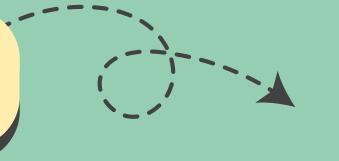
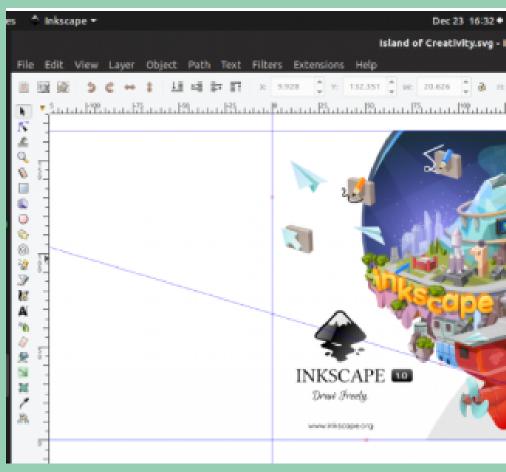


Pentingnya Vektor



GMaps



Aplikasi design

Navigasi pada pesawat

DEFINISI VEKTOR

1. Vektor: suatu besaran yang memiliki nilai dan juga arah.

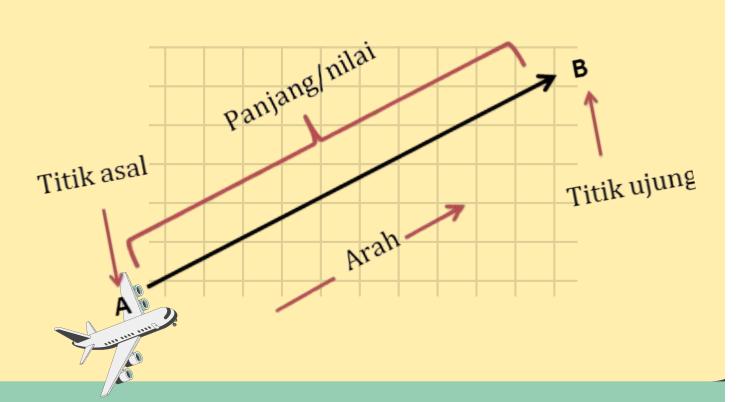
2. Contoh: perpindahan, kecepatan, gaya dan momentum.

3. Vektor disimbolkan dalam anak panah seperti pada gambar di samping.

4. Notasi Vektor : menggunakan huruf tebal, dengan panah kecil di atas simbol.

Notasi Vektor: AE

Panjang Vektor: $|\overrightarrow{AB}|$



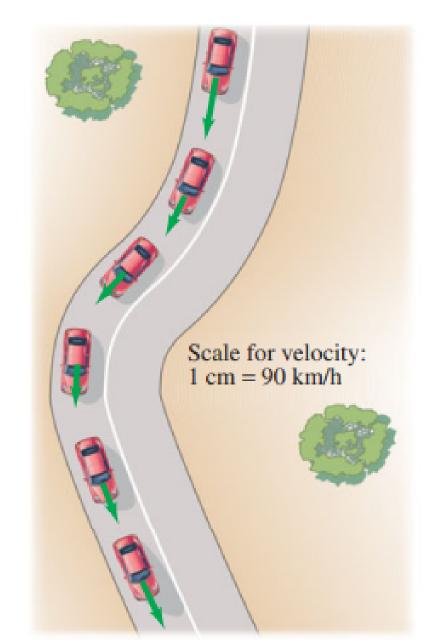
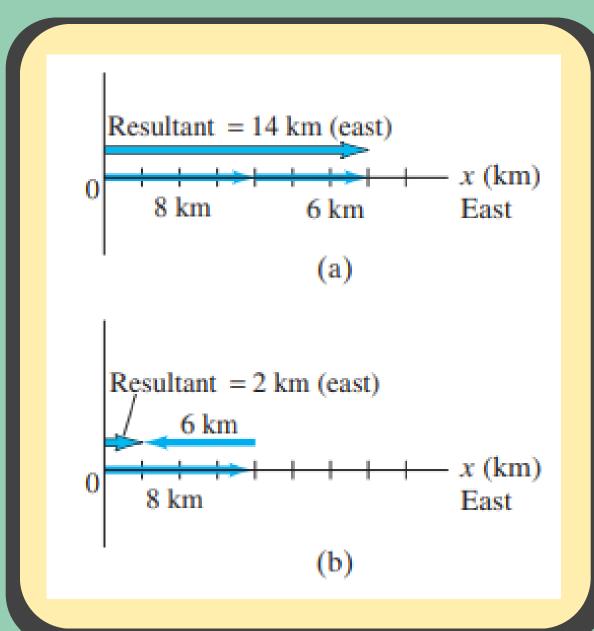


FIGURE 3-1 Car traveling on a road, slowing down to round the curve. The green arrows represent the velocity vector at each position.

RESULTAN VEKTOR DENGAN METODE GRAFIS

1. METODE POLIGON (TAIL-TO-TIP METHOD)



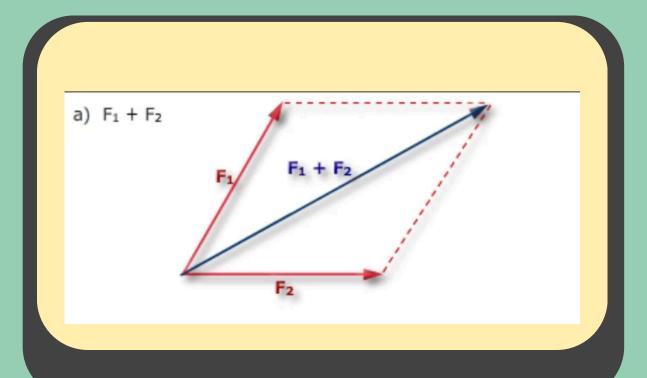
Aturan umum untuk menggabungkan dua vektor secara grafis:

- 1. Pada diagram, gambarkan salah satu vektor,
- 2. Gambarkan vektor kedua sesuai skala, letakkan ekornya di ujung vektor pertama dan pastikan arahnya benar,
- 3. Gambar panah dari ekor vektor pertama ke ujung vektor kedua mewakili jumlah/ resultan, dari kedua vektor tersebut

FIGURE 3–5 The resultant of three vectors:
$$\vec{\mathbf{V}}_{R} = \vec{\mathbf{V}}_{1} + \vec{\mathbf{V}}_{2} + \vec{\mathbf{V}}_{3}$$
.

RESULTAN VEKTOR DENGAN METODE GRAFIS

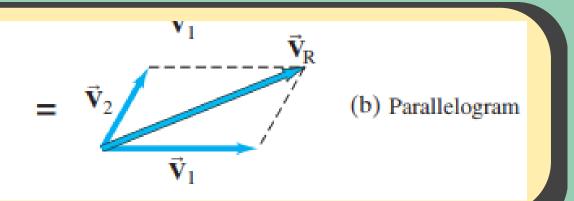
2. METODE JAJARAN GENJANG

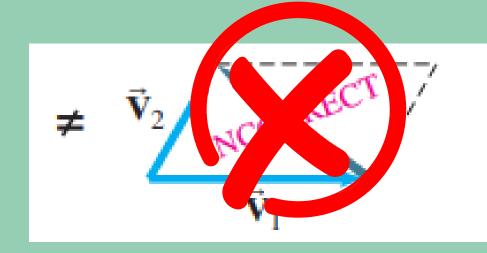


Aturan umum untuk menggabungkan dua vektor dengan metode jajaran genjang:

- 1. Dua vektor digambar mulai dari titik asal yang sama, dan
- 2. Buatlah sebuah jajaran genjang dibangun menggunakan pencerminan dua vektor tersebut sebagai sisi-sisi yang berdekatan.

FIGURE 3-6 Vector addition by two different methods, (a) and (b). Part (c) is incorrect.

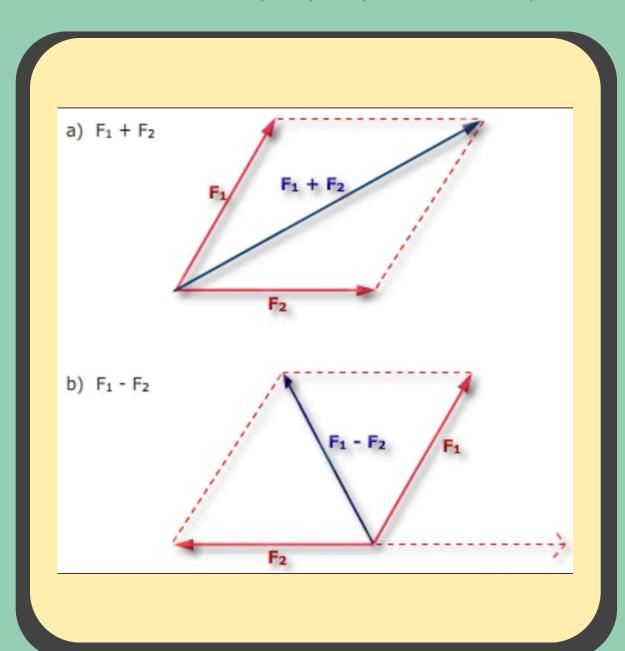




(c) Wrong

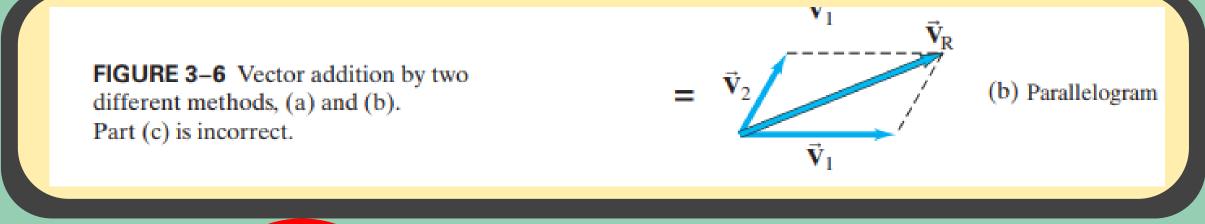
RESULTAN VEKTOR DENGAN METODE GRAFIS

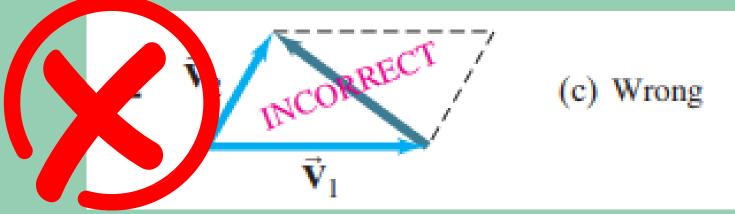
2. METODE JAJARAN GENJANG



Aturan umum untuk menggabungkan dua vektor dengan metode jajaran genjang:

- 1. Dua vektor digambar mulai dari titik asal yang sama, dan
- 2. Buatlah sebuah jajaran genjang dibangun menggunakan pencerminan dua vektor tersebut sebagai sisi-sisi yang berdekatan.





Pengurangan Vektor

FIGURE 3–7 The negative of a vector is a vector having the same length but opposite direction.

$$\vec{\mathbf{v}}$$
 $-\vec{\mathbf{v}}$

selisih antara dua vektor didefinisikan sebagai

$$\vec{\mathbf{v}}_2$$
 - $\vec{\mathbf{v}}_1$ = $\vec{\mathbf{v}}_2$ + $-\vec{\mathbf{v}}_1$ = $\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1$ $\vec{\mathbf{v}}_2$

$$\vec{\mathbf{V}}_2 - \vec{\mathbf{V}}_1 = \vec{\mathbf{V}}_2 + (-\vec{\mathbf{V}}_1).$$

PERKALIAN VEKTOR DANGAN SKALAR

FIGURE 3–9 Multiplying a vector $\vec{\mathbf{V}}$ by a scalar c gives a vector whose magnitude is c times greater and in the same direction as $\vec{\mathbf{V}}$ (or opposite direction if c is negative).

$$\vec{\mathbf{V}}_2 = 1.5 \ \vec{\mathbf{V}}$$

$$\vec{\mathbf{V}}_3 = -2.0 \ \vec{\mathbf{V}}$$

perkalian sebuah vektor dengan skalar positif c mengubah besar vektor tersebut dengan faktor c tetapi tidak mengubah arahnya.

Misal vektor $\vec{a}=(a_1,a_2)$ dan $\vec{b}=(b_1,b_2,b_3)$ serta terdapat skalar k, maka :

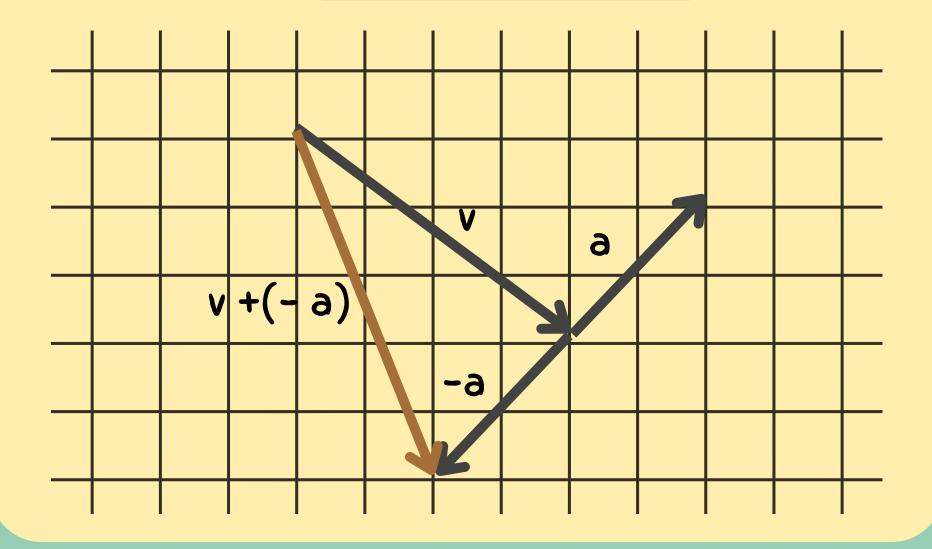
$$k\vec{a} = (ka_1, ka_2) \operatorname{dan} k\vec{b} = (kb_1, kb_2, kb_3)$$

Operasi Pengurangan Vektor

Secara Komponen

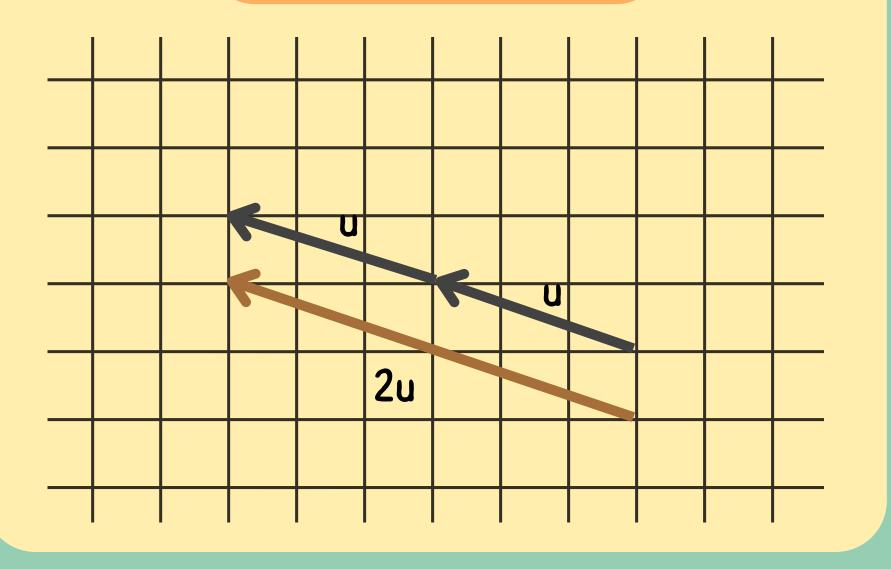
$$\overrightarrow{v} - \overrightarrow{a} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 $= \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

Secara Geometris



Operasi Perkalian Skalar Vektor

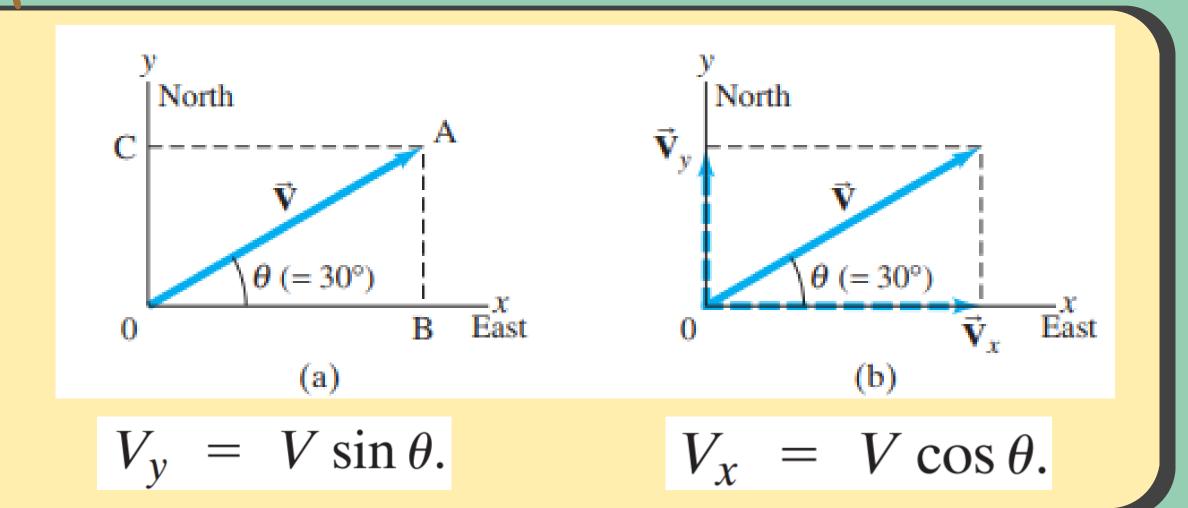
Secara Geometris



Secara Komponen

$$egin{array}{l} \overrightarrow{2u} &= 2 inom{-3}{1} \ &= inom{-6}{2} \end{array}$$

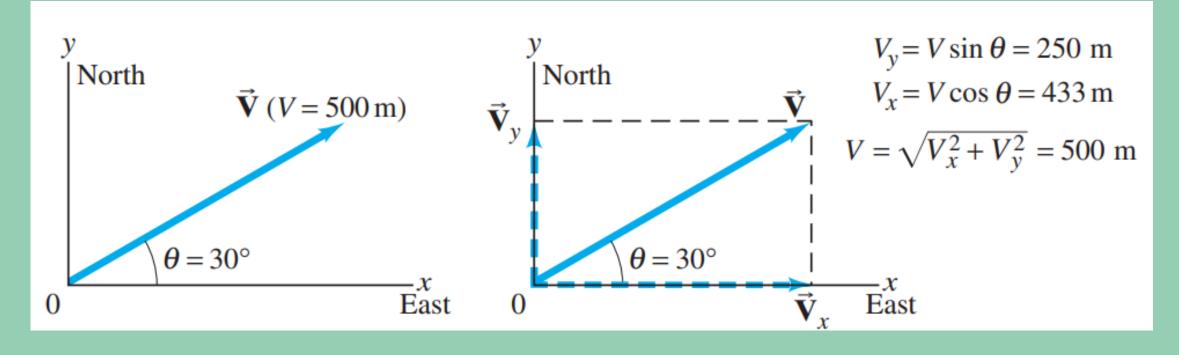
PENJUMLAHAN VEKTOR DENGAN METODE ANALISIS (KOMPONEN)



$$\sin \theta = \frac{V_y}{V}$$

$$\cos \theta = \frac{V_x}{V}$$

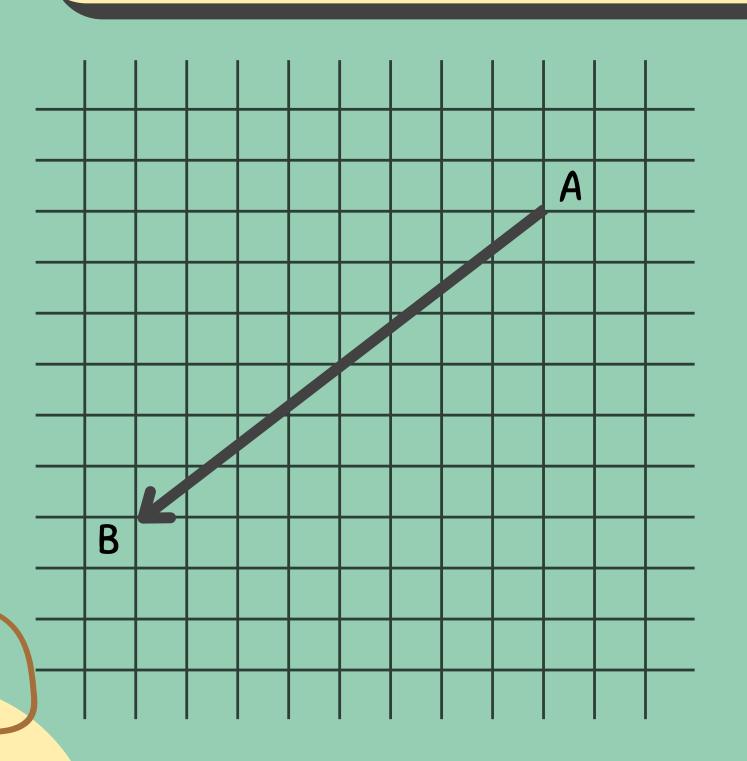
$$\tan \theta = \frac{V_y}{V_x}$$



Panjang vektor: $V = \sqrt{V_x^2 + V_y^2}$

Arah vektor: $\tan \theta = \frac{v_y}{V_x}$

Vektor pada Sistem Koordinat



Komponen Vektor

Vektor yang dituliskan dalam bentuk kolom adalah vektor kolom. Vektor yang dituliskan dalam bentuk baris adalah vektor baris.

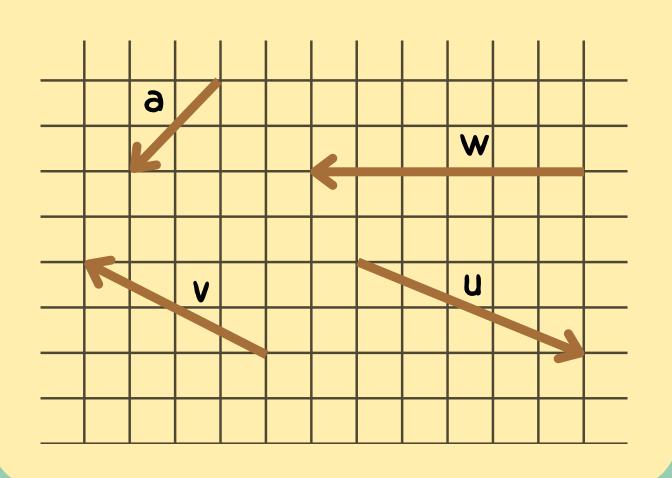
$$\overrightarrow{AB} = \begin{pmatrix} -8 \\ -6 \end{pmatrix} = \begin{pmatrix} -8 \\ -6 \end{pmatrix}$$

Panjang Vektor

$$|\overrightarrow{AB}| = \sqrt{(-8)^2 + (-6)^2} = 10$$

CONTOH SOAL

Tentukan hasil dari operasi vektor berikut ini



$$\overrightarrow{a} - \overrightarrow{v} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} + \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 \\ 0 \end{pmatrix}$$

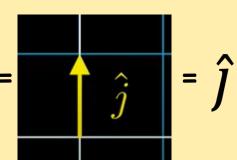
$$\begin{array}{ccc}
\overrightarrow{2a} & \overrightarrow{3w} = 2 \begin{pmatrix} -2 \\ -2 \end{pmatrix} + 3 \begin{pmatrix} -5 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \end{pmatrix} + \begin{pmatrix} -15 \\ 0 \end{pmatrix} \\
&= \begin{pmatrix} -19 \\ -4 \end{pmatrix}$$

VEKTOR SATUAN

- Vektor satuan :vektor yang memilik panjang l (satu).
- Vektor yang besarnya l mengarah pada sb-x

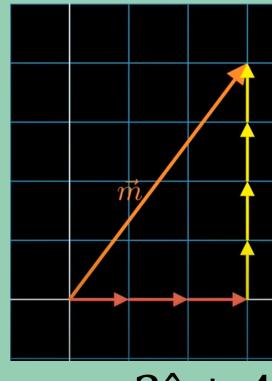
$$\hat{i}$$
 = \hat{i}

Vektor yang besarnya l mengarah pada sb-y =

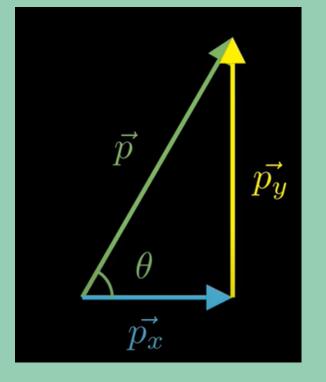


ullet Vektor yang besarnya l mengarah pada sb-z = \widehat{k}

Maka notasi :



$$m = 3\hat{\imath} + 4\hat{\jmath}$$



$$\vec{p} = |\vec{p}_x|\hat{i} + |\vec{p}_y|\hat{j}$$

$$= |\vec{p}|\cos\theta + |\vec{p}|\sin\theta$$

Ingat rumus vektor satuan dari vektor a = xi + yj adalah:

$$e = \frac{a}{|a|} = \frac{a}{\sqrt{x^2 + y^2}}$$

Latihan!

Coba tentukan berapa vektor satuan dari $m=3\hat{\imath}-4\hat{\jmath}$!

PERKALIAN VEKTOR: DOT (.) PRODUCT & CROSS (X) PRODUCT

DOT (.) Product → Skalar product

Contoh: menentukan usaha W = F.s

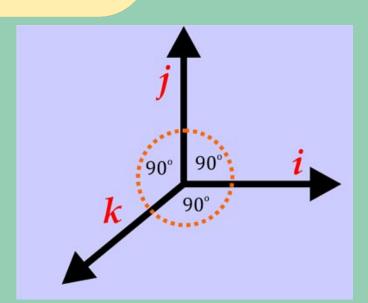
$$|\bar{A}.\bar{B}| = |\vec{A}||\vec{B}|\cos\theta$$

 $|\bar{A}.\bar{B}| = |\bar{B}.\bar{A}|$

komponen i, j dan k saling tegak lurus (90), maka :

$$\cos 90 = 0$$

sehingga nilainya selalu 0.



maka, yang berlaku:

$$\hat{i}. \hat{i} = \hat{j}. \hat{j} = \hat{k}. \hat{k} = 1$$

Contoh soal:

Diketahui
$$\vec{a} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} \operatorname{dan} \vec{b} = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix}$$
.

Maka:

$$\vec{a} \cdot \vec{b} = (4 \cdot (-3)) + (-2 \cdot 2) + (1 \cdot 4)$$

$$= (-12) + (-4) + 4$$

$$= -12$$

Jadi,
$$\vec{a} \cdot \vec{b} = -12$$
.

PERKALIAN VEKTOR: DOT (.) PRODUCT & CROSS (X) PRODUCT

CROSS (X) Product -> Vector product

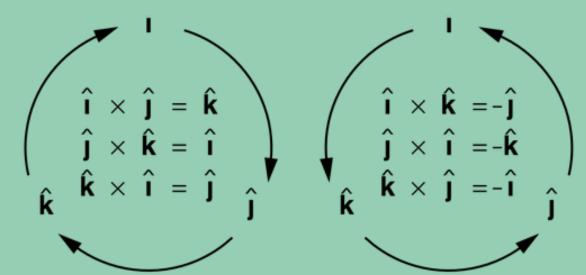
Contoh: menentukan Torsi W = r X F

$$ar{A} imes ar{B} = ar{C}$$

$$ar{A} imes ar{B} = |\vec{A}| |\vec{B}| \sin \theta \, \hat{n}$$

$$ar{A} imes ar{B} = \overline{-B} imes ar{A}$$

Metode penyelesaian dengan kaidah tangan kanan atau:



Contoh soal:

$$\mathbf{a} = 2i - j$$

$$\mathbf{b} = 3i$$

$$\vec{a} \times \vec{b} = (2i - j) \times 3i$$

$$= (2i - j) \times 3i$$

$$= 2i \times 3i - j \times 3i$$

$$= (2 \times 3)(i \times i) - (1 \times 3)(j \times i)$$

$$= 6(0) - 3(-k)$$

$$= 0 + 3k$$

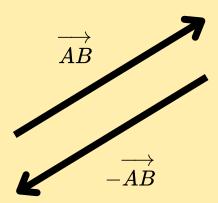
$$= 3k$$

$$\bar{A} \times \bar{B} = (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$

JENIS VEKTOR

Vektor Negatif/Lawan

Vektor negatif atau vektor lawan adalah vektor dengan besar yang sama, tetapi arah berlawanan dengan suatu vektor.

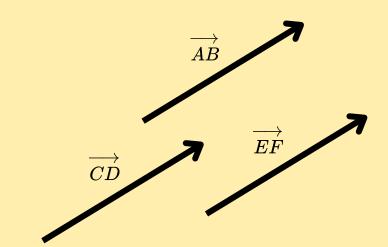


Vektor Nol

Vektor nol adalah vektor
dengan panjang nol dan
tidak punya arah tertentu.
Vektor nol dinyatakan
dengan titik secara grafis.

Vektor Ekuivalen

Suatu vektor ekuivalen dengan vektor lain jika mempunyai besar dan arah yang sama dengan vektor lain tersebut.



UJI PEMAHAMAN

Pasangkan vektor manakah yang saling berlawanan dan yang ekuivalen.

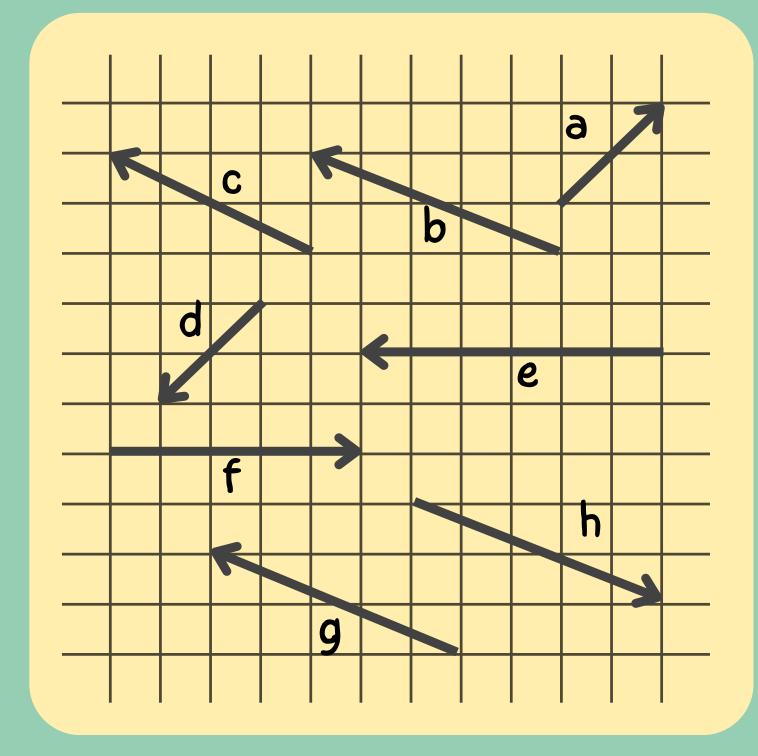
Vektor yang berlawanan adalah...

a dan d

b dan h

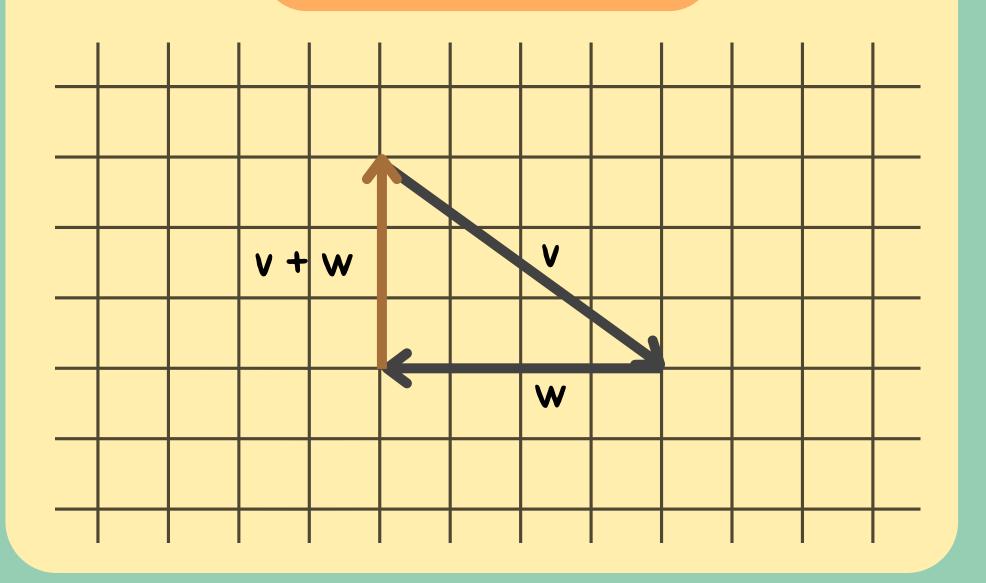
Vektor yang ekuivalen adalah...

b dan g



Operasi Penjumlahan Vektor

Secara Geometris



Secara Komponen

$$\overrightarrow{v}+\overrightarrow{w}=inom{4}{-3}+inom{-4}{0} \ =inom{0}{-3}$$

STUDI KASUS

