

Modul 4

SCADA

Oleh
Dr. Ing. Melvi, S.T., M. T.
Aryanto, S.T., M.T>

DASAR PENGENALAN SCADA

A. Pengenalan dan Uraian Singkat Tentang SCADA

Bagian ini didesain untuk memudajkan dalam mengenal konsep dasar dan permasalah nyata dari sistem SCADA. Perhatian khusus telah diberikan pada aspek pelaksanaan dan penggunaan sistem SCADA yang memiliki pandangan jauh ke masa depan. Desain dan formula yang dapat kita temukan pada khususnya pabrik-pabrik 'manual' telah dengan sengaja dihilangkan atau tidak digunakan lagi dlam hal konsep maupun definisinya.

SCADA (Supervisory Control and Data Acquisition) telah lama berada disekitar kita sebagai sebuah sistem pengendalian. Manfaat utama data tambahan dari sistem SCADA akan dimanfaatkan oleh panel meter, lampu, dan perekam grafik. Operator secara manual mengoperasikan berbagai macam tombol kendali untuk menjalankan supervisory control. Perangkat ini telah dan tetap akan digunakan untuk menjalankan kendali sekaligus pengawasan akuisisi data pada plant, pabrik, dan berbagai fasilitas pembangkit energi. Gambar dibawah ini menunjukkan sebuah sensor yang datanya dimanfaatkan oleh panel sistem:

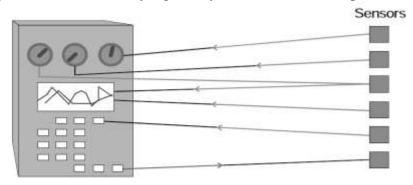


Figure 1.1
Sensors to panel using 4-20 m.4 or voltage

Gambar 1 : Sambungan langsung antara sensor denga panel yang memilki tegangan atau arus dengan rentang 4-20 mA

Sensor yang menuju berbagai macam tipe dari sistem SCADA memilki keuntungan sebagai berikut :

- Sederhana, tidak menggunkan CPU, RAM, ROM, ataupun software pemrograman tertentu.
- Sensor terhubung langsung pada panel meter, saklar, dan lampu pada panel.
- Dapat menjadi mudah dan murah untuk ditambhakan sebagai perangkat sederhana seperti saklar ataupun indikator.

Selain itu, hubungan langsung antara panel dengan sensor juga memiliki kerugian sebagai berikut :

- Banyaknya sambunga kabel yang harus digunakan menjadikannya tidak tertata setelah pemasangan dari ratusan sensor.
- Kuantitas dan tipe tipe dari data yang minim, belum smpurna dan hnay bersifat elementer.
- Pemasangan dan penambahan sensor menjadikan sistem lebih sulit untuk berkembang dan bertumbuh.
- Konfigurasi ulang dari sistem menjadi sangat sulit.
- Simulasi menggunakan data langsung, menjadi hal yang tidak mungkin.
- Penyimpanan data yang dilakukan menjadi lebih sedikit dan susah untuk di tata.
- Tidak ada monitoring data maupun alarm dlam keadaan sistem mati.
- Seseorang harus berjaga dan melihat apakat ada panggilan alarm atau perubahan pengukuran selama 24 jam.

B. Prinsip Dasar dari Sistem SCADA Modern

Dalam proses industri dan pabrikasi modern, industri pertambangan , peralatan pribadi dan umum, keamanan dan keleluasan telemetri dalam industri sering dibutuhkan untuk menghubungkan peralatan dan sistem yang terpisah dalam jarak yang cukup jauh. Besarnya jarak ini bisa saja dalam beberapa meter sampai ratusan kilometer . Telemetri digunakan untuk mengirimkan perintah, program dan menerima monitoring informasi dari lokasi.

SCADA diperuntukkan mengkombinasikan telemetri dan akuisisi data. SCADA meliputi pengumpulan informasi, mentransfer kembali ke *central site*, membawanya keluar sistem kapanpun dibutuhkan adanya analisis dan pengendalian data serta kemudian menampilkan informasinya dalam bentuk angkan,gambar, kata-kata, alarm, pada sebuah layar dihadapan operator. Tidakan pengontrolan dibutuhkan untuk membawanya kembali kedalm proses.

Sebelum akuisisi data, logika relai digunakan untuk mengendalikan produksi dan sistem yang berjalan poada *plant*. Dengan adanya CPU dan perangkat elektronik lainnya, proses pabrikasi menggabungkan elektronika digital dan perangkat logika relai. PLC (*Programable Logic Controller*) tetap menjadi salah satu perangkat yang paling banyak digunkan dalam sitem kontrol di industri. Seiring dengan semakin banyaknya hal yang dibutuhkan

untuk memonitor dan mengontrol, maka berbagai macam perangkat mulai berkembang. PLC didistribusikan kebanyak tempat dan di berbagai sektor dengan sistemnya yang menjadi lebih cerdas dan dengan ukuran yang lebih kecil. Penggunaan PLC dan DCS ditunjukkan pada gambar berikut :

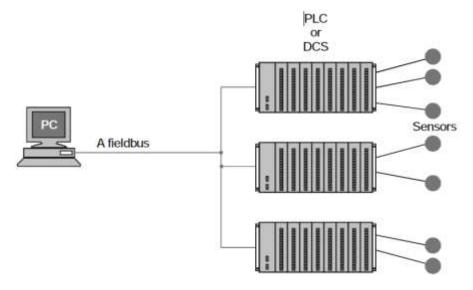
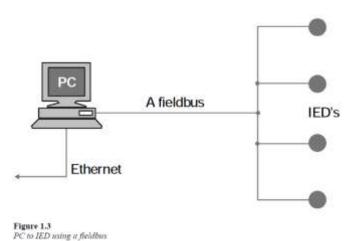


Figure 1.2
PC to PLC or DCS with a fieldbus and sensor

Gambar 2 : Sambungan PC ke PLC atau DCS dengan sebuah Fieldbus dan sensor

Keuntungan dari penggunaan sistem PLC / DCS adalah sebagi berikut :


- Komputer dapat merekam dan menyimpan data dalam ukuran dan jumlah yang besar.
- Data dapat ditampilkan kapanpun pengguna membutuhkannya.
- Ribuan sensor dari area yang luas dapat tersambungkan ke sistem.
- Operator dapat menghubungkan data hasil simulasi kedalam sistem.
- Berbagai macam tipe data dapat dikumpulkan dari RTU (Remote Terminal Unit)
- Data dapat dilihat darimanapun.

Kekurangannya:

• Sistem ini jauh lebih kompleks daripada sistem yang memanfaatkan panel dan sensor saja.

- Dibutuhkan kemampuan dan pengalaman yang berbeda dalam pengopersaiannya, misalkan kemampuan analisa sistem dan programer.
- Dengan ribuan sensor maka masih tetap dibutuhkan banyak sekali pengkabelan.
- Operator hanya dapat melihat sejauh apa yang telah dikerjakan oleh PLC.

Dengan adanya kebutuhan yang semakin bertambah untuk menggunakan sistem yang lebih cerdas dan lebih kecil, maka sensor didesain dengan kemampuan secerdas PLC maupun DCS. Perangkat ini dikenal sebagai IED (Intelligent Electronic Devices). IED terhubung dengan sebuah fieldbus seperti contohnya Profibus, Devicenet, atau Foundation Fieldbus ke sebuah PC. Halhal teresbut telah memasukkan cukup kemampuan/kecerdasan didalamnya untuk memperoleh data dan mengkomunikasikannya dengan perangkat yang lainnya. Setiap dari sensor super smart dapat memiliki lebih dari satu atau bahkan lebih sensor on board. Secara khusus, sebuah IED dapat mengkombinasikan sebuah sensor input analog, analog output, kontrol PID, sistem komunikasi dan memori program dalam satu perangkat.

Gambar 3 : Sambungan PC ke IED mengguankan sebuah *Fieldbus* Keuntungan dari sistem *fieldbus* PC ke IED adalah :

- Membutuhkan pengkabelan yang sedikit.
- Operator dapat langsung melihat level sensor ke lapangan.
- Data diterima dari perangkat yang dapat memasukkan informasi seperti angka-angka berurutan, model-model berurutan, waktu ketika ia di pasang dan oleh siapa.

- Setiap perangkat dapat terhubung dan terpasang, jadi pemasangan dan penggantian dapat dilakukan dengan mudah.
- Perangkat yang kecil berarti mebutuhkan ruang khusus yang lebih kecil untuk sistem agar dapat mengakuisisi data.

Kekurangan dari sistem fieldbus PC ke IED adalah:

- Sistem yang pintar sebaiknya juga membutuhkan tenaga kerja terlatih.
- Harga dari sensor semacam ini sangatlah mahal (tetapi seringkali kekurangan ini dapat terbayar dengan kemampuannya untuk menutupi kekurangan dari penggunaan PLC saja)
- IED dapt diandalkan dalam hal sistem komunikasinya.

C. SCADA Hardware

Sebuah sistem SCADA terdiri dari beberapa buah RTU yang digunakan sebagai tempat pemgumpulan data dan pengiriman data kembali ke *master station* via sistem komunikasi. *Master station* menampilkaan data yang telah diperoleh dan mengijinkan operator untuk menggunakan *Remote Control Task*.

Data yang akurat dan tepat waktu diperbolehkan untuk di optimisasi pada operasi plant da proses. Keuntunga lainya adalah lebih efisien, dapat dipercaya, lebih penting, dan dapat menyimpan operasi. Hasil akhirnya membutuhkan biaya yang lebih rendah dalam hal pengoperasian dibandingkan dengan sistem yang belum otomatis yang digunkan terdahulu.

Pada sebuah sistem SCADA yang kompleks, ada lima level dasar hierarki:

- Perangkat kendali dan instrumenstasi level pada lapangan
- Terminal-terminal uang telah tersusun dan beberapa RTU.
- Sistem komunikasi.
- Master Station.
- Sistem komputer bagian pengolahan data komersil.

RTU menyediakan sebuak antarmuka dari sensor bidang digital ke analog yang dikondisikan di setiap *Remote Site*. Sistem komunikasi menyediakan jalur komunkasi antara *Master Station* dan *Remote Site*. Sistem komunikasi ini dapt menggunkan kabel, serat optik, gelombang radio, saluran telepon, gelombang mikro dan terkadang juga menggunakan satelit. Protokol

khusus dan pendeteksi kesalahan secara filosofis digunkaan agar data dapat dikirimkan secara efisien dan optimum.

Master station atau sub-master site mengumpulkan data dari berbagai RTU dan secara umum menyediakan sebuah antarmuka operator untuk menampilkan informasi dan proses pengendalian dari Remote Site. Dalam sistem telemetri yang cukup besar, sub-master site mengumpulkan informasi dari Remote Site dan bekerja menyampaikan kembali informasi ke kendali Master station.

D. SCADA Software

Perangkat lunak yang digunakan oleh SCADA dibagi menjadi dua tipe yaitu *proprietary* dan terbuka. Perusahaan mengembangkan perangkat lunak *proprietary* untuk berkomunikasi dengan perangkat kerasnya. Sistem ini dijual sebagai solusi 'turn key'. Masalah utama dengan sistem ini adalah kepercayaan berlebihan terhadap penyedia sistem. Sistem perangkat lunak terbuka memiliki kepopulera yang meningkat karena interoperabilitas yang mereka bawa kedalam sistem. Interoperabilitas adalah kemampuan untuk mencampurka peralatan/ perangkat pabrikasi yang berbeda kedalam satu sistem yang sama.

Citect dan WonderWare adalah dua paket perangkat lunak terbuka yang tersedia dalam pasar sistem SCADA. Beberapa paket sekarang telah masuk menjadi aset manajemen yang terintegrasi dengan sistem SCADA. Komponen khusus dari sistem SCADA ditunjukkan pada diagram berikut:

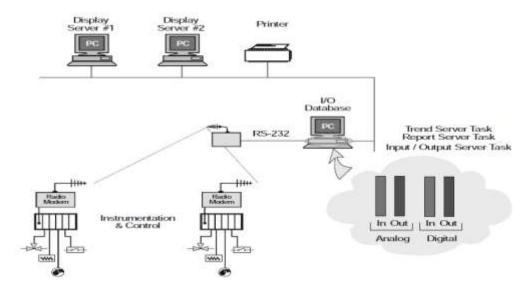


Figure 1.4 Typical SCADA system

Fitur utama dari perangkat lunak SCADA adalah:

- Antarmuka pengguna
- Tampilan Grafis
- Alarm.
- Trend
- Antarmuka RTU (dan PLC)
- Scalability
- Akses ke data
- Database
- Jaringan
- Redudansi dan toleransi kesalahan
- Proses distribusi dari klien maupun server

E. Pengawatan SCADA

Meskipun dengan SCADA kita dapat mengurangi pengkabelan pada penggunaan PC ke sistem IED, tetapi pada kenyataannya masih ada banyak pengkabelan yang terjadi pada beberapa tipe sistem SCADA. Pengkabelan semacam ini membawa maslah tersendiri bagi sistem SCADA. Yaitu dengan adanya masalah utama mengenai *noise* elektris dan interferensi.

Interferensi dan *noise* adalah faktor penting yang perlu untuk dipertimbangkan ketika mendesain dan memasangkan sebuah sistem komunikasi data. *Noise* dapat diartikan sebagai sinyal acak yang tidak diinginkan yang dapat merusak atau dapat berinterferensi dengan sinyal asli (sinyal yang diinginkan). *Noise* ini dapat berada didalam kabel atau kawat dengan berbagai cara. Hal ini tergantung pada pernacang bagaimana cara mengembangkan sistem agar dapat memiliki *noise* minimum sejak awal. Karena pada khususnya sistem SCADA menggunakan tegangan yang kecil, mereka mudah terkena *noise* .

Penggunaan kawat *Twisted Pair Shielded CAT5* biasanya dibutuhkan dalam banyak sistem. Menggunakan kawat berpasangan yang bagus dengan teknik pemasangan yang benar dapt menjamin bahwa sistem akan menjadi lebih kebal dan memungkinkan untuk terbebas dari *noise*.

Kabel serat optik lebih populer lagi karena kekebalannya terhadap noise. Pada penggunaan serat optik, pemasangannya menggunakan serat-serat kaca, akan tetapi pada beberapa area industri penggunaan serat-serat plastik lebih mengalami pertambahan.

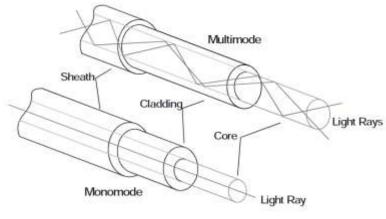
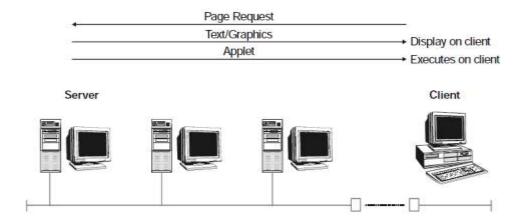


Figure 1.5 Glass fiber optic cables

Gambar 5: Kabel yang menggunakan kabel serat optik


Di masa yang akan datang, komunikasi data akan dibagi menjadi sistem radio, serat optik dan beberapa sistem inframerah. Kawat dan kabel akan dialihkan penggunaannya sebagai pensuplai daya dan seiring kebutuhan dan penggunaan daya yang semakin minim. Maka ada kemungkinan bhawa penggunaan kawat juga kan dikurangi.

F. SCADA dan LAN

Local area networks (LAN) adalah tentang berbagi informasi dan sumber daya. Untuk mengaktifkan seluruh node di jaringan SCADA untuk berbagai informasi, mereka harus dihubungkan oleh beberapa media transmisi. Metode koneksi ini dikenal sebagai topologi jaringan. Node perlu berbagi transmisi menengah sedemikian rupa untuk memungkinkan semua node akses ke medium tanpa mengganggu pengirim.

LAN adalah sebuah jalan komunikasi antara computer, file-server, terminal, workstation, dan berbagai peripheral cerdas lainnya, umumnya disebut perangkat atau host. LAN memungkinkan akses untuk digunakan bersama oleh beberapa pengguna, dengan konektivitas penuh antar semua stasiun pada jaringan. LAN biasanya dimiliki dan dikelola oleh pemilik swasta dan berada dalam sebuah kelompok local bangunan.

Ethernet adalah yang paling banyak menggunakan LAN karena murah dan mudah untuk digunakan. Koneksi dari jaringan SCADA ke LAN memungkinkan siapapun dalam perusahaan dengan hak software dan izin, untuk mengakses sistem. Sejak data diadakan di database, pengguna terbatas untuk membaca informasi. Masalah keamanan menjadi perhatian, tetapi dapat ditangani.

. Gambar 6 : Ethernet yang digunakan untuk mentransfer data pada suatu sistem SCADA

G. Penggunaan Modem Pada Sistem SCADA

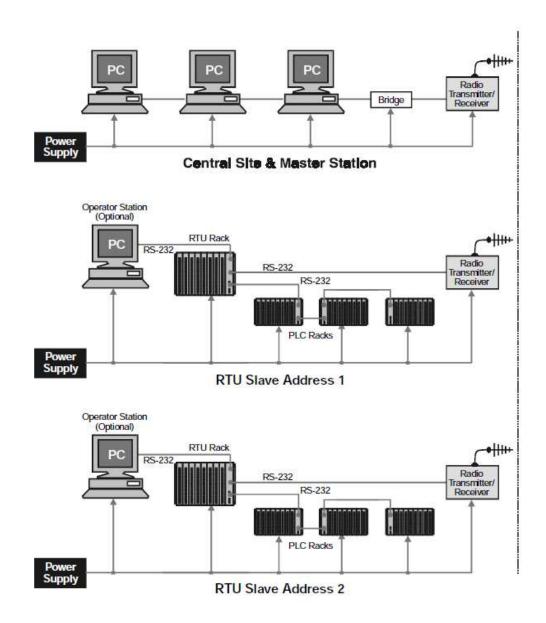
Gambar 7 : PC ke RTU menggunakan sebuah modem

Seringkali dalam sistem SCADA, RTU (Remote Terminal Unit (PLC, DCS atau IED)) berada di lokasi yang jauh. Jarak tersebut bervariasi dari puluhan meter hingga mencapai ribuan kilometer. Salah satu yang paling hemat biaya cara berkomunikasi dengan RTU jarak jauh dapat menggunakan dial-up sambungan telepon. Dengan sistem ini perangkat yang diperlukan adalah sebuah PC, dua dial-up modem dan RTU (dengan asumsi bahwa RTU telah dibangun di COM port). Modem diletakkan di atas auto-answer mode dan RTU dapat menghubungi ke PC atau PC dapat menghubungi RTU. Perangkat lunak untuk

melakukan ini tersedia dari produsen RTU. Modem dapat dibeli di took computer lokal.

Jalur modem digunakan untuk menghubungkan RTU ke jaringan lebih dari satu pasang kabel. Sistem ini biasanya cukup pendek (hingga 1 kilometer) dan menggunakan FSK (Frequency Shift Keying) untuk berkomunikasi. Jalur modem digunakan untuk berkomunikasi dengan RTU ketika RS-232 atau RS-485 sistem komunikasi tidak praktis. Sedikit bit yang digunakan dalam sistem jenis ini biasanya lambat, 1200 sampai 9600 bps.

H. Sambungan Komputer dan Penanganan Masalah


Komputer dan RTU biasanya dijalankan tanpa masalah untuk waktu yang lama jika dibiarkan. Pemeliharaan mungkin harian, mingguan, bulanan, atau tahunan. Ketika pemeliharaan diperlukan, seorang teknisi mungkin perlu untuk memeriksa peralatan berikut secara teratur:

- RTU dan komponen modul
- Analog input modul
- Digital input modul
- Interface dari RTU ke PLC (RS-232/RS-485)
- Privately owned cable
- Switched telephone line
- Analog or digital data links
- The master sites
- The central site
- The operator station and software

Dua peraturan utama yang selalu diikuti dalam perbaikan dan pemeliharaan sistem elektronik adalah :

- Jika tidak rusak, jangan memperbaikinya.
- Jangan merusak.

Para teknisi dan insinyur telah menyebabkan lebih banyak masalah, dari yang mereka mulai, dengan melakukan hal-hal bodoh seperti membersihkan peralatan karena sedikit berdebu. Atau mencoba untuk mendapatkan .01 dB dari radio dan penguat dalam proses.

Gambar 8 : Komponen yang perlu dirawat pada suatu sistem SCADA

I. Implementasi Sistem

Ketika pertama kali merencanakan dan mendesain sebuah sistem SCADA, perhatian lebih perlu diberikan untuk mengintegrasikan sistem SCADA baru kedalam jaringan komunikasi yang telah ada dalam rangka mengurangi biaya yang besar pada penagaturan infrastruktur dan fasilitas komunikasi. Hal ini mungkin akan melibatkan beberapa LAN yang sudah ada, sistem telepon pribadi atau sistem radioyang digunakan pada *mobile comunication* .Seorang engineer yang berhati-hati harus dapat meyakinkan bahwa sistem SCADA yang telah terpasang pada jaringan komunikasi tidak akan terdegradasi atau terinterferensi dengan fasilitas yang telah ada.

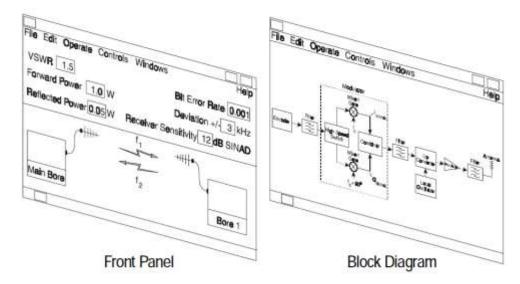


Figure 1.9
Front panel display of SCADA software and its block diagram

Gambar 9 : Tampilan panel dari perangkat lunak SCADA beserta diagram baloknya

Jika sebuah sistem akan di implementasikan maka perhatian lebih perlu diberikan pada kualitas sistem yang terpasang. Tidak ada perusahaan yang memiliki budget tak terbatas. Meningkatkan perhatian terhadap permasalahan ekonomi, performansi dan kebuthan yang saling terintegrasi adalah merupan hal yang penting dalam memperoleh keyakinan dan kepuasaan pada sistem yang digunakan pada saat diakhir proyek yang dijalankan. Perhatian terhadap ketersediaan dari jaringan komunikasi dan ketahanan uji peralatan sangatlah penting ketika mengharapkan terselenggarkannya perencanaan dari suatu sistem.

Dari semua faktor yang telah disebutkan, mereka akan saling terkait satu sama laindalam sebuah pendekatan yang sistematis agar orang dapt mendesain, menspesifikasi, memasangkan, dan melakukan perawatan pada senuah telemetri dengan efektif serta dapat mengakusisi sistem yang sesuai dengan lingkungan industri mana yang tepat untuk dipasangkan.