Technological Drivers for Cloud Computing 131

validating small pieces of work by them iteratively. These agile process mod-
els work better for most of the software projects as changes are inevitable
and responding to the change is key to the success of a project.

Since agile development was invented in the mid-1990s, it has revo-
lutionized how software is created by emphasizing short development
cycles based on fast customer feedback [32]. As the developers are look-
ing for shorter time period, major new releases are delivered on time.
Developers using this methodology call the process continuous improve-
ment. But for much of its history, agile development was missing a crucial
component: a development platform that supports the rapid development
cycles that make the methodology work. In traditional software envi-
ronments, new software distribution is an ordeal that requires patches,
reinstallation, and help from the support team. In such an environment,
months or even years are needed to get a new distribution into the hands
of users. Incorporating their feedback into the next release then requires
comparable time.

6.9.4 Advantages of Agile Model

Agile software process offers the following advantages compared to tradi-
tional software development models [33]:

1. Faster time to market: Since the software is developed using lesser
time in the agile process model, it reduces the time an organization
takes to launch the product into the market.

2. Quick ROL Since an organization is able launch the product in lesser
time, it generates quick ROL

3. Shorter release cycles: Agile process ensures that the software product
is released in shorter cycles compared to traditional software devel-
opment models.

4. Better quality: Since the agile development model ensures the maxi-
mum interaction among the stakeholders during the entire process
of development, it increases the overall quality of the product.

5. Better adaptability and responsiveness to business changing requirements:
Since the agile process model is adaptive to incorporate changes
in the requirements any time during the development process,
it increases the responsiveness to changing requirements of the
business.

6. Early detection of failure/failing projects: Agile process model involves
the maximum interaction among the stakeholders, and the testing
phase is not delayed till the entire software development process
is complete. This helps in the early detection of failure/failing
projects.

132 Essentials of Cloud Computing

6.9.5 How Cloud Meets Agile Process?

The cloud development use case encompasses the flow of defects/require-
ments through phases of development/builds/tests and back to submission
of new requirements or defects by various stakeholders. Automation at any
point possible is a key capability, including the ability to turn on and rip down
virtual or physical systems as needed, in a cloud. Continuous integration is
a key concept to agile practices. It is based on the philosophy of why wait
until the end of the project to see if all pieces of the system will work? Every
few hours the system should be fully integrated, but tested with all the latest
changes, so the adjustments can be made [34].

It is here that cloud computing makes a substantial difference [32]. Cloud
computing eliminates the cumbersome distribution requirements that can
bring agile development to a crawl. There are no patches to distribute and
no reinstallations needed. With cloud computing, new distributions are
installed on hosted servers and made available to users immediately. As a
result, it is possible that the application being run today was modified just
the night before. One of the best examples of bringing together agile devel-
opment and cloud computing is the experience of Salesforce.com where, in
late 2006, the R&D team moved to agile development.

6.9.5.1 Six Ways the Cloud Enhances Agile Software Development

Cloud computing and virtualization allow the creation of VMs and use of
cloud-based services for project management, issue management, and soft-
ware builds with automated testing. This, in turn, encourages agile devel-
opment in six key ways. Cloud computing and virtualization make it easy
for agile development teams to seamlessly combine multiple development,
test, and production environments with other cloud services. Here are six
important ways in which cloud computing and virtualization enhance agile
software development [35]:

1. Cloud computing provides an unlimited number of testing and staging
servers: When agile development is used without virtualization or
clouds, development teams are limited to one physical server per
development, staging, and production server need. However, when
VMs or cloud instances are used, development teams have practically
an unlimited number of servers available to them. They do not need to
wait for physical servers to become free to begin or continue their work.

2. It turns agile development into a truly parallel activity: Even in agile
development, a developer may experience delays in provisioning
server instances and in installing necessary underlying platforms
such as database software. Agile development teams can provision
the servers they need quickly themselves, rather than wait for IT
operations to do it for them.

Technological Drivers for Cloud Computing 133

3. It encourages innovation and experimentation: Being able to spawn as
many instances as needed enables agile development groups to
innovate. If a feature or a story looks interesting, a team can spawn
a development instance quickly to code it and test it out. There is no
need to wait for the next build or release, as is the case when a lim-
ited number of physical servers are available. When adding cloud
computing to agile development, builds are faster and less painful,
which encourages experimentation.

4. It enhances continuous integration and delivery: Having a large number
of VMs available to the agile development group in its own cloud or
on the public cloud greatly enhances the speed of continuous inte-
gration and delivery.

5. It makes more development platforms and external services available: Agile
development groups may need to use a variety of project manage-
ment, issue management, and, if continuous integration is used,
automated testing environments. A number of these services are
available as Software as a Service (SaaS) offerings in the cloud:

a. Agile development can use a combination of virtualization, pri-
vate clouds, and the public cloud at the IaaS level. Such offer-
ings include Amazon Web Services, GoGrid, OpSource, and
RackSpace Cloud.

b. Then comes the use of PaaS instances such as the Oracle Database
Cloud Service, the Google App Engine, and the Salesforce.com’s
platform (force.com), all of which include databases and lan-
guage environments as services.

c. Finally, there are a number of SaaS services that specifically assist
agile development, including Saleforce.com, the Basecamp proj-
ect management portal, and TestFlight, which provides hosted
testing automation for Apple iOS devices.

6. It eases code branching and merging: In code refactoring efforts, cur-
rent releases may need to be enhanced with minor enhancements
and used in production, all while a major redesign of code is going
on. Code branching is necessary in these cases. Code branching and
merging involve juggling many versions of development and staging
builds. With virtualization and cloud computing, buying or renting
additional physical servers for these purposes can be avoided.

6.9.5.2 Case Study of Agile Development

Meanwhile, Salesforce.com’s R&D leverages cloud computing to vastly speed
up release cycles [32]. The company’s cloud infrastructure helps it maintain
a single, unified code base that geographically distributed development
teams can use. Those teams are successfully combining agile development

134 Essentials of Cloud Computing

and continuous integration/delivery with cloud computing. In reference [32],
Salesforce.com finds that agile process model works better on cloud comput-
ing platform. Before the introduction of cloud computing, there was a gap or
time interval between the releasing of software and getting feedback from
the customer and now new software release can be uploaded to the server
and used by the customer simultaneously. So, the agile development model
can complement the benefits of software services hosted on the Internet. In
the rapidly varying computing environment with web services and cloud
platform, software design and development also involve various platforms,
distributed web services, and geographically distributed enterprises [36].

Salesforce.com’s R&D organization has benefitted in several ways from its
transition to agile development [32]:

¢ Increased delivery rate and created a process that makes customers
and R&D happy

* Increased time to market of major releases by 61%

e Achieved a Net Promoter Score of 94%, a good indicator of customer
satisfaction

¢ Convinced 90% of the R&D team to recommend the methodology to
colleagues inside and outside the company

¢ Increased productivity across the organization by 38%, as measured
by the number of features produced per developer (a side benefit not
anticipated as part of the original goals)

6.10 Programming Models

Programming models for cloud computing have become a research focus
recently. Cloud computing promises to provide on-demand and flexible IT
services, which goes beyond traditional programming models and calls for
new ones [37]. Cloud platforms allow programmers to write applications
that run in the cloud, or use services from the cloud, or both while abstract-
ing the essence of scalability and distributed processing [38]. With the emer-
gence of cloud as a nascent architecture, abstractions that support emerging
programming models are needed. In recent years, cloud computing has led
to the design and development of diverse programming models for massive
data processing and computation-intensive applications.

Specifically, a programming model is an abstraction of the underlying com-
puter system that allows for the expression of both algorithms and data struc-
tures [39]. In comparison, languages and APIs provide implementation of the
abstractions and allow algorithms and data structures to be put into prac-
tice. A programming model exists independently of the choice of both the

Technological Drivers for Cloud Computing 135

programming language and the supporting APIs. Programming models are
typically focused on achieving increased developer productivity, performance,
and portability to other system designs. The rapidly changing nature of proces-
sor architectures and the complexity of designing a platform provide significant
challenges for these goals. Several other factors are likely to impact the design
of future programming models. In particular, the representation and manage-
ment of increasing levels of parallelism, concurrency, and memory hierarchies,
combined with the ability to maintain a progressive level of interoperability
with today’s applications, are of significant concern. Furthermore, the successful
implementation of a programming model is dependent on exposed features of
the runtime software layers and features of the OS [39].

Over the years, many organizations have built large-scale systems to
meet the increasing demands of high storage and processing requirements
of compute- and data-intensive applications [38]. With the popularity and
demands on DCs, it is a challenge to provide a proper programming model
that is able to support convenient access to large-scale data for performing
computations while hiding all low-level details of physical environments.
Cloud programming is about knowing what and how to program on cloud
platforms. Cloud platforms provide the basic local functions that an applica-
tion program requires. These can include an underlying OS and local sup-
port such as deployment, management, and monitoring.

6.10.1 Programming Models in Cloud

There are different programming models that are used for solving vari-
ous compute- or data-intensive problems in cloud. The model to be selected
depends on the nature of the problem and also on the QoS expected from the
cloud environment. Some of the cloud programming models are discussed
in the following subsections.

6.10.1.1 BSP Model

With the advantages on predictable performance, easy programming, and
deadlock avoidance, the bulk synchronous parallel (BSP) model has been
widely applied in parallel databases, search engines, and scientific computing.
The BSP model can be adapted into the cloud environment [37]. The schedul-
ing of computing tasks and the allocation of cloud resources are integrated
into the BSP model. Recently, research on cloud computing programming
models has made some significant progress, such as Google’s MapReduce [40]
and Microsoft’s Dryad [41]. The BSP model is originally proposed by Harvard’s
Valiant. Its initial aim is to bridge parallel computation software and archi-
tecture. It offers the following advantages: firstly, its performance can be pre-
dicted; secondly, no deadlock occurs during message passing; and thirdly, it is
easy to program. The BSP model can be used not only for data-intensive appli-
cations but also for computation-intensive and I/O-intensive applications.

136 Essentials of Cloud Computing

6.10.1.2 MapReduce Model

Recently, many large-scale computer systems are built in order to meet
the high storage and processing demands of compute- and data-intensive
applications. MapReduce is one of the most popular programming models
designed to support the development of such applications [42]. It was initially
created by Google for simplifying the development of large-scale web search
applications in DCs and has been proposed to form the basis of a data center
computer. With the increasing popularity of DCs, it is a challenge to provide
a proper programming model that is able to support convenient access to
the large-scale data for performing computations while hiding all low-level
details of physical environments. Among all the candidates, MapReduce is
one of the most popular programming models designed for this purpose.

MapReduce is triggered by the map and reduce operations in func-
tional languages, such as Lisp. This model abstracts computation problems
through two functions: map and reduce. All problems formulated in this
way can be parallelized automatically. Essentially, the MapReduce model
allows users to write map/reduce components with functional-style code.
These components are then composed as a dataflow graph to explicitly
specify their parallelism. Finally, the MapReduce runtime system sched-
ules these components to distributed resources for execution while han-
dling many tough problems: parallelization, network communication, and
fault tolerance.

A map function takes a key/value pair as input and produces a list of key/
value pairs as output. A reduce function takes a key and associated value list
as input and generates a list of new values as output. A MapReduce applica-
tion is executed in a parallel manner through two phases. In the first phase,
all map operations can be executed independently from each other. In the
second phase, each reduce operation may depend on the outputs generated
by any number of map operations. All reduce operations can also be exe-
cuted independently similar to map operations.

The task execution is carried out in four stages: map, sort, merge, and
reduce. The map phase is fed with a set of key/value pairs. For each pair,
the mapper module generates a result. The sort and merge phases group
the data to produce an array, in which each element is a group of values for
each key. The reduce phase works on this data and applies the reduce func-
tion on it. The hash functions used in the map and reduce functions are user
defined and varies with the application of the model. The overall computa-
tion is depicted in Figure 6.5.

MapReduce has emerged as an important data-parallel programming
model for data-intensive computing [38]. However, most of the implementa-
tions of MapReduce are tightly coupled with the infrastructure. There have
been programming models proposed that provide a high-level programming
interface, thereby providing the ability to create distributed applications
in an infrastructure-independent way. Simple API for Grid Applications

Technological Drivers for Cloud Computing 137

Input-1 Mapper Reducer
Sort
Input Input-2 Mapper and Reducer] Final result
merge
Input-3 Mapper Reducer
Input Split Map Sort and Reduce Result
merge

FIGURE 6.5
Computation of MapReduce. (From Jayaraj, A. et al., Programming Models for Clouds.)

(SAGA) [43] and Transformer [44] are examples of such models, which try
to implement parallel models like MapReduce [42] and All-Pairs [45], taking
considerable burden off the application developer.

6.10.1.3 SAGA

Although MapReduce has emerged as an important data-parallel program-
ming model for data-intensive computing, most, if not all, implementations
of MapReduce are tightly coupled to a specific infrastructure. SAGA is a
high-level programming interface that provides the ability to create distrib-
uted applications in an infrastructure-independent way [38]. SAGA supports
different programming models and concentrates on the interoperability on
grid and cloud infrastructures. SAGA supports job submission across dif-
ferent distributed platforms, file access/transfer, and logical file, as well as
checkpoint recovery and service discovery. SAGA APl is written in C++ and
supports other languages like Python, C, and Java. The runtime environ-
ment decision making is given support by the engine that loads relevant
adaptors, as shown in Figure 6.6.

6.10.1.4 Transformer

Even though there are existing programming models based on C++ and Java
in the industrial market, they suffer from certain shortcomings. First, the
programmers have to master the bulky and complex APIs in order to use the
model. Secondly, most programming models are designed for specific pro-
gramming abstractions and created to address one particular kind of prob-
lem. There is an absence of a universal distributed software framework for
processing massive datasets. To address the aforementioned shortcomings,
a new framework called Transformer [38] is used, which supports diverse
programming models and also is not problem specific.

138 Essentials of Cloud Computing

Python API wrapper CAPI wrapper
Native C++ API Functional API packages
| Jobs | | Files | |Replicas I | CPR |
SAGA runtime
File Job Replica CPR
adaptors adaptors adaptors adaptors
Middleware/services

FIGURE 6.6
SAGA model. (From Jayaraj, A. et al., Programming Models for Clouds.)

Transformer is based on two concise operations: send and receive. Using
the Transformer model, various models such as MapReduce [39], Dryad,
and All-Pairs [40] can be built. The architecture of the Transformer model
is divided into two layers: common runtime and model-specific systems, as
shown in Figure 6.7. This is done to reduce coupling. Runtime system han-
dles the tasks-like flow of data between machines and executes the tasks on
different systems making use of send and receive functions from runtime
API. Model-specific layer deals with particular model tasks like mapping,
data partitioning, and data dependencies.

Transformer has a master/slave architecture. Every node has two com-
munication components: a message sender and a message receiver. The

Programming model
[Model-specific system]
Send() Receive()
[Common run-time system]

[EXT3] [I—[DFS] [MySQL]
FIGURE 6.7

Transformer architecture. (From Jayaraj, A. et al., Programming Models for Clouds.)

Technological Drivers for Cloud Computing 139

master node issues commands for task execution on the slave nodes. The
slave nodes return the status of execution when it is over. The fault-tolerance
strategy is agile in nature. Failure is detected by the runtime system whereas
fault recovery is handled by the model-specific layer. This involves rerun-
ning the tasks or resending data. Transformer system is coded in Python.
Communication between nodes is done using message-passing mechanism
opposed to semaphores and conditions in threaded approach. Since the fre-
quency of communication is high, asynchronous network programming is
adopted, and moreover the message is serialized before sending it. Using the
Transformer model, all three known parallel programming models, namely
MapReduce, Dryad, and All-Pairs, are implemented.

6.10.1.5 Grid Batch Framework

Recently, an alternative to parallel computational models has been suggested
that enables users to partition their data in a simplified manner while having
the highest possible efficiency. The Grid Batch system has two fundamental
data types [38]: table and indexed table. A table is a set of rows that are inde-
pendent of each other. An indexed table has all the properties of a table in
addition to having an index associated with each record.

The two major software components of the Grid Batch system are the
Distributed File System (DFS) and the Job Scheduler. The DEFS is responsible
for storing and managing the files across all the nodes in the system. A file
is broken down into many pieces and each of these pieces is stored on a
separate node. The Job Scheduler constitutes of a master node and associated
slave nodes. A job is broken down into many smaller tasks by the master
node, and each of these tasks is distributed among the slave nodes. The basic
map and reduce operators in the MapReduce system are extended in the
Grid Batch model. These are map operator, distribute operator, join operator,
Cartesian operator, recurse operator, and neighbor operator.

6.11 Pervasive Computing

Pervasive computing is a combination of technologies, such as Internet capa-
bilities, voice recognition, networking, artificial intelligence, and wireless
computing, used to make computing anywhere possible. Pervasive com-
puting devices make day-to-day computing activities extremely easy to
perform. The technology is moving beyond the PC to everyday devices with
embedded technology and connectivity. Pervasive computing is also called
ubiquitous computing, in which almost any device or material such as cloth-
ing, tools, appliances, vehicles, homes, human body, or even the coffee mug
can be imbedded with chips to connect that object to an infinite network

140 Essentials of Cloud Computing

of other devices. The goal of pervasive computing, which combines current
network technologies with wireless computing, voice recognition, Internet
capability, and artificial intelligence, is to create an environment where the
connectivity of devices is achieved in such a way that the connectivity is
unobtrusive and always available. Pervasive computing also has a number
of prospective applications, which range from home care and health, to geo-
graphical tracking and intelligent transport systems.

The words pervasive and ubiquitous mean existing everywhere. Pervasive
computing devices are completely connected and constantly available.
Pervasive computing relies on the convergence of wireless technologies,
advanced electronics, and the Internet. The goal of researchers working in
pervasive computing is to create smart products that communicate unobtru-
sively. The products are connected to the Internet and the data they gener-
ate are easily available. An example of a practical application of pervasive
computing is the replacement of old electric meters with smart meters. In the
past, electric meters had to be manually read by a company representative.
Smart meters report usage of electricity in real time over the Internet. They
will also notify the power company when there is an outage and also send
messages to display units in the home and regulate the water heater.

Hence, in pervasive computing, computing is made to appear everywhere
and anywhere [46]. In contrast to desktop computing, pervasive computing
can be done using any supporting device, at any location. The underlying
technologies to support pervasive computing include Internet, advanced
middleware, OS, mobile, sensors, microprocessors, new 1/O and user inter-
faces, networks, mobile protocols, and location-based services. This paradigm
is also named with different names like physical computing, the Internet
of Things, and things that think, by considering the objects involved in it.
In this case, the device used to access applications and information is almost
irrelevant as various types of devices or platform can be used to perform the
intended operation [47].

6.11.1 How Pervasive Computing Works?

The success of ubiquitous computing rests with the proper integration of
various components that talk to each other and thereby behaving as a single
connected system. Figure 6.8 shows the architecture of a ubiquitous com-
puting stack [48]. At the bottom of the stack is a physical layer. Tiny sensors
are attached (carried, worn, or embedded) to people, animals, machines,
homes, cars, buildings, campuses, and fields. Sensors capture various bits
of information from the immediate surroundings. Beyond the microphone
and camera, multiple sensors such as GPS, accelerometer, and compass can
be integrated into it.

Above the sensors lies the wireless communication infrastructure, which
can be provided by the 802.11 family of networks. Together with mesh
networks, such standards ensure the connectivity of sensors and devices.

Technological Drivers for Cloud Computing 141

Application services

| Banking | | Insurance I |Healthcare I

| Agriculture I | Utility | | Transport I

| Government I | Manufacturing I

[Infrastructure platform]

[Gateway]

[Sensors]
FIGURE 6.8

Pervasive computing stack. (From Perspectives, TCS Consult.]., available at: http://sites.tcs.
com/insights/perspectives/enterprise-mobility-ubiquitous-computing-beyond-mobility#.
UzPo8fmSzCe.)

Another technology called ZigBee is a low-cost alternative for keeping mul-
tiple devices connected, allowing parent devices to wirelessly control child
sensors. Near field communication (NFC) is yet another technology stan-
dard that leverages RFID and can be used for ubiquitous computing, espe-
cially in scenarios where non-battery-operated passive points are concerned.
NFC-powered devices can also interact with one another.

The next level includes a range of application services. The data from
the sensors and handheld devices are gathered, mined, and analyzed for
patterns. The patterns help provide options to smart applications that pro-
actively make changes to environments through smartphones, tablets, note-
books, or any other handheld devices or smart devices. An example could
be that of a cardiac patient wearing a tiny monitor connected to a mobile
device. An irregular ECG will trigger the mobile to alert the patient’s doctor
and emergency services.

6.11.2 How Pervasive Computing Helps Cloud Computing?

Nowadays, IT enterprises are adopting cloud computing in order to
reduce the total cost involved and also to improve the QoS delivered to
the customers. Cloud computing provides the opportunity to access the
infrastructure, platform, and the software from the service providers on a

142 Essentials of Cloud Computing

pay-per-use basis. Pervasive computing helps cloud computing by providing
the ability to access the cloud resources anytime, anywhere and also through
any device. Pervasive computing provides the necessary features such as
ubiquitous computing, storage and archiving, social community-based
applications, and business as well as nonbusiness applications in order for
cloud computing to gain its full potential. Cloud computing is typically a
client-server architecture, where the client can be any portable device like a
laptop, phone, browser, or any other OS-enabled devices [49]. A main issue
with these portable devices is the constraints they present in terms of stor-
age, memory, processing, and battery lifetime. By storing data on the cloud,
and interacting with the cloud through secure communication channels, all
these constraints can be easily met.

Machine-to-machine (M2M) communication is important in cloud com-
puting [47]. Such a communication scenario spans from the shop floor,
to the DC, to the boardroom, as the devices carried along track the user’s
movements and activities and also interact with the other systems around.
For example, an employee is currently in New York and he wants to dis-
cuss something with two colleagues. He requests an appointment using his
mobile device, and based on his location data and that of his colleagues, and
the timing of the meeting, backend systems automatically book him a con-
ference room and set up a video link to a coworker out of town. Based on
analytics and the title of the meeting, relevant documents are dropped into a
collaboration space. The employee’s device records the meeting to an archive
and notes who has attended in person. And, this conversation is automati-
cally transcribed, tagged, and forwarded to team members for review.

Wearable devices like Google Glass will also feed into the new workplace.
The true power behind these applications is not in the devices themselves but
in the analytic systems that back them. The backend systems of the applica-
tions combine the data collected from the various types of computing devices
such as Google Glass, smartphones, an embedded GPS device in a palette, or
a sensor in a car’s engine. Such systems process the data and then turn it into
useful information that is used for triggering the required actions. Different
computing systems performing various activities are deployed with APIs
so that the user can build applications that extract information from these
multiple systems.

6.12 Operating System

An OS is a collection of softwares that manages the computer hardware
resources and other programs in the computing system. It provides common
services required by computer programs for their effective execution within
the computing environment. The OS is an essential component of the system

Technological Drivers for Cloud Computing 143

software in a computer system as application programs usually require an
OS for their interface with the hardware resources and other system pro-
grams. For hardware functions such as input and output, and memory allo-
cation, the OS acts as an intermediary between programs and the computer
hardware.

6.12.1 Types of Operating Systems

The different variants of OSs are the following:

1. Network OSs: A network operating system (NOS) is a computer OS
that is designed primarily to support workstations, PCs that are con-
nected on a LAN. An NOS provides features such as printer shar-
ing, common file system and database sharing, application sharing,
security mechanisms, and also the ability to manage a network
name directory and other housekeeping functions of the network.
Novell’s NetWare and Microsoft’'s LAN Manager are examples of
NOSs. In addition, some multipurpose OSs, such as Windows NT
and Digital’s OpenVMS, come with capabilities that enable them to
be described as an NOS.

2. Web OSs: Web OSs are basically websites that replicate the desktop
environment of modern OSs, all inside a web browser. They are
installed onto web servers and live on the Internet. Thus, a user can
access his virtual desktop from any device, anywhere, that is con-
nected to the net. Web OSs are also called the dynamic computers.
In this case, the applications, hard disk, and OSs are all present at
the servers from where they are accessed. The web OS service pro-
vider manages the application and database accesses of the various
users. The user is provided with a graphical user interface similar to
the one available on a desktop PC, which can be used to access the
data and the applications from the server. Google Chrome OS is an
example of a web OS.

3. Distributed OS: A distributed OS is a software that is present over a
collection of independent, networked, communicating, and physi-
cally separate computational nodes. Each individual node holds a
specific software that is a subset of the global aggregate OS. Each
subset consists of two distinct components of the distributed OS.
The first one is a ubiquitous minimal kernel, or microkernel, that
directly controls the node’s hardware. The second one is a higher-
level collection of system management components that coordinate
the node’s individual and collaborative activities. The microkernel
and the management components work together. They support the
distributed system’s goal of integrating multiple resources and pro-
cessing functionality into an efficient and stable system. To a user,

144 Essentials of Cloud Computing

a distributed OS works in a manner similar to a single-node, mono-
lithic OS. That is, although it consists of multiple nodes, it appears to
the users and applications as a single-node OS.

4. Embedded systems: Embedded systems are OSs present in elec-
tronic devices used for various purposes in order to make them
smart and more efficient. Embedded systems present in devices
such as routers, for example, typically include a preconfigured
web server, DHCP server, and some utilities for its effective
networking operation, and they do not allow the installation of
new programs in them. Examples of embedded OSs for routers
include Cisco Internetwork Operating System (I10S), DD-WRT,
and Juniper Junos. An embedded OS can also be found inside
an increasing number of consumer gadgets including phones,
personal digital assistance (PDA), and digital media player for the
successful completion of their intended tasks.

6.12.2 Role of OS in Cloud Computing

In the 1970s, International Business Machines Corporation (IBM) released
an OS called VM that allowed mainframe systems to have multiple vir-
tual systems, or VMs on a single physical node [50]. The VM OS materi-
alized shared access of mainframe systems to the next level by allowing
multiple distinct computing environments to live in the same physical
environment. Most of the basic functions of current virtualization soft-
ware are inherited from this early VM OS. The virtualization software
is now represented with the term hypervisor. Hardware virtualization is
used to share the resources of the cloud providers effectively with the
customers by generating an illusion of dedicated computing, storage, and
networking on a computing infrastructure. The concept of virtualization
is physically implemented using the hypervisor modules, and the opera-
tion and processing of hypervisors are materialized by the OSs. In other
words, hypervisor modules are installed on top of OSs, which act as an
interface between hardware units and hypervisor packages.

Using virtualization, multiple VMs are generated according to the require-
ment, and these VMs are made operational by individually installing OSs
on each VM. Figure 6.9 shows the virtualization of a single hardware of the
CSP to create different VMs, each installed with its own OS. Every VM runs
custom OS or guest OS that has its own memory, CPU, and hard drives along
with CD-ROMs, keyboards, and networking, despite the fact that all of those
resources are shared among the VMs.

In addition, an OS such as Linux supports the necessary standards that
enhance portability and interoperability across cloud environments [51].
OS platforms are designed to hide much of the complexity required to

Technological Drivers for Cloud Computing 145

f Virtualization layer \ At pchine
e) i
Server
\ Y
(: =\
Security
& J
(B
Network
\ J
(™
Storage
_ /

FIGURE 6.9
OS and virtualization. (From Steddum, J., A brief history of cloud computing, available at:
http://blog.softlayer.com/tag/mainframe.)

support applications running in complex and federated environments.
It needs to work effectively in the background in order to ensure that all
the right resources (such as processing power, required memory, and stor-
age) are allocated when needed. In addition, the OS implements the level of
security and QoS to ensure that applications are able to access the resources
needed to deliver an acceptable level of performance, in an efficient and
secure manner.

One of the most important ways to support the underlying complexity of
well-managed cloud computing resources is through the OS [51]. One of the
most significant requirements for companies adopting cloud computing is
the need to adopt a hybrid approach to computing. To do so, most organi-
zations will continue to maintain their traditional DC to support complex
mixed workloads. For example, an organization may choose a public cloud
environment for development and test workloads, a private cloud for cus-
tomer-facing web environments that deal with personal information, and
a traditional DC for legacy billing and financial workloads. It is considered
that hybrid cloud computing environments will be the norm for the future.
Therefore, it is more important than ever for the OS to support and feder-
ate the various computing deployment models so that they appear to be
a single system from a customer experience and a systems management
perspective.

146 Essentials of Cloud Computing

6.12.3 Features of Cloud OS

The elements required to create an operationally sophisticated hybrid cloud
computing environment include the following [51]:

1. Well-defined interfaces that hide implementation details
2. Core security services
3. The ability to manage virtualization

4. Management of workloads to provide QoS and performance

These features are explained in the following subsections.

6.12.3.1 Well-Defined and Abstracted Interfaces

A cloud OS should provide the APIs that enable data and services interoper-
ability across distributed cloud environments. Mature OSs provide a rich set
of services to the applications so that each application does not have to invent
important functions such as VM monitoring, scheduling, security, power
management, and memory management. In addition, if APIs are built on
open standards, it will help organizations avoid vendor lock-in and thereby
creating a more flexible environment. For example, linkages will be required
to bridge traditional DCs and public or private cloud environments. The flex-
ibility of movement of data or information across these systems demands
the OS to provide a secure and consistent foundation to reap the real advan-
tages offered by the cloud computing environments. Also, the OS needs to
make sure the right resources are allocated to the requesting applications.
This requirement is even more important in hybrid cloud environments.
Therefore, any well-designed cloud environment must have well-defined
APIs that allow an application or a service to be plugged into the cloud eas-
ily. These interfaces need to be based on open standards to protect customers
from being locked into one vendor’s cloud environment.

6.12.3.2 Support for Security at the Core

Whether an organization is considering a public, private, or hybrid cloud
environment, security is the most important foundation to ensure the pro-
tection for its assets. Security issues are exacerbated in a cloud environment
since it is highly distributed, and also it involves a large variety of inter-
nal and external systems added or removed to/from the cloud dynamically.
Therefore, the cloud environment has to protect the identity of the users and
their information from external threats. To support the needs of the organi-
zations, cloud security requires an integrated management capability within
the OS that can track all IT assets in the context of how they are being used.
This capability needs to ensure that the security meets an organization’s
compliance and governance requirements.

Technological Drivers for Cloud Computing 147

Both virtualization and multitenancy supports have to be implemented in
a secure manner. As virtualization and multitenancy become the norm in
cloud environments, it is critical that security be built-in at the core. When
servers are virtualized, it makes the creation of a new image possible with
little effort. This expansion of virtual images raises the risk of attack because
it increases the possibility that a security flaw in the hypervisor can be
exploited by a guest instance. It can expose both existing systems and other
partners that interact with those systems to security threats. When security
is implemented as a framework within the OS, it improves the overall secu-
rity of both virtualized and nonvirtualized environments.

6.12.3.3 Managing Virtualized Workloads

Virtualization is fundamental to cloud computing because it breaks the
traditional links between the physical server and the application. These
virtualized environments are controlled and managed by a hypervisor.
In essence, the hypervisor is an OS on the physical hardware and presents
the core hardware abstraction and I/O instructions needed by the guests in
its environment. Hence, the effective management of the hypervisor and the
virtualized environments is critical to the success of cloud computing.

6.12.3.4 Management of Workloads

The cloud environment has to be designed in a manner that protects the
individual customer’s workloads. Hence, the prerequisite for effective cloud
computing is the ability to isolate workloads of users from each other. The
cloud OS should make sure that all the required resources are effectively
managed in the cloud environment for the individual users.

6.12.4 Cloud OS Requirements

Other than the features of the cloud OS explained in the previous section,
the major OS requirements in a cloud environment are given in the follow-

ing [52]:

1. The cloud OS must permit autonomous management of its resources: The
cloud OS should expose a consistent and unified interface that con-
ceals whenever possible the fact that individual nodes are involved
in its operations, and what those low-level operations are. It should
support the autonomous management of the various cloud resources
on behalf of its users and applications.

2. Cloud OS operation must continue despite failure of nodes, clusters, and
network partitioning: Guaranteeing continued operation of the cloud
management processes in these conditions involves mechanisms for

148 Essentials of Cloud Computing

quickly detecting the failures and enacting appropriate measures for
recovering from the failures. Several cloud libraries that implement
common fault tolerance and state recovery features are provided for
the customers to use.

3. The cloud must support multiple types of applications: Applications of
different types such as high-performance computing, high data
availability, and high network throughput should ideally coexist in
a cloud environment and obtain from the system the resources that
best match the application requirements.

4. The cloud OS management system must be decentralized, scalable, and
cost effective: Moreover, apart from initial resource deployment,
no human intervention should be required to expand the cloud
resources. Likewise, user management should only entail the on-
demand creation of user credentials, which are then automatically
propagated throughout the cloud.

5. The resources used in the cloud architecture must be accountable: The
resource usage of the various cloud customers should be monitored
effectively in the cloud environment. This monitoring activity could
be used for charging the customers for their resource access, and
also for the security auditing (if needed). Moreover, dynamic billing
schemes based on resource congestion could be an effective way for
resource allocation.

6.12.5 Cloud-Based OS

Researchers are now aiming to go one step further and take the OS to the
cloud with TransOS, a cross-platform, cloud-based OS [53]. The TransOS sys-
tem code is stored on a cloud server and a minimal amount of code would be
required to boot up the computer and connect it to the Internet. Featuring a
graphical user interface, TransOS downloads specific pieces of code to perform
the same kinds of tasks as a conventional OS, thereby allowing a bare bones
terminal to perform tasks beyond the limitations of its hardware. The terminal
would make a call to the relevant TransOS code as and when required, ensur-
ing that the inactive OS is not hogging system resources when applications are
being run. The TransOS manages all the networked and virtualized hardware
and software resources and enables the users to select and run any service on
demand. The TransOS could be adapted to platforms other than PCs such as
mobile devices, factory equipment, and even domestic appliances.

In addition to keeping a lean machine, TransOS users can also store their
documents and files in the cloud, much like Apple’s iCloud, keeping their
local storage free. With TransOS, users never have to worry about running
the most up-to-date version of the OS or even maintain their own computer.
With their OS, data, files, and settings stored in the cloud, any computer
with an Internet connection (e.g., computers that are publicly available at

Technological Drivers for Cloud Computing 149

libraries and colleges) becomes just like the user’s own machine. The files
stored within the cloud can also be accessed anytime from any Internet-
ready device, including smartphones and tablets.

6.13 Application Environment

An application development environment (ADE) is the hardware, software,
and computing resources required for building software applications. ADE
is a composite set of computing resources that provides an interface for
application development, testing, deployment, integration, troubleshooting,
and maintenance services. These are combined with the software engineer-
ing resources, such as a programming language’s integrated development
environment (IDE), reporting and analysis software, troubleshooting tools,
and other performance evaluation software utilities.

6.13.1 Need for Effective ADE

As the mobile web application market matures, competitive pressures and
user expectations will drive application developers to differentiate their
product offerings by providing value-added features [54]. The standards-
based application environment must ensure the interoperability of the appli-
cation development components. In particular, it must enable customized
content, extensible functionality and advanced user interfaces.

For the web to be ubiquitous, web access devices must be present almost
everywhere. For this to occur, web access devices must become small and
portable. As web-enabled devices evolve from today’s desktop computers to
such things as cellular telephones, car radios, and personal organizers, the
challenge will be to provide a common application authoring environment
across a diverse range of devices. The existing standard web application envi-
ronment consists of HTML, JavaScript, and an ad hoc collection of standard
graphics file formats, processed by an HITML browser. To incorporate mul-
timedia content and extend the expressiveness or the functionality of a user
interface, Java applets and browser plug-ins can be used. They require exten-
sions that are often device specific and require special installation.

Hence, the web application environment must provide application devel-
opers the tools they need to develop innovative products, without sacrificing
interoperability. Hence, an effective ADE should

¢ Support multiple content types, including multimedia content
* Support multimodal user interaction

e Provide a framework for the integration of new technologies as they
become available

150 Essentials of Cloud Computing

The application environment should support a standard extensibility frame-
work. As new media types, user agents, or supplemental services emerge,
they should be integrated into the environment in a backward-compatible
manner without affecting the performance of any existing applications.

6.13.2 Application Development Methodologies

Today, two development methodologies are widely used in application
development: distributed and agile developments [55].

6.13.2.1 Distributed Development

This is the natural by-product of the Internet and the phenomenon that not
all coding geniuses live within commuting distance from the workplace.
Distributed development is a global development that brings its own chal-
lenges with collaboration and code management. There are applications
available for distributed code management such as git and Subversion. They
are widely used in distributed environments.

6.13.2.2 Agile Development

This is where cloud development can really be much more than just online.
Since cloud environments can be provisioned instantly and nearly any con-
figuration can be copied and activated, the possibilities for instant devel-
opments and test environments are very attractive to developers. Cloud
development can also boost agile development by coordinating collabora-
tion, planned sprints, and emergency bug fixes. Deploying to the cloud is
also very useful for agile development. Prereleases can be pushed out to cus-
tomers’ test machines on their cloud almost instantly. Even if the customer is
not in a cloud environment yet, prereleases can be posted on a public cloud
for the customer to access and test remotely before accepting delivery of the
final release of the application. Toolsets that can help the agile management
in the cloud include Code2Cloud, in conjunction with Tasktop and CollabNet.

6.13.3 Power of Cloud Computing in Application Development

Cloud computing has effectively solved the financial and infrastructural
problems associated with developing custom applications for the enter-
prises as it eases the financial investment that was previously required to
set up the sophisticated developer environment necessary to build, test, and
deploy custom applications in-house [56]. As a result, the introduction of
cloud platforms has enabled developers to solely focus on creating highly
scalable modern applications. Further, the process of marketing these cus-
tom applications is less time consuming and more effective as a result of the
flexibility provided by cloud computing services. When applications are run

Technological Drivers for Cloud Computing 151

in the cloud, they are accessed as a service—this is known as Software as
a Service (SaaS). By utilizing SaaS, the companies can deliver services in a
cost-effective and efficient manner. This process enables businesses to work
in conjunction with partners to develop applications and quickly distribute
them in the market.

The advantages of using cloud computing services over traditional soft-
ware go beyond just the drop in costs. The traditional methods of devel-
oping custom applications that often took months to complete has now
dropped to just weeks. With all the required software and tools available
in the cloud, developers can work more efficiently and productively than
they could if they were using traditional software, where, more often than
not, additional components were required to develop a complete application.
Today’s heavily simplified approach of accessing applications online allows
developers to produce comprehensive enterprise-level applications simply
through a web browser, without the technical difficulties associated with
traditional solutions.

Another main benefit of using cloud computing services for application
development is the efficient use of resources. Applications that utilize virtu-
alized IT services are generally more efficient and better equipped to meet
user demands. The pay-per-use model of cloud computing services provides
the clients with flexibility to spend according to their requirements and thus
eliminates the unnecessary expenses. Also, cloud computing services allow
delivering the applications on multiple devices; this allows companies to
design their applications so that they are compatible with a range of devices.

6.13.3.1 Disadvantages of Desktop Development

Desktop development environments are becoming outdated, failing more
often, and causing productivity issues for developers. The main issues with
desktop environment are the following [57]:

1. Complicated configuration management: The substantial configura-
tion management process for a developer’s workspace turns devel-
opers into part-time system administrators, responsible for their
own mini-DC running entirely on the desktop. This is time con-
suming, error prone, and challenging to automate. Many develop-
ers have multiple computers and are forced to repeat these tasks
on each machine. There is no way to synchronize the configura-
tions of components across different machines, and each machine
requires similar hardware and OSs to operate the components
identically.

2. Decreased productivity: Many IDEs are memory and disk hogs, with
significant boot times. They are so resource-hungry that they can
starve other applications and the net effect is less productivity due
to a slower machine.

152 Essentials of Cloud Computing

3. Limited accessibility: Normally, desktop developer workspaces are not
accessible via mobile devices through the Internet. Developers who
need remote access have to resort to some complex and slow solu-
tions such as GotoMyPC.

4. Poor collaboration: These days, most developers work as part of
a team, so communication and collaboration among the team
members are critical for the success of the project. In the case of
desktop IDEs, they must outsource collaboration to communica-
tion systems outside the developer’s workflow, forcing develop-
ers to continuously switch between developing within the IDE
and communicating with their team via other means. To solve
these problems, it requires moving the entire development work-
space into the cloud. The cloud-based environment is centralized,
making it easy to share. Developers can invite others into their
workspace to coedit, cobuild, or codebug and can communicate
with one another in the workspace itself. The cloud can offer
improvements in system efficiency, giving each individual work-
space a configurable slice of the available memory and computing
resources.

6.13.3.2 Advantages of Application Development in the Cloud

Cloud platforms reduce the overall development time of a software project
[58]. This is largely due to the cloud platform’s ability to streamline the devel-
opment process, including the ability to quickly get the development assets
online. Moreover, cloud platforms provide the ability to collaborate effec-
tively on development efforts. Cloud-based development platforms in PaaS
and IaaS public clouds such as Google, Amazon Web Services, Microsoft,
and Salesforce.com offer cost savings and better QoS.

Some of the benefits of the application development in the cloud are given
as follows:

¢ The ability to self-provision development and testing environments
¢ The ability to quickly get applications into production and to scale
those applications as required

e The ability to collaborate with other developers, architects, and
designers on the development of the application

6.13.4 Cloud Application Development Platforms

Application development, deployment, and runtime management have
always been reliant on development platforms such as Microsoft’s .NET,
WebSphere, or JBoss, which have been deployed on premise traditionally [59].
In the cloud computing context, applications are generally deployed by cloud

Technological Drivers for Cloud Computing 153

providers to provide highly scalable and elastic services to as many end users
as possible. Cloud computing infrastructure needs to support many users to
access and utilize the same application services, with elastic allocation of
resources. This has led to the enhancement in development platform tech-
nologies and architectures to handle performance, security, resource allo-
cation, application monitoring, billing, and fault tolerance. Cloud provides
the ADE as PaaS. There are several solutions available in the PaaS market,
including Google App Engine, Microsoft Windows Azure, Force.com, and
Manjrasoft Aneka.

6.13.4.1 Windows Azure

Windows Azure provides a wide array of Windows-based services for devel-
oping and deploying Windows-based applications on the cloud. It makes use
of the infrastructure provided by Microsoft to host these services and scale
them seamlessly. The Windows Azure Platform consists of SQL Azure and
the .NET services. The .NET services comprise of access control services and
NET service bus. Windows Azure is a platform with shared multitenant
hardware provided by Microsoft. Windows Azure application development
mandates the use of SQL Azure for RDBMS functionality, because that is the
only coexisting DBMS functionality accessible in the same hardware context
as the applications.

6.13.4.2 Google App Engine

Google App Engine provides an extensible runtime environment for web-
based applications developed with Java or Python, which leverage huge
Google IT infrastructure. Google App Engine is offered by Google, Inc.
Its key value is that developers can rapidly build web-based applications on
their machine and deploy them on the cloud. Google App Engine provides
developers with a simulated environment to build and test applications
locally with any OS or any system that runs a suitable version of Python and
Java language environments. Google uses the JVM with Jetty Servlet engine
and Java Data Objects.

6.13.4.3 Force.com

Force.com is a development and execution environment and is the best
approach for PaaS for developing customer relationship management
(CRM)-based applications. With regard to the design of its platform and the
runtime environment, it is based on the Java technology. The platform uses
a proprietary programming language and environment called Apex code,
which has a reputation for simplicity in learning and rapid development and
execution.

154 Essentials of Cloud Computing

6.13.4.4 Manjrasoft Aneka

Aneka is a distributed application platform for developing cloud applica-
tions. Aneka can seam together any number of Windows-based physical
or virtual desktops or servers into a network of interconnected nodes that
act as a single logical application execution layer. Aneka-based clouds can be
deployed on a variety of hardware and OSs including several flavors of the
Windows and Linux OS families. Aneka provides a flexible model for devel-
oping distributed applications and provides integration with external clouds
such as Amazon EC2 and GoGrid. Aneka offers the possibility to select the
most appropriate infrastructure deployment without being tied to any spe-
cific vendor, thus allowing enterprises to comfortably scale to the cloud as
and when needed.

6.13.5 Cloud Computing APIs

APIs are provided by some of the CSPs for the development of cloud applica-
tions. Details of some of the APIs provided by the CSPs such as Rackspace,
IBM, and Intel are given in the following [60].

6.13.5.1 Rackspace

Developers have access to the API documentation and software develop-
ment kit (SDK) across all of Rackspace’s services at their developer site,
http://developer.rackspace.com. Thus, Rackspace provides developers with
the tools and resources necessary to create new applications and services on
top of their APIs.

6.13.5.2 IBM

IBM introduced new APIs, which can be found at the IBM developer site,
www.ibm.com/developerworks/. The introduction of the new APIs focuses
on arming developers with the tools and resources to build new products,
applications, and services.

6.13.5.3 Intel

Intel has several SDKs that aimed at cloud computing developers. Intel has
a cloud services platform beta where developers can download the SDK for
identity-based and cross-platform services. The Intel Cloud Builders program
brings together leading systems and software solutions vendors to provide
the best practices and practical guidance on how to deploy, maintain, and
optimize a cloud infrastructure based on Intel architecture. And for develop-
ers seeking to use public cloud infrastructure services, the Intel Cloud Finder
makes it easier to select providers that meet a developer’s requirements.

Technological Drivers for Cloud Computing 155

6.14 Summary

Cloud computing is dominating the IT industry worldwide today. More and
more companies and organizations are adopting the cloud model these days.
Even though cloud computing is a new service delivery model, the under-
lying technologies have been in existence for a long time. Cloud computing
uses many of those technologies to achieve its established goals. This chapter
focuses on the various technological drivers of cloud computing. It discusses
about the basic enabling technologies of cloud computing such as SOA, hyper-
visors and virtualization, multicore technology, and memory and storage tech-
nologies. It also talks about the latest developments in Web 2.0 and Web 3.0,
the advancements in the programming models, software development mod-
els, pervasive computing, OSs, and ADEs. It also explains how these technolo-
gies are related to the cloud model, helping the cloud in delivering quality
services. The recent developments in each of these enabling technologies are
highlighted with their advantages and characteristic features. The chapter
explains as to how these underlying technologies are empowering the present
cloud computing paradigm to deliver its services effectively. Also, the chapter
presents how various stakeholders such as service providers and service con-
sumers are benefitted from the features extended by these technologies.

Review Points

¢ SOA: Service-oriented architecture is a flexible set of design principles
and standards used for systems development and integration. A prop-
erly implemented SOA-based system provides a loosely coupled set of
services that can be used by the service consumers for meeting their
service requirements within various business domains (see Section 6.2).

* Hypervisor: Hypervisors are software tools used to create virtual
machines, and they produce the virtualization of various hardware
resources such as CPU, storage, and networking devices. They are
also called virtual machine monitor (VMM) or virtualization man-
agers (see Section 6.3.2).

® Multicore technology: In the multicore technology, two or more CPUs
are working together on the same chip. In this type of architecture,
a single physical processor contains the core logic of two or more
processors (see Section 6.4).

e Storage as a Service: Storage as a Service (STaaS) is a cloud business

model in which a service provider rents space in its storage infra-
structure to various cloud users (see Section 6.5.3).

156 Essentials of Cloud Computing

* Software-defined networking: Software-defined networking (SDN) is
an approach to networking in which control is decoupled from net-
working hardware and given to a software application called the
controller (see Section 6.6.5).

* Web 2.0: Web 2.0 (or Web 2) is the popular term given to the advanced
Internet technology and applications that include blogs, wikis, RSS,
and social bookmarking (see Section 6.7).

® Semantic web: The semantic web is a vision of IT that allows data
and information to be readily interpreted by machines, so that the
machines are able to take contextual decisions on their own by find-
ing, combining, and acting upon relevant information on the web
(see Section 6.8.1.1).

o Agile development model: Agile model is a software development
model where the software is developed in rapid, incremental cycles.
The development results in tiny incremental releases and is based
on previously built functionality and is carefully tested to ensure
software quality (see Section 6.9.3).

® MapReduce: MapReduce is a popular programming model designed
to support the development of compute- and data-intensive appli-
cations, which requires high storage and processing demands (see
Section 6.10.1.2).

® Pervasive computing: Pervasive computing is a combination of tech-
nologies such as Internet capabilities, voice recognition, networking,
artificial intelligence, and wireless computing used to make com-
puting anywhere possible (see Section 6.11).

e Web OS: Web operating systems are basically websites that replicate
the desktop environment of modern OSs, all inside a web browser
(see Section 6.12.1).

® Cloud API: Cloud APIs are provided by the cloud service providers
for the development of cloud applications (see Section 6.13.5).

Review Questions
1. What are the characteristic features of SOA that are used in the suc-
cessful deployment of cloud computing?

2. Whatare the various approaches in virtualization? What are the roles
played by the hypervisor and virtualization in cloud environment?

3. How can the multicore technologies be used to achieve the parallel-
ism in cloud?

Technological Drivers for Cloud Computing 157

4.

5.
6.

What are the latest technological developments to meet the storage
requirements in cloud?

How does SDN relate to the cloud computing scenario?

What are the ways in which cloud computing relies on the concepts
of Web 2.0 for its successful operation?

7. How do semantic web and web services contribute to the evolution

8.

9.

10.

11.
12.

of cloud computing?

Justify the decision to adopt the agile development model for soft-
ware development. How can the cloud computing paradigm make
the agile process effective?

What are the programming models used in cloud? Justify the answer
by explaining the characteristic features of the models.

Explain the ways in which pervasive computing affects the cloud
model.

Explain the differences between a web OS and a cloud OS.

How does the cloud computing paradigm help in effective applica-
tion development?

References

1.

2.

Strassmann, P. A. How SOA fits into cloud computing. SOA Symposium, April
22, 2010.

Zhang, L.-]. and Q. Zhou. CCOA: Cloud computing open architecture. IEEE
International Conference on Web Services 2009 (ICWS 2009), 2009, pp. 607-616.

. Gschwind, M. Multicore Computing and the Cloud: Optimizing Systems with

Virtualization. IBM Corporation, 2009.

. Sun, X.-H., Y. Chen, and S. Byna. Scalable computing in the multicore era.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and
Programming, 2008.

. Sankaralingam, K. and R. H. Arpaci-Dusseau. Get the parallelism out of my loud.

Proceedings of the Second USENIX Conference on Hot Topics in Parallelism, 2010.

. Jamal, M. H. et al. Virtual machine scalability on multi-core processors based

servers for cloud computing workloads. IEEE International Conference on
Networking, Architecture, and Storage, 2009 (NAS 2009), Hunan, China, July 9-11,
2009. IEEE, New York, 2009, pp. 90-97.

. Venkatraman, A. Intel launches micro-server, network, storage technologies

to power cloud datacenters. Available at: http://www.computerweekly.com/
news/2240204767 / Intel-launches-micro-server-network-storage-technologies-
to-power-cloud-datacentres. Accessed December 10, 2013.

. Introduction to storage technologies. Consulting Solutions, White Paper, Citrix

XenDesktop.

158

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

Essentials of Cloud Computing

. Cloud storage for cloud computing. OpenGrid Forum, SNIA, Advancing
Storage and Information Technology, White Paper, 2009.

Stryer, P. Understanding data centers and cloud computing. Global Knowledge
Instructor, CCSI, CCNA.

Ingthorsson, O. Networking technologies in cloud computing. Available at:
http:/ /cloudcomputingtopics.com/2010/04/networking-technologies-in-
cloud-computing /#comments. Accessed December 13, 2013.

Bitar, N., S. Gringeri, and T. J. Xia. Technologies and protocols for data center
and cloud networking. IEEE Communications Magazine 51(9): 24-31, 2013.
Rosen, E. and Y. Rekhter. BGP/MPLS IP virtual private networks (VPNs). RFC
4364, 2006.

Sajassi et al. BGP MPLS based ethernet VPN. Work in progress, 2013.

O'Reilly, T. What is Web 2.0. O’Reilly Network, 2005. Accessed August 6, 2006.
VMWARE. Virtualization overview. Available at: www.vmware.com.
Techtarget. Definition of Web 2.0. Available at: http://whatis.techtarget.com/
definition/Web-20-or-Web-2. Accessed December 1, 2013.

Reservoir Consortium. Resources and services virtualization without barriers.
Scientific report. 2009.

Mulholland, A., J. Pyke, and P. Finger. Enterprise Cloud Computing: A Strategy
Guide for Business and Technology, Meghan-Kiffer Press, Tampa, FL.

Keen, A., Web 1.0 + Web 2.0 = Web 3.0, Typepad.com. Available at: http://
andrewkeen.typepad.com/the-great-seduction/2008/04/web-10-web20-w.
html. Accessed November 21, 2013.

Viluda, P, Differences between Web 3.0 and Web 2.0 standards. Available at:
http:/ /www.cruzine.com/2011/02/14/web-3-web-2-standards/.

World Wide Web Consortium (W3C). W3C semantic web activity, 2011.
Retrieved November 26, 2011. Accessed November 26, 2011.

Getting, B. Basic definitions: Web 1.0, Web. 2.0, Web 3.0. Available at: http://
www.practicalecommerce.com/articles /464-Basic-Definitions-Web-1-0-Web-2-
0-Web-3-0. Accessed December 1, 2013.

Spivack, N. Web 3.0: The third generation web is coming. Available at: http://
lifeboat.com/ex/web.3.0. Accessed December 1, 2013.

Hoy, T. Web 3.0: Converging cloud computing and the web. Available at: http://
www.ebizq.net/topics/cloud_computing/features/12477 . html?page=3.
Accessed November 23, 2013.

Shaw, T. Web 3.0 gives business smarter infrastructure. Available at: http://
www.baselinemag.com/cloud-computing /Web-30--Gives-Business-Smarter-
Infrastructure/. Accessed November 27, 2013.

Sommerville, I. Software Engineering, 8th edn. Pearson Education, 2006.

Guha, R. and D. Al-Dabass. Impact of Web 2.0 and cloud computing platform on
software engineering. 2010 International Symposium on Electronic System Design
(ISED), Bhubaneswar, India, December 20-22, 2010. IEEE, New York, 2010,
pp. 213-218.

Pressman, R. Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-
Hill Higher Education, New York, 2009.

Singh, A., M. Korupolu, and D. Mahapatra. Server-storage virtualization:
Integration and load balancing in data centers. International Conference for High
Performance Computing, Networking, Storage and Analysis, 2008 (SC 2008), Austin,
TX, November 15-21, 2008. IEEE/ ACM Supercomputing (SC), 2008, pp. 1-12.

Technological Drivers for Cloud Computing 159

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Velagapudi, M. SDLC for cloud computing—How is it different from the tra-
ditional SDLC? Available at: http://blog.bootstraptoday.com/2012/02/06/
sdlc-for-cloud-computing-how-is-it-different-from-the-traditional-sdlc/.
Salesforce.com. Agile development meets Cloud computing for extraordinary
results. Available at: www.salesforce.com. Accessed October 3, 2013.

Dumbre, A, S. S. Ghag, and S. P. Senthil. Practising Agile software development
on the Windows Azure platform. Infosys Whitepaper, 2011.

Gulrajani, N. and D. Bowler. Software Development in the Cloud—Cloud Management
and ALM.

Kannan, N. Ways the cloud enhances agile software development. Available
at: http:/ /www.cio.com/article/714210/6_Ways_the_Cloud_Enhances_Agile_
Software_Development. Accessed December 5, 2013.

Mahmood, Z. and S. Saeed. Software Engineering Frameworks for Cloud Computing
Paradigm. Springer-Verlag, London, UK., 2013.

Liu, X. A programming model for the cloud platform. International Journal of
Advanced Science and Technology 57: 75-81, 2013.

Jayaraj, A., J. John Geevarghese, K. Rajan, U. Kartha, and V. Samuel Varghese.
Programming Models for Clouds.

McCormick, P. et al. Programming models. White Paper. Available at: https://
asc.lInl.gov/exascale/exascale-pmWG.pdf.

Dean, J. and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM 51(1): 107-113, 2008. Accessed December 8,
2013.

liard, M., M. Budiu, and Y. Yuan. Dryad: Distributed data-parallel programs
from sequential building blocks. Operating Systems Review 41(3): 59-72, 2007.
Jin, C. and R. Buyya. Mapreduce programming model for. NET-based cloud
computing. In: H. Sips, D. Epema, and H.-X. Lin (eds.), Euro-Par 2009 Parallel
Processing. Springer, Berlin, Germany, 2009, pp. 417—428.

Miceli, C. et al. Programming abstractions for data intensive computing on
clouds and grids. 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009.

Wang, P. et al. Transformer: A New Paradigm for Building Data-Parallel Programming
Models. IEEE Computer Society, 2009.

Gannon, D. The computational data center—A science cloud. Indiana University,
Bloomington, IN.

Soylu, A., P. De Causmaecker, and P. Desmet. Context and adaptivity in perva-
sive computing environments: Links with software engineering and ontological
engineering. Journal of Software 4(9): 992-1013, 2009.

Gallagher, S. Forget “post-PC”—Pervasive computing and cloud will
change the nature of IT. Available at: http://arstechnica.com/information-
technology/2013/08/forget-post-pc-pervasive-computing-and-cloud-will-
change-the-nature-of-it/2/. Accessed October 24, 2013.

Perspectives. Ubiquitous computing: Beyond mobility: Everywhere and every
thing. TCS Consulting Journal. Available at: http://sites.tcs.com/insights/
perspectives/enterprise-mobility-ubiquitous-computing-beyond-mobility#.
UzPo8fmSzCe.

Namboodiri, V. Sustainable pervasive computing through mobile clouds.
Available at: http://sensorlab.cs.dartmouth.edu/NSFPervasiveComputing
AtScale/pdf/1569391485.pdf. Accessed October 28, 2013.

160

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Essentials of Cloud Computing

Steddum, J. A brief history of cloud computing. Available at: http://blog.
softlayer.com/tag/mainframe.

Hurwitz, J. The role of the operating system in cloud environments. A Hurwitz
White Paper, 2011.

Pianese, F. et al. Toward a cloud operating system. Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP. IEEE, 2010.
Quick, D. Cloud-based operating system in the works. Available at: http://
www.gizmag.com/transos-cloud-based-operarting-system /24494 /. Accessed
December 14, 2013.

Dominiak, D. Standardizing a web-based application environment. Motorola
White Paper. Available at: http://www.w3.org/2000/09/Papers/Motorola.
html. Accessed December 1, 2013.

Proffitt, B. Building applications in the cloud: A tour of the tools. Available at:
http:/ /www.itworld.com/virtualization /189811 /building-applications-cloud-
tour-tools. Accessed November 24, 2013.

Siddiqui, Z. The impact of cloud computing on custom application development.
Available at: http:/ /www.trackvia.com/blog/technology/cloud_computing_
and_custom_application_developments. Accessed December 6, 2013.
Linthicum, D. Why application development is better in the cloud. Available at:
http:/ /www.infoworld.com/d/cloud-computing /why-application-development-
better-in-the-cloud-211239. Accessed December 10, 2013.

Jewell, T. Why cloud development environments are better than desk-
top development. Available at: http://readwrite.com/2013/04/16/why-
cloud-development-environments-are-better-than-desktop-development#
awesm=~0zHQROKSJUAQI2. Accessed December 4, 2013.

Buyya, R. and K. Sukumar. Platforms for building and deploying applications
for cloud computing. arXiv preprint arXiv:1104.4379, 2011.

Le, T. Developers and cloud computing application programming interfaces
(APIs). Available at: http://software.intel.com/en-us/blogs/2013/09/26/
developers-and-cloud-computing-application-programming-interfaces-apis.

Further Reading

Dean, J. and S. Ghemawat. MapReduce: Simplified data processing on large clusters.

Proceedings of the Sixth Symposium on Operating System Design and Implementation,
2004.

