Statistika Non Parametrik

Putu.delis@fp.unila.ac.id

STATISTIK: kumpulan data atau fakta-fakta yang disajikan dalam bentuk daftar, tabel, grafik, diagram dsb. agar mudah diinterpretasi dan digunakan untuk tujuan-tujuan tertentu.

STATISTIKA: suatu pengetahuan mengenai cara/metode/ teknik pengumpulan data, menganalisis data, menyajikan data guna membuat keputusan-keputusan.

Statistika dibedakan menjadi 2:

Statistika Deskriptif: bertujuan/digunakan utk menggambarkan atau mendeskripsikan data (fakta-fakta) tanpa menarik kesimpulan thd populasi Statistika.

Statistika Induktif (Inferensial): bertujuan/ digunakan untuk menggeneralisasikan hasil temuan yg diperoleh pada sampel thd populasi.

Statistik Inferensial dibedakan:

- Statistika Parametrik
- Statistika Non Parametrik

Statistika Inferensial

Statistika Parametrik: mensyaratkan persyaratanpersyaratan tertentu: distribusi data normal, hubungan linier, homogenitas varians, sampel random dsb.

Statistika Non Parametrik : tidak mensyaratkan persyaratan-persyaratan tertentu, maka dikatakan statistika Bebas Distribusi.

Mengapa kita berusaha memilih menggunakan Statistika Parametrik ?

Kelemahan Non Parametrik

- Penghamburan data bila syarat parametrik terpenuhi. Parametrik lebih akurat, artinya hasil yang sama dengan pengujian non parametrik dengan jumlah sampel lebih sedikit.
- 2. Belum bisa menganalisis varian. Varian bisa berbeda walaupun nilai tengahnya sama.

Statistika Nonparametrik

Uji statistik nonparametrik adalah suatu uji statistik yang tidak memerlukan adanya asumsi-asumsi mengenai sebaran data populasinya (belum diketahui sebaran datanya dan tidak perlu berdistribusi normal).

Oleh karenanya statistik ini juga dikemukakan sebagai statistik bebas sebaran (distribution-free statistics) atau assumption-free test, yaitu teknik statistik yg tidak mensyaratkan bentuk sebaran parameter populasi, baik normal atau tidak.

Kapan menggunakan sttatistika non parametrik?

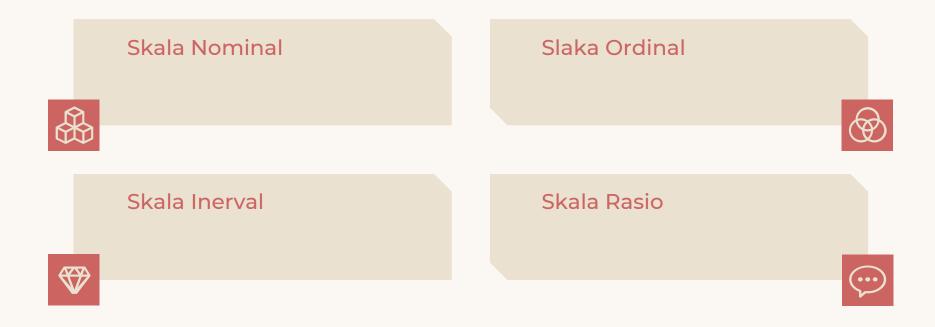
bila salah satu parameter Statistika Parametrik tidak terpenuhi

data yang diambil dari sampel yang tidak random

data yang distribusi populasinya tidak diketahui

data dengan skala nominal atau ordinal

data yg distribusinya tidak normal.



data yang jumlahnya sedikit (< 30)

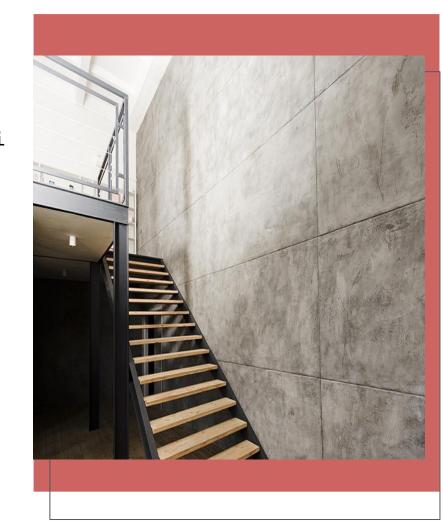
Ada 4 macam skala/level hasil pengukuran

Skala Nominal

- Adalah skala data hasil pengukuran yg hanya dapat membedakan antara jenis/kelompok yg satu dengan yg lainnya.
- Skor yang diberikan di sini hanya berfungsi sbg tanda atau sbg nomor belaka, dan tidak menunjukkan tingkatan maupun kualitasnya.
- Contoh: jenis kelamin, jenis sekolah, jenis pekerjaan, agama, dsb.
- Contoh: Jenis Kelamin
 Laki-laki = 1 Perempuan = 2

Skala Ordinal

- Adalah skala data hasil pengukuran yg sudah menunjukkan adanya suatu tingkatan (ORDO), seperti misalnya: sangat baik, baik, cukup, kurang dsb.
- Namun demikian, rentang/jarak antara masing-masing tingkatan yang berdekatan tsb adalah tidak sama, bersifat relatif dan tidak dapat ditentukan secara pasti.
- Contoh: status sosial ekonomi (tinggi, menengah, rendah), tingkat pendidikan (PT, SLTA, SLTP, SD, Tidak Tamat SD, Tidak Pernah Sekolah) dsb.
- Jika pendidikan dihitung jumlah tahun memperoleh pendidikan, maka datanya dapat dikategorikan sbg data interval).


Skala Interval

- Bisa mengetahui urutan dan perbedaan jarak antar datanya. Skala ini belum memiliki nilai nol mutlak. Artinya, jarak yang dapat dihitung tidak berarti kelipatan.
- Contoh: Siswa yg skor tesnya Nol, bukan berarti Ia tak memiliki kepandaian sama sekali. Jadi, Titik Nol di sini hanya merupakan titik kesepakatan saja. Demikian pula, skor yg diberikan di sini tidak dapat diperbandingkan dgn skor yg lain dengan hukum perkalian (Komutatif).
- Contoh: Siswa yg nilainya 80 bukan berarti kepandaiannya dua kali lipat dari siswa yang skor nilainya 40.

Skala Rasio

- Dapat diperbandingkan dengan skor lainnya dengan hukum Komutatif.
- Contoh: jarak 0 meter, maka berarti bahwa memang tidak ada jarak sama sekali.
- Demikian pua, benda yg beratnya 10 kg, maka memang benar-benar 2 kali lipat benda yg beratnya 5 kg, dan sebagainya.
- Skala pengukuran dalam bidang pendidikan dan ilmu-ilmu sosial pada umumnya hanya mencapai pada skala pengukuran interval saja, sedangkan skala rasio jarang atau tidak biasa digunakan.

Pengertian Skala Pengukuran Menurut Para Ahli

Scale	Data Type	Operations	Distinct Features	Central Tendency	
Nominal	Discrete	=,≠	Categories Only	Mode Only	
Ordinal	Discrete	=,≠ ≤,≥	Ordered Categories	Mode & Median	
Interval	Continuous	=,≠,≤,≥ +,-	Meaningful Intervals	Mode, Median & Mean	
Ratio	Continuous	=, ≠, ≤, ≥ +, -, ×, ÷	Absolute Zero Value	Mode, Median & Mean	

Prosedur Pengujian

Teknik-teknik yg digunakan terdiri dari:

- Prosedur untuk data dari sampel tunggal.
- Prosedur untuk data dari dua kelompok atau lebih sampel bebas (independent)
- Prosedur untuk data dari dua kelompok atau lebih sampel berhubungan (related/ dependent)
- Korelasi tata jenjang (Spearman's rank order), dan ukuran-ukuran asosiasi lainnya.

Prosedur untuk data dari sampel tunggal.

Pada statistik parametrik pertanyaan- pertanyaan tersebut dapat diuji dengan uji t satu sampel. Pada statistik nonparametrik pertanyaan- pertanyaan tersebut antara lain dapat dijawab dengan menggunakan uji Binomial, uji Chi-Kuadrat satu sampel, dan uji Kolmogorof-Smirnov, Uji Tanda (One-sample sign test).

Prosedur untuk Sampel Independen

- Dalam statistik parametrik, untuk membandingkan nilai ratarata dua kelompok independen digunakan uji t (t- test sampel independen).
- Jika yang dibandingkan lebih dari 2 kelompok maka digunakan uji F (dalam ANOVA).
- Dalam statistik nonparametrik, alternatif yang dapat digunakan untuk membandingkan suatu variabel dari dua kelompok sampel independen antara lain adalah:
- uji kemungkinan eksak dari Fisher,
- uji Chi-Kuadrat dua sampel,
- uji Median,
- uji U Mann-Whitney,
- uji Kolmogorov- Smirnov dua sampel.
- Jika kelompok yang dibandingkan lebih dari dua kelompok, maka dapat digunakan uji Chi-Kuadrat k-sampel, uji Median, analisis varians Ranking satu arah, dan uji Kruskal-Wallis.

Prosedur untuk Sampel Dependen

- Sampel dependent dapat diartikan sebagai sebuah sampel dengan subjek yang sama namun mengalami 2 perlakuan atau pengukuran yang berbeda yaitu: pengukuran sebelum dan sesudah dilakukan sebuah treatment
- Pada statistik parametrik, jika ingin membandingkan dua variabel yang diukur dari sampel yang sama, dapat menggunakan uji t data berpasangan.
- Jika yang dibandingkan lebih dari 2 kelompok maka digunakan uji F (dalam ANOVA).
- Pada statistik nonparametrik jika kelompok yang dibandingkan adalah dependen, maka ada dua alternatif uji yang dapat digunakan yaitu: uji Tanda (Sign test), uji Wilcoxon, dan uji Mc.Nemar.
- Jika kelompok yang dibandingkan lebih dari dua kelompok maka uji statistik nonparametrik yang dapat digunakan adalah Friedman's two-way analysis of variance dan Cochran Q test.

Korelasi Peringkat dan Ukuran-Ukuran Asosiasi Lainnya

- Dalam statistik parametrik ukuran korelasi yang umum digunakan adalah korelasi Product Moment Pearson, korelasi ganda, parsial, semi parsial.
- Diantara korelasi non-parametrik yang ekuivalen dengan koefisien korelasi standar ini dan umum digunakan adalah koefisien kontingensi C, Spearman Rank Order, Kendal Tau dan coefficien Gamma.
- Selain ketiga pengukuran tersebut, Chi square yang berbasiskan tabel silang juga relatif populer digunakan dalam mengukur korelasi antar variabel.

Uji Chi Square Satu Populasi

Data-data yang bersifat kategori (Cth: [setuju, tidak setuju, netral], [warna])
Uji Chi-square merupakan salah satu analisis yang paling sering digunakan pada statistik, dengan tujuan untuk uji homogenitas, uji independensi dan Goodness of Fit Test.

Uji Chi square-Goodness of Fit merupakan pengujian hipotesis tentang perbandingan antara frekuensi sampel yang benar-benar terjadi dengan frekuensi harapan yang didasarkan pada hipotesis tertentu pada setiap kasus atau data.

Uji Chi squiare juga dapat dikatakan sebagai uji proporsi untuk dua atau lebih kasus dimana datanya bersifat diskrit.

Syarat:

- Data berskala nominal dengan 2 atau lebih kategori
- Data bersifat independent
- Data dengan sampel yang besar
- Tidak ada nilai frekuensi amatan atau observasi yang bernilai 0
- Jika terdiri dari 2 kategori, tidak boleh ada nilai harapan <5, jika ada gunakan binomial
- Jika data yang memiliki jumlah kategori >2, maka jumlah sel frekuensi harapan yang bernilai <5
 tidak boleh lebih dari 20% dari keseluruhan sel. Jika ada gabungkan ketegori-kategori yang
 berdekatan.

RUMUS

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

dimana

K = banyaknya kategori

i = 1,2,3,...,k

Oi = banyaknya kasus dalam kategori ke-i

Ei = banyaknya kasus yang diharapkan dalam kategori ke-i

Untuk kasus satu populasi dengan pengujian Ho distribusi seragam, maka banyaknya sampel dibagi banyaknya kategori Ei = n/k

Pengambilan Keputusan

$$X_{\text{tabel}}^{2}(df;\alpha)$$
 \rightarrow Derajat bebas = k-1

Area penolakan \rightarrow $X^2_{\text{hitung}} \ge X^2_{\text{tabel}}$

Kelemahan Uji Chi Square

- Merupakan pendekatan diskrit ke kontinyu, tergantung ukuran sel
- Tidak cocok digunakan untuk data ordinal/urutan

Prosedur:

- Masukkan frekuensi-frekuensi data dalam kategori
- Tentukan hipotesis 0 dan hipotesis alternatif
- Periknsa nilai ei pada observasi
- Hitung nilai X hitung dan X tabel (bandingkan)
- Kesimpulan

Contoh kasus Uji Chi Square

- Seorang pedagang ikan hias merencanakan penjualan ikan cupang dengan beberapa warna yang berbeda. Waran-warna tersebut adalah Merah, Kuning, Hijau, Biru, Putih, dan Hitam. Di hari terakhir ia berhasil menjual sebanyak 120 ekor ikan.
- Uji apakah warna ikan mempengaruhi tingkat penjualan seandainya tidak ada perbedaan yang signifikan pada perbedaan warna ikan

Warna ikan	М	K	Н	В	Р	U
Ikan Terjual	13	33	14	7	36	17

- Ho= distribusi penjualan ikan sama/tidak dipengaruhi warna
- H1 = Distribusi penjualan ikan ada yang tidak sama/ dipengaruhi warna
- Signifikasni 5%

Warna ikan	Oi	Ei
М	13	20
K	33	20
Н	14	20
В	7	20
Р	36	20
U	17	20
Total	120	120

Ei = 120/6 = 20

Warna ikan	Oi	Ei	Oi-Ei	(Oi-Ei) ²	(Oi-Ei) ² /Ei
М	13	20	-7	49	2,45
K	33	20	13	169	8,45
Н	14	20	-6	36	1,8
В	7	20	-13	169	8,45
Р	36	20	16	256	12,8
U	17	20	-3	9	0,45
Total	120	120	0	688	34,4

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

$$X^2$$
 hitung = 34,44

$$X^{2}(5; 0.05) = 11.07$$

$$X^2$$
 hitung > X^2 (5; 0,05) (Tolak H0)

Kesimpulan:

Dengan tingkat signifikansi 5% terdapat cukup bukti untuk menyatakan bahwa distribusi penjualan ikan ada yang tidak sama atau dengan kata lain, penjualan ikan dipengaruhi oleh warna ikan tersebut.

Chi-square Table

ď	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
- 5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
- 6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18,493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

TERIMA KASIH

