

PENGANTAR

 Pada materi sebelumnya kita mengasumsikan bahwa pengaruh baris dan kolom bersifat aditif (penjumlahan).

Jenis	V	arietas Ika	an	TOTAL
Pakan	V1	V2	V3	TOTAL
P1	64	72	74	210
P2	55	57	47	159
P3	59	66	58	183
P4	58	57	53	168
TOTAL	236	252	232	720

- Bila sifatnya aditif, maka :
- Varietas V2 menghasilkan rata-rata 5 gr lebih berat dari V1 bila menggunakan pakan P1, maka V2 tetap menghasilkan rata-rata 5 gr lebih berat dari V1 meski dengan P2, P3, atau P4.
- Bila V1 secara rata-rata menghasilkan 3 gr lebih bberat dengan pakan P2 daripada P4, maka V2 atau V3 secara rata-rata juga menghasilkan 3 gr lebih berat jika menggunakan P2 daripada P4

PENGANTAR

- Dalam banyak percobaan, asumsi keaditifan seringkali tidak berlaku, sehingga analisis tersebut dapat menghasilkan kesimpulan yang salah.
- Contoh: Varietas ikan V2 secara rata-rata menghasilkan bobot ikan 5 gr lebih berat daripada V1 bila menggunakan P1, **tetapi** menghasilkan rata-rata 2 gr lebih kecil/ringan daripada V1 bila menggunakan P2.
- Dalam hal ini maka, dapat dikatakan bawha varietas ikan dan jenis pakan memiliki interaksi. Dalam tabel pengamatan interaksi tersebut cukup terlihat. Interaksi yang tampak ini mungkin memang ada atau mungkin disebabkan dari pengaruh galat percobaan.
- Pada analisis sebelumnya kita mengasumsikan bahwa interaksi yang muncul tersebut seluruhnya disebabkan oleh galat percobaan.

PENGANTAR

 Untuk menguji apakah ada beda antar nilai tengah baris dan kolom, dengan interaksi yang tidak diabaikan. Maka hasil pengukuran harus dilakukan berulang-ulang di bawah kondisi yang sama.

Asumsi:

- Pengamatan dalam tabel merupakan suatu contoh acak berukuran (n) dari satu populasi yang diasumsikan menyebar normal.
- 2. Semua rc populasi diasumsikan mempunyai ragam yang sama

Hasil bobot ikan, dalam gram

Jenis Pakan		Varietas Ikan		TOTAL
Jenis i akan	V1	V2	V3	TOTAL
	64	72	74	
P1	66	81	51	607
	70	64	65	
	65	57	47	
P2	63	43	58	510
	58	52	67	
	59	66	58	
P3	68	71	39	527
	65	59	42	
	58	57	53	
P4	41	61	59	466
	46	53	38	
TOTAL	723	736	651	

	Baris (i)		Kol	om (j)		Total	Niloi Tongoh
	Dalls (I)	1	2		С	าบเลา	Nilai Tengah
Klasifikasi dua arah		X ₁₁₁	X ₁₂₁		X _{1c1}		
dengan beberapa	1	X ₁₁₂	X ₁₂₂		X _{1c2}	_	\bar{x} 1
pengamatan per sel	•	•••				T ₁	<i>x</i> 1
pengamatan per ser		X _{11n}	X _{12n}		X _{1cn}		
		X ₂₁₁	X ₂₂₁		X _{2c1}		
		X ₂₁₂	X ₂₂₂		X _{2c2}	_	
	2					T ₂	$\bar{x}2$
		X _{21n}	X _{22n}		X _{2cn}		
Susunan di atas							
terdiri dari							
r baris dan							
c kolom dengan n ulangan.		X _{r11}	X _{r21}		X _{rc1}		
ii diangan.	_	X _{r12}	X _{r22}		X _{rc2}	_	
	r					T _{r.}	$ar{x}$ r
		X _{r1n}	X _{r2n}		X _{rcn}		
	Total	T _{.1.}	T _{.2.}		T _{.c.}	T	
	Nilai Tengah	\bar{x} .1.	\bar{x} .2.		$ar{x}$.c.		$\bar{x}\dots$

HIPOTETSIS

- Pengujian hipotesis nol bahwa r nilai tengah baris adalah sama, adalah setara dengan pengujian hipotesis :
 - H'0 : $\alpha 1 = \alpha 2 = ... = \alpha r = 0$
 - H'1 : sekurang-kurangnya satu αi tidak sama dengan nol
- Pengujian hipotesis nol bahwa c nilai tengah kolom semuanya sama adalah setara dengan pengujian hipotesis
 - $H'''0 : \beta 1 = \beta 2 = ... = \beta r = 0$
 - H"1: sekurang-kurangnya satu βj tidak sama dengan nol
- Pengujian hipotesis bahwa terdapat pengaruh interaksi baris ke-i dan kolom ke-j
 - H'''0 : $(\alpha\beta)11 = (\alpha\beta)12 = ... = (\alpha\beta)rc = 0$
 - H'''1: sekurang-kurangnya satu (αβ)ij tidak sama dengan nol
 - αi : pengaruh baris ke-i
 - βj : pengaruh kolom ke-j
 - (αβ)ij : pengaruh interaksi baris ke-l kolom ke-j

- Masing-masing uji hipotesis tersebut akan didasarkan pada pembandingan dua nilai dugaan yang bebas bagi ragam populasi.
- Nilai dugaan diperoleh dengan menguraikan jumlah kuadran total menjadi empat komponen:

JKT =
$$\sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^n (x_{ijk} - \bar{x}...)^2$$
 = Jumlah Kuadrat Total

JKB = $\operatorname{cn} \sum_{i=1}^{r} (\bar{x}_i - \bar{x}...)^2$ = Jumlah Kuadrat Bagi Nilai Tengah Baris

JKK =
$$\operatorname{rn} \sum_{i=1}^{c} (\bar{x}_{.i.} - \bar{x}_{...})^2$$
 = Jumlah Kuadrat Bagi Nilai Tengah Kolom

 $\mathsf{JK}(\mathsf{BK}) = \mathsf{n} \; \sum_{i=1}^r \sum_{j=1}^c (x_{ij} - \bar{x}_{ij} - \bar{x}_{ij} - \bar{x}_{ij})^2 = \mathsf{Jumlah} \; \mathsf{Kuadrat} \; \mathsf{Bagi} \; \mathsf{Interaksi}$

JKG =
$$\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} (x_{ijk} - \bar{x}_{ij})^2$$
 =Jumlah Kuadrat Galat

Untuk menguji hipotesis, maka dihitung nilai F hitung.

Untuk menguji hipotesis H'0 bahwa pengaruh baris semuanya sama H'0 ditolak pada taraf nyata α bila f1 > f α [r-1, rc(n-1)]

Untuk menguji hipotesis H"0 bahwa pengaruh kolom semuanya sama Hipotesis H"0 ditolak pada taraf nyata α bila f2 > f α [c-1, rc(n-1)]

Untuk menguji hipotesis H'''0 bahwa pengaruh interaksi semuanya sama Hipotesis H'''0 ditolak pada taraf nyata α bila f3 > f α [(r-1)(c-1), rc(n-1)]

Adanya interaksi dalam suatu percobaan dapat menyembunyikan atau menutupi beda yang nyata antar pegaruh baris atau pengaruh kolom. Karena alasan ini maka setiap uji yang menghasilkan penerimaan hipotesis tersebut dianggap "tidak sah bila interaksi nyata".

RUMUS HITUNG

- Dalam prakteknya kita pertama-tama menghitung JKT, JKB, dan JKK, dan baru kemudian dengan menggunakan dalil identitas jumlah kuadrat kita memperoleh JKG melalui pengurangan.
- Rumus hitung bagi keempat jumlah kuadrat tersebut diberikan di bawah ini :

JKB =
$$\frac{\sum_{i=1}^{r} T^2 i...}{cn} - \frac{T^2...}{rcn}$$
 = Jumlah Kuadrat Bagi Nilai Tengah Baris

JKK =
$$\frac{\sum_{j=1}^{c} T.j.^2}{rn} - \frac{T^2...}{rcn}$$
 = Jumlah Kuadrat Bagi Nilai Tengah Kolom

$$\mathsf{JK}(\mathsf{BK}) = \frac{\sum_{i=1}^{r} \sum_{j=1}^{c} Tij.^{2}}{n} - \frac{\sum_{i=1}^{r} Ti.^{2}}{cn} - \frac{\sum_{j=1}^{c} T.j.^{2}}{rn} + \frac{T...^{2}}{rcn} = \mathsf{Jumlah} \; \mathsf{kuadrat} \; \mathsf{bagi} \; \mathsf{interaksi}$$

$$\mathsf{JKG} = \mathsf{JKT} - \mathsf{JKB} - \mathsf{JKK} - \mathsf{JK}(\mathsf{BK}) = \mathsf{Jumlah} \; \mathsf{Kuadrat} \; \mathsf{Galat}$$

Perhitungan dalam masalah analisis ragam untuk klasifikasi dua-arah dengan interaksi, dapat diringkas seperti berikut :

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F Hitung
Nilai Tengah Baris	JKB	r-1	$s_1^2 = \frac{JKB}{r-1}$	$f_1 = \frac{{s_1}^2}{{s_4}^2}$
Nilai Tengah Kolom	JKK	c-1	$s_2^2 = \frac{JKK}{c-1}$	$f_2 = \frac{{s_2}^2}{{s_4}^2}$
Interaksi	JK(BK)	(r-1)(c-1)	$s_3^2 = \frac{JK(BK)}{(r-1)(c-1)}$	$f_3 = \frac{{s_3}^2}{{s_4}^2}$
Galat	JKG	rc(n-1)	$s_4^2 = \frac{JKG}{rc(n-1)}$	
Total	JKT	rcn-1		

CONTOH SOAL

Uji Hipotesis pada taraf nyata 0,05 untuk :

H'0 = Tidak ada beda rata-rata hasil bobot ikan untuk keempat jenis pakan yang digunakan H''0 = Tidak ada beda rata-rata hasil bobot ikan untuk ketiga varietas ikan tersebut H'''0 = Tidak ada interaksi antara jenis pakan dan varietas ikan

Jawab:

- 1. a. H'0: $\alpha 1 = \alpha 2 = \alpha 3 = \alpha 4 = 0$
 - b. H"0: $\beta 1 = \beta 2 = \beta 3 = 0$
 - c. H'''0: $(\alpha\beta)11 = (\alpha\beta)12 = ... = (\alpha\beta)43 = 0$
- 2. a. H'1: sekuranng-kurangnya satu αi tidak sama dengan nol
 - b. H"1: sekurang-kurangnya satu βj tidak sama dengan nol
 - c. H'''1: sekurang-kurangnya satu (αβ)ij tidak sama dengan nol
- 3. Wilayah kritik: (a) fi > 3,01, (b) f2 > 3,40, (c) f3 > 2,51

Hasil Bobot Ikan, dalam gram

Dobot Ikali, ualalii	gram			
Jenis Pakan		Varietas Ikan		TOTAL
Jenis Pakan	V1	V2	V3	TOTAL
	64	72	74	
P1	66	81	51	607
	70	64	65	
	65	57	47	
P2	63	43	58	510
	58	52	67	
	59	66	58	
P3	68	71	39	527
	65	59	42	
	58	57	53	
P4	41	61	59	466
	46	53	38	
TOTAL	723	736	651	

Jawab:

	v1	v2	v3	Total
P1	200	217	190	607
P2	186	152	172	510
P3	192	196	139	527
P4	145	171	150	466
Total	723	736	651	2110

• JKT =
$$64^2 + 66^2 + \dots + 38^2 - \frac{2110^2}{36} = 127448 - 123669 = 3779$$

• JKB = $\frac{607^2 + 510^2 + 527^2 + 466^2}{9} - \frac{2110^2}{36} = 124826 - 123669 = 1157$

$$JKK = \frac{723^2 + 736^2 + 651^2}{12} - \frac{2110^2}{36} = 124019 - 123669 = 350$$

• JK(BK) =
$$\frac{200^2 + 186^2 + ... + 150^2}{3} - 124826 - 124019 + 123669 = 771$$

• JKG =
$$3779 - 1157 - 350 - 771 = 1501$$

Jawab : Hasil analisis dicantumkan dalam tabel berikut :

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F Hitung	F Tabel
Nilai Tengah Baris	1157	3	385,66	6,17	3,01
Nilai Tengah Kolom	350	2	175,00	2,80	3,40
Interaksi	771	6	128,50	2,05	2,51
Galat	1501	24	62,54		
Total	3779	35			

Keputusan :

- (a) Tolak H'0 dan simpulkan bahwa ada beda hasil rata-rata bobot ikan untuk keempat jenis pakan yang digunakan
- (b) Terima H"0 dan simpulkan bahwa tidak ada beda hasil rata-rata bobot ikan untuk ketiga varietas ikan
- (c) Terima H'''0 dan simpulkan bahwa tidak ada pengaruh interaksi antara jenis pakan yang digunakan dengan varietas ikan tersebut.

2. Tiga varietas ikan nila hendak dibandingkan hasilnya. Percobaannya dilakukan dengan menggunakan ukuran kolam yang seragam menggunakan 4 jenis pakan yang berbeda. Di setiap lokasi setiap varietas dicobakan pada 3 kolam yang ditentukan acak. Bobot ikan yang diperoleh dicatat dalam gram.

Jenis Pakan		Varietas Ikan nila	
Jenis Pakan	Α	В	С
	150	200	220
Pakan A	190	240	170
	120	180	140
	170	240	260
Pakan B	100	180	190
	130	220	210
	90	120	100
Pakan C	120	150	50
	60	100	80
	140	210	190
Pakan D	80	160	150
	110	140	120

Gunakan taraf nyata 0,05 untuk menguji hipotesis bahwa:

- a. Tidak ada perbedaan bobot antara 3 varietas ikan tersebut
- b. Jenis pakan yang berbeda tidak berpengaruh pada bobot ikan
- c. Jenis pupuk dan varietas ikan tidak berinteraksi

Silahkan Gunakan Contoh soal berikut sebagai bahan Latihan mandiri.

Latihan soal ditulis tangan dikumpulkan Rabu, 23 November 2023 Paling lambat pkl 23.59 melalui Vclass.

Terima kasih.

NILAI-NILAI UNTUK DISTRIBUSI F

Baris atas untuk 5% Baris bawah untuk 1%

	Dans	Davve	arr ur	ituk	/0																			
V ₂ = dk										,	$v_1 = dk$	pemb	ilang											
penyebut	1	2	3	4	5	6	7	8	9	10	11	12	14	16	20	24	30	40	50	75	100	200	500	00
1		200 4,999		225 5,625							243 6,082	244 6,106	245 6,142	246 6,169	248 6,208	249 6,234	250 6,258	251 6,288	252 6,302	253 6,223	253 6,334	254 6.352	254 6.361	254 6,366
2	18,51	19,00	19,16	19,25	19,30	19,33	19,36	19,37	19,38	19,39 99,40	19,40	19,41	19,42	19,43	19,44	19.45	19.46	19.47	19.47	19.48	19 49	19.49	19 50	19.50
3	10,13	9,55	9,28	9,12	9,01	8,94	8,88	8,84	8,81	8,78 27,23	8,76	8,74	8,71	8.69	8.66	8.64	8.62	8.60	8.58	8 57	8 56	8 54	8 54	8.53
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96 14,54	5,93	5,91	5,87	5,84	5.80	5.77	5.74	5.71	5.70	5.66	5.66	5.65	5.64	5.63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,78	4,74 10,05	4,70	4,68	4,64	4.60	4,56	4.53	4.50	4.48	4 44	4 42	4 40	4 38		4,36
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06 7,87	4.03	4.00	3.98	3.92	3.87	3.84	3.81	3.77	3.75	3,72		3,69	3,66	3,67
7	12,25	9,55	8,45	7,85	7,46	7,19	7,00	6,84	6,71	3,63 6,62	6,54	6,47	6,35	6,27	6,15	6,07	5,98	5,90	3,32 5,85	3,29 5,78	3,28 5,75	3,25 5,70	3,24 5,67	3,23 5,65
8	5,32 11,26	4,46 8,05	4,07 7,59	3,84 7,01	3,69 6,63	3,58 6,37	3,50 6,19	3,44 6,03	3,39 5,91	3,34 5,82	3,31 5,74	3,28 5,67	3,23 5,56	3,20 5,48	3,15 5,36	3,12 5,28	3,08 5,20	3,05 5,11	3,03 5,06	3,00 5,00			2,94 4,88	
9	5,12 10,56	4,26 8,02	3,86 6,99	3,63 6,42	3,48 6,06	3,37 5,80	3,29 5,62	3,23 5,47	3,18 5,35	3,13 5,28	3,10 5,18	3,07 5,11	3,02 5,00	2,98 4,92	2,93 4,80	2,90 4,73	2,86 4,64	2,82 4,56	2,80 4,51	2,77 4,45	2,76 4,41	2,73 4,36	2,72 4,33	
10	4,96 10,04	4,10 7,56	3,71 6,55	3,48 5,99	3,33 5,64	3,22 5,39	3,14 5,21	3,07 5,06	3,02 4,95	2,97 4,85	2,94 4,78	2,91 4,71	2,86 4,60	2,82 4,52	2,77 4,41	2,74 4,33	2,70 4,25	2,07 4,17	2,64 4,12	2,61 4,05	2,59 4,01		2,55 3,93	
11	4,84 9,65	3,98 7,20	3,59 6,22	3,36 5,67	3,20 5,32	3,09 5,07	3,01 4,88	2,95 4,74	2,90 4,63	2,86 4,54	2,82 4,46	2,79 4,40	2,74 4,29	2,70 4,21	2,65 4,10	2,61 4,02	2,57 3,94	2,53 3,86	2,50 3,80	2,47 3,74	2,45 3,70		2,41 3,62	
12		3,88 6,93		3,26 5,41	3,11 5,06	3,00 4,82	2,92 4,65	2,85 4,50	2,80 4,39	2,76 4,30	2,72 4,22	2,69 4,16	2,64 4,05	2,60 3,98	2,54 3,86	2,50 3,78	2,46 3,70	2,42 3,61			2,35 3,46	-		2,30 3,36
13	4,67 9,07	3,80 6,70	3,41 5,74	3,18 5,20	3,02 4,86	2,92 4,62	2,84 4,44	2,77 4,30	2,72 4,19	2,67 4,10	2,63 4,02	2,60 3,96	2,55 3,85	2,51 3,78	2,46 3,67	2,42 3,59	2,38 3,51	2,34 3,42					2,22	2,21
14	4,80 8,86	3,74 6,51	3,34 5,56	3,11 5,03	2,96 4,80	2,85 4,46	2,77 4,28	2,70 4,14	2,65 4,03	2,80 3,94	2,58 3,88	2,53 3,80	2,48 3,70	2,44 3,62	2,39 3,51	2,35 3,43	2,31 3,34	2,27 3,28	2,24 3,21	2,21 3,14	2,19 3,11	2,16 3,06	2,14 3,02	2,13 3,00

1	abel 1	Nilai Kri	tis Seb	aran F	_{0.01} (V ₁	$, v_2)$	V	1 : db pe	embilan	g	<i>v</i> ₂ : db	penyek	out
V ₁	1	2	3	4	5	6	7	8	9	10	12	15	20
1	4052	4999.5	5403	5625	5764	5859	5928	5982	6022	6056	6106	6157	6209
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.42	99.43	99.45
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	27.05	26.87	26.69
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.37	14.20	14.02
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.89	9.72	9.55
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94
											to the second		-

Tabel F untuk $\alpha = 0.05$

253.3

19.49 8.55

5.66

4.40 3.70 3.27 2.97 2.75

2.58 2.45 2.34 2.25 2.18

2.11

2.06

1.97

1.93

1.87

1.81

1.77

1.75

1.73

1.71

1.68 1.58 1.47

1.35

1.22

1.70

254.3

19.50

5.63

3.67 3.23 2.93 2.71

2.54 2.40 2.30 2.21 2.13

2.07

1.96

1.92

1.84

1.81

1.76

1.71

1.69

1.67

1.65

1.64

1.51

1.25

1.00

					ν_1										,	1		
ν2	1	2	3	4	5	6	7	8	9	ν_2	10	12	15	20	24	30	40	60
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	1	241.9	243.9	245.9	!48.0	249.1	250.1	251.1	252.2
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81		8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74
7 8	5.59 5.32	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	7 8	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30
9	5.12	4.46 4.26	4.07	3.84	3.69	3.58	3.50	3.44	3.39	9	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01
,	3.12	4.20	3.86	3.63	3.48	3.37	3.29	3.23	3.18	,	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	11	2.85	2.79	2.72	2.65	2,61	2.57	2.53	2.49
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	 12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	17	2.45	2.38	2.31	2.23	2.19	2,15	2.10	2.06
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	23 .	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43
00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	00	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32

TERIMA KASIH

