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Before we begin: the
mathematical building

blocks of neural networks

Understanding deep learning requires familiarity with many simple mathematical

concepts: tensors, tensor operations, differentiation, gradient descent, and so on.

Our goal in this chapter will be to build your intuition about these notions without

getting overly technical. In particular, we’ll steer away from mathematical notation,

which can be off-putting for those without any mathematics background and isn’t

strictly necessary to explain things well.

 To add some context for tensors and gradient descent, we’ll begin the chapter

with a practical example of a neural network. Then we’ll go over every new concept

This chapter covers

A first example of a neural network

Tensors and tensor operations

How neural networks learn via backpropagation 

and gradient descent
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that’s been introduced, point by point. Keep in mind that these concepts will be essen-

tial for you to understand the practical examples that will come in the following

chapters!

 After reading this chapter, you’ll have an intuitive understanding of how neural

networks work, and you’ll be able to move on to practical applications—which will

start with chapter 3.
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2.1 A first look at a neural network

Let’s look at a concrete example of a neural network that uses the Python library Keras

to learn to classify handwritten digits. Unless you already have experience with Keras

or similar libraries, you won’t understand everything about this first example right

away. You probably haven’t even installed Keras yet; that’s fine. In the next chapter,

we’ll review each element in the example and explain them in detail. So don’t worry if

some steps seem arbitrary or look like magic to you! We’ve got to start somewhere.

 The problem we’re trying to solve here is to classify grayscale images of handwrit-

ten digits (28 × 28 pixels) into their 10 categories (0 through 9). We’ll use the MNIST

dataset, a classic in the machine-learning community, which has been around almost

as long as the field itself and has been intensively studied. It’s a set of 60,000 training

images, plus 10,000 test images, assembled by the National Institute of Standards and

Technology (the NIST in MNIST) in the 1980s. You can think of “solving” MNIST as the

“Hello World” of deep learning—it’s what you do to verify that your algorithms are

working as expected. As you become a machine-learning practitioner, you’ll see

MNIST come up over and over again, in scientific papers, blog posts, and so on. You

can see some MNIST samples in figure 2.1.

You don’t need to try to reproduce this example on your machine just now. If you wish

to, you’ll first need to set up Keras, which is covered in section 3.3.

 The MNIST dataset comes preloaded in Keras, in the form of a set of four Numpy

arrays.

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images and train_labels form the training set, the data that the model will

learn from. The model will then be tested on the test set, test_images and test_labels.

Listing 2.1 Loading the MNIST dataset in Keras

Note on classes and labels

In machine learning, a category in a classification problem is called a class. Data

points are called samples. The class associated with a specific sample is called a

label.

Figure 2.1 MNIST sample digits
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The images are encoded as Numpy arrays, and the labels are an array of digits, ranging

from 0 to 9. The images and labels have a one-to-one correspondence.

 Let’s look at the training data:

>>> train_images.shape

(60000, 28, 28)

>>> len(train_labels)

60000

>>> train_labels

array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

And here’s the test data:

>>> test_images.shape

(10000, 28, 28)

>>> len(test_labels)

10000

>>> test_labels

array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)

The workflow will be as follows: First, we’ll feed the neural network the training data,

train_images and train_labels. The network will then learn to associate images and

labels. Finally, we’ll ask the network to produce predictions for test_images, and we’ll

verify whether these predictions match the labels from test_labels.

 Let’s build the network—again, remember that you aren’t expected to understand

everything about this example yet.

from keras import models

from keras import layers

network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation='softmax'))

The core building block of neural networks is the layer, a data-processing module that

you can think of as a filter for data. Some data goes in, and it comes out in a more use-

ful form. Specifically, layers extract representations out of the data fed into them—hope-

fully, representations that are more meaningful for the problem at hand. Most of

deep learning consists of chaining together simple layers that will implement a form

of progressive data distillation. A deep-learning model is like a sieve for data process-

ing, made of a succession of increasingly refined data filters—the layers.

 Here, our network consists of a sequence of two Dense layers, which are densely

connected (also called fully connected) neural layers. The second (and last) layer is a

10-way softmax layer, which means it will return an array of 10 probability scores (sum-

ming to 1). Each score will be the probability that the current digit image belongs to

one of our 10 digit classes.

Listing 2.2 The network architecture
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 To make the network ready for training, we need to pick three more things, as part

of the compilation step:

A loss function—How the network will be able to measure its performance on

the training data, and thus how it will be able to steer itself in the right direc-

tion.

An optimizer—The mechanism through which the network will update itself

based on the data it sees and its loss function.

Metrics to monitor during training and testing—Here, we’ll only care about accu-

racy (the fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear through-

out the next two chapters.

network.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

Before training, we’ll preprocess the data by reshaping it into the shape the network

expects and scaling it so that all values are in the [0, 1] interval. Previously, our train-

ing images, for instance, were stored in an array of shape (60000, 28, 28) of type

uint8 with values in the [0, 255] interval. We transform it into a float32 array of

shape (60000, 28 * 28) with values between 0 and 1.

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

We also need to categorically encode the labels, a step that’s explained in chapter 3.

from keras.utils import to_categorical

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

We’re now ready to train the network, which in Keras is done via a call to the net-

work’s fit method—we fit the model to its training data:

>>> network.fit(train_images, train_labels, epochs=5, batch_size=128)

Epoch 1/5

60000/60000 [==============================] - 9s - loss: 0.2524 - acc: 0.9273

Epoch 2/5

51328/60000 [========================>.....] - ETA: 1s - loss: 0.1035 - acc: 0.9692

Listing 2.3 The compilation step

Listing 2.4 Preparing the image data

Listing 2.5 Preparing the labels
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Two quantities are displayed during training: the loss of the network over the training

data, and the accuracy of the network over the training data.

 We quickly reach an accuracy of 0.989 (98.9%) on the training data. Now let’s

check that the model performs well on the test set, too:

>>> test_loss, test_acc = network.evaluate(test_images, test_labels)

>>> print('test_acc:', test_acc)

test_acc: 0.9785

The test-set accuracy turns out to be 97.8%—that’s quite a bit lower than the training

set accuracy. This gap between training accuracy and test accuracy is an example of

overfitting: the fact that machine-learning models tend to perform worse on new data

than on their training data. Overfitting is a central topic in chapter 3.

 This concludes our first example—you just saw how you can build and train a neu-

ral network to classify handwritten digits in less than 20 lines of Python code. In the

next chapter, I’ll go into detail about every moving piece we just previewed and clarify

what’s going on behind the scenes. You’ll learn about tensors, the data-storing objects

going into the network; tensor operations, which layers are made of; and gradient

descent, which allows your network to learn from its training examples. 
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2.2 Data representations for neural networks

In the previous example, we started from data stored in multidimensional Numpy

arrays, also called tensors. In general, all current machine-learning systems use tensors

as their basic data structure. Tensors are fundamental to the field—so fundamental

that Google’s TensorFlow was named after them. So what’s a tensor?

 At its core, a tensor is a container for data—almost always numerical data. So, it’s a

container for numbers. You may be already familiar with matrices, which are 2D ten-

sors: tensors are a generalization of matrices to an arbitrary number of dimensions

(note that in the context of tensors, a dimension is often called an axis).

2.2.1 Scalars (0D tensors)

A tensor that contains only one number is called a scalar (or scalar tensor, or 0-dimensional

tensor, or 0D tensor). In Numpy, a float32 or float64 number is a scalar tensor (or scalar

array). You can display the number of axes of a Numpy tensor via the ndim attribute; a sca-

lar tensor has 0 axes (ndim == 0). The number of axes of a tensor is also called its rank.

Here’s a Numpy scalar:

>>> import numpy as np

>>> x = np.array(12)

>>> x

array(12)

>>> x.ndim

0

2.2.2 Vectors (1D tensors)

An array of numbers is called a vector, or 1D tensor. A 1D tensor is said to have exactly

one axis. Following is a Numpy vector:

>>> x = np.array([12, 3, 6, 14])

>>> x

array([12, 3, 6, 14])

>>> x.ndim

1

This vector has five entries and so is called a 5-dimensional vector. Don’t confuse a 5D

vector with a 5D tensor! A 5D vector has only one axis and has five dimensions along its

axis, whereas a 5D tensor has five axes (and may have any number of dimensions

along each axis). Dimensionality can denote either the number of entries along a spe-

cific axis (as in the case of our 5D vector) or the number of axes in a tensor (such as a

5D tensor), which can be confusing at times. In the latter case, it’s technically more

correct to talk about a tensor of rank 5 (the rank of a tensor being the number of axes),

but the ambiguous notation 5D tensor is common regardless. 

2.2.3 Matrices (2D tensors)

An array of vectors is a matrix, or 2D tensor. A matrix has two axes (often referred to

rows and columns). You can visually interpret a matrix as a rectangular grid of numbers.

This is a Numpy matrix:
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>>> x = np.array([[5, 78, 2, 34, 0],

[6, 79, 3, 35, 1],

[7, 80, 4, 36, 2]])

>>> x.ndim

2

The entries from the first axis are called the rows, and the entries from the second axis

are called the columns. In the previous example, [5, 78, 2, 34, 0] is the first row of x,

and [5, 6, 7] is the first column. 

2.2.4 3D tensors and higher-dimensional tensors

If you pack such matrices in a new array, you obtain a 3D tensor, which you can visually

interpret as a cube of numbers. Following is a Numpy 3D tensor:

>>> x = np.array([[[5, 78, 2, 34, 0],

[6, 79, 3, 35, 1],

[7, 80, 4, 36, 2]],

[[5, 78, 2, 34, 0],

[6, 79, 3, 35, 1],

[7, 80, 4, 36, 2]],

[[5, 78, 2, 34, 0],

[6, 79, 3, 35, 1],

[7, 80, 4, 36, 2]]])

>>> x.ndim

3

By packing 3D tensors in an array, you can create a 4D tensor, and so on. In deep learn-

ing, you’ll generally manipulate tensors that are 0D to 4D, although you may go up to

5D if you process video data. 

2.2.5 Key attributes

A tensor is defined by three key attributes:

Number of axes (rank)—For instance, a 3D tensor has three axes, and a matrix has

two axes. This is also called the tensor’s ndim in Python libraries such as Numpy.

Shape—This is a tuple of integers that describes how many dimensions the ten-

sor has along each axis. For instance, the previous matrix example has shape

(3, 5), and the 3D tensor example has shape (3, 3, 5). A vector has a shape

with a single element, such as (5,), whereas a scalar has an empty shape, ().

Data type (usually called dtype in Python libraries)—This is the type of the data

contained in the tensor; for instance, a tensor’s type could be float32, uint8,

float64, and so on. On rare occasions, you may see a char tensor. Note that

string tensors don’t exist in Numpy (or in most other libraries), because tensors

live in preallocated, contiguous memory segments: and strings, being variable

length, would preclude the use of this implementation.
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To make this more concrete, let’s look back at the data we processed in the MNIST

example. First, we load the MNIST dataset:

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Next, we display the number of axes of the tensor train_images, the ndim attribute:

>>> print(train_images.ndim)

3

Here’s its shape:

>>> print(train_images.shape)

(60000, 28, 28)

And this is its data type, the dtype attribute:

>>> print(train_images.dtype)

uint8

So what we have here is a 3D tensor of 8-bit integers. More precisely, it’s an array of

60,000 matrices of 28 × 8 integers. Each such matrix is a grayscale image, with coeffi-

cients between 0 and 255.

 Let’s display the fourth digit in this 3D tensor, using the library Matplotlib (part of

the standard scientific Python suite); see figure 2.2. 

digit = train_images[4]

import matplotlib.pyplot as plt

plt.imshow(digit, cmap=plt.cm.binary)

plt.show()

Listing 2.6 Displaying the fourth digit

Figure 2.2 The fourth sample in our dataset
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2.2.6 Manipulating tensors in Numpy

In the previous example, we selected a specific digit alongside the first axis using the

syntax train_images[i]. Selecting specific elements in a tensor is called tensor slicing.

Let’s look at the tensor-slicing operations you can do on Numpy arrays.

 The following example selects digits #10 to #100 (#100 isn’t included) and puts

them in an array of shape (90, 28, 28):

>>> my_slice = train_images[10:100]

>>> print(my_slice.shape)

(90, 28, 28)

It’s equivalent to this more detailed notation, which specifies a start index and stop

index for the slice along each tensor axis. Note that : is equivalent to selecting the

entire axis:

>>> my_slice = train_images[10:100, :, :]

>>> my_slice.shape

(90, 28, 28)

>>> my_slice = train_images[10:100, 0:28, 0:28]

>>> my_slice.shape

(90, 28, 28)

In general, you may select between any two indices along each tensor axis. For

instance, in order to select 14 × 14 pixels in the bottom-right corner of all images, you

do this:

my_slice = train_images[:, 14:, 14:]

It’s also possible to use negative indices. Much like negative indices in Python lists,

they indicate a position relative to the end of the current axis. In order to crop the

images to patches of 14 × 14 pixels centered in the middle, you do this:

my_slice = train_images[:, 7:-7, 7:-7]

2.2.7 The notion of data batches

In general, the first axis (axis 0, because indexing starts at 0) in all data tensors you’ll

come across in deep learning will be the samples axis (sometimes called the samples

dimension). In the MNIST example, samples are images of digits.

 In addition, deep-learning models don’t process an entire dataset at once; rather,

they break the data into small batches. Concretely, here’s one batch of our MNIST dig-

its, with batch size of 128:

batch = train_images[:128]

And here’s the next batch:

batch = train_images[128:256]

And the n th batch:

batch = train_images[128 * n:128 * (n + 1)]

Equivalent to the 
previous example

Also equivalent to the 
previous example
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When considering such a batch tensor, the first axis (axis 0) is called the batch axis or

batch dimension. This is a term you’ll frequently encounter when using Keras and other

deep-learning libraries. 

2.2.8 Real-world examples of data tensors

Let’s make data tensors more concrete with a few examples similar to what you’ll

encounter later. The data you’ll manipulate will almost always fall into one of the fol-

lowing categories:

Vector data—2D tensors of shape (samples, features)

Timeseries data or sequence data—3D tensors of shape (samples, timesteps,

features)

Images—4D tensors of shape (samples, height, width, channels) or (samples,

channels, height, width)

Video—5D tensors of shape (samples, frames, height, width, channels) or

(samples, frames, channels, height, width)

2.2.9 Vector data

This is the most common case. In such a dataset, each single data point can be encoded

as a vector, and thus a batch of data will be encoded as a 2D tensor (that is, an array of

vectors), where the first axis is the samples axis and the second axis is the features axis.

 Let’s take a look at two examples:

An actuarial dataset of people, where we consider each person’s age, ZIP code,

and income. Each person can be characterized as a vector of 3 values, and thus

an entire dataset of 100,000 people can be stored in a 2D tensor of shape

(100000, 3).

A dataset of text documents, where we represent each document by the counts

of how many times each word appears in it (out of a dictionary of 20,000 com-

mon words). Each document can be encoded as a vector of 20,000 values (one

count per word in the dictionary), and thus an entire dataset of 500 documents

can be stored in a tensor of shape (500, 20000). 

2.2.10 Timeseries data or sequence data

Whenever time matters in your data (or the notion of sequence order), it makes sense

to store it in a 3D tensor with an explicit time axis. Each sample can be encoded as a

sequence of vectors (a 2D tensor), and thus a batch of data will be encoded as a 3D

tensor (see figure 2.3).

Features

Timesteps

Samples

Figure 2.3 A 3D timeseries data tensor
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The time axis is always the second axis (axis of index 1), by convention. Let’s look at a

few examples:

A dataset of stock prices. Every minute, we store the current price of the stock,

the highest price in the past minute, and the lowest price in the past minute.

Thus every minute is encoded as a 3D vector, an entire day of trading is

encoded as a 2D tensor of shape (390, 3) (there are 390 minutes in a trading

day), and 250 days’ worth of data can be stored in a 3D tensor of shape (250,

390, 3). Here, each sample would be one day’s worth of data.

A dataset of tweets, where we encode each tweet as a sequence of 280 characters

out of an alphabet of 128 unique characters. In this setting, each character can

be encoded as a binary vector of size 128 (an all-zeros vector except for a 1 entry

at the index corresponding to the character). Then each tweet can be encoded

as a 2D tensor of shape (280, 128), and a dataset of 1 million tweets can be

stored in a tensor of shape (1000000, 280, 128). 

2.2.11 Image data

Images typically have three dimensions: height, width, and color depth. Although

grayscale images (like our MNIST digits) have only a single color channel and could

thus be stored in 2D tensors, by convention image tensors are always 3D, with a one-

dimensional color channel for grayscale images. A batch of 128 grayscale images of

size 256 × 256 could thus be stored in a tensor of shape (128, 256, 256, 1), and a

batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3)

(see figure 2.4).

There are two conventions for shapes of images tensors: the channels-last convention

(used by TensorFlow) and the channels-first convention (used by Theano). The Tensor-

Flow machine-learning framework, from Google, places the color-depth axis at the

end: (samples, height, width, color_depth). Meanwhile, Theano places the color

depth axis right after the batch axis: (samples, color_depth, height, width). With

Color channels

Height

Width

Samples

Figure 2.4 A 4D image data 

tensor (channels-first convention)



37Data representations for neural networks

the Theano convention, the previous examples would become (128, 1, 256, 256)

and (128, 3, 256, 256). The Keras framework provides support for both formats. 

2.2.12 Video data

Video data is one of the few types of real-world data for which you’ll need 5D tensors.

A video can be understood as a sequence of frames, each frame being a color image.

Because each frame can be stored in a 3D tensor (height, width, color_depth), a

sequence of frames can be stored in a 4D tensor (frames, height, width, color_

depth), and thus a batch of different videos can be stored in a 5D tensor of shape

(samples, frames, height, width, color_depth).

 For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per

second would have 240 frames. A batch of four such video clips would be stored in a

tensor of shape (4, 240, 144, 256, 3). That’s a total of 106,168,320 values! If the

dtype of the tensor was float32, then each value would be stored in 32 bits, so the

tensor would represent 405 MB. Heavy! Videos you encounter in real life are much

lighter, because they aren’t stored in float32, and they’re typically compressed by a

large factor (such as in the MPEG format). 
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2.3 The gears of neural networks: tensor operations

Much as any computer program can be ultimately reduced to a small set of binary

operations on binary inputs (AND, OR, NOR, and so on), all transformations learned

by deep neural networks can be reduced to a handful of tensor operations applied to

tensors of numeric data. For instance, it’s possible to add tensors, multiply tensors,

and so on.

 In our initial example, we were building our network by stacking Dense layers on

top of each other. A Keras layer instance looks like this:

keras.layers.Dense(512, activation='relu')

This layer can be interpreted as a function, which takes as input a 2D tensor and

returns another 2D tensor—a new representation for the input tensor. Specifically, the

function is as follows (where W is a 2D tensor and b is a vector, both attributes of the

layer):

output = relu(dot(W, input) + b)

Let’s unpack this. We have three tensor operations here: a dot product (dot) between

the input tensor and a tensor named W; an addition (+) between the resulting 2D ten-

sor and a vector b; and, finally, a relu operation. relu(x) is max(x, 0).

NOTE Although this section deals entirely with linear algebra expressions,
you won’t find any mathematical notation here. I’ve found that mathematical
concepts can be more readily mastered by programmers with no mathemati-
cal background if they’re expressed as short Python snippets instead of math-
ematical equations. So we’ll use Numpy code throughout.

2.3.1 Element-wise operations

The relu operation and addition are element-wise operations: operations that are

applied independently to each entry in the tensors being considered. This means

these operations are highly amenable to massively parallel implementations (vectorized

implementations, a term that comes from the vector processor supercomputer archi-

tecture from the 1970–1990 period). If you want to write a naive Python imple-

mentation of an element-wise operation, you use a for loop, as in this naive

implementation of an element-wise relu operation:

def naive_relu(x):

assert len(x.shape) == 2

x = x.copy()

for i in range(x.shape[0]):

for j in range(x.shape[1]):

x[i, j] = max(x[i, j], 0)

return x

x is a 2D Numpy tensor.

Avoid overwriting the input tensor.
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You do the same for addition:

def naive_add(x, y):

assert len(x.shape) == 2

assert x.shape == y.shape

x = x.copy()

for i in range(x.shape[0]):

for j in range(x.shape[1]):

x[i, j] += y[i, j]

return x

On the same principle, you can do element-wise multiplication, subtraction, and so on.

 In practice, when dealing with Numpy arrays, these operations are available as well-

optimized built-in Numpy functions, which themselves delegate the heavy lifting to a

Basic Linear Algebra Subprograms (BLAS) implementation if you have one installed

(which you should). BLAS are low-level, highly parallel, efficient tensor-manipulation

routines that are typically implemented in Fortran or C.

 So, in Numpy, you can do the following element-wise operation, and it will be blaz-

ing fast:

import numpy as np

z = x + y

z = np.maximum(z, 0.)

2.3.2 Broadcasting

Our earlier naive implementation of naive_add only supports the addition of 2D ten-

sors with identical shapes. But in the Dense layer introduced earlier, we added a 2D

tensor with a vector. What happens with addition when the shapes of the two tensors

being added differ?

 When possible, and if there’s no ambiguity, the smaller tensor will be broadcasted to

match the shape of the larger tensor. Broadcasting consists of two steps:

1 Axes (called broadcast axes) are added to the smaller tensor to match the ndim of

the larger tensor.

2 The smaller tensor is repeated alongside these new axes to match the full shape

of the larger tensor.

Let’s look at a concrete example. Consider X with shape (32, 10) and y with shape

(10,). First, we add an empty first axis to y, whose shape becomes (1, 10). Then, we

repeat y 32 times alongside this new axis, so that we end up with a tensor Y with shape

(32, 10), where Y[i, :] == y for i in range(0, 32). At this point, we can proceed to

add X and Y, because they have the same shape.

 In terms of implementation, no new 2D tensor is created, because that would be

terribly inefficient. The repetition operation is entirely virtual: it happens at the algo-

rithmic level rather than at the memory level. But thinking of the vector being

x and y are 2D 
Numpy tensors.

Avoid overwriting 
the input tensor.

Element-wise addition

Element-wise relu 
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repeated 10 times alongside a new axis is a helpful mental model. Here’s what a naive

implementation would look like:

def naive_add_matrix_and_vector(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 1

assert x.shape[1] == y.shape[0]

x = x.copy()

for i in range(x.shape[0]):

for j in range(x.shape[1]):

x[i, j] += y[j]

return x

With broadcasting, you can generally apply two-tensor element-wise operations if one

tensor has shape (a, b, … n, n + 1, … m) and the other has shape (n, n + 1, … m). The

broadcasting will then automatically happen for axes a through n - 1.

 The following example applies the element-wise maximum operation to two tensors

of different shapes via broadcasting:

import numpy as np

x = np.random.random((64, 3, 32, 10))

y = np.random.random((32, 10))

z = np.maximum(x, y)

2.3.3 Tensor dot

The dot operation, also called a tensor product (not to be confused with an element-

wise product) is the most common, most useful tensor operation. Contrary to

element-wise operations, it combines entries in the input tensors.

 An element-wise product is done with the * operator in Numpy, Keras, Theano,

and TensorFlow. dot uses a different syntax in TensorFlow, but in both Numpy and

Keras it’s done using the standard dot operator:

import numpy as np

z = np.dot(x, y)

In mathematical notation, you’d note the operation with a dot (.):

z = x . y

Mathematically, what does the dot operation do? Let’s start with the dot product of

two vectors x and y. It’s computed as follows:

def naive_vector_dot(x, y):

assert len(x.shape) == 1

assert len(y.shape) == 1

assert x.shape[0] == y.shape[0]

x is a 2D Numpy tensor.

y is a Numpy vector.

Avoid overwriting 
the input tensor.

x is a random tensor with 
shape (64, 3, 32, 10).

y is a random tensor 
with shape (32, 10).

The output z has shape 
(64, 3, 32, 10) like x.

x and y are Numpy vectors.
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z = 0.

for i in range(x.shape[0]):

z += x[i] * y[i]

return z

You’ll have noticed that the dot product between two vectors is a scalar and that only

vectors with the same number of elements are compatible for a dot product.

 You can also take the dot product between a matrix x and a vector y, which returns

a vector where the coefficients are the dot products between y and the rows of x. You

implement it as follows:

import numpy as np

def naive_matrix_vector_dot(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 1

assert x.shape[1] == y.shape[0]

z = np.zeros(x.shape[0])

for i in range(x.shape[0]):

for j in range(x.shape[1]):

z[i] += x[i, j] * y[j]

return z

You could also reuse the code we wrote previously, which highlights the relationship

between a matrix-vector product and a vector product:

def naive_matrix_vector_dot(x, y):

z = np.zeros(x.shape[0])

for i in range(x.shape[0]):

z[i] = naive_vector_dot(x[i, :], y)

return z

Note that as soon as one of the two tensors has an ndim greater than 1, dot is no lon-

ger symmetric, which is to say that dot(x, y) isn’t the same as dot(y, x).

 Of course, a dot product generalizes to tensors with an arbitrary number of axes.

The most common applications may be the dot product between two matrices. You

can take the dot product of two matrices x and y (dot(x, y)) if and only if

x.shape[1] == y.shape[0]. The result is a matrix with shape (x.shape[0],

y.shape[1]), where the coefficients are the vector products between the rows of x

and the columns of y. Here’s the naive implementation:

def naive_matrix_dot(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 2

assert x.shape[1] == y.shape[0]

z = np.zeros((x.shape[0], y.shape[1]))

for i in range(x.shape[0]):

for j in range(y.shape[1]):

row_x = x[i, :]

column_y = y[:, j]

z[i, j] = naive_vector_dot(row_x, column_y)

return z

x is a Numpy matrix.

y is a Numpy vector.

The first dimension of x must be the 
same as the 0th dimension of y!

This operation returns a vector of 
0s with the same shape as y.

x and y
are

Numpy
matrices.

The first dimension of x must be the 
same as the 0th dimension of y!

This operation returns a matrix 
of 0s with a specific shape.

Iterates over the rows of x …
… and over the columns of y.



42 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks

To understand dot-product shape compatibility, it helps to visualize the input and out-

put tensors by aligning them as shown in figure 2.5.

x, y, and z are pictured as rectangles (literal boxes of coefficients). Because the rows

and x and the columns of y must have the same size, it follows that the width of x must

match the height of y. If you go on to develop new machine-learning algorithms,

you’ll likely be drawing such diagrams often.

 More generally, you can take the dot product between higher-dimensional tensors,

following the same rules for shape compatibility as outlined earlier for the 2D case:

(a, b, c, d) . (d,) -> (a, b, c)

(a, b, c, d) . (d, e) -> (a, b, c, e)

And so on. 

2.3.4 Tensor reshaping

A third type of tensor operation that’s essential to understand is tensor reshaping.

Although it wasn’t used in the Dense layers in our first neural network example, we

used it when we preprocessed the digits data before feeding it into our network:

train_images = train_images.reshape((60000, 28 * 28))

Reshaping a tensor means rearranging its rows and columns to match a target shape.

Naturally, the reshaped tensor has the same total number of coefficients as the initial

tensor. Reshaping is best understood via simple examples:

>>> x = np.array([[0., 1.],

[2., 3.],

[4., 5.]])

>>> print(x.shape)

(3, 2)

a

b

x . y = z

b

x.shape:

(a, b)

y.shape:

(b, c)

z.shape:

(a, c)

Row of x

Column of y

z [ i,  j ]

c

Figure 2.5 Matrix dot-product 

box diagram
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>>> x = x.reshape((6, 1))

>>> x

array([[ 0.],

[ 1.],

[ 2.],

[ 3.],

[ 4.],

[ 5.]])

>>> x = x.reshape((2, 3))

>>> x

array([[ 0., 1., 2.],

[ 3., 4., 5.]])

A special case of reshaping that’s commonly encountered is transposition. Transposing a

matrix means exchanging its rows and its columns, so that x[i, :] becomes x[:, i]:

>>> x = np.zeros((300, 20))

>>> x = np.transpose(x)

>>> print(x.shape)

(20, 300)

2.3.5 Geometric interpretation of tensor operations

Because the contents of the tensors manipulated by tensor operations can be inter-

preted as coordinates of points in some geometric space, all tensor operations have a

geometric interpretation. For instance, let’s consider addition. We’ll start with the fol-

lowing vector:

A = [0.5, 1]

It’s a point in a 2D space (see figure 2.6). It’s common to picture a vector as an arrow

linking the origin to the point, as shown in figure 2.7.

Creates an all-zeros matrix 
of shape (300, 20) 

1

1

A [0.5, 1]

Figure 2.6 A point in a 2D space

1

1

A [0.5, 1]

Figure 2.7 A point in a 2D space 

pictured as an arrow
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Let’s consider a new point, B = [1, 0.25], which we’ll add to the previous one. This is

done geometrically by chaining together the vector arrows, with the resulting location

being the vector representing the sum of the previous two vectors (see figure 2.8).

In general, elementary geometric operations such as affine transformations, rotations,

scaling, and so on can be expressed as tensor operations. For instance, a rotation of a

2D vector by an angle theta can be achieved via a dot product with a 2 × 2 matrix

R = [u, v], where u and v are both vectors of the plane: u = [cos(theta),

sin(theta)] and v = [-sin(theta), cos(theta)]. 

2.3.6 A geometric interpretation of deep learning

You just learned that neural networks consist entirely of chains of tensor operations and

that all of these tensor operations are just geometric transformations of the input data.

It follows that you can interpret a neural network as a very complex geometric transfor-

mation in a high-dimensional space, implemented via a long series of simple steps.

 In 3D, the following mental image may prove useful. Imagine two sheets of colored

paper: one red and one blue. Put one on top of the other. Now crumple them

together into a small ball. That crumpled paper ball is your input data, and each sheet

of paper is a class of data in a classification problem. What a neural network (or any

other machine-learning model) is meant to do is figure out a transformation of the

paper ball that would uncrumple it, so as to make the two classes cleanly separable

again. With deep learning, this would be implemented as a series of simple transfor-

mations of the 3D space, such as those you could apply on the paper ball with your fin-

gers, one movement at a time.

1

1

A

B

A + B

Figure 2.8 Geometric interpretation of 

the sum of two vectors

Figure 2.9 Uncrumpling a 

complicated manifold of data
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Uncrumpling paper balls is what machine learning is about: finding neat representa-

tions for complex, highly folded data manifolds. At this point, you should have a

pretty good intuition as to why deep learning excels at this: it takes the approach of

incrementally decomposing a complicated geometric transformation into a long

chain of elementary ones, which is pretty much the strategy a human would follow to

uncrumple a paper ball. Each layer in a deep network applies a transformation that

disentangles the data a little—and a deep stack of layers makes tractable an extremely

complicated disentanglement process. 
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2.4 The engine of neural networks: 
gradient-based optimization

As you saw in the previous section, each neural layer from our first network example

transforms its input data as follows:

output = relu(dot(W, input) + b)

In this expression, W and b are tensors that are attributes of the layer. They’re called

the weights or trainable parameters of the layer (the kernel and bias attributes, respec-

tively). These weights contain the information learned by the network from exposure

to training data.

 Initially, these weight matrices are filled with small random values (a step called ran-

dom initialization). Of course, there’s no reason to expect that relu(dot(W, input) + b),

when W and b are random, will yield any useful representations. The resulting represen-

tations are meaningless—but they’re a starting point. What comes next is to gradually

adjust these weights, based on a feedback signal. This gradual adjustment, also called

training, is basically the learning that machine learning is all about.

 This happens within what’s called a training loop, which works as follows. Repeat

these steps in a loop, as long as necessary:

1 Draw a batch of training samples x and corresponding targets y.

2 Run the network on x (a step called the forward pass) to obtain predictions y_pred.

3 Compute the loss of the network on the batch, a measure of the mismatch

between y_pred and y.

4 Update all weights of the network in a way that slightly reduces the loss on this

batch.

You’ll eventually end up with a network that has a very low loss on its training data: a

low mismatch between predictions y_pred and expected targets y. The network has

“learned” to map its inputs to correct targets. From afar, it may look like magic, but

when you reduce it to elementary steps, it turns out to be simple.

 Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the applica-

tion of a handful of tensor operations, so you could implement these steps purely

from what you learned in the previous section. The difficult part is step 4: updating

the network’s weights. Given an individual weight coefficient in the network, how can

you compute whether the coefficient should be increased or decreased, and by how

much?

 One naive solution would be to freeze all weights in the network except the one

scalar coefficient being considered, and try different values for this coefficient. Let’s

say the initial value of the coefficient is 0.3. After the forward pass on a batch of data,

the loss of the network on the batch is 0.5. If you change the coefficient’s value to 0.35

and rerun the forward pass, the loss increases to 0.6. But if you lower the coefficient to

0.25, the loss falls to 0.4. In this case, it seems that updating the coefficient by -0.05
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would contribute to minimizing the loss. This would have to be repeated for all coeffi-

cients in the network.

 But such an approach would be horribly inefficient, because you’d need to com-

pute two forward passes (which are expensive) for every individual coefficient (of

which there are many, usually thousands and sometimes up to millions). A much bet-

ter approach is to take advantage of the fact that all operations used in the network

are differentiable, and compute the gradient of the loss with regard to the network’s

coefficients. You can then move the coefficients in the opposite direction from the

gradient, thus decreasing the loss.

 If you already know what differentiable means and what a gradient is, you can skip to

section 2.4.3. Otherwise, the following two sections will help you understand these

concepts.

2.4.1 What’s a derivative?

Consider a continuous, smooth function f(x) = y, mapping a real number x to a new

real number y. Because the function is continuous, a small change in x can only result

in a small change in y—that’s the intuition behind continuity. Let’s say you increase x

by a small factor epsilon_x: this results in a small epsilon_y change to y:

f(x + epsilon_x) = y + epsilon_y

In addition, because the function is smooth (its curve doesn’t have any abrupt angles),

when epsilon_x is small enough, around a certain point p, it’s possible to approxi-

mate f as a linear function of slope a, so that epsilon_y becomes a * epsilon_x:

f(x + epsilon_x) = y + a * epsilon_x

Obviously, this linear approximation is valid only when x is close enough to p.

 The slope a is called the derivative of f in p. If a is negative, it means a small change

of x around p will result in a decrease of f(x) (as shown in figure 2.10); and if a is pos-

itive, a small change in x will result in an increase of f(x). Further, the absolute value

of a (the magnitude of the derivative) tells you how quickly this increase or decrease

will happen.

For every differentiable function f(x) (differentiable means “can be derived”: for exam-

ple, smooth, continuous functions can be derived), there exists a derivative function

f'(x) that maps values of x to the slope of the local linear approximation of f in those

Local linear

approximation of f,

with slope a

f Figure 2.10 Derivative of f in p
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points. For instance, the derivative of cos(x) is -sin(x), the derivative of f(x) = a * x

is f'(x) = a, and so on.

 If you’re trying to update x by a factor epsilon_x in order to minimize f(x), and

you know the derivative of f, then your job is done: the derivative completely

describes how f(x) evolves as you change x. If you want to reduce the value of f(x),

you just need to move x a little in the opposite direction from the derivative. 

2.4.2 Derivative of a tensor operation: the gradient

A gradient is the derivative of a tensor operation. It’s the generalization of the concept

of derivatives to functions of multidimensional inputs: that is, to functions that take

tensors as inputs.

 Consider an input vector x, a matrix W, a target y, and a loss function loss. You can

use W to compute a target candidate y_pred, and compute the loss, or mismatch,

between the target candidate y_pred and the target y:

y_pred = dot(W, x)

loss_value = loss(y_pred, y)

If the data inputs x and y are frozen, then this can be interpreted as a function map-

ping values of W to loss values:

loss_value = f(W)

Let’s say the current value of W is W0. Then the derivative of f in the point W0 is a tensor

gradient(f)(W0) with the same shape as W, where each coefficient gradient(f)

(W0)[i, j] indicates the direction and magnitude of the change in loss_value you

observe when modifying W0[i, j]. That tensor gradient(f)(W0) is the gradient of

the function f(W) = loss_value in W0.

 You saw earlier that the derivative of a function f(x) of a single coefficient can be

interpreted as the slope of the curve of f. Likewise, gradient(f)(W0) can be inter-

preted as the tensor describing the curvature of f(W) around W0.

 For this reason, in much the same way that, for a function f(x), you can reduce

the value of f(x) by moving x a little in the opposite direction from the derivative,

with a function f(W) of a tensor, you can reduce f(W) by moving W in the opposite

direction from the gradient: for example, W1 = W0 - step * gradient(f)(W0) (where

step is a small scaling factor). That means going against the curvature, which intui-

tively should put you lower on the curve. Note that the scaling factor step is needed

because gradient(f)(W0) only approximates the curvature when you’re close to W0,

so you don’t want to get too far from W0. 

2.4.3 Stochastic gradient descent

Given a differentiable function, it’s theoretically possible to find its minimum analyti-

cally: it’s known that a function’s minimum is a point where the derivative is 0, so all

you have to do is find all the points where the derivative goes to 0 and check for which

of these points the function has the lowest value.
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 Applied to a neural network, that means finding analytically the combination of

weight values that yields the smallest possible loss function. This can be done by solv-

ing the equation gradient(f)(W) = 0 for W. This is a polynomial equation of N vari-

ables, where N is the number of coefficients in the network. Although it would be

possible to solve such an equation for N = 2 or N = 3, doing so is intractable for real

neural networks, where the number of parameters is never less than a few thousand

and can often be several tens of millions.

 Instead, you can use the four-step algorithm outlined at the beginning of this sec-

tion: modify the parameters little by little based on the current loss value on a ran-

dom batch of data. Because you’re dealing with a differentiable function, you can

compute its gradient, which gives you an efficient way to implement step 4. If you

update the weights in the opposite direction from the gradient, the loss will be a little

less every time:

1 Draw a batch of training samples x and corresponding targets y.

2 Run the network on x to obtain predictions y_pred.

3 Compute the loss of the network on the batch, a measure of the mismatch

between y_pred and y.

4 Compute the gradient of the loss with regard to the network’s parameters (a

backward pass).

5 Move the parameters a little in the opposite direction from the gradient—for

example W -= step * gradient—thus reducing the loss on the batch a bit.

Easy enough! What I just described is called mini-batch stochastic gradient descent (mini-

batch SGD). The term stochastic refers to the fact that each batch of data is drawn at

random (stochastic is a scientific synonym of random). Figure 2.11 illustrates what hap-

pens in 1D, when the network has only one parameter and you have only one training

sample.

Loss

value
Starting

point (t=0)

Step, also called learning rate

t=1

t=2

t=3

Parameter

value

Figure 2.11 SGD down a 1D loss 

curve (one learnable parameter)
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As you can see, intuitively it’s important to pick a reasonable value for the step factor.

If it’s too small, the descent down the curve will take many iterations, and it could get

stuck in a local minimum. If step is too large, your updates may end up taking you to

completely random locations on the curve.

 Note that a variant of the mini-batch SGD algorithm would be to draw a single sam-

ple and target at each iteration, rather than drawing a batch of data. This would be

true SGD (as opposed to mini-batch SGD). Alternatively, going to the opposite extreme,

you could run every step on all data available, which is called batch SGD. Each update

would then be more accurate, but far more expensive. The efficient compromise

between these two extremes is to use mini-batches of reasonable size.

 Although figure 2.11 illustrates gradient descent in a 1D parameter space, in prac-

tice you’ll use gradient descent in highly dimensional spaces: every weight coefficient

in a neural network is a free dimension in the space, and there may be tens of thou-

sands or even millions of them. To help you build intuition about loss surfaces, you

can also visualize gradient descent along a 2D loss surface, as shown in figure 2.12. But

you can’t possibly visualize what the actual process of training a neural network looks

like—you can’t represent a 1,000,000-dimensional space in a way that makes sense to

humans. As such, it’s good to keep in mind that the intuitions you develop through

these low-dimensional representations may not always be accurate in practice. This

has historically been a source of issues in the world of deep-learning research.

Additionally, there exist multiple variants of SGD that differ by taking into account

previous weight updates when computing the next weight update, rather than just

looking at the current value of the gradients. There is, for instance, SGD with momen-

tum, as well as Adagrad, RMSProp, and several others. Such variants are known as opti-

mization methods or optimizers. In particular, the concept of momentum, which is used in

many of these variants, deserves your attention. Momentum addresses two issues with

SGD: convergence speed and local minima. Consider figure 2.13, which shows the

curve of a loss as a function of a network parameter.

Starting point

Final point

45

40

35

30

25

20

15

10

5
Figure 2.12 Gradient descent 

down a 2D loss surface (two 

learnable parameters)
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As you can see, around a certain parameter value, there is a local minimum: around

that point, moving left would result in the loss increasing, but so would moving right.

If the parameter under consideration were being optimized via SGD with a small

learning rate, then the optimization process would get stuck at the local minimum

instead of making its way to the global minimum.

 You can avoid such issues by using momentum, which draws inspiration from phys-

ics. A useful mental image here is to think of the optimization process as a small ball

rolling down the loss curve. If it has enough momentum, the ball won’t get stuck in a

ravine and will end up at the global minimum. Momentum is implemented by moving

the ball at each step based not only on the current slope value (current acceleration)

but also on the current velocity (resulting from past acceleration). In practice, this

means updating the parameter w based not only on the current gradient value but also

on the previous parameter update, such as in this naive implementation:

past_velocity = 0.

momentum = 0.1

while loss > 0.01:

w, loss, gradient = get_current_parameters()

velocity = past_velocity * momentum + learning_rate * gradient

w = w + momentum * velocity - learning_rate * gradient

past_velocity = velocity

update_parameter(w)

2.4.4 Chaining derivatives: the Backpropagation algorithm

In the previous algorithm, we casually assumed that because a function is differentia-

ble, we can explicitly compute its derivative. In practice, a neural network function

consists of many tensor operations chained together, each of which has a simple,

known derivative. For instance, this is a network f composed of three tensor opera-

tions, a, b, and c, with weight matrices W1, W2, and W3:

f(W1, W2, W3) = a(W1, b(W2, c(W3)))

Calculus tells us that such a chain of functions can be derived using the following iden-

tity, called the chain rule : f(g(x)) = f'(g(x)) * g'(x). Applying the chain rule to the

computation of the gradient values of a neural network gives rise to an algorithm

Loss

value

Parameter

value

Local

minimum

Global

minimum

Figure 2.13 A local minimum 

and a global minimum

Constant momentum factor

Optimization loop 
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called Backpropagation (also sometimes called reverse-mode differentiation). Backpropaga-

tion starts with the final loss value and works backward from the top layers to the bot-

tom layers, applying the chain rule to compute the contribution that each parameter

had in the loss value.

 Nowadays, and for years to come, people will implement networks in modern

frameworks that are capable of symbolic differentiation, such as TensorFlow. This means

that, given a chain of operations with a known derivative, they can compute a gradient

function for the chain (by applying the chain rule) that maps network parameter values

to gradient values. When you have access to such a function, the backward pass is

reduced to a call to this gradient function. Thanks to symbolic differentiation, you’ll

never have to implement the Backpropagation algorithm by hand. For this reason, we

won’t waste your time and your focus on deriving the exact formulation of the Back-

propagation algorithm in these pages. All you need is a good understanding of how

gradient-based optimization works. 
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2.5 Looking back at our first example

You’ve reached the end of this chapter, and you should now have a general under-

standing of what’s going on behind the scenes in a neural network. Let’s go back to

the first example and review each piece of it in the light of what you’ve learned in the

previous three sections.

 This was the input data:

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

Now you understand that the input images are stored in Numpy tensors, which are

here formatted as float32 tensors of shape (60000, 784) (training data) and (10000,

784) (test data), respectively.

 This was our network:

network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation='softmax'))

Now you understand that this network consists of a chain of two Dense layers, that

each layer applies a few simple tensor operations to the input data, and that these

operations involve weight tensors. Weight tensors, which are attributes of the layers,

are where the knowledge of the network persists.

 This was the network-compilation step:

network.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

Now you understand that categorical_crossentropy is the loss function that’s used

as a feedback signal for learning the weight tensors, and which the training phase will

attempt to minimize. You also know that this reduction of the loss happens via mini-

batch stochastic gradient descent. The exact rules governing a specific use of gradient

descent are defined by the rmsprop optimizer passed as the first argument.

 Finally, this was the training loop:

network.fit(train_images, train_labels, epochs=5, batch_size=128)

Now you understand what happens when you call fit: the network will start to iterate

on the training data in mini-batches of 128 samples, 5 times over (each iteration over

all the training data is called an epoch). At each iteration, the network will compute the

gradients of the weights with regard to the loss on the batch, and update the weights
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accordingly. After these 5 epochs, the network will have performed 2,345 gradient

updates (469 per epoch), and the loss of the network will be sufficiently low that the

network will be capable of classifying handwritten digits with high accuracy.

 At this point, you already know most of what there is to know about neural networks.
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Chapter summary

Learning means finding a combination of model parameters that mini-

mizes a loss function for a given set of training data samples and their cor-

responding targets.

Learning happens by drawing random batches of data samples and their

targets, and computing the gradient of the network parameters with

respect to the loss on the batch. The network parameters are then moved

a bit (the magnitude of the move is defined by the learning rate) in the

opposite direction from the gradient.

The entire learning process is made possible by the fact that neural net-

works are chains of differentiable tensor operations, and thus it’s possible

to apply the chain rule of derivation to find the gradient function map-

ping the current parameters and current batch of data to a gradient value.

Two key concepts you’ll see frequently in future chapters are loss and opti-

mizers. These are the two things you need to define before you begin feed-

ing data into a network.

The loss is the quantity you’ll attempt to minimize during training, so it

should represent a measure of success for the task you’re trying to solve.

The optimizer specifies the exact way in which the gradient of the loss will

be used to update parameters: for instance, it could be the RMSProp opti-

mizer, SGD with momentum, and so on.


