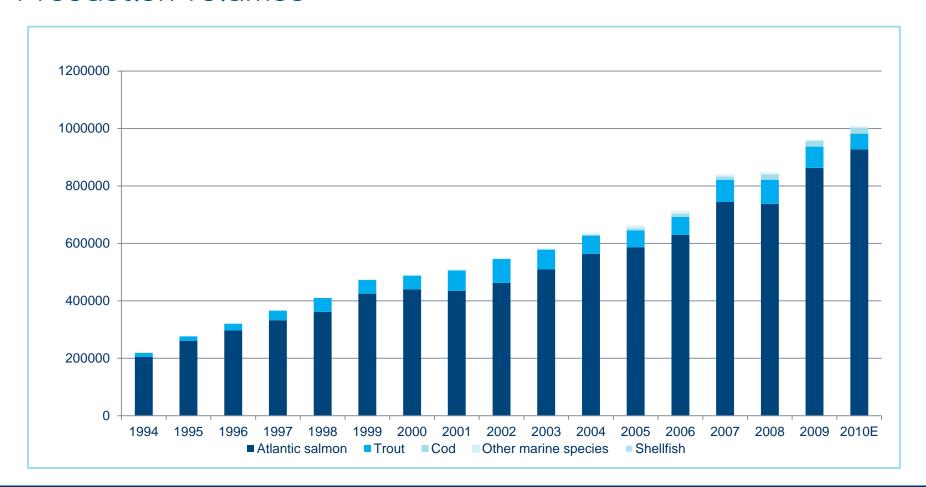
Norway-Japan Marine Seminar 2012

Modern aquaculture Technology, Norway Marine aquaculture – challenges and opportunities

Dr. Arne Fredheim Vice President Projects SINTEF Fisheries and Aquaculture

Content

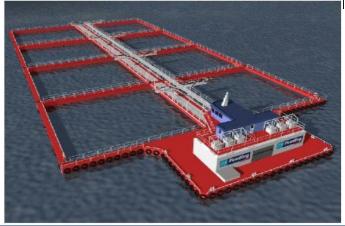
- Introduction and historical development in Norway
 - Industry growth
- Present technology and development
 - Farming equipment
 - Work vessels
- Some industrial challenges and solutions
 - Fish escaping and sea lice
 - Access to land
- Research
 - CREATE centre for research-based innovation in aquaculture technology



The Norwegian Salmon Story

- Started up in the late 60s, small scale
- Since 1980 a pioneer in developing industrial salmon farming
 - Breeding
 - Management
 - Fish health
 - Technology, research and manufacturing
- Average of 8% annual growth
- Reached 1 million metric tonnes in biomass in 2010
- More than 95% exported
- Norwegian farming companies are now global enterprises with activity in Chile, Canada, Scotland and the Faroe Islands
- Leading global supplier of fish farming equipment

Production volumes


Technological development

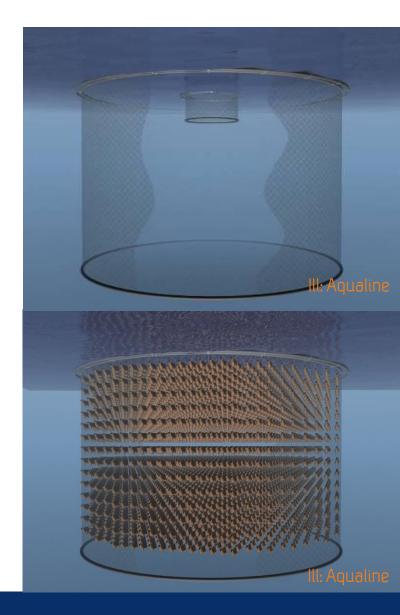
Wooden cages in the sixties

- Polyethylene (PE) cages
 - "Industry standard"

Hinged steel cages

Farming operations – snap shots

Manual feeding, home made wet feed

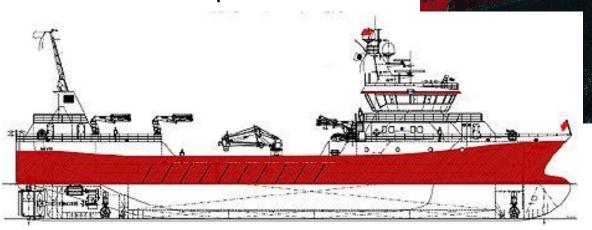

Harvesting salmon

• Site in sheltered fjords

The size challenges

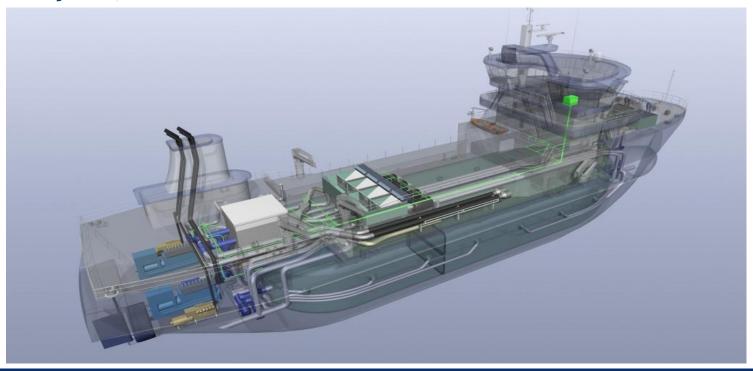
- Increasingly larger farms
 - Circumference 60 → 160m
 - Area and volume factor of 10
- 300 million salmon standing in Norwegian cages
- New regulations
 - Max 200 000 individuals in each unit
- What is the optimum unit size?
 - oxygen
 - feed distribution
 - disease control and treatment

Present technology and development Salmon - the most efficient food production in the world? The largest/best sites: 10 000-15 000 tonnes per cycle 10 - 12 cages Ø 50 meter 200 000 - 1 million fish in each 1000-1500 tonnes per man-year


Exposed but not offshore

Well boat and salmon loading

1989 Sigurd 180 m3

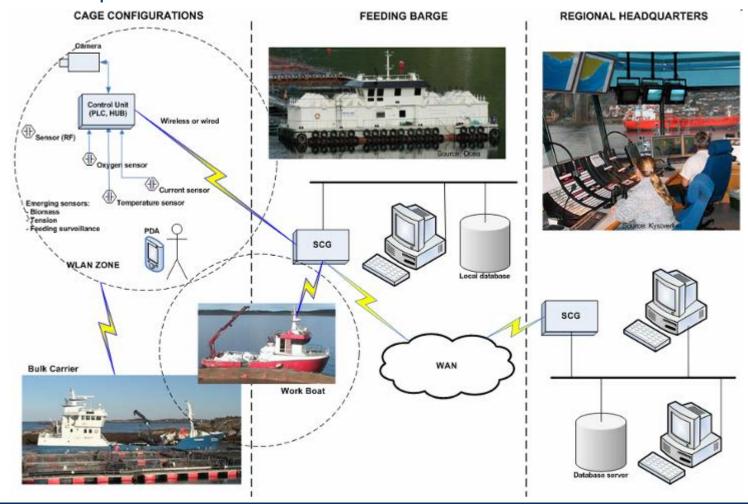

2010 Nordlaks Transport 2800 m3

Next generation Well-boat Technology

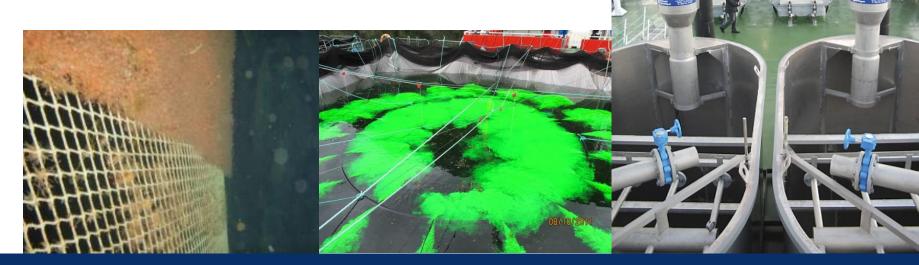
- Large Well-boat innovation initiatives large industry group and R&D
- Biosecurity, efficiency, fish welfare, gentle fish handling and the environment
- Improvement of the interaction with fish farms
- Possibly LNG-powered

Service vessels

Next generation supply vessel Møre Maritime Macho40

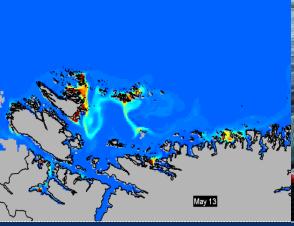

Present technology and development Feeding barge

- 500 600 ton storage
 - At peak loaded every 2-3 days
- Control rooms and monitoring
- Sensors
 - Current, temperature, oxygen, salinity
- Feed hoses up to 1200 m
- Living quarters
 - One week on/off


Remote operations and control

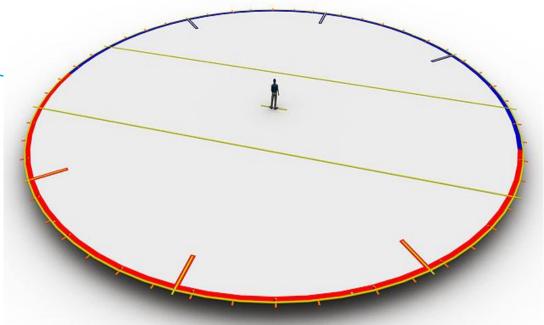
Operational challenges

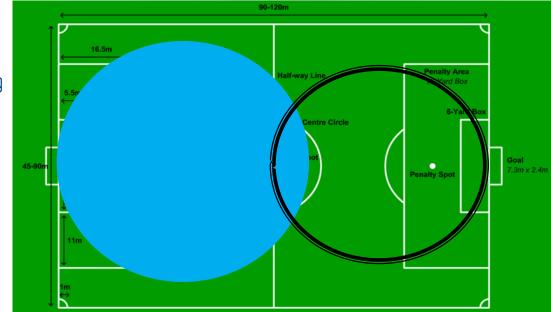
- Removing bio fouling
- Well boat access
- Feed and people logistics
- Bath treatment against parasites (salmon lice) and deceases



Remove/reduce parasites - sea lice

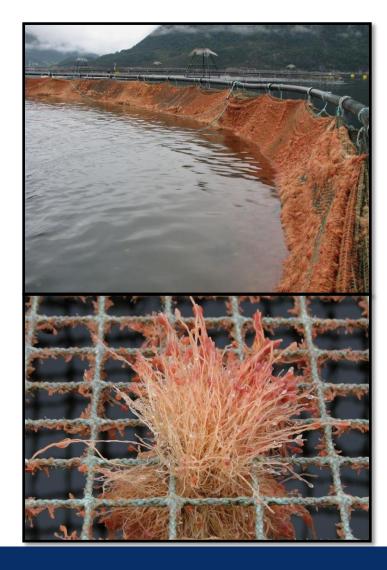
- Increasing problem over the last years
- Aim to avoid using chemicals
 - management, localisation of farms, cleaner fish
- Use of wrasse (cleaner fish)
 - Farming of wrasse
- Technical solutions
 - Water jet, laser, ...
- Dispersion modelling





Bath treatment

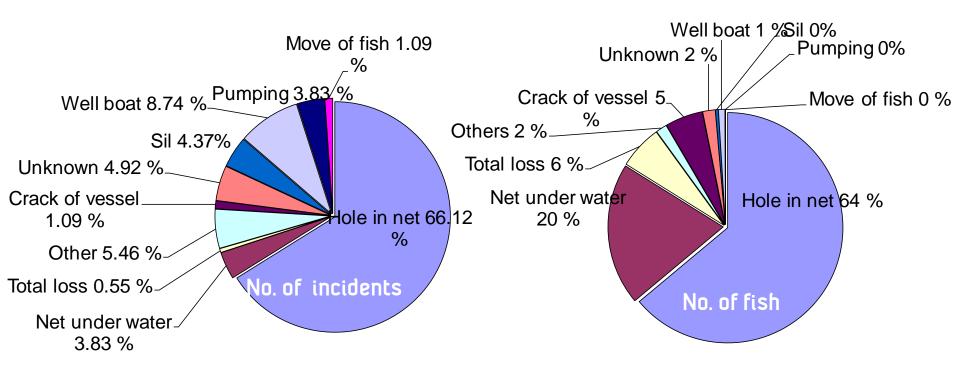
- Requirement to use closed cover by tarpaulin
- 160 m circumference cage:
 - Tarpaulin Ø 62 m og 6 m deep
- Oxygenation
- Challenging operations
 - Develop tarpaulin for improved, faster and more reliable delousing


Bio fouling and cleaning

Fish farmers need clean nets:

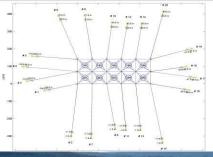
- To reduce additional weight and ensure the stability of cages
- To ensure sufficient water exchange across the nets and maintain good water quality in cages
- To ensure cleaner wrasse predominantly feed on salmon lice

Development of novel cleaning methods:


- To determine the effects of heat and acetic acid treatments on
 - the settlement of larvae
 - the survival of juvenile and adult
- Combine with industrial solutions

Why does the fish escape (2006 - 2009)

- Assessment of 95 incidents reports 2006 2009
- 19% large escapes incidents (> 10 000 fish) 91% of total number of fish
- 44% of small escape incidents (< 200 fish) 0.27% of total number of fish



'NS 9415 "Marine fish farms Requirements for design, dimensioning production and operation"

- Technical standards and requirements applicable to
 - Floater, Net cage, Mooring system and feed barge
- Requirement for site classification
 - With respect to wind, current and waves
 - Measurements of current, calculations (or measurement) of waves
 - Define methods for how to determine the values
- Requirements for life time, strength, and fatigue
 - No requirements for dimensions, only strength and material properties
- Requirements to which loads to include and how to calculate
 - Environmental (current, wave and wind), bio fouling, ice loads
 - Equipment
 - Accident loads
- Use and installation manuals
 - To ensure proper interaction between main components

Offshore - evolution rather than revolution

- Look for more space and stable conditions
 - Temperate, oxygen, salinity
- Fewer and larges farms
- Expanding current systems towards the open ocean
- Existing "traditional" farming equipment for Hs above 3 m
 - Nets, floaters, barges
- It's not only wave height
 - Duration of weather
 - Adaption of equipment
 - Adaption of operations
- Combined with wind farms?

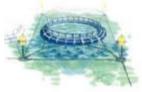
CREATE – Centre for research-based innovation in aquaculture technology

Close collaboration industry and research

CREATE

Research – biology, technology and industrial solutions

Three main research pillars - integrate knowledge between


- Equipment and constructions The physical equipment used to farm fish.
- **Operation and handling** The process of executing and carrying out operations necessary to farm fish.
- Farming intelligence Control of the total process of farming by understanding the integrated use of equipment and the process of operations.

Secondary objectives

- 1. Understand fundamental biological preferences and behaviour of fish to set criteria for technology development
- 2. Develop improved management and operational protocols and systems based on the needs of the fish.
- 3. Develop equipment and systems to improve performance and safety of fish farming operations
- 4. Develop a framework for simulation, optimization and monitoring of all aspects of fish farming

User partners

Close collaboration industry and research

Research partners

Multi-disciplinary approach

R&D, innovation and knowledge transfer for fisheries and aquaculture Breeding and genetics

Feed and nutrition

Fish health Efficient and sustainable production

Seafood processing and product development Marine bioprospecting

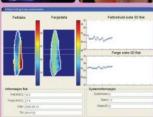
Owner: Ministry of Fisheries and Coastal Affairs Norway's largest marine research institute Marine biology and population dynamics Physical and biological oceanography Experimental biology and population genetics Welfare friendly and sustainable aquaculture Research and advice for sustainable use of

Centre of Excellence initiated by RCN in 2003 Internationally recognised research on ships and ocean structures

Highly interdisciplinary approach World-class testing facilities

About 80 affiliated PhD candidates and researchers

Above 100 scientific publications per year



Information and Communication Technology (ICT) provides research-based expertise, services and products ranging from microtechnology, communication and software technology, computational software, information systems and security and safety. Work ranges from simple technical analysis to complete systems

Engineering Cybernetics is the science of control and communications in dynamic systems. Vision to be one of Europe's most renowned research and education communities in the

27 permanent employees and about 40 PhD students and temporary academic staff. Educate about, 75 MSc and 10 PhD students per year (average last 3 years).

Cybernetics is a science with a very wide

Vision: Technology for a better society Perform basic and applied research for commercial customers as well as governmental institutions and bodies Contributes to solutions along the whole

Overview research

Research plan 2012 onwards

Equipment and constructions

Operations and management

Cage Environment

Tolerance limits for fluctuating hypoxia

Flow around and through fish farms

Effect of swimming fish on current

High strength monofilament net materials

Hydrodynamic properties of net structures

Net cage design tools

Wave and current loads on floating fish farms

Behaviour and motion of floating fish farms

Reliability-based design of fish farms

Design concept for offshore cage culture

Smart submergence

Smart submergence of salmon and cod

Pellet Quality

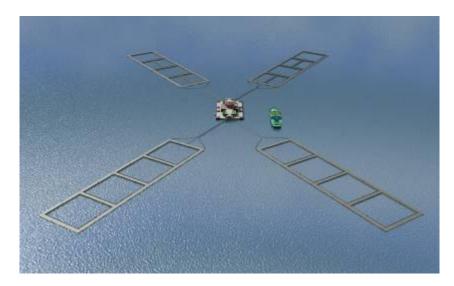
Pellet quality and digestibility

Bio-fouling and bio cleaning

Strategies to reduce and remove fouling of hydroids

ReduceLICE

IntelliLED


Modeling of feed distribution in a sea cage CREATE Dynamic site model

Farming intelligence

Thank you for the attention

- The future??
 - 20 000 tons at one location?
 - Operations run from central headquarters?
 - Wind farms, fish and kelp production combined?

