y)@z
y 1 s S

7

(x@®y)z

(xBy)z+xy

z

FIGURE 4.8
Implementation of full adder with two half adders and an OR gate

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can
be constructed with full adders connected in cascade, with the output carry from each full adder
connected to the input carry of the next full adder in the chain. Figure 4.9 shows the interconnection
of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder. The augend bits of
A and the addend bits of B are designated by subscript numbers from right to left, with subseript
0 denoting the least significant bit. The carries are connected in a chain through the full adders.
The input carry to the adder is Cy, and it ripples through the full adders to the output carry Cy.
The § outputs generate the required sum bits. An n-bit adder requires » full adders, with each out-
put carry connected to the input carry of the next higher order full adder.

To demonstrate with a specific example, consider the two binary numbers A = 1011 and
B = 0011. Their sum § = 1110 is formed with the four-bit adder as follows:

Subscript i: 3 2 10
Input carry o LI N C;
Augend I 0 1 1 A;
Addend 0o 0 1 | B;
Sum I 1 1 @ S;
Output carry oW & 2 Cisy

The bits are added with full adders, starting from the least significant position (subscript 0), to
form the sum bit and carry bit. The input carry Cy, in the least significant position must be 0.
The value of C;4 | in a given significant position is the output carry of the full adder. This value
is transferred into the input carry of the full adder that adds the bits one higher significant po-
sition to the left, The sum bits are thus generated starting from the rightmost position and are
available as soon as the corresponding previous carry bit is generated. All the carries must be
generated for the correct sum bits to appear at the outputs,

The four-bit adder is a typical example of a standard component. It can be used in many ap-
plications involving arithmetic operations. Observe that the design of this circuit by the clas-
sical method would require a truth table with 2° = 512 entries, since there are nine inputs to

134

Chapter 4 Combinational Logic

By Ay

G

C,l St

FIGURE 4.9
Four-bit adder

the circuit. By using an iterative method of cascading a standard function, it is possible to ob-
tain a simple and straightforward implementation,

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend and addend
are available for computation at the same time. As in any combinational circuit, the signal must
propagate through the gates before the correct output sum is available in the output terminals. The
total propagation time is equal to the propagation delay of a typical gate, times the number of gate
levels in the circuit. The longest propagation delay time in an adder is the time it takes the carry
to propagate through the full adders. Since each bit of the sum output depends on the value of the
input carry, the value of S; at any given stage in the adder will be in its steady-state final value
only after the input carry to that stage has been propagated. In this regard, consider output §; in
Fig. 4.9. Inputs A3 and B, are available as soon as input signals are applied to the adder. How-
ever, input carry C5 does not settle to its final value until C; is available from the previous stage.
Similarly, C; has to wait for C; and so on down to Cy. Thus, only after the carry propagates and
ripples through all stages will the last output 5; and carry C; settle to their final correct value.
The number of gate levels for the carry propagation can be found from the circuit of the full
adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience. The input and

A
B

G

FIGURE 4.10
Full adder with P and G shown

Section 4.5 Binary Adder-Subtractor 135

output variables use the subscript i to denote a typical stage of the adder. The signals at £, and
G; settle to their steady-state values after they propagate through their respective gates. These
two signals are commeon to all full adders and depend only on the input augend and addend bits.
The signal from the input carry C, to the output carry C;_; propagates through an AND gate
and an OR gate. which constitute two gate levels. If there are four full adders in the adder. the
output carry Cy would have 2 X 4 = 8 gate levels from C to Cy. For an n-bit adder, there are
2n gate levels for the carry to propagate from input to output.

The carry propagation time is an important attribute of the adder because it limits the speed
with which two numbers are added. Although the adder—or, for that matter, any combina-
tional circuit—will always have some value at its output terminals, the outputs will not be cor-
rect unless the signals are given enough time to propagate through the gates connected from
the inputs to the outputs. Since all other arithmetic operations are implemented by successive
additions. the time consumed during the addition process is critical. An obvious solution for
reducing the carry propagation delay time 1s to employ faster gates with reduced delays. How-
ever, physical circuits have a limit to their capability. Another solution is to increase the com-
plexity of the equipment in such a way that the carry delay time is reduced. There are several
techniques for reducing the carry propagation time in a parallel adder. The most widely used
technique employs the principle of carry lookahead logic.

Consider the circuit of the full adder shown in Fig, 4.10. If we define two new binary variables

Pi=A®B
G; = AiB;
the output sum and carry can respectively be expressed as
S =P®C
Cis1 =G + PC,

G; is called a carry generare, and it produces a carry of | when both A, and B, are 1, regard-
less of the input carry C,. B, is called a carry propagate, because it determines whether a carry
into stage 1 will propagate into stage i + | (i.e.. whether an assertion of C; will propagate to
an assertion of C,).

We now write the Boolean functions for the carry outputs of each stage and substitute the
value of each C; from the previous equations:

Cp = input carry

Cy = Gy + PyCy

Cy =G+ P\C) = Gy + P\(Gy + PyCy) = Gy + PGy + P1PyCy
C3 = Gy + PiC3 = Gy + PaG| + P2P |Gy = P2P1PCy

Since the Boolean function for cach output carry is expressed in sum-of-products form, each func-
tion can be implemented with one level of AND gates followed by an OR gate (or by a two-level
NAND). The three Boolean functions for €|, Cs, and C; are implemented in the carry lookahead
generator shown in Fig. 4.11. Note that this circuit can add in less time because C3 does not have
to wait for C> and C to propagate: in fact. C; is propagated at the same time as C and Cs. This
gain in speed of operation is achieved at the expense of additional complexity (hardware).

136

Chapter 4 Combinational Logic

G,

Gy

Py

Gy

Co

FIGURE 4.11
Logic diagram of carry lookahead generator

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate
generates the F; variable, and the AND gate generates the G; variable. The carries are propa-
gated through the carry lookahead generator (similar to that in Fig. 4.11) and applied as inputs
to the second exclusive-OR gate. All output carries are generated after a delay through two
levels of gates. Thus, outputs S; through §3 have equal propagation delay times. The two-level
circuit for the output carry Cy is not shown. This circuit can easily be derived by the equation-
substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can be done most conveniently by means of com-
plements, as discussed in Section 1.5, Remember that the subtraction A — B can be done by
taking the 2's complement of B and adding it to A. The 2's complement can be obtained by tak-
ing the 1's complement and adding 1 to the least significant pair of bits. The 1's complement
can be implemented with inverters, and a 1 can be added to the sum through the input carry.

Section 4.5 Binary Adder-Subtractor 137

GpF———0G
By ——

A Fs

?

G

i

= =
J L
T

!

B - Generator
; o

Ay

[

D
c D
| —

G

i

Gy

£y

%

Gy

?

Cy Co

FIGURE 4.12
Four-bit adder with carry lookahead

The circuit for subtracting A — B consists of an adder with inverters placed between each
data input B and the corresponding input of the full adder. The input carry Cy must be equal to
| when subtraction is performed. The operation thus performed becomes A, plus the 1's com-
plement of B, plus 1. This is equal 1o A plus the 2's complement of B. For unsigned numbers,
that gives A — Bif A = Borthe 2's complementof (B — A) if A < B. For signed numbers,
the resultis A — B, provided that there is no overflow. (See Section 1.6.)

The addition and subtraction operations can be combined into one circuit with one common
binary adder by including an exclusive-OR gate with each full adder. A four-bit adder-subtractor
circuit is shown in Fig. 4.13. The mode input M controls the operation. When M = 0, the cir-
cuit is an adder, and when M = 1, the circuit becomes a subtractor. Each exclusive-OR gate
receives input M and one of the inputs of B. When M = 0, we have B @ 0 = B. The full adders
receive the value of B, the input carry is 0, and the circuit performs A plus B. When M = 1,

138 Chapter 4 Combinational Logic

By As B, A, B, A By A

G

Overflow

FIGURE 4.13
Four-bit adder-subtractor

we have B | = B’ and Cy = 1. The B inputs are all complemented and a 1 is added through
the input carry. The circuit performs the operation A plus the 2’s complement of B. (The ex-
clusive-OR with output V is for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as are unsigned numbers. Therefore,
computers need only one common hardware circuit to handle both types of arithmetic. The
user or programmer must interpret the results of such addition or subtraction differently, de-
pending on whether it is assumed that the numbers are signed or unsigned.

When two numbers with n digits each are added and the sum is a number occupying n + 1 dig-
its, we say that an overflow occurred. This is true for binary or decimal numbers, signed or un-
signed. When the addition is performed with paper and pencil, an overflow is not a problem,
since there is no limit by the width of the page to write down the sum. Overflow is a problem
in digital computers because the number of bits that hold the number is finite and a result that
contains n + 1 bits cannot be accommodated by an n-bit word. For this reason, many computers
detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop is set that
can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether the
numbers are considered to be signed or unsigned. When two unsigned numbers are added, an
overflow is detected from the end carry out of the most significant position. In the case of signed
numbers, two details are important: the leftmost bit always represents the sign, and negative

Section 4.6 Decimal Adder 139

numbers are in 2's-complement form. When two signed numbers are added, the sign bit is
treated as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other is neg-
ative, since adding a positive number (o a negative number produces a result whose magnitude
is smaller than the larger of the two original numbers. An overflow may occur if the two num-
bers added are both positive or both negative. To see how this can happen, consider the following
example: Two signed binary numbers, +70 and +80, are stored in two eight-bit registers. The
range of numbers that each register can accommodate is from binary +127 to binary —128.
Since the sum of the two numbers is + 150, it exceeds the capacity of an eight-bit register. This
is also true for —70 and —80. The two additions in binary are shown next, together with the
last two carries:

carries: 0 1 carries: 1 0
+70 0 1000110 =70 1 0111010
_+80 01010000 80 10110000
+150 1 0010110 -150 0 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.e., the
8-th bit) and the eight-bit result that should have been negative has a positive sign bit. If, how-
ever, the carry out of the sign bit position is taken as the sign bit of the result, then the nine-bit
answer so obtained will be correct. But since the answer cannot be accommodated within eight
bits, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries are not equal, an overflow has occurred.
This is indicated in the examples in which the two carries are explicitly shown. If the two car-
ries are applied to an exclusive-OR gate, an overflow is detected when the output of the gate
is equal to |. For this method to work correctly, the 2's complement of a negative number must
be computed by taking the 1's complement and adding 1. This takes care of the condition when
the maximum negative number is complemented.

The binary adder—subtractor circuit with outputs C and V is shown in Fig. 4.13. If the two
binary numbers are considered to be unsigned, then the C bit detects a carry after addition or
a borrow after subtraction, If the numbers are considered to be signed, then the V bit detects
an overflow. If V = 0 after an addition or subtraction, then no overflow occurred and the n-
bit result is correct. If V' = |, then the result of the operation contains 2 + 1 bits, but only the
rightmost n bits of the number fit in the space available, so an overflow has occurred. The
(n + 1)th bit is the actual sign and has been shifted out of position.

4.6 DECIMAL ADDER

Computers or calculators that perform arithmetic operations directly in the decimal number sys-
tem represent decimal numbers in binary coded form. An adder for such a computer must em-
ploy arithmetic circuits that accept coded decimal numbers and present results in the same code.
For binary addition, it is sufficient to consider a pair of significant bits together with a previous
carry. A decimal adder requires a minimum of nine inputs and five outputs, since four bits are
required to code each decimal digit and the circuit must have an input and output carry. There

140 Chapter 4 Combinational Logic

is a wide variety of possible decimal adder circuits, depending upon the code used to represent
the decimal digits. Here we examine a decimal adder for the BCD code. (See Section 1.7.)

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9 + 9 + 1 =19, the | in the sum being an input carry. Suppose we apply two BCD digits to
a four-bit binary adder. The adder will form the sum in binary and produce a result that ranges
from O through 19. These binary numbers are listed in Table 4.5 and are labeled by symbols
K, Zg, Z4, Z>, and Z,. K is the carry, and the subscripts under the letter Z represent the weights
8,4, 2. and 1 that can be assigned to the four bits in the BCD code. The columns under the bi-
nary sum list the binary value that appears in the outputs of the four-bit binary adder. The out-
put sum of two decimal digits must be represented in BCD and should appear in the form listed
in the columns under “BCD Sum.” The problem is to find a rule by which the binary sum is
converted to the correct BCD digit representation of the number in the BCD sum.

In examining the contents of the table, it becomes apparent that when the binary sum is
equal to or less than 1001, the corresponding BCD number is identical, and therefore no conversion
is needed. When the binary sum is greater than 1001, we obtain an invalid BCD representation.

Table 4.5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K Zyg 2 L I C Sg 54 52 5

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 | 0 0 0 8
0 1 0 0 1 0 | 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 | 0 | 1 1 0 0 0 1 11
0 1 l 0 0] 0 0 1 0 12
0 1 1 0 1 1 0 0 1 | 13
0 1 1 1 0 1 0 1 0 0 14
0 | 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
| 0 0 0 1 1 0 1 1 l 17
1 0 0 | 0 | 1 0 0 0 18
1 0 0 1 1 1 | 0 0 1 19

Section 4.6 Decimal Adder 141

The addition of binary 6 (0110) 10 the binary sum converts it 1o the correct BCD representa-
tion and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the entries in the
table. It is obvious that a correction is needed when the binary sum has an output carry K = 1.
The other six combinations from 1010 through 1111 that need a correction have a | in position
2. To distinguish them from binary 1000 and 1001, which also have a | in position Zg, we spec-
ify further that either Zy or Z; must have a 1, The condition for a correction and an output
carry can be expressed by the Boolean function

C =K + ZgZy + Z3Z,

When C = 1. itis necessary to add 0110 to the binary sum and provide an output carry for the
next stage.

ABCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. 4.14.
The two decimal digits, together with the input carry, are first added in the top four-bit adder to
produce the binary sum. When the output carry is equal to 0, nothing is added to the binary sum.

Addend Augend
Camy Kk dcbitbinary adder — Carny
>SS AR e
|
0
o B
0
I " 1"]’ . '
& 5 5
FIGURE 4.14

Block diagram of a BCD adder

142 Chapter 4 Combinational Logic

When it is equal to 1, binary 0110 is added to the binary sum through the bottom four-bit adder.
The output carry generated from the bottom adder can be ignored, since it supplies information
already available at the output carry terminal. A decimal parallel adder that adds » decimal dig-
its needs n BCD adder stages. The output carry from one stage must be connected to the input
carry of the next higher order stage.

4.7 BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of decimal num-
bers. The multiplicand is multiplied by each bit of the multiplier, starting from the least signifi-
cant bit. Each such multiplication forms a partial product. Successive partial products are shifted
one position to the left. The final product is obtained from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit, consider
the multiplication of two 2-bit numbers as shown in Fig. 4.15. The multiplicand bits are By and
By, the multiplier bits are A} and A, and the product is C3C5CCy. The first partial product is
formed by multiplying BBy by Ag. The multiplication of two bits such as Ay and By produces
a 1 if both bits are 1; otherwise, it produces a 0. This is identical to an AND operation. There-
fore, the partial product can be implemented with AND gates as shown in the diagram. The sec-
ond partial product is formed by multiplying BBy by A and shifting one position to the left.
The two partial products are added with two half-adder (HA) circuits. Usually, there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the partial

B, B, Ao
A Ay
AB, AdB,
AB, AB,
C: (o (&) Gy Ay

FIGURE 4.15
Two-bit by two-bit binary multiplier

Section 4.7 Binary Multiplier 143

products. Note that the least significant bit of the product does not have to go through an adder,
since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a similar
fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels
as there are bits in the multiplier. The binary output in each level of AND gates is added with
the partial product of the previous level to form a new partial product. The last level produces
the product. For J multiplier bits and K multiplicand bits, we need (J X K) AND gates and
(J — 1) K-bit adders to produce a product of J + K bits.

As a second example, consider a multiplier circuit that multiplies a binary number represented
by four bits by a number represented by three bits. Let the multiplicand be represented by Bz B,8, B,
and the multiplier by A>A Ay, Since K = 4 and J = 3, we need 12 AND gates and 2 four-bit
adders to produce a product of seven bits. The logic diagram of the multiplier is shown in Fig. 4.16.

Ay
Ay
G Addend i Agend
i 0 &hitndder ;
: Sum and output carry.
Ay

FIGURE 4.16
Four-bit by three-bit binary multiplier

Co

144 Chapter 4 Combinational Logic

4.8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines whether one number is greater
than, less than, or equal to the other number. A magnitude comparator is a combinational cir-
cuit that compares two numbers A and B and determines their relative magnitudes. The outcome
of the comparison is specified by three binary variables that indicate whether A > B, A = B,
orA < B.

On the one hand, the circuit for comparing two n-bit numbers has 2*" entries in the truth
table and becomes too cumbersome, even with n = 3. On the other hand, as one may sus-
pect, a comparator circuit possesses a certain amount of regularity. Digital functions that
possess an inherent well-defined regularity can usually be designed by means of an algo-
rithm—a procedure which specifies a finite set of steps that, if followed, give the solution
to a problem. We illustrate this method here by deriving an algorithm for the design of a
four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relative
magnitudes of two numbers. Consider two numbers, A and B, with four digits each, Write the
coefficients of the numbers in descending order of significance:

A = Az3AA 1A
B = B3BzB|B{}

Each subscripted letter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A3 = B3, Ay = By, A| = By, and Ag = By. When
the numbers are binary, the digits are either | or 0, and the equality of each pair of bits can be
expressed logically with an exclusive-NOR function as

X; = A;B; + AlB| fori =0,1,2,3

where x; = 1 only if the pair of bits in position are equal (i.e., if both are 1 or both are 0).

The equality of the two numbers A and B is displayed in a combinational circuit by an
output binary variable that we designate by the symbol (A = B). This binary variable is
equal to 1 if the input numbers, A and B, are equal, and is equal to 0 otherwise. For equal-
ity to exist, all x; variables must be equal to 1, a condition that dictates an AND operation
of all variables:

(A = B) = x3xx1Xg

The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.

To determine whether A is greater or less than B, we inspect the relative magnitudes of pairs
of significant digits, starting from the most significant position. If the two digits of a pair are
equal, we compare the next lower significant pair of digits, The comparison continues until a
pair of unequal digits is reached. If the corresponding digit of A is 1 and that of B is 0, we con-
clude that A > B. If the corresponding digit of A is 0 and that of B is 1, we have A < B. The
sequential comparison can be expressed logically by the two Boolean functions

(A > B) = A3B3 + x3A;B5 + x30A | B] + x3x2x1A0Bp
(A < B) = AiBy + x3A58; + x3x2A1B] + x3v:x1A08)

Section 4.8 Magnitude Comparator 145

The symbols (A > B) and (A < B) are binary output variables that are equal to 1 when
A > Band A < B, respectively.

The gate implementation of the three output variables just derived is simpler than it seems
because it involves a certain amount of repetition. The unequal outputs can use the same
gates that are needed to generate the equal output. The logic diagram of the four-bit magni-
tude comparator is shown in Fig. 4.17. The four x outputs are generated with exclusive-NOR
circuits and are applied to an AND gate to give the output binary variable (A = B). The
other two outputs use the x variables to generate the Boolean functions listed previously.
This is a multilevel implementation and has a regular pattern. The procedure for oblaining
magnitude comparator circuits for binary numbers with more than four bits is obvious from
this example.

(A< B)

(A>B)

(A=8)

FIGURE 4.17
Four-bit magnitude comparator

146 Chapter 4 Combinational Logic

4.9 DECODERS

Discrete quantities of information are represented in digital systems by binary codes. A binary
code of n bits is capable of representing up to 2" distinct elements of coded information. A dec-
oder is a combinational circuit that converts binary information from # input lines to a maxi-
mum of 2" unique output lines. If the n-bit coded information has unused combinations, the
decoder may have fewer than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m < 2", Their purpose
is 10 generate the 2" (or fewer) minterms of n input variables, The name decoder is also used
in conjunction with other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit of Fig. 4.18. The three inputs
are decoded into eight outputs, each representing one of the minterms of the three input variables.
The three inverters provide the complement of the inputs, and each one of the eight AND gates
generates one of the minterms. A particular application of this decoder is binary-to-octal

J

Dy = .\"_\"-’C’

D>

D; - I')'.i

(2]

D: = I.}':'

D;=x'yz

Ds=xy'z

Dy= xyz {

Je0ea0a8g@ o

FIGURE 4.18
Three-to-eight-line decoder

Section 4.9 Decoders 147

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder
Inputs Outputs

X Yy z Dy Dy Dy D3 Dy Ds Dg Dy
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 | 0 0 0 0 0 0 0 1 0
1 1 ! 0 0 0 0 0 0 0 1

conversion. The input variables represent a binary number, and the outputs represent the eight
digits of a number in the octal number system. However, a three-to-eight-line decoder can be
used for decoding any three-bit code to provide eight outputs, one for each element of the code.

The operation of the decoder may be clarified by the truth table listed in Table 4.6. For each
possible input combination, there are seven outputs that are equal to 0 and only one that is
equal to 1. The output whose value is equal to | represents the minterm equivalent of the bi-
nary number currently available in the input lines.

Some decoders are constructed with NAND gates. Since a NAND gate produces the AND op-
eration with an inverted output, it becomes more economical to generate the decoder minterms
in their complemented form. Furthermore. decoders include one or more enable inputs to con-
trol the circuit operation. A two-to-four-line decoder with an enable input constructed with NAND
gates is shown in Fig. 4.19. The circuit operates with complemented outputs and a complement

E A B Dy Dy Dy Dy
1 X X 1 1 1 1
—T—Do— oo o0 | 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
(a) Logic diagram (b) Truth table

FIGURE 4.19
Two-to-four-line decoder with enable input

148

Chapter 4 Combinational Logic

enable input. The decoder is enabled when E is equal to 0 (i.e., active-low enable), As indicated
by the truth table, only one output can be equal to 0 at any given time; all other outputs are equal
to 1. The output whose value is equal to 0 represents the minterm selected by inputs A and B. The
circuit is disabled when E is equal to 1, regardless of the values of the other two inputs. When
the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are selected.
In general, a decoder may operate with complemented or uncomplemented outputs. The enable
input may be activated with a O or with a 1 signal. Some decoders have two or more enable in-
puts that must satisfy a given logic condition in order to enable the circuit.

A decoder with enable input can function as a demulriplexer—a circuit that receives infor-
mation from a single line and directs it to one of 2" possible output lines. The selection of a spe-
cific output is controlled by the bit combination of n selection lines, The decoder of Fig. 4.19
can function as a one-to-four-line demultiplexer when E is taken as a data input line and A and
B are taken as the selection inputs. The single input variable £ has a path to all four outputs,
but the input information is directed to only one of the output lines, as specified by the binary
combination of the two selection lines A and B. This feature can be verified from the truth
table of the circuit, For example, if the selection lines AB = 10, output D, will be the same as
the input value E, while all other outputs are maintained at 1. Because decoder and demulti-
plexer operations are obtained from the same circuit, a decoder with an enable input is referred
to as a decoder—demultiplexer,

Decoders with enable inputs can be connected together to form a larger decoder circuit.
Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-
line decoder. When w = 0, the top decoder is enabled and the other is disabled. The bottom
decoder outputs are all 0's. and the top eight outputs generate minterms 0000 to 0111. When
w = |, the enable conditions are reversed: The bottom decoder outputs generate minterms
1000 to 1111, while the outputs of the top decoder are all 0’s. This example demonstrates the
usefulness of enable inputs in decoders and other combinational logic components. In general,
enable inputs are a convenient feature for interconnecting two or more standard components
for the purpose of combining them into a similar function with more inputs and outputs.

ik f—owen
- ' E :

W >c '

SR
- -decoder -
E‘. i o

FIGURE 4.20
4 % 16 decoder constructed with two 3 X 8 decoders

D“ o DIS

Section 4.9 Decoders 149

Combinational Logic Implementation

A decoder provides the 2" minterms of n input variables. Each asserted output of the decoder
is associated with a unique pattern of input bits, Since any Boolean function can be expressed
in sum-of-minterms form, a decoder that generates the minterms of the function, together with
an external OR gate that forms their logical sum, provides a hardware implementation of the
function, In this way, any combinational circuit with » inputs and m outputs can be imple-
mented with an n-t0-2"-line decoder and m OR gates,

The procedure for implementing a combinational circuit by means of a decoder and OR
gales requires that the Boolean function for the circuit be expressed as a sum of minterms. A
decoder is then chosen that generates all the minterms of the input variables. The inputs to each
OR gate are selected from the decoder outputs according to the list of minterms of each func-
tion. This procedure will be illustrated by an example that implements a full-adder circuit.

From the truth table of the full adder (see Table 4.4), we obtain the functions for the com-
binational circuit in sum-of-minterms form:

S(x,y,z)=Z(1.2.4.7)
Clx, yz) = 2(3,5,6.7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line de-
coder. The implementation is shown in Fig, 4,21, The decoder generates the eight minterms for
x, ¥, and z, The OR gate for output § forms the logical sum of minterms 1, 2, 4, and 7. The OR
gate for output € forms the logical sum of minterms 3, 5, 6. and 7.

A function with a long list of minterms requires an OR gate with a large number of inputs.
A function having a list of k minterms can be expressed in its complemented form F' with
2" — k minterms. If the number of minterms in the function is greater than 2"/2, then F* can
be expressed with fewer minterms, In such a case, it is advantageous to use a NOR gate to
sum the minterms of F'. The output of the NOR gate complements this sum and generates the
normal output £, If NAND gates are used for the decoder. as in Fig. 4.19, then the external gates
must be NAND gates instead of OR gates. This is because a two-level NAND gate circuit im-
plements a sum-of-minterms function and is equivalent to a two-level AND-OR circuit.

FIGURE 4.21
Implementation of a full adder with a decoder

150

4.10

Chapter 4 Combinational Logic

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has
2" (or fewer) input lines and # output lines. The output lines, as an aggregate, generate the bi-
nary code corresponding to the input value. An example of an encoder is the octal-to-binary
encoder whose truth table is given in Table 4.7. It has eight inputs (one for each of the octal
digits) and three outputs that generate the corresponding binary number. It is assumed that only
one input has a value of | at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Output : is equal to 1 when the input octal digitis 1, 3, 5, or 7. Output y is | for
octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can be ex-
pressed by the following Boolean output functions:

z=Dy+ D3+ Ds+ Dy
y =Dy + D3 + Dg + Dy
Dy + Ds + Dg + Dq

X

The encoder can be implemented with three OR gates.

The encoder defined in Table 4.7 has the limitation that only one input can be active at any
given time. If two inputs are active simultaneously, the output produces an undefined combi-
nation. For example, if D; and Dg are 1 simultaneously. the output of the encoder will be 111
because all three outputs are equal to 1. The output 111 does not represent either binary 3 or
binary 6. To resolve this ambiguity, encoder circuits must establish an input priority to ensure
that only one input is encoded. If we establish a higher priority for inputs with higher subscript
numbers, and if both D5 and Dj are 1 at the same time, the output will be 110 because Dy has
higher priority than Ds.

Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated
when all the inputs are 0; but this output is the same as when Dy is equal to 1. The discrep-
ancy can be resolved by providing one more output to indicate whether at least one input is
equal to 1.

Table 4.7
Truth Table of an Octal-to-Binary Encoder

Inputs Outputs
Do Dy D;

4
g
4
&

cocoocooc—
cccococo—0o
ccocooc—-co
cococo—ococcoc
co—ccoo
co—~ocoocoC
c—ocooccocoo
—~cocoococecco |P
————cacoco |x
——oco—-~co |w
=

—
=

Section 4.10 Encoders 151

Table 4.8
Truth Table of a Prierity Encoder
Inputs OQutputs

Do .D] D: D; X y v
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 |
X X 1 0 1 0 1
X X X 1 1 1 1

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The operation of the
priority encoder is such that if two or more inputs are equal to 1 at the same time, the input hav-
ing the highest priority will take precedence. The truth table of a four-input priority encoder is
given in Table 4.8. In addition to the two outputs x and v, the circuit has a third output desig-
nated by V: this is a valid bit indicator that is set to | when one or more inputs are equal to 1.
If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are not in-
spected when V equals 0 and are specified as don’t-care conditions, Note that whereas X's in
output columns represent don't-care conditions, the X's in the input columns are useful for
representing a truth table in condensed form. Instead of listing all 16 minterms of four variables,
the truth table uses an X to represent either | or 0. For example, X100 represents the two
minterms 0100 and 1100,

According to Table 4.8, the higher the subscript number, the higher the priority of the input,
Input Dy has the highest priority. so, regardless of the values of the other inputs, when this

D,
D.D, DD el |
AN DON 0 w1 1w
i, iy — " =
00| X Wl X |& =
my
ot
o D,
1
Dy iy
10
x=D.+D, 9= Dy+ DyD%
FIGURE 4.22

Maps for a priority encoder

152 Chapter 4 Combinational Logic

D,
D, DO—Lﬁ '
D, —
i ;; X
g, >
Dy i
FIGURE 4.23

Four-input priority encoder

input is 1, the output for xy is 11 (binary 3). D, has the next priority level. The output is 10 if
D, = 1, provided that Dy = (), regardless of the values of the other two lower priority inputs.
The output for Dy is generated only if higher priority inputs are 0, and so on down the priority
levels.

The maps for simplifying outputs x and y are shown in Fig. 4.22. The minterms for the
two functions are derived from Table 4.8, Although the table has only five rows, when each
X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations.
For example, the fourth row in the table, with inputs XX10, represents the four minterms
0010, 0110, 1010, and 1110. The simplified Boolean expressions for the priority encoder
are obtained from the maps. The condition for output V'is an OR function of all the input vari-
ables. The priority encoder is implemented in Fig. 4.23 according to the following Boolean
functions:

.\'=D2+Dj
y =D+ D\D;
V=Dy+ D+ Dy + Dy

4.11 MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled
by a set of selection lines. Normally, there are 2" input lines and n selection lines whose bit com-
binations determine which input is selected.

A two-to-one-line multiplexer connects one of two 1-bit sources to a common destination,
as shown in Fig. 4.24. The circuit has two data input lines, one output line, and one selection
line §. When § = 0, the upper AND gate is enabled and /, has a path to the output. When
S = 1, the lower AND gate is enabled and /| has a path to the output. The multiplexer acts like

h

L[>
(a) Logic diagram

FIGURE 4.24

Section 4.11 Multiplexers 153

Iy 0
Y MUX 3
I §1
§
(b) Block diagram

Two-to-one-line multiplexer

an electronic switch that selects one of two sources. The block diagram of a multiplexer is

sometimes depicted by a

wedge-shaped symbol. as shown in Fig, 4,24(b). It suggests visually

how a selected one of multiple data sources is directed into a single destination. The multiplexer
is often labeled “MUX" in block diagrams.

A four-to-one-line multiplexer is shown in Fig. 4.25. Each of the four inputs, /y through
I5. is applied to one input of an AND gate. Selection lines §; and §; are decoded to select a

AT,
h)
¥y
I {
I N
e
A S S| ¥
0o 0| I
0 1|4
Sp—rt 1 o| &
1 1} 1
S E]
{a) Logic diagram (b) Function table
FIGURE 4.25

Four-to-one-line multiplexer

154 Chapter 4 Combinational Logic

particular AND gate. The outputs of the AND gates are applied to a single OR gate that pro-
vides the one-line output. The function table lists the input that is passed to the output for
each combination of the binary selection values. To demonstrate the operation of the circuit,
consider the case when §,5; = 10. The AND gate associated with input I, has two of its in-
puts equal to | and the third input connected to /5. The other three AND gates have at least
one input equal to (. which makes their outputs equal to 0. The output of the OR gate is now
equal to the value of /5, providing a path from the selected input to the output. A multiplexer
is also called a data selector, since it selects one of many inputs and steers the binary infor-
mation to the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,
they decode the selection input lines. In general, a 2"-to-1-line multiplexer is constructed from
an n-10-2" decoder by adding 2" input lines to it, one to each AND gate. The outputs of the AND
gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2"
of its data input lines and the single output line. The n selection lines are implied from the 2"
data lines. As in decoders, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, the outputs are disabled, and when it is
in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common selection inputs to provide multiple-bit
selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown in Fig. 4.26. The
circuit has four multiplexers, each capable of selecting one of two input lines. Output ¥; can be
selected to come from either input Ag or input By. Similarly, output ¥; may have the value of
A, or By, and so on. Input selection line § selects one of the lines in each of the four multi-
plexers. The enable input E must be active (i.e., asserted) for normal operation. Although the cir-
cuit contains four 2-to-1-line multiplexers, we are more likely to view it as a circuit that selects
one of two 4-bit sets of data lines. As shown in the function table, the unit is enabled when
E = 0. Then, if § = 0, the four A inputs have a path to the four outputs. If, by contrast, § = 1,
the four B inputs are applied to the outputs. The outputs have all 0’s when £ = 1, regardless of
the value of S.

Boolean Function implementation

In Section 4.9, it was shown that a decoder can be used to implement Boolean functions by em-
ploying external OR gates. An examination of the logic diagram of a multiplexer reveals that
it is essentially a decoder that includes the OR gate within the unit. The minterms of a func-
tion are generated in a multiplexer by the circuit associated with the selection inputs. The in-
dividual minterms can be selected by the data inputs, thereby providing a method of
implementing a Boolean function of n variables with a multiplexer that has n selection inputs