Metode pengendalian Persediaan

Nurullia Febriati

Metode Pengendalian Persediaan

- Metode pengendalian secara statistik
- Metode pengendalian kebutuhan material
- Metode persediaan just in time (JIT)

Metode Pengendalian Persediaan Secara Statistik

- Metode ini menggunakan ilmu matematika dan statistik sebagai alat bantu utama dalam memecahkan masalah kuantitatif dalam sistem persediaan. Pada dasarnya metode ini mencari jawaban optimal dalam menentukan
 - Jumlah ukuran pemesalanan dinamis (EOQ)
 - Titik pemesanan kembali (reorder point)
 - Jumlah cadangan pengaman (safety stock) yang diperlukan
- Metode ini disebut metode pengendalian tradisional karena memberi dasar lahirnya metode baru yang lebih modern yaitu MRP di amerika dan kanban di jepang

Pengendalian Persediaan Secara Statistik

Pengendalian Persediaan Secara Statistik terbagi atas 3 bagian, yaitu

- Bersifat deterministik
- Bersifat probabilistik
- Bersifat tidak tertentu

Pengendalian Persediaan Secara Statistik Bersifat deterministik

Ciri-ciri:

- Permintaan dan lead time diketahui secara pasti.
- Tidak ada unsur ketidakpastian atau fluktuasi dalam permintaan maupun pengiriman.
- Cocok untuk produk dengan permintaan tetap dan stabil.

Contoh metode:

- EOQ (Economic Order Quantity) klasik.
- Model tanpa safety stock, karena tidak ada ketidakpastian.

Contoh Kasus:

 Sebuah pabrik tahu pasti permintaan produk adalah 500 unit per bulan dan waktu pengiriman 3 hari, selalu tetap.

Pengendalian Persediaan Secara Statistik Bersifat probabilistik

Ciri-ciri:

- Permintaan dan/atau lead time bersifat acak dan mengikuti distribusi statistik (biasanya normal).
- Diperlukan pendekatan statistik seperti rata-rata, simpangan baku, Z-score, dan service level.
- Biasanya digunakan safety stock untuk mengatasi fluktuasi.

Contoh metode:

- ROP (Reorder Point) dengan safety stock.
- EOQ probabilistik (varian dari EOQ yang mempertimbangkan ketidakpastian).

Contoh Kasus: Permintaan bahan baku bervariasi antara 40–60 unit per hari dan lead time bisa 2–5 hari.

Pengendalian Persediaan Secara Statistik Bersifat tidak Tertentu

Ciri-ciri:

- Tidak ada data historis yang memadai.
- Permintaan sangat sulit diprediksi (misalnya produk baru, pasar yang sangat fluktuatif).
- Menggunakan pendekatan heuristik, fuzzy logic simulasi Monte Carlo.

Contoh metode:

- Simulasi berbasis skenario.
- Logika fuzzy atau pendekatan expert system.

Contoh Kasus: Perusahaan memproduksi produk inovatif baru, jadi belum ada data permintaan yang jelas di pasar.

1. Heuristik

Heuristik adalah metode **pendekatan praktis** atau "jalan pintas" yang digunakan untuk menyelesaikan masalah secara cepat, walau tidak selalu optimal atau akurat.

Contoh

- Misalnya tidak ada data lengkap, tapi kita buat aturan seperti:
 - "Kalau penjualan naik 10%, maka tambah stok 20%."
- Atau aturan seperti:
 - "Pesan ulang setiap minggu, jika stok < 50."
- Biasanya berdasarkan pengalaman atau kebiasaan.

2. Fuzzy Logic (Logika Kabur)

Logika fuzzy adalah sistem logika yang tidak kaku seperti logika 0 atau 1, tetapi bisa berada di antaranya — cocok untuk kondisi tidak pasti.

Contoh

- Permintaan dikatakan "tinggi", "sedang", atau "rendah" bukan angka pasti.
- Sistem bisa merespons:
 - Jika permintaan tinggi, maka stok aman harus tinggi juga.
 - Jika permintaan sedang, stok aman cukup saja.
- Cocok digunakan ketika data tidak lengkap, atau berbasis istilah kualitatif.

3. Simulasi Monte Carlo

 Monte Carlo adalah metode simulasi yang menggunakan bilangan acak untuk meniru kondisi nyata dan memprediksi kemungkinan hasil dari sistem yang kompleks.

Contoh

- Kita tidak tahu secara pasti permintaan harian, jadi kita buat simulasi:
 - Hari 1: permintaan 48 unit (acak)
 - Hari 2: permintaan 52 unit (acak)
 - ...hingga 1000 kali percobaan
- Lalu kita hitung:
 - Berapa kali stok habis
 - Rata-rata biaya total
- Berguna saat kita ingin menguji banyak skenario yang tidak bisa dihitung manual.

Rumus EOQ

EOQ =

√((2 x Biaya Pemesanan x Permintaan Tahunan) / Biaya Penyimpanan per Unit)

- Biaya Pemesanan: Biaya yang terkait dengan pemesanan persediaan (misalnya, biaya administrasi, biaya transportasi).
- Permintaan Tahunan: Jumlah unit yang diharapkan terjual dalam setahun.
- Biaya Penyimpanan per Unit: Biaya yang terkait dengan menyimpan persediaan per unit dalam setahun (misalnya, biaya gudang, biaya asuransi).

$$EOQ = \sqrt{\frac{2DS}{H}}$$

Keterangan:

D = Kebutuhan bahan baku dalam satu periode

S = Biaya pesanan per sekali pesan

I = Biaya simpan per satuan bahan baku

Rumus Safety Stock

Safety Stock = (Tingkat Pelayanan) x (Variabilitas Permintaan) x (Waktu Pengiriman)

- Tingkat Pelayanan: Persentase permintaan yang dipenuhi (misalnya, 95% atau 99%).
- Variabilitas Permintaan: Seberapa besar permintaan dapat berubah (misalnya, standar deviasi permintaan).
- Waktu Pengiriman: Waktu yang dibutuhkan untuk persediaan dipesan dan diterima.

Standar Deviasi =
$$\sqrt{\sum \left(\frac{x-\bar{x}}{n}\right)^2}$$

Keterangan:

x = Kebutuhan bahan baku sesungguhnya

x = Rata-rata kebutuhan bahan baku

n = Jumlah periode

Setelah standar deviasi diketahui, Safety Stock dapat dihitung dengan menggunakan rumus:

Safety stock = Standar Deviasi x Z

Keterangan:

Z = Safety factor

Tingkat Pelayanan	Z (nilai Z-score)
Variabilitas Permintaan	σ (standar deviasi permintaan)
Waktu Pengiriman	√L (akar dari lead time)

Rumus Reorder Point (ROP)

Reorder Point (ROP) = (Lead time x Tingkat permintaan) + Safety stock

$$ROP = d \times L + Safety Stock$$

Keterangan:

- ROP = Reorder Point (titik pemesanan ulang)
- **d** = Permintaan rata-rata per periode (misalnya per hari)
- L = Lead time (waktu tunggu, dalam satuan yang sama dengan periode permintaan)

Contoh Soal

Sebuah toko perlengkapan laboratorium memesan bahan kimia yang memiliki karakteristik sebagai berikut:

- Rata-rata permintaan harian: 50 unit
- Simpangan baku permintaan harian: 10 unit
- Lead time (waktu tunggu): 4 hari
- Tingkat service level yang diinginkan: 95% (nilai Z = 1,65)
- Total permintaan per tahun: 12.000 unit
- Biaya pemesanan setiap kali pesan: Rp200.000
- Biaya penyimpanan per unit per tahun: Rp1.000

Jawab

Safety Stock

```
Safety Stock = z × σ × √L
=1,65×10×√4
=1,65×10×2
=33 unit
```

Reorder Point (ROP)

ROP=(rata-rata harian×lead time)+safety stock
=(50×4)+33
=200+33=233 unit

Economic Order Quantity (EOQ)

• EOQ=√2DS/H =√(2×12000×200000)/1000 =√4.800.000.000/1000 =√4.800.000≈2190 unit

Metode Pengendalian Kebutuhan Material

Material Requirement Planning (MRP)

 Material Requirement Planning (MRP) adalah suatu metode sistematis untuk menentukan apa, berapa banyak, dan kapan bahan/material dibutuhkan dalam proses produksi.

Pengertian MRP:

- MRP adalah sistem perencanaan kebutuhan material yang digunakan dalam manufaktur untuk:
- Menentukan jumlah bahan baku yang dibutuhkan.
- Menentukan waktu yang tepat untuk memesan atau memproduksi bahan tersebut.
- Menghindari kekurangan stok dan kelebihan persediaan.

Fungsi MRP

Fungsi MRP: Menghitung kebutuhan material berdasarkan jadwal produksi utama.

- Input utama:
 - Bill of Materials (BOM)
 - Jadwal induk produksi (Master Production Schedule)
 - Data persediaan
- Hasil: Jadwal pemesanan dan produksi komponen.

Tujuan MRP

- 1. Menyediakan material untuk produksi dan produk jadi untuk pengiriman ke pelanggan.
- 2. Menjaga level persediaan serendah mungkin.
- 3. Menjadwalkan aktivitas produksi, pemesanan, dan pengiriman.

Contoh

Misalnya sebuah produk membutuhkan 3 bahan. MRP akan:

- 1. Melihat kapan produk harus selesai.
- 2. Menelusuri bahan-bahan apa yang dibutuhkan dan berapa jumlahnya (dari BOM).
- 3. Memeriksa stok yang tersedia.
- Menentukan kapan harus memesan bahan agar tersedia tepat waktu.

Contoh Soal

Sebuah perusahaan memproduksi **Meja**. Untuk membuat **1 meja** dibutuhkan:

- 1 papan kayu
- 4 kaki meja

Setiap bahan butuh waktu untuk datang setelah dipesan:

- Papan kayu: 1 minggu waktu pengiriman --11
- Kaki meja : 2 minggu waktu pengiriman -- 4

Saat ini:

- Tidak ada persediaan papan kayu atau kaki meja
- Perusahaan ingin membuat 100 meja pada minggu ke-6

Bill of Material \rightarrow Produksi 100 meja minggu ke-6 \Rightarrow butuh:

- 100 papan kayu
- 400 kaki meja

MRP \rightarrow Produksi 100 meja minggu ke-6 \Rightarrow butuh:

- 100 papan kayu → oder minggu ke 5
- 400 kaki meja → oder minggu ke 4

Tanggal 20 januari 2025 –100 meja

Metode persediaan just in time (JIT)

Just In Time (JIT) adalah metode pengendalian persediaan di mana barang atau bahan baku hanya dipesan dan diterima saat benar-benar dibutuhkan dalam proses produksi atau penjualan.

Artinya: Tidak ada stok yang menumpuk di gudang.

Tujuan JIT

- Mengurangi biaya penyimpanan (tidak perlu sewa gudang besar)
- 2. Menghindari kelebihan stok dan barang kedaluwarsa
- 3. Meningkatkan efisiensi produksi
- 4. Responsif terhadap permintaan aktual

Ciri-Ciri JIT

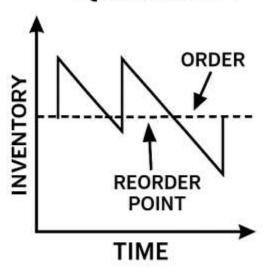
Ciri JIT	Penjelasan
Produksi berdasarkan	Bukan berdasarkan prediksi,
permintaan	tapi pesanan nyata
Persediaan minimal	Disimpan dalam jumlah sangat kecil
Pengiriman bahan tepat waktu	Supplier harus mengirim on time, tidak boleh telat
Kualitas sangat penting	Karena tidak ada stok cadangan, kesalahan = gangguan besar

Kekurangan JIT

- 1. Sangat tergantung pada supplier
- 2. Jika ada **gangguan pasokan**, produksi bisa berhenti
- 3. Tidak cocok untuk kondisi permintaan tidak pasti

Contoh Kasus

- Restoran ayam geprek hanya menyetok ayam untuk satu hari, dan setiap pagi langsung restock berdasarkan jumlah pesanan kemarin.
- Tidak menyimpan ayam untuk 2–3 hari.
- Lemari pendingin kecil cukup → hemat listrik dan tempat.


Perbandingan Metode JIT vs EOQ

Aspek	JIT (Just In Time)	EOQ (Economic Order Quantity)
Tujuan	Menghilangkan persediaan yang tidak perlu	Menentukan jumlah pemesanan optimal untuk menekan biaya
Prinsip	Barang datang tepat saat dibutuhkan	Memesan dalam jumlah tetap secara periodik
Stok di Gudang	Sangat minim atau bahkan nol	Ada stok yang disimpan untuk beberapa waktu
Ketergantungan pada Supplier	Tinggi, karena harus pas waktu	Sedang, karena masih ada stok cadangan
Biaya Penyimpanan	Sangat rendah	Tetap ada, tergantung jumlah pesanan EOQ
Resiko Stok Kosong	Tinggi jika pengiriman terlambat	Lebih rendah karena ada cadangan
Cocok untuk	Produk segar, cepat kadaluarsa, atau ruang gudang terbatas	Produk stabil, permintaan rutin, volume besar
Contoh Penerapan	Restoran harian, pabrik otomotif (Toyota)	Gudang bahan pokok, distributor grosir

JUST IN TIME

ECONOMIC ORDER QUANTITY

Biaya-biaya Persediaan

- Biaya pembelian
- Biaya pengadaan
- Biaya penyimpanan
- Biaya kekurangan persediaan
- Biaya sistematis