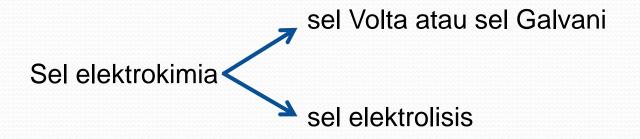
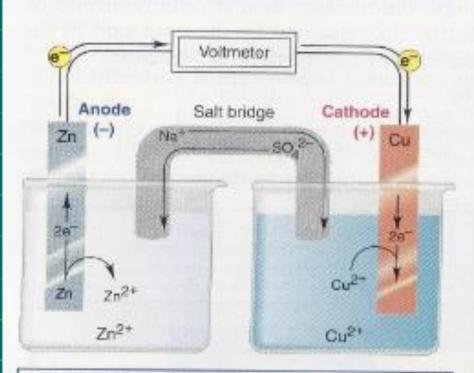
Pereaksi (Reaktan) Pembatas


Contoh Soal:

1. Urea [CO(NH₂)₂] dibentuk dengan mereaksikan amonia dan karbondioksida menurut reaksi:

$$2NH_3(g) + CO_2(g) \longrightarrow CO(NH_2)_2(aq) + H_2O(l)$$

jika 750 g NH_3 direaksikan dengan 1250 g CO_2 . Tentukan :


- a. Pereaksi pembatas
- b. Massa urea yang terbentuk
- c. massa reaktan yang berlebih diakhir reaksi

Sel Elektrokimia

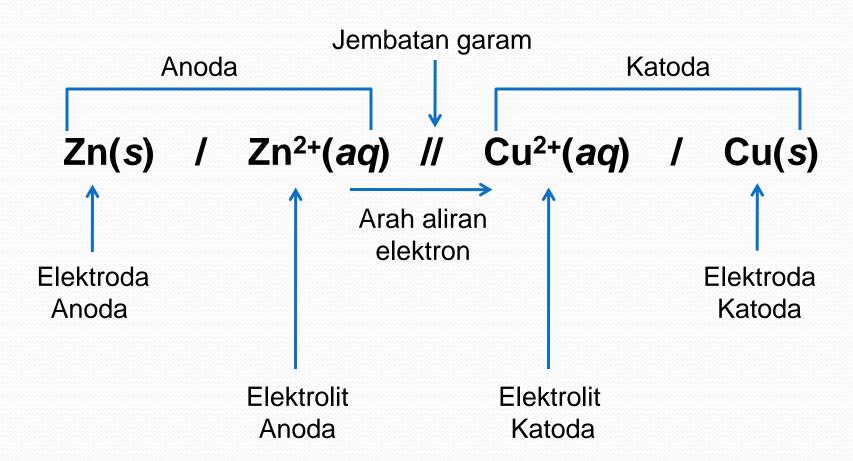
- Dalam sel elektrokimia, kedua sel setengah-reaksi berlangsung secara terpisah pada elektrode-elektrode.
- Elektode yang mengalami oksidasi disebut anoda.
- Elektrode yang mengalami reduksi disebut katoda.
- Dalam sel Volta atau sel Galvani, terjadi perubahan energi kimia menjadi energi listrik.
- Dalam sel elektrolisis, terjadi perubahan energi listrik menjadi energi kimia.

Sel Volta

Oxidation half-reaction

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$

Reduction half-reaction


$$2e^- + Cu^{2+}(aq) \longrightarrow Cu(s)$$

Overall (cell) reaction $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$

В

Notasi Sel

Deret volta k-Ba-Ca-Na-Mg-Al-Mn-Zn-Fe-Ni-Sn-Pb-H-Cu-Hg Ag - Pt Au makin reaktif (mudah teroksidasi) E⁰ sel < (sukar teroksodasi) E⁰ sel >

Table 21.2 Standard Electrode (Half-Cell) Potentials (298 K)*	
Half-Reaction	E° (V)
$F_2(g) + 2e^- \Longrightarrow 2F^-(aq)$	+2.87
$O_3(g) + 2H^+(ag) + 2e^- \implies O_2(g) + H_2O(l)$	+2.07
$Co^{3+}(aq) + e^{-} \Longrightarrow Co^{2+}(aq)$	+1.82
$H_2O_2(aq) + 2H^+(aq) + 2e^- \implies 2H_2O(l)$	+1.77
$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \implies PbSO_4(s) + 2H_2O(l)$	+1.70
$Ce^{4+}(aq) + e^{-} \Longrightarrow Ce^{3+}(aq)$	+1.61
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \implies Mn^{2+}(aq) + 4H_2O(l)$	+1.51
$Au^{3+}(aq) + 3e^- \Longrightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \Longrightarrow 2Cl^-(aq)$	+1.36
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- = 2Cr^{3+}(aq) + 7H_2O(l)$	+1.33
$MnO_2(s) + 4H^+(aq) + 2e^- \implies Mn^{2+}(aq) + 2H_2O(l)$	+1.23
$O_2(g) + 4H^+(aq) + 4e^- \implies 2H_2O(l)$	+1.23
$Br_3(l) + 2e^- \Longrightarrow 2Br^-(aq)$	+1.07
$NO_3^-(aq) + 4H^+(aq) + 3e^- \implies NO(g) + 2H_2O(l)$	+0.96
$2Hg^{2+}(aq) + 2e^{-} \implies Hg_2^{2+}(aq)$	+0.92
$Hg_2^{3+}(aq) + 2e^- \Longrightarrow 2Hg(l)$	+0.85
$Ag^{+}(ag) + e^{-} \Longrightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \implies Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \implies H_2O_2(aq)$	+0.68
$MnO_4^-(aq) + 2H_2O(l) + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59
$I_3(s) + 2e^- \implies 21^-(aq)$	+0.53
$O_2(g) + 2H_2O(l) + 4e^- = 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^- \Longrightarrow Cu(s)$	+0.34
$AgCl(s) + e^- \implies Ag(s) + Cl^-(aq)$	+0.22
$SO_4^{3-}(aq) + 4H^+(aq) + 2e^- \implies SO_2(g) + 2H_2O(l)$	+0.20
$Cu^{2+}(aq) + e^{-} \Longrightarrow Cu^{+}(aq)$	+0.15
$Sn^{4+}(aq) + 2e^{-} \implies Sn^{2+}(aq)$	+0.13
$2H^{+}(ag) + 2e^{-} \implies H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \Longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2e^{-} \Longrightarrow \operatorname{Sn}(s)$	-0.14
$N_2(g) + 5H^+(aq) + 4e^- \implies N_2H_5^+(aq)$	-0.23
$Ni^{2+}(aq) + 2e^- \implies Ni(s)$	-0.25
$\operatorname{Co}^{2+}(aq) + 2e^{-} \Longrightarrow \operatorname{Co}(s)$	-0.28
$PbSO_4(s) + 2e^- \implies Pb(s) + SO_4^{2-}(aq)$	-0.31
$Cd^{2+}(aq) + 2e^{-} \implies Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \implies Fe(s)$	-0.44
$Cr^{5+}(aq) + 3e^- \Longrightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \Longrightarrow Zn(s)$	-0.76
$2H_2O(l) + 2e^- \implies H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{3+}(aq) + 2e^- \Longrightarrow Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \implies Al(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \Longrightarrow Mg(s)$	-2.37
$Na^+(aq) + e^- \implies Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \implies Ca(s)$	-2.87
$Sr^{2+}(aq) + 2e^- \Longrightarrow Sr(s)$	-2.89
$Ba^{2+}(aq) + 2e^- \Longrightarrow Ba(s)$	-2.90
	-2.03

Potensial Reduksi dan Reaksi Redoks

- □ Potensial reduksi standar (E°) setengah sel adalah potensial sel yang terdiri atas setengah sel Galvani dengan konsentrasi
 1 M pada temperatur 25 °C dihubungkan dengan setengah sel hidrogen.
- Harga potensial reduksi setengah sel hidrogen = 0 volt.
- □ Elektrode yang potensial reduksi standarnya lebih besar daripada hidrogen (lebih mudah mengalami reduksi daripada ion H+) diberi tanda positif, misalnya E° Cu²+/Cu = +0,34 V.
- □ Elektrode yang potensial reduksi standarnya lebih kecil daripada potensial reduksi hidrogen (lebih sukar mengalami reduksi daripada ion H+), potensial reduksinya diberi tanda negatif, misalnya E° Zn²+/Zn = −0,76 V.

Memperkirakan Berlangsungnya Reaksi Redoks dengan Potensial Sel

Suatu reaksi redoks dapat berlangsung spontan jika

$$E_{sel}^{o} = \begin{pmatrix} Potensial reduksi \\ standar zat yang \\ tereduksi \end{pmatrix} - \begin{pmatrix} Potensial reduksi \\ standar zat yang \\ teroksidasi \end{pmatrix} > 0$$

atau

$$E_{sel}^{o} = \begin{pmatrix} Potensial reduksi \\ standar zat yang \\ teroksidasi \end{pmatrix} + \begin{pmatrix} Potensial reduksi \\ standar zat yang \\ tereduksi \end{pmatrix} > 0$$

$$E^{o}_{sel} = E^{o}_{katoda} - E^{o}_{anoda}$$
 atau $E^{o}_{sel} = E^{o}_{oks} + E^{o}_{red}$

Contoh:

Diketahui:

$$Ni^{2+} + 2e^{-} \rightarrow Ni$$
 $E^{0} = -0.25 \text{ V}$
 $Pb^{2+} + 2e^{-} \rightarrow Pb$ $E^{0} = -0.13 \text{ V}$

Tentukan potensial sel Volta yang terdiri atas elektrode Ni dan Pb tersebut.

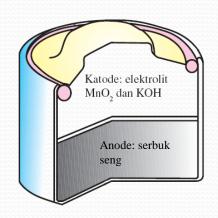
Jawab:

$$E^{o}_{sel} = E^{o}_{Ni/Ni^{2+}} + E^{o}_{Pb^{2+}/Pb}$$

= $E^{o}_{oks} + E^{o}_{red}$
= $+0.25 \text{ V} + (-0.13 \text{ V})$
= $+0.12 \text{ V}$

Potensial reduksi tidak pernah dikalikan dengan faktor yang digunakan untuk menyamakan elektron yang dilepas dan elektron yang diterima untuk menghasilkan harga potensial sel.

5. Aplikasi Praktis Sel Galvani


a. Sel Kering (Baterai)

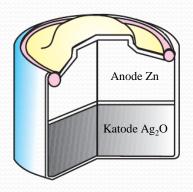
- ✓ Potensial yang dihasilkan ±1,5 volt.
- ✓ Keuntungan utama: relatif murah harganya dan biasanya tidak terjadi kebocoran.
- ✓ Kelemahan: tidak dapat diisi kembali.


Juga dikenal baterai alkali atau sel kering alkali.

- ✓ Potensial yang dihasilkan ±1,54 V.
- ✓ Waktu hidup lebih lama.
- ✓ Dapat menghantarkan arus yang lebih tinggi daripada sel seng-karbon.

b. Sel Nikad (Nikel-Kadmium)

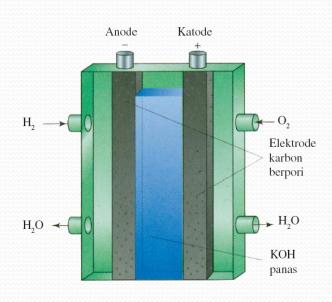
- ✓ Dapat diisi ulang (rechargeable).
- ✓ Menghasilkan potensial ±1,4 V.
- ✓ Dapat digunakan untuk baterai alat elektronik.


c. Baterai Merkurium

- ✓ Potensial yang dihasilkan ±1,35 V.
- ✓ Keuntungan: potensial yang dihasilkan mendekati konstan.

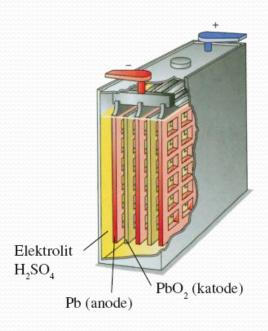
d. Baterai Perak Oksida

✓ Potensial yang dihasilkan ±1,54 V.


e. Baterai Litium

- ✓ Dapat diisi ulang, ringan, dan menghasilkan potensial yang tinggi (sekitar 3,0 V).
- ✓ Banyak digunakan dalam telepon seluler (HP), laptop, dan kamera digital.

f. Sel Bahan Bakar

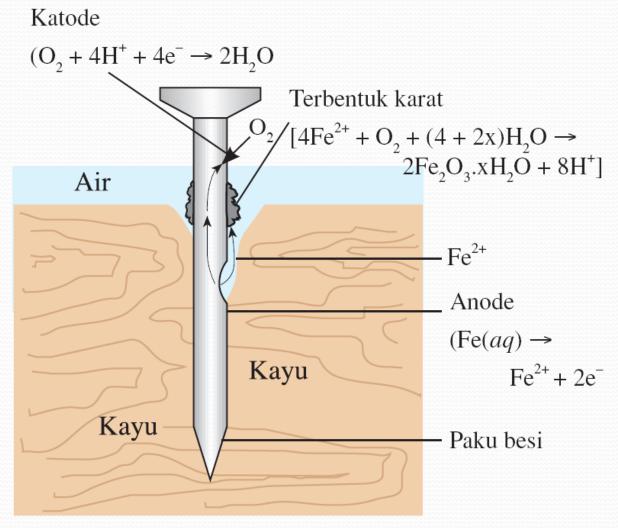

- ✓ Keuntungan: tidak perlu mengganti elektrode seperti baterai yang lain dan bahan bakar dapat dimasukkan secara kontinu untuk menghasilkan tenaga.
- ✓ Kelemahan: biaya tinggi dan ukurannya lebih besar.

g. Sel Aki (Baterai Penyimpan Timbal)

- ✓ Sel sekunder (*rechargeable*).
- ✓ Potensial yang dihasilkan tiap sel ±2 V.
- ✓ Pb sebagai anode, PbO₂ sebagai katode, dan H₂SO₄ sebagai elektrolit.

6. Korosi Besi

- ✓ Korosi merupakan suatu peristiwa elektrokimia.
- ✓ Besi akan berkarat jika kontak dengan air atau udara yang jenuh dengan uap air.
- ✓ Komposisi utama karat besi adalah besi(III) oksida terhidrat, Fe₂O₃.xH₂O.
- ✓ Pembentukan karat besi dipercepat oleh adanya asam, garam, logam yang kurang reaktif, dan temperatur tinggi.
- ✓ Air dan oksigen merupakan unsur penting dalam pembentukan karat.



Skema perkaratan pada besi

SEL ELEKTROLISIS

2. Sel Elektrolisis

- ➤ Energi listrik Energi kimia
- ➤ Katoda (-) terjadi reduksi, Anoda (+) terjadi oksidasi
- a. Elektrolisis Leburan (Lelehan)

Apabila suatu lelehan dialiri listrik maka dikatoda terjadi reaksi reduksi kation, dan di anoda terjadi reaksi oksidasi anion.

Cth: Elektrolisis leburan MgCl₂

b. Elekrolisis Larutan

Bila larutan dialiri arus listrik maka berlaku ketentuan sebagai berikut:

SEL ELEKTROKIMIA

Reaksi di katoda

 a. Bila kation logam-logam gol I A, II A, AI, dan Mn maka yang tereduksi adalah air (H₂O)

$$2H_2O + 2e^- \longrightarrow H_{2(g)} + 2^- OH_{(aq)}$$

b. Bila kation H⁺ maka akan tereduksi:

$$2H^+_{(aq)} + 2e^- \longrightarrow H_{2(g)}$$

c. Bila kation logam lain selain disebut di atas, maka logam tersebut akan tereduksi :

$$L^{M+}$$
 (aq) + me \longrightarrow L_{2} (s)

Reaksi di anoda

- Anoda inert (tidak reaktif seperti Pt, Au, C)
- a. Bila anion sisa asam atau garam oksi seperti SO_4^{2-} , NO_3^{-} , dll, maka yang teroksidasi adalah air (H_2O)

$$2H_2O_{(I)} \longrightarrow O_{2 (g)} + 4H^+_{(aq)} + 4e^-$$

a. Bila anion ⁻OH maka akan teroksidasi:

$$4^{-} OH_{(aq)} \longrightarrow O_{2(g)} + 2H_{2}O_{(l)} + 4e^{-}$$

c. Bila anion golongan VII A (halida) maka akan teroksidasi:

$$2F_{(aq)} \longrightarrow F_{2(g)} + 2e$$

Anoda tidak inert

$$L_{(s)} \longrightarrow L^{m+}_{(aq)} + me$$

Contoh:

Apa yang terjadi pada elektrolisis larutan CuSO₄ dengan elektrode Pt?

Jawab:

Elektrode Pt tidak dapat teroksidasi.

Reaksi yang terjadi dalam sel adalah:

Anode :
$$2 H_2O(1) \rightarrow O_2(g) + 4 H^+(aq) + 4 e^-$$

Katode :
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 x 2

$$2 H_2O(1) + 2 Cu^{2+}(aq) \rightarrow O_2(g) + 4 H^+(aq) + 2Cu(s)$$

Latihan:

1. Perhatikan reaksi di bawah ini

$$MnO_2 + HCI \longrightarrow MnCl_2 + Cl_2 + H_2O$$

Jika 0,86 mol MnO_2 bereaksi dengan 48,2 g HCl, tentukan pereaksi pembatas dan berapa gram Cl_2 dan H_2O yang terbentuk

2. Diketahui potensial elektroda perak dan tembaga sebagai berikut:

Ag⁺ + e⁻
$$\rightarrow$$
 Ag $E^{0} = 0.80 \text{ V}$
Cu²⁺ + 2e⁻ \rightarrow Cu $E^{0} = 0.34 \text{ V}$

Tentukan potensial sel Volta dan notasi selnya

Latihan:

- 3. Tulis reaksi lengkap elektrolisis
 - a. Larutan CuCl₂ dengan elektroda Fe
 - b. Larutan KNO₃ dengan elektroda Pt